South Central Texas Regional Water Planning Area

With administration by:

San Antonio River Authority

With technical assistance by:

HDR Engineering, Inc. Laura Raun Public Relations Ximenes & Associates

2011 South Central Texas Regional Water Plan

This report is released by: HDR Engineering, Inc. 8404 Indian Hills Dr. Omaha, NE 68114 Registration No. F-754.

South Central Texas Regional Water Planning Area

2011 Regional Water Plan


Volume I — Executive Summary and Regional Water Plan

Prepared by:

South Central Texas Regional Water Planning Group

With administration by:

San Antonio River Authority

With technical assistance by:

HDR Engineering, Inc.
Laura Raun Public Relations
Ximenes and Associates

Table of Contents

Executive S	Summary		
1	Descr	ription of the	he South Central Texas Region
	1.1	Backgro	ound
	1.2	Physica	l Description of the South Central Texas Region
		1.2.1	Climate
		1.2.2	General Geology
		1.2.3	Vegetational Areas
		1.2.4	Natural Resources
		1.2.5	Major Water Demand Centers
	1.3	Populat	ion and Demography
		1.3.1	Historical and Recent Trends in Population
		1.3.2	Demographic Characteristics
	1.4	Econom	ny – Major Sectors and Industries
		1.4.1	Summary of the South Central Texas
			Regional Economy
		1.4.2	Agricultural Production
		1.4.3	Livestock Production
		1.4.4	Mining
		1.4.5	Manufacturing
		1.4.6	Trades and Services
	1.5	Water U	Jses
	1.6	Wholes	ale Water Providers
		1.6.1	San Antonio Water System
		1.6.2	Bexar Metropolitan Water District
		1.6.3	Guadalupe-Blanco River Authority
		1.6.4	Canyon Regional Water Authority
		1.6.5	Schertz-Sequin Local Government
			Corporation
		1.6.6	Springs Hill WSC
		1.6.7	Texas Water Alliance
	1.7	Water R	Resources and Quality Considerations
		1.7.1	Groundwater
		1.7.2	Surface Water
		1.7.3	Major Springs

<u>Section</u>			<u>Page</u>
1.		o Agricultural and Natural Resources	1-46
1.	9 Summary	y of Existing Plans	1-47
	1.9.1	2007 State Water Plan	1-47
	1.9.2	2006 Regional Water Plan	1-48
	1.9.3	Local Water Plans	1-48
	1.9.4	Current Preparations for Drought	1-48
1.1	0 Water Lo	oss Audits	1-49
2 Po	opulation and W	Vater Demand Projections	2-1
2.		on Projections	2-1
2.		al Water Demand Projections	2-13
2.		l Water Demand Projections	2-16
2.		lectric Power Water Demand Projections	2-18
2.	5 Mining V	Vater Demand Projections	2-18
2.		Water Demand Projections	2-22
2.	7 Livestocl	k Water Demand Projections	2-24
2.	8 Total Wa	ater Demand Projections	2-26
2.		emand Projections for Counties and River Basins	2-28
2.		emand Projections for Wholesale Water	
		S	2-48
	2.10.1	San Antonio Water System	2-48
	2.10.2	Bexar Metropolitan Water District	2-49
	2.10.3	Guadalupe-Blanco River Authority	2-50
	2.10.4	Canyon Regional Water Authority	2-53
	2.10.5	Schertz-Sequin Local Government Corporation	2-54
	2.10.6	Springs Hill Water Supply Corporation	2-54
	2.10.7	Texas Water Alliance	2-56
3 W	ater Supply An	alyses	3-1
3.	1 Groundw	vater Supplies	3-1
	3.1.1	Groundwater Availability	3-3
	3.1.2	Assumptions for Assessment of	
		Groundwater Supply	3-6
3.	2 Surface V	Water Supplies	3-8
	3.2.1	Major Reservoirs and Associated Water Rights	3-9
	3.2.2	Run-of-River Water Rights	3-12
	3.2.3	Surface Water Availability	3-13
3.	3 Reuse Su	ıpplies	3-14

HDR-07755-93053-10 Table of Contents

<u>Section</u>				<u>Page</u>
4	Identif	fication, Ev	aluation, and Selection of Water	
	Manag	gement Stra	tegies Based on Needs	4A-1
4A	Compa	arison of Su	apply and Demand Projections to Determine Needs	4A-1
	4A.1	Water Ne	eeds Projections by Water User Group	4A-1
		4A.1.1	Municipal WUGs with Needs	4A-11
		4A.1.2	Industrial WUGs with Needs	4A-11
		4A.1.3	Steam-Electric WUGs with Needs	4A-11
		4A.1.4	Mining WUGs with Needs	4A-11
		4A.1.5	Irrigation WUGs with Needs	4A-11
		4A.1.6	Livestock WUGs with Needs	4A-11
	4A.2	Water Ne	eeds Projections by Wholesale Water Provider	4A-14
4B	Water	Supply Pla	ns	4B-1
	4B.1	Water Ma	anagement Strategies	4B.1-4
		4B.1.1	Regional Summary	4B.1-4
		4B.1.2	Water Management Strategy Descriptions	4B.1-11
		4B.1.3	Summary of Key Information	4B.1-33
	4B.2	Water Us	er Group Plans by County	4B.2-1
		4B.2.1	Atascosa County Water Supply Plan	4B.2-5
		4B.2.2	Bexar County Water Supply Plan	4B.2-19
		4B.2.3	Caldwell County Water Supply Plan	4B.2-55
		4B.2.4	Calhoun County Water Supply Plan	4B.2-69
		4B.2.5	Comal County Water Supply Plan	4B.2-77
		4B.2.6	DeWitt County Water Supply Plan	4B.2-89
		4B.2.7	Dimmit County Water Supply Plan	4B.2-95
		4B.2.8	Frio County Water Supply Plan	4B.2-101
		4B.2.9	Goliad County Water Supply Plan	4B.2-107
		4B.2.10	Gonzales County Water Supply Plan	4B.2-111
		4B.2.11	Guadalupe County Water Supply Plan	4B.2-119
		4B.2.12	Hays County Water Supply Plan	4B.2-133
		4B.2.13	Karnes County Water Supply Plan	4B.2-151
		4B.2.14	Kendall County Water Supply Plan	4B.2-159
		4B.2.15	LaSalle County Water Supply Plan	4B.2-163
		4B.2.16	Medina County Water Supply Plan	4B.2-169
		4B.2.17	Refugio County Water Supply Plan	4B.2-183
		4B.2.18	Uvalde County Water Supply Plan	4B.2-187
		4B.2.19	Victoria County Water Supply Plan	4B.2-193

<u>Section</u>				<u>Page</u>
		4B.2.20	Wilson County Water Supply Plan	4B.2-199
		4B.2.21	Zavala County Water Supply Plan	4B.2-211
	4B.3	Water Su	apply Plans for Wholesale Water Providers	4B.3-1
		4B.3.1	San Antonio Water System (SAWS)	4B.3-1
		4B.3.2	Bexar Metropolitan Water District (BMWD)	4B.3-5
		4B.3.3	Canyon Regional Water Authority (CRWA0	4B.3-7
		4B.3.4	Guadalupe-Blanco River Authority (GBRA)	4B.3-9
		4B.3.5	Lavaca-Navidad River Authority (LNRA)	4B.3-12
		4B.3.6	Schertz-Sequin Local Government	
			Corporation (SSLGC)	4B.3-13
		4B.3.7	Springs Hill WSC (SHWSC)	4B.3-15
		4B.3.8	Texas Water Alliance (TWA)	4B.3-16
4C	Techn	ical Evalua	ations of Water Management Strategies	Vol. II
5	Param	eters of Wa	Management Strategies on Key ater Quality and Moving Water from altural Areas	5-1
	5.1		of Water Management Strategies on umeters of Water Quality	5-1
	5.2	-	of Voluntary Redistribution of Water	
	0.2		ral and Agricultural Areas	5-5
	5.3		on Related to Rural and Agricultural Areas	5-7
		5.3.1	Lost Income from Reduced (Lost) Production	5-8
		5.3.2	Tax Effects	5-8
		5.3.3	Employment Effects	5-10
		5.3.4	Value of Domestic Water Shortages and Water Utility	5 10
		3.3.1	Revenue Losses	5-10
		5.3.5	Population	5-10
		5.3.6	School Enrollment	5-10
	5.4	Discussion	on Related to Rural and Agricultural Areas	5-11
6	Water	Conservati	ion and Drought Management Recommendations	6-1
	6.1	Water Co	onservation	6-1
	6.2	Drought	Management	6-5
		6.2.1	Groundwater	6-7
		6.2.2	Surface Water	6-9

<u>Section</u>				<u>Page</u>
7	Consi	stency with	h Long-Term Protection of the State's	
	Water	, Agricultu	ural, and Natural Resources	7-1
	7.1	Cumulat	tive Effects of Regional Water Plan Implementation	7-3
		7.1.1	Groundwater and Springs	7-3
		7.1.2 7.1.3	Surface Water	7-15 7-29
	7.2	Environ	mental Assessment	7-49
		7.2.1	Regional Environment	7-49
		7.2.2	Environmental Effects	7-59
	7.3	Environ	mental Benefits and Concerns	7-84
		7.3.1 7.3.2	Environmental Benefits Environmental Concerns	7-84 7-86
8	Policie	es and Rec	commendations	8-1
	8.1	_	ural Water	8-1
	8.2	Rural W	ater	8-1
	8.3		water	8-1
	8.4		Water	8-3
	8.5		ration	8-4
	8.6		ve Strategies	8-5
	8.7		mental	8-7
	8.8		ng and Financing Water and Wastewater Systems	8-10
	8.9			8-11
	8.10	Other Is:	sues	8-11
9	Water	Infrastruc	ture Funding Recommendations	9-1
	9.1	Introduc	ction	9-1
	9.2		ves of the Infrastructure Financing Report	9-1
	9.3		s and Procedures	9-1
	9.4		Responses	9-2
10	Regio	nal Water	Plan Adoption	10-1
	10.1	Facilitat	ion	10-1
		10 1 1	Facilitation Process for the 2011 Regional Water Plan	10-1

HDR-07755-93053-10 *Table of Contents*

Table of Contents (Concluded)

Section			
	10.2	Public Par	ticipation
		10.2.1 10.2.2 10.2.3	Phase I: Website Improvement Phase II: Public Involvement in Technical Studies Phase III: Comment on Initially Prepared Plan
	10.3 10-4		ion with Other Regions
<u>Appendices</u>			
Appendix A –	Summa	ary of Refe	erences
Appendix B –	Reliabi	lity Inforn	nation for Surface Water Rights
Appendix C –	Compr	ehensive V	Vater Needs Assessment Data
Appendix D –	Summa	ary of Wat	er Management Strategies
Appendix E –		conomic Inng Area	mpacts of Unmet Water Needs in the South Central Water
Appendix F –		Commissic	on on Environmental Quality Model Municipal Water in
Appendix G –		Commission of the Commission o	on on Environmental Quality Model Municipal Drought
Appendix H -	Endang	gered, Thre	eatened, or Species of Concern by County
Appendix I –		nendation ative Desig	of Stream Segments Having Unique Ecological Value Forgnation

<u>Page</u>

10-3

10-3 10-4 10-5

10-57 10-57

List of Figures

<u>Figure</u>		<u>Page</u>
ES-1	South Central Texas Planning Region (Region L)	ES-2
ES-2	Projected Water Demands	ES-5
ES-3	Distribution of Total Demand Among Users	ES-7
ES-4	Supply, Demand, and Need (Shortage)	ES-10
ES-5	Projected Water Needs (Shortages)	ES-11
ES-6	Regional Planning Process	ES-13
ES-7	Sources of New Supply	ES-14
ES-8	Phased Implementation of Water Management Strategies	ES-15
1-1	Eco-Regions — South Central Texas Region	1-6
1-2	Percentages of Population Residing in Urban and Rural Areas (2000) South Central Texas Region	1-16
1-3	Age Distribution of the Population (2000) South Central Texas Region	1-17
1-4	Level of Educational Achievement (2000) South Central Texas Region	1-17
1-5	Major Aquifers — South Central Texas Region	1-30
1-6	River Basins, Coastal Basins, and Reservoirs of the South Central Texas Region	1-40
2-1	Summary of South Central Texas Region's Projected Population	2-4
2-2	Projected Per Capita Water Use and Municipal Water Demand South Central Texas Region — 1990 to 2060	2-14
2-3	Projections of Industrial, Steam-Electric, and Mining Water Demands South Central Texas Region — 1990 to 2060	2-16
2-4	Projections of Irrigation and Livestock Water Demands South Central Texas Region — 1990 to 2060	2-22
2-5	Total Water Demand Projections South Central Texas Region — 1990 to 2060	2-24
3-1	Major Aquifers – South Central Texas Region	3-1

List of Figures (Continued)

<u>Figure</u>		<u>Page</u>
3-2	Groundwater Conservation Districts	3-2
3-3	Major River Basins, Reservoirs, and Run-of-River Rights	3-8
4A-1	Municipal Water Needs	4A-12
4A-2	Industrial Water Needs	4A-12
4A-3	Steam-Electric Water Needs	4A-13
4A-4	Mining Water Needs	4A-13
4A-5	Irrigation Water Needs	4A-14
4B.1-1	Planning Process	4B.1-1
4B.1-2	Sources of New Supply in 2060	4B.1-6
4B.1-3	Phased Implementation of Water Management Strategies	4B.1-6
4B.1-4	Recommended Water Management Strategies	4B.1-7
7.1-1	Flowchart for Assessment of Cumulative Effects of Regional Water Plan Implementation on Surface Water Resources	7-4
7.1-2	Simulated Comal Springflow	7-6
7.1-3	Edwards Recharge — Type 2 Projects	7-7
7.1-4	Simulated San Marcos Springflow	7-8
7.1-5	Simulated Leona Springflow	7-8
7.1-6	Simulated Edwards Aquifer Pumpage	7-9
7.1-7	Simulated Edwards Aquifer Levels with Plan	7-9
7.1-8	Cumulative Effects Simulation Predictive Groundwater Pumpage by Decade (Gonzales County Example)	7-10
7.1-9	Southern Carrizo GAM and Central Carrizo GAM Cumulative Effects Simulation 2002 to 2060 Carrizo Drawdown	7-11

List of Figures (Continued)

<u>Figure</u>		<u>Pa</u>
7.1-10	Southern Carrizo GAM Cumulative Effects Simulation 2002 to 2060 Wilcox Drawdown	7-
7.1-11	Drawdown Hydrographs for Projects in Atascosa, Bexar, and Wilson Counties	7-
7.1-12	Drawdown Hydrographs for Projects in Gonzales County	7-
7.1-13	Flow Assessment Locations	7-
7.1-14	Guadalupe River above Comal River at New Braunfels	7-
7.1-15	San Marcos River at Luling	7-
7.1-16	Guadalupe River at Victoria	7-
7.1-17	San Antonio River near Falls City	7-
7.1-18	San Antonio River at Goliad	7-
7.1-19	Guadalupe River at Diversion Dam and Saltwater Barrier near Tivoli	7-
7.1-20	Guadalupe Estuary	7-
7.1-21	Nueces River below Uvalde	7-
7.1-22	Nueces River near Cotulla	7-
7.1-23	Frio River near Derby	7-
7.1-24	Nueces Estuary	7-
7.1-25	Monthly Median Guadalupe Estuary Freshwater Inflows	7-
7.1-26	Frequency of Guadalupe Estuary Freshwater Inflows	7-
7.1-27	Frequency of Guadalupe Estuary Freshwater Inflows During Wet Periods (May and June)	7-
7.1-28	Frequency of Guadalupe Estuary Freshwater Inflows During Dry Periods (July and August)	7-
7.1-29	Guadalupe Estuary Freshwater Inflows during Drought	7-

HDR-07755-93053-10 *List of Figures*

List of Figures (Concluded)

<u>Figure</u>		<u>Page</u>
7.2-1	Gould's Vegetational Areas within Region L	7-50
7.2-2	Ecologically Significant River and Stream Segments for Region L	7-58
7.2-3	Cumulative Potential Impact Scores for Endangered, Threatened, and Species of Concern	7-70
7.2-4	Cumulative Potential Impact Scores for Vegetation and Wildlife Habitats	7-74
7.2-5	Cumulative Potential Impact Scores for Water Quality and Aquatic Habitats	7-78
7.2-6	Cumulative Potential Impacts to Cultural Resources	7-82
7.2-7	Cumulative Potential Impacts to Ecologically Significant River and Stream Segments	7-83
7.2-8	Cumulative Potential Impact Scores for South Central Texas Regional Water Planning Area	7-83

List of Tables

<u>Table</u>		<u>Page</u>
ES-1	South Central Texas Regional Water Planning Group Members	ES-2
ES-2	Wholesale Water Providers and Service Areas	ES-8
ES-3	Counties and Types of Water User Groups with Projected Water Needs (Shortages)	ES-12
ES-4	Regional Water Supply Plan Summary	ES-22
1-1	South Central Texas Region – List of Counties Location by River Basin and Edwards Aquifer Area	1-3
1-2	Climatological Data for the South Central Texas Region	1-4
1-3	Agricultural Resources — 2007 South Central Texas Region	1-11
1-4	Population Growth – 1950 to 2000 South Central Texas Region	1-14
1-5	Major Entities in the South Central Texas Region	1-15
1-6	County Population and Area South Central Texas Region	1-16
1-7	Summary of Farm Production Data 2007 South Central Texas Region	1-19
1-8	Summary of Livestock Production Data – 2007 South Central Texas Region	1-21
1-9	Summary of Manufacturing Activity – 2002 South Central Texas Region	1-23
1-10	Trades and Services Industry – 2002 South Central Texas Region	1-24
1-11	Water Loss Audit – 2005 South Central Texas Water Planning Region	1-52
2-1	South Central Texas Region – List of Counties Location by River or Coastal Basin and Edwards Aquifer Area	2-2
2-2	Population Projections South Central Texas Region Individual Counties with River Basin Summaries	2-3
2-3	Population Projections South Central Texas Region River Basins, Counties, and Cities	2-5
2-4	Municipal Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-15

<u>Table</u>		<u>Page</u>
2-5	Industrial Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-17
2-6	Steam-Electric Power Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-20
2-7	Mining Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-21
2-8	Irrigation Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-23
2-9	Livestock Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-25
2-10	Total Water Demand Projections South Central Texas Region Individual Counties with River Basin Summaries	2-27
2-11	Composition of Total Water Use South Central Texas Region 1990, 2000, 2030, and 2060	2-28
2-12	Water Demand Projections South Central Texas Region River Basins, Counties, Cities, and Water Supply Districts and Authorities	2-31
2-13	San Antonio Water System Water Demand Projections	2-49
2-14	Bexar Metropolitan Water District Water Demand Projections	2-50
2-15	Guadalupe-Blanco River Authority Water Demand Projections	2-51
2-16	Canyon Regional Water Authority Water Demand Projections	2-55
2-17	Schertz-Seguin Local Government Corporation Water Demand Projections	2-55
2-18	Springs Hill Water Supply Corporation Water Demand Projections	2-56
2-19	Texas Water Alliance Demand Projections	2-56
3-1	Available Groundwater Supply for the Gulf Coast, Carrizo-Wilcox, and Trinity Aquifers	3-5
3-2	Available Groundwater Supply by Aquifer	3-6
3-3	List of Major Reservoirs	3-10

<u>Table</u>		<u>Page</u>
4A-1	Summary of Water Needs (Shortages) by WUG	4A-2
4A-2	WUGs Located in Multiple Counties	4A-10
4A-3	Water Demands, Supplies, and Needs (Shortages) by Wholesale Water Providers	4A-15
4B.2.1-1	Atascosa County Management Supply/Shortage by Water User Group	4B.2-5
4B.2.1-2	Recommended Water Supply Plan for Benton City WSC	4B.2-6
4B.2.1-3	Recommended Plan Costs by Decade for Benton City WSC	4B.2-6
4B.2.1-4	Recommended Water Supply Plan for the City of Charlotte	4B.2-7
4B.2.1-5	Recommended Plan Costs by Decade for the City of Charlotte	4B.2-8
4B.2.1-6	Recommended Water Supply Plan for the City of Jourdanton	4B.2-9
4B.2.1-7	Recommended Plan Costs by Decade for the City of Jourdanton	4B.2-9
4B.2.1-8	Recommended Water Supply Plan for the City of Lytle	4B.2-10
4B.2.1-9	Recommended Plan Costs by Decade for the City of Lytle	4B.2-10
4B.2.1-10	Recommended Water Supply Plan for McCoy WSC	4B.2-11
4B.2.1-11	Recommended Plan Costs by Decade for McCoy WSC	4B.2-12
4B.2.1-12	Recommended Water Supply Plan for the City of Pleasanton	4B.2-12
4B.2.1-13	Recommended Plan Costs by Decade for the City of Pleasanton	4B.2-13
4B.2.1-14	Recommended Water Supply Plan for the City of Poteet	4B.2-13
4B.2.1-15	Recommended Plan Costs by Decade for the City of Poteet	4B.2-14
4B.2.1-16	Recommended Water Supply Plan for Rural Areas	4B.2-14
4B.2.1-17	Recommended Plan Costs by Decade for Rural Areas	4B.2-15
4B.2.1-18	Recommended Water Supply Plan for Steam-Electric Power	4B.2-15
4B.2.1-19	Recommended Plan Costs by Decade for Steam-Electric Power	4B.2-16
4B.2.1-20	Recommended Water Supply Plan for Irrigation	4B.2-16

<u>Table</u>		<u>Page</u>
4B.2.1-21	Recommended Plan Costs by Decade for Irrigation	4B.2-17
4B.2.2-1	Bexar County Management Supply/Shortage by Water User Group	4B.2-19
4B.2.2-2	Recommended Water Supply Plan for the City of Alamo Heights	4B.2-21
4B.2.2-3	Recommended Plan Costs by Decade for the City of Alamo Heights	4B.2-21
4B.2.2-4	Recommended Water Supply Plan for Atascosa Rural WSC	4B.2-22
4B.2.2-5	Recommended Plan Costs by Decade for Atascosa Rural WSC	4B.2-23
4B.2.2-6	Recommended Water Supply Plan for the City of Balcones Heights	4B.2-24
4B.2.2-7	Recommended Plan Costs by Decade for the City of Balcones Heights	4B.2-24
4B.2.2-8	Recommended Water Supply Plan for Bexar Metropolitan Water District	4B.2-25
4B.2.2-9	Recommended Plan Costs by Decade for Bexar Metropolitan Water District	4B.2-25
4B.2.2-10	Recommended Water Supply Plan for the City of Castle Hills	4B.2-26
4B.2.2-11	Recommended Plan Costs by Decade for the City of Castle Hills	4B.2-26
4B.2.2-12	Recommended Water Supply Plan for the City of China Grove	4B.2-27
4B.2.2-13	Recommended Plan Costs by Decade for the City of China Grove	4B.2-27
4B.2.2-14	Recommended Water Supply Plan for the City of Converse	4B.2-28
4B.2.2-15	Recommended Plan Costs by Decade for the City of Converse	4B.2-28
4B.2.2-16	Recommended Water Supply Plan for East Central SUD	4B.2-29
4B.2.2-17	Recommended Plan Costs by Decade for East Central SUD	4B.2-30
4B.2.2-18	Recommended Water Supply Plan for the City of Elmendorf	4B.2-31
4B.2.2-19	Recommended Plan Costs by Decade for the City of Elmendorf	4B.2-31
4B.2.2-20	Recommended Water Supply Plan for the City of Fair Oaks Ranch	4B.2-32
4B.2.2-21	Recommended Plan Costs by Decade for the City of Fair Oaks Ranch	4B.2-32
4B.2.2-22	Recommended Water Supply Plan for the City of Helotes	4B.2-33
4B.2.2-23	Recommended Plan Costs by Decade for the City of Helotes	4B.2-33

<u>Table</u>		<u>Page</u>
4B.2.2-24	Recommended Water Supply Plan for the City of Hill Country Village	4B.2-34
4B.2.2-25	Recommended Plan Costs by Decade for the City of Hill Country Village	4B.2-34
4B.2.2-26	Recommended Water Supply Plan for the City of Hollywood Park	4B.2-35
4B.2.2-27	Recommended Plan Costs by Decade for the City of Hollywood Park	4B.2-36
4B.2.2-28	Recommended Water Supply Plan for the City of Kirby	4B.2-36
4B.2.2-29	Recommended Plan Costs by Decade for the City of Kirby	4B.2-37
4B.2.2-30	Recommended Water Supply Plan for Lackland AFB	4B.2-37
4B.2.2-31	Recommended Plan Costs by Decade for Lackland AFB	4B.2-38
4B.2.2-32	Recommended Water Supply Plan for the City of Leon Valley	4B.2-38
4B.2.2-33	Recommended Plan Costs by Decade for the City of Leon Valley	4B.2-39
4B.2.2-34	Recommended Water Supply Plan for the City of Olmos Park	4B.2-39
4B.2.2-35	Recommended Plan Costs by Decade for the City of Olmos Park	4B.2-40
4B.2.2-36	Recommended Water Supply Plan for the City of San Antonio	4B.2-41
4B.2.2-37	Recommended Plan Costs by Decade for the City of San Antonio	4B.2-41
4B.2.2-38	Recommended Water Supply Plan for the City of Selma	4B.2-42
4B.2.2-39	Recommended Plan Costs by Decade for the City of Selma	4B.2-42
4B.2.2-40	Recommended Water Supply Plan for the City of Shavano Park	4B.2-43
4B.2.2-41	Recommended Plan Costs by Decade for the City of Shavano Park	4B.2-44
4B.2.2-42	Recommended Water Supply Plan for the City of Somerset	4B.2-44
4B.2.2-43	Recommended Plan Costs by Decade for the City of Somerset	4B.2-45
4B.2.2-44	Recommended Water Supply Plan for the City of St. Hedwig	4B.2-45
4B.2.2-45	Recommended Plan Costs by Decade for the City of St. Hedwig	4B.2-45
4B.2.2-46	Recommended Water Supply Plan for the City of Terrell Hills	4B.2-46
4B.2.2-47	Recommended Plan Costs by Decade for the City of Terrell Hills	4B.2-46

<u>Table</u>		<u>Page</u>
4B.2.2-48	Recommended Water Supply Plan for the City of Universal City	4B.2-47
4B.2.2-49	Recommended Plan Costs by Decade for the City of Universal City	4B.2-47
4B.2.2-50	Recommended Water Supply Plan for Water Service Inc.	4B.2-48
4B.2.2-51	Recommended Plan Costs by Decade for Water Service Inc.	4B.2-49
4B.2.2-52	Recommended Water Supply Plan for Windcrest	4B.2-50
4B.2.2-53	Recommended Plan Costs by Decade for Windcrest	4B.2-50
4B.2.2-54	Recommended Water Supply Plan for Rural Areas	4B.2-51
4B.2.2-55	Recommended Plan Costs by Decade for Rural Areas	4B.2-51
4B.2.2-56	Recommended Water Supply Plan for Industrial	4B.2-52
4B.2.2-57	Recommended Plan Costs by Decade for Industrial	4B.2-52
4B.2.2-58	Recommended Water Supply Plan for Mining	4B.2-53
4B.2.2-59	Recommended Plan Costs by Decade for Mining	4B.2-53
4B.2.3-1	Caldwell County Management Supply/Shortage by Water User Group	4B.2-55
4B.2.3-2	Recommended Water Supply Plan for Aqua WSC	4B.2-56
4B.2.3-3	Recommended Plan Costs by Decade for Aqua WSC	4B.2-57
4B.2.3-4	Recommended Water Supply Plan for Creedmoor-Maha WSC	4B.2-57
4B.2.3-5	Recommended Plan Costs by Decade for Creedmoor-Maha WSC	4B.2-58
4B.2.3-6	Recommended Water Supply Plan for the City of Lockhart	4B.2-59
4B.2.3-7	Recommended Plan Costs by Decade for the City of Lockhart	4B.2-59
4B.2.3-8	Recommended Water Supply Plan for the City of Luling	4B.2-60
4B.2.3-9	Recommended Plan Costs by Decade for the City of Luling	4B.2-61
4B.2.3-10	Recommended Water Supply Plan for the City of Martindale	4B.2-62
4B.2.3-11	Recommended Plan Costs by Decade for the City of Martindale	4B.2-62
4B.2.3-12	Recommended Water Supply Plan for Martindale WSC	4B.2-63

<u>Table</u>		<u>Page</u>
4B.2.3-13	Recommended Plan Costs by Decade for Martindale WSC	4B.2-63
4B.2.3-14	Recommended Water Supply Plan for Maxwell WSC	4B.2-64
4B.2.3-15	Recommended Plan Costs by Decade for Maxwell WSC	4B.2-64
4B.2.3-16	Recommended Water Supply Plan for the City of Mustang Ridge	4B.2-65
4B.2.3-17	Recommended Plan Costs by Decade for the City of Mustang Ridge	4B.2-66
4B.2.3-18	Recommended Water Supply Plan for Polonia WSC	4B.2-66
4B.2.3-19	Recommended Plan Costs by Decade for Polonia WSC	4B.2-67
4B.2.3-20	Recommended Water Supply Plan for Rural Areas	4B.2-67
4B.2.3-21	Recommended Plan Costs by Decade for Rural Areas	4B.2-68
4B.2.4-1	Calhoun County Management Supply/Shortage by Water User Group	4B.2-69
4B.2.4-2	Recommended Water Supply Plan for the City of Point Comfort	4B.2-70
4B.2.4-3	Recommended Plan Costs by Decade for the City of Point Comfort	4B.2-70
4B.2.4-4	Recommended Water Supply Plan for the City of Port Lavaca	4B.2-71
4B.2.4-5	Recommended Plan Costs by Decade for the City of Port Lavaca	4B.2-71
4B.2.4-6	Recommended Water Supply Plan for the City of Seadrift	4B.2-72
4B.2.4-7	Recommended Plan Costs by Decade for the City of Seadrift	4B.2-72
4B.2.4-8	Recommended Water Supply Plan for Rural Areas	4B.2-73
4B.2.4-9	Recommended Plan Costs by Decade for Rural Areas	4B.2-73
4B.2.4-10	Recommended Water Supply Plan for Industrial	4B.2-74
4B.2.4-11	Recommended Plan Costs by Decade for Industrial	4B.2-74
4B.2.5-1	Comal County Management Supply/Shortage by Water User Group	4B.2-77
4B.2.5-2	Recommended Water Supply Plan for the City of Bulverde	4B.2-78
4B.2.5-3	Recommended Plan Costs by Decade for the City of Bulverde	4B.2-79

<u>Table</u>		<u>Page</u>
4B.2.5-4	Recommended Water Supply Plan for Canyon Lake WSC	4B.2-80
4B.2.5-5	Recommended Plan Costs by Decade for Canyon Lake WSC	4B.2-80
4B.2.5-6	Recommended Water Supply Plan for the City of Garden Ridge	4B.2-81
4B.2.5-7	Recommended Plan Costs by Decade for the City of Garden Ridge	4B.2-82
4B.2.5-8	Recommended Water Supply Plan for the City of New Braunfels	4B.2-82
4B.2.5-9	Recommended Plan Costs by Decade for the City of New Braunfels	4B.2-82
4B.2.5-10	Recommended Water Supply Plan for Rural Areas	4B.2-84
4B.2.5-11	Recommended Plan Costs by Decade for Rural Areas	4B.2-85
4B.2.5-12	Recommended Water Supply Plan for Industrial	4B.2-86
4B.2.5-13	Recommended Plan Costs by Decade for Industrial	4B.2-86
4B.2.5-14	Recommended Water Supply Plan for Mining	4B.2-87
4B.2.5-15	Recommended Plan Costs by Decade for Mining	4B.2-87
4B.2.6-1	DeWitt County Management Supply/Shortage by Water User Group	4B.2-89
4B.2.6-2	Recommended Water Supply Plan for the City of Cuero	4B.2-90
4B.2.6-3	Recommended Plan Costs by Decade for the City of Cuero	4B.2-90
4B.2.6-4	Recommended Water Supply Plan for the City of Yoakum	4B.2-91
4B.2.6-5	Recommended Plan Costs by Decade for the City of Yoakum	4B.2-91
4B.2.6-6	Recommended Water Supply Plan for the City of Yorktown	4B.2-92
4B.2.6-7	Recommended Plan Costs by Decade for the City of Yorktown	4B.2-92
4B.2.6-8	Recommended Water Supply Plan for Rural Areas	4B.2-93
4B.2.6-9	Recommended Plan Costs by Decade for Rural Areas	4B.2-93
4B.2.7-1	Dimmit County Management Supply/Shortage by Water User Group	4B.2-95
4B.2.7-2	Recommended Water Supply Plan for the City of Asherton	4B.2-96

<u>Table</u>		<u>Page</u>
4B.2.7-3	Recommended Plan Costs by Decade for the City of Asherton	4B.2-96
4B.2.7-4	Recommended Water Supply Plan for the City of Big Wells	4B.2-97
4B.2.7-5	Recommended Plan Costs by Decade for the City of Big Wells	4B.2-97
4B.2.7-6	Recommended Water Supply Plan for the City of Carrizo Springs	4B.2-98
4B.2.7-7	Recommended Plan Costs by Decade for the City of Carrizo Springs	4B.2-98
4B.2.8-1	Frio County Management Supply/Shortage by Water User Group	4B.2-101
4B.2.8-2	Recommended Water Supply Plan for the City of Dilley	4B.2-102
4B.2.8-3	Recommended Plan Costs by Decade for the City of Dilley	4B.2-102
4B.2.8-4	Recommended Water Supply Plan for the City of Pearsall	4B.2-103
4B.2.8-5	Recommended Plan Costs by Decade for the City of Pearsall	4B.2-103
4B.2.8-6	Recommended Water Supply Plan for Rural Areas	4B.2-104
4B.2.8-7	Recommended Plan Costs by Decade for Rural Areas	4B.2-104
4B.2.9-1	Goliad County Management Supply/Shortage by Water User Group	4B.2-107
4B.2.9-2	Recommended Water Supply Plan for the City of Goliad	4B.2-108
4B.2.9-3	Recommended Plan Costs by Decade for the City of Goliad	4B.2-108
4B.2.9-4	Recommended Water Supply Plan for Rural Areas	4B.2-109
4B.2.9-5	Recommended Plan Costs by Decade for Rural Areas	4B.2-109
4B.2.10-1	Gonzales County Management Supply/Shortage by Water User Group	4B.2-111
4B.2.10-2	Recommended Water Supply Plan for the City of Gonzales	4B.2-112
4B.2.10-3	Recommended Plan Costs by Decade for the City of Gonzales	4B.2-112
4B.2.10-4	Recommended Water Supply Plan for Gonzales County WSC	4B.2-113
4B.2.10-5	Recommended Plan Costs by Decade for Gonzales County WSC	4B.2-113
4B.2.10-6	Recommended Water Supply Plan for the City of Nixon	4B.2-114
4B.2.10-7	Recommended Plan Costs by Decade for the City of Nixon	4B.2-114

<u>Table</u>		<u>Page</u>
4B.2.10-8	Recommended Water Supply Plan for the City of Waelder	4B.2-115
4B.2.10-9	Recommended Plan Costs by Decade for the City of Waelder	4B.2-115
4B.2.10-10	Recommended Water Supply Plan for Rural Areas	4B.2-116
4B.2.10-11	Recommended Plan Costs by Decade for Rural Areas	4B.2-116
4B.2.11-1	Guadalupe County Management Supply/Shortage by Water User Group	4B.2-119
4B.2.11-2	Recommended Water Supply Plan for the City of Cibolo	4B.2-120
4B.2.11-3	Recommended Plan Costs by Decade for the City of Cibolo	4B.2-121
4B.2.11-4	Recommended Water Supply Plan for Crystal Clear WSC	4B.2-122
4B.2.11-5	Recommended Plan Costs by Decade for Crystal Clear WSC	4B.2-122
4B.2.11-6	Recommended Water Supply Plan for Green Valley SUD	4B.2-123
4B.2.11-7	Recommended Plan Costs by Decade for Green Valley SUD	4B.2-124
4B.2.11-8	Recommended Water Supply Plan for the City of Marion	4B.2-125
4B.2.11-9	Recommended Plan Costs by Decade for the City of Marion	4B.2-125
4B.2.11-10	Recommended Water Supply Plan for the City of Santa Clara	4B.2-126
4B.2.11-11	Recommended Plan Costs by Decade for the City of Santa Clara	4B.2-126
4B.2.11-12	Recommended Water Supply Plan for the City of Schertz	4B.2-127
4B.2.11-13	Recommended Plan Costs by Decade for the City of Schertz	4B.2-128
4B.2.11-14	Recommended Water Supply Plan for the City of Seguin	4B.2-128
4B.2.11-15	Recommended Plan Costs by Decade for the City of Seguin	4B.2-129
4B.2.11-16	Recommended Water Supply Plan for Springs Hill WSC	4B.2-129
4B.2.11-17	Recommended Plan Costs by Decade for Springs Hill WSC	4B.2-130
4B.2.11-18	Recommended Water Supply Plan for Rural Areas	4B.2-131
4B.2.11-19	Recommended Plan Costs by Decade for Rural Areas	4B.2-131
4B.2.12-1	Hays County Management Supply/Shortage by Water User Group	4B.2-133

<u>Table</u>		<u>Page</u>
4B.2.12-2	Recommended Water Supply Plan for County Line WSC	4B.2-134
4B.2.12-3	Recommended Plan Costs by Decade for County Line WSC	4B.2-135
4B.2.12-4	Recommended Water Supply Plan for Goforth WSC	4B.2-136
4B.2.12-5	Recommended Plan Costs by Decade for Goforth WSC	4B.2-136
4B.2.12-6	Recommended Water Supply Plan for the City of Kyle	4B.2-137
4B.2.12-7	Recommended Plan Costs by Decade for the City of Kyle	4B.2-138
4B.2.12-8	Recommended Water Supply Plan for the City of Mountain City	4B.2-139
4B.2.12-9	Recommended Plan Costs by Decade for the City of Mountain City	4B.2-139
4B.2.12-10	Recommended Water Supply Plan for the City of Niederwald	4B.2-140
4B.2.12-11	Recommended Plan Costs by Decade for the City of Niederwald	4B.2-140
4B.2.12-12	Recommended Water Supply Plan for Plum Creek Water Company	4B.2-141
4B.2.12-13	Recommended Plan Costs by Decade for Plum Creek Water Company	4B.2-142
4B.2.12-14	Recommended Water Supply Plan for the City of San Marcos	4B.2-143
4B.2.12-15	Recommended Plan Costs by Decade for the City of San Marcos	4B.2-143
4B.2.12-16	Recommended Water Supply Plan for Wimberley WSC	4B.2-144
4B.2.12-17	Recommended Plan Costs by Decade for Wimberley WSC	4B.2-144
4B.2.12-18	Recommended Water Supply Plan for the City of Woodcreek	4B.2-145
4B.2.12-19	Recommended Plan Costs by Decade for the City of Woodcreek	4B.2-146
4B.2.12-20	Recommended Water Supply Plan for Woodcreek Utilities	4B.2-147
4B.2.12-21	Recommended Plan Costs by Decade for Woodcreek Utilities	4B.2-147
4B.2.12-22	Recommended Water Supply Plan for Rural Areas	4B.2-148
4B.2.12-23	Recommended Plan Costs by Decade for Rural Areas	4B.2-148
4B.2.12-24	Recommended Water Supply Plan for Mining	4B.2-149
4B.2.12-25	Recommended Plan Costs by Decade for Mining	4B.2-149

<u>Table</u>		<u>Page</u>
4B.2.13-1	Karnes County Management Supply/Shortage by Water User Group	4B.2-151
4B.2.13-2	Recommended Water Supply Plan for El Oso WSC	4B.2-152
4B.2.13-3	Recommended Plan Costs by Decade for El Oso WSC	4B.2-152
4B.2.13-4	Recommended Water Supply Plan for the City of Falls City	4B.2-153
4B.2.13-5	Recommended Plan Costs by Decade for the City of Falls City	4B.2-153
4B.2.13-6	Recommended Water Supply Plan for the City of Karnes City	4B.2-154
4B.2.13-7	Recommended Plan Costs by Decade for the City of Karnes City	4B.2-154
4B.2.13-8	Recommended Water Supply Plan for the City of Kenedy	4B.2-155
4B.2.13-9	Recommended Plan Costs by Decade for the City of Kenedy	4B.2-155
4B.2.13-10	Recommended Water Supply Plan for the City of Runge	4B.2-156
4B.2.13-11	Recommended Plan Costs by Decade for the City of Runge	4B.2-156
4B.2.13-12	Recommended Water Supply Plan for Rural Areas	4B.2-157
4B.2.13-13	Recommended Plan Costs by Decade for Rural Areas	4B.2-157
4B.2.14-1	Kendall County Management Supply/Shortage by Water User Group	4B.2-159
4B.2.14-2	Recommended Water Supply Plan for the City of Boerne	4B.2-160
4B.2.14-3	Recommended Plan Costs by Decade for the City of Boerne	4B.2-160
4B.2.14-4	Recommended Water Supply Plan for Rural Areas	4B.2-161
4B.2.14-5	Recommended Plan Costs by Decade for Rural Areas	4B.2-161
4B.2.15-1	LaSalle County Management Supply/Shortage by Water User Group	4B.2-163
4B.2.15-2	Recommended Water Supply Plan for the City of Cotulla	4B.2-164
4B.2.15-3	Recommended Plan costs by Decade for the City of Cotulla	4B.2-164
4B.2.15-4	Recommended Water Supply Plan for the City of Encinal	4B.2-165
4B.2.15-5	Recommended Plan Costs by Decade for the City of Encinal	4B.2-165
4B.2.15-6	Recommended Water Supply Plan for Rural Areas	4B.2-166

<u>Table</u>		<u>Page</u>
4B.2.15-7	Recommended Plan Costs by Decade for Rural Areas	4B.2-166
4B.2.16-1	Medina County Management Supply/Shortage by Water User Group	4B.2-169
4B.2.16-2	Recommended Water Supply Plan for the City of Castroville	4B.2-170
4B.2.16-3	Recommended Plan Costs by Decade for the City of Castroville	4B.2-170
4B.2.16-4	Recommended Water Supply Plan for the City of Devine	4B.2-171
4B.2.16-5	Recommended Plan Costs by Decade for the City of Devine	4B.2-171
4B.2.16-6	Recommended Water Supply Plan for East Medina SUD	4B.2-172
4B.2.16-7	Recommended Plan Costs by Decade for East Medina SUD	4B.2-173
4B.2.16-8	Recommended Water Supply Plan for the City of Hondo	4B.2-174
4B.2.16-9	Recommended Plan Costs by Decade for the City of Hondo	4B.2-174
4B.2.16-10	Recommended Water Supply Plan for the City of La Coste	4B.2-175
4B.2.16-11	Recommended Plan Costs by Decade for the City of La Coste	4B.2-175
4B.2.16-12	Recommended Water Supply Plan for the City of Natalia	4B.2-176
4B.2.16-13	Recommended Plan Costs by Decade for the City of Natalia	4B.2-177
4B.2.16-14	Recommended Water Supply Plan for Yancey WSC	4B.2-178
4B.2.16-15	Recommended Plan Costs by Decade for Yancey WSC	4B.2-178
4B.2.16-16	Recommended Water Supply Plan for Rural Areas	4B.2-179
4B.2.16-17	Recommended Plan Costs by Decade for Rural Areas	4B.2-179
4B.2.16-18	Recommended Water Supply Plan for Irrigation	4B.2-180
4B.2.16-19	Recommended Plan Costs by Decade for Irrigation	4B.2-180
4B.2.17-1	Refugio County Management Supply/Shortage by Water User Group	4B.2-183
4B.2.17-2	Recommended Water Supply Plan for the City of Refugio	4B.2-184
4B.2.17-3	Recommended Plan Costs by Decade for the City of Refugio	4B.2-184
4B.2.17-4	Recommended Water Supply Plan for the City of Woodsboro	4B.2-185

<u>Table</u>		<u>Page</u>
4B.2.17-5	Recommended Plan Costs by Decade for the City of Woodsboro	4B.2-185
4B.2.18-1	Uvalde County Management Supply/Shortage by Water User Group	4B.2-187
4B.2.18-2	Recommended Water Supply Plan for the City of Sabinal	4B.2-188
4B.2.18-3	Recommended Plan Costs by Decade for the City of Sabinal	4B.2-188
4B.2.18-4	Recommended Water Supply Plan for the City of Uvalde	4B.2-189
4B.2.18-5	Recommended Plan Costs by Decade for the City of Uvalde	4B.2-189
4B.2.18-6	Recommended Water Supply Plan for Rural Areas	4B.2-190
4B.2.18-7	Recommended Plan Costs by Decade for Rural Areas	4B.2-190
4B.2.19-1	Victoria County Management Supply/Shortage by Water User Group	4B.2-193
4B.2.19-2	Recommended Water Supply Plan for the City of Victoria	4B.2-194
4B.2.19-3	Recommended Plan Costs by Decade for the City of Victoria	4B.2-194
4B.2.19-4	Recommended Water Supply Plan for Rural Areas	4B.2-195
4B.2.19-5	Recommended Plan Costs by Decade for Rural Areas	4B.2-195
4B.2.19-6	Recommended Water Supply Plan for Industrial	4B.2-196
4B.2.19-7	Recommended Plan Costs by Decade for Industrial	4B.2-196
4B.2.19-8	Recommended Water Supply Plan for Steam-Electric Power	4B.2-197
4B.2.19-9	Recommended Plan Costs by Decade for Steam-Electric Power	4B.2-197
4B.2.20-1	Wilson County Management Supply/Shortage by Water User Group	4B.2-199
4B.2.20-2	Recommended Water Supply Plan for the City of Floresville	4B.2-200
4B.2.20-3	Recommended Plan Costs by Decade for the City of Floresville	4B.2-201
4B.2.20-4	Recommended Water Supply Plan for the City of La Vernia	4B.2-201
4B.2.20-5	Recommended Plan Costs by Decade for the City of La Vernia	4B.2-202
4B.2.20-6	Recommended Water Supply Plan for Oak Hills WSC	4B.2-202
4B.2.20-7	Recommended Plan Costs by Decade for Oak Hills WSC	4B.2-203

<u>Table</u>		<u>Page</u>
4B.2.20-8	Recommended Water Supply Plan for the City of Poth	4B.2-203
4B.2.20-9	Recommended Plan Costs by Decade for the City of Poth	4B.2-204
4B.2.20-10	Recommended Water Supply Plan for SS WSC	4B.2-205
4B.2.20-11	Recommended Plan Costs by Decade for SS WSC	4B.2-205
4B.2.20-12	Recommended Water Supply Plan for the City of Stockdale	4B.2-206
4B.2.20-13	Recommended Plan Costs by Decade for the City of Stockdale	4B.2-206
4B.2.20-14	Recommended Water Supply Plan for Sunko WSC	4B.2-207
4B.2.20-15	Recommended Plan Costs by Decade for Sunko WSC	4B.2-207
4B.2.20-16	Recommended Water Supply Plan for Rural Areas	4B.2-208
4B.2.20-17	Recommended Plan Costs by Decade for Rural Areas	4B.2-208
4B.2.21-1	Zavala County Management Supply/Shortage by Water User Group	4B.2-211
4B.2.21-2	Recommended Water Supply Plan for the City of Crystal City	4B.2-212
4B.2.21-3	Recommended Plan Costs by Decade for the City of Crystal City	4B.2-212
4B.2.21-4	Recommended Water Supply Plan for Rural Areas	4B.2-213
4B.2.21-5	Recommended Plan Costs by Decade for the Rural Areas	4B.2-213
4B.2.21-6	Recommended Water Supply Plan for Irrigation	4B.2-214
4B.2.21-7	Recommended Plan Costs by Decade for Irrigation	4B.2-214
4B.3-1	Wholesale Water Provider Management Supply/Shortage	4B.3-1
4B.3.1-1	Recommended Water Supply Plan for SAWS	4B.3-3
4B.3.1-2	Recommended Plan Costs by Decade for SAWS	4B.3-4
4B.3.2-1	Recommended Water Supply Plan for BMWD	4B.3-6
4B.3.2-2	Recommended Plan Costs by Decade for BMWD	4B.3-6
4B.3.3-1	Recommended Water Supply Plan for CRWA	4B.3-8

<u>Table</u>		<u>Page</u>		
4B.3.3-2	Recommended Plan Costs by Decade for CRWA	4B.3-8		
4B.3.4-1	Recommended Water Supply Plan for GBRA	4B.3-10		
4B.3.4-2	Recommended Plan Costs by Decade for GBRA			
4B.3.5-1	Recommended Water Supply Plan for LNRA			
4B.3.5-2	Recommended Plan Costs by Decade for LNRA	4B.3-12		
4B.3.6-1	Recommended Water Supply Plan for SSLGC	4B.3-14		
4B.3.6-2	Recommended Plan Costs by Decade for SSLGC	4B.3-14		
4B.3.7-1	Recommended Water Supply Plan for Springs Hill WSC	4B.3-15		
4B.3.7-2	Recommended Plan Costs by Decade for Springs Hill WSC	4B.3-16		
4B.3.8-1	4B.3.8-1 Recommended Water Supply Plan for Texas Water Alliance			
4B.3.8-2	Recommended Plan Costs by Decade for Texas Water Alliance	4B.3-17		
5-1	Median Values of Key Parameters of Water Quality	5-2		
5-2	Impacts of Recommended Water Management Strategies on Key Parameters of Water Quality	5-4		
5-3	Socioeconomic Impacts of Unmet Water Needs	5-9		
6-1	Identification and Initiation of Drought Responses	6-6		
6-2	Senate Bill 3 Critical Period Withdrawal Reduction Stages for the San Antonio Pool			
6-3	Senate Bill 3 Critical Period Withdrawal Reduction Stages for the Uvalde Pool	6-9		
7.1-1	Flux From Southern Carrizo GAM Aquifers to Streams	7-14		
7.1-2	Effluent Accounting	7-17		
7.1-3	Flow Criteria for Ecologically-Based Streamflow Assessment	7-34		
7.1-4	Guadalupe River at Victoria – High Flow Events	7-38		
7.1-5	Guadalupe River at Victoria – Occurrences of Flows below the Base Criteria	7-39		

List of Tables

List of Tables (Continued)

<u>Table</u>		<u>Page</u>
7.1-6	Guadalupe River at Victoria – Low Flow Occurrences	7-39
7.1-7	Guadalupe River at Victoria – Maximum Consecutive Days below the Low Flow Criteria	7-40
7.1-8	San Antonio River near Falls City – High Flow Events	7-41
7.1-9	San Antonio River near Falls City – Occurrences of Flows below the Base Criteria	7-42
7.1-10	San Antonio River near Falls City – Low Flow Occurrences	7-42
7.1-11	San Antonio River near Falls City – Maximum Consecutive Days below the Low Flow Criterion	7-43
7.1-12	Number of Years with Low 4-Month Spring/Early Summer Freshwater Inflow Pulses Defined by State Criteria	7-45
7.1-13	Number of Occurrences of 6 Months or Longer Periods Below Drought Tolerance Level (MinQsal) within Critical (Mar-Oct) Months	7-45
7.2-1	Ecologically Significant River and Stream Segments Nominated by TPWD in and Adjacent to the South Central Texas Regional Water Planning Area.	7-56
7.2-2	Estimated Firm Yields of Water Management Strategies in State Water Plans	7-61
7.2-3	Potential Impacts to Endangered, Threatened, and Species of Concern from Water Management Strategies in State Water Plans	7-68
7.2-4	Potential Impacts to Vegetation and Wildlife Habitats from Water Management Strategies in State Water Plans	7-72
7.2-5	Potential Impacts to Water Quality and Aquatic Habitats from Water Management Strategies in State Water Plans	7-76
7.2-6	Potential Impacts to Cultural Resources from Water Management Strategies in State Water Plans	7-80
7.2-7	Potential Impacts to Ecologically Significant River and Stream Segments from Water Management Strategies in State Water Plans	7-82
9-1	Summary of Responses to the Infrastructure Financing Survey	9-3

HDR-07755-93053-10

(This page intentionally left blank.)

COMMON ABBREVIATIONS

acft acre-feet

acft/yr acre-feet per year

ASR Aquifer Storage and Recovery
BMWD Bexar Metropolitan Water District

cfs cubic feet per second

CRWA Canyon Regional Water Authority

DFC Desired Future Conditions
EAA Edwards Aquifer Authority
IPP Initially Prepared Plan

GBRA Guadalupe-Blanco River Authority
GCD Groundwater Conservation District
GAM Groundwater Availability Model
GMA Groundwater Management Area

GPM or gpm gallons per minute

H/C PUA Hays/Caldwell Public Utility Agency

kW-hr kilowatt hours

LCRA Lower Colorado River Authority
LNRA Lavaca-Navidad River Authority
MAG Managed Available Groundwater

MGD or mgd million gallons per day milligrams per liter mg/L **NBU** New Braunfels Utilities Nueces River Authority **NRA** National Wildlife Federation **NWF** Off-channel Reservoir OCR Regional Water Alliance **RWA RWP** Regional Water Plan

SARA San Antonio River Authority SAWS San Antonio Water System

SCTRWP South Central Texas Regional Water Plan

SCTRWPG South Central Texas Regional Water Planning Group

SHWSC Springs Hill Water Supply Corporation

SSLGC Schertz-Seguin Local Government Corporation

SWG Staff Workgroup SWP State Water Plan

TAMU Texas A&M University

TCEQ Texas Commission on Environmental Quality

TPWD Texas Parks and Wildlife Department

TWA Texas Water Alliance

TWDB Texas Water Development Board
USFWS United States Fish & Wildlife Service
USGS United States Geological Survey

UWCD Underground Water Conservation District

WAM Water Availability Model
WMS Water Management Strategies
WSC* Water Supply Corporation

WUG Water User Group

WWP Wholesale Water Provider

2011 South Central Texas Regional Water Plan Executive Summary

ES.1 Background

Since 1957, the Texas Water Development Board (TWDB) has been charged with preparing a comprehensive and flexible long-term plan for the development, conservation, and management of the state's water resources. The current state water plan, *Water for Texas*, *January 2007*, was produced by the TWDB and based on approved regional water plans pursuant to requirements of Senate Bill 1 (SB1), enacted in 1997 by the 75th Legislature. As stated in SB1, the purpose of the regional water planning effort is to:

"Provide for the orderly development, management, and conservation of water resources and preparation for and response to drought conditions in order that sufficient water will be available at a reasonable cost to ensure public health, safety, and welfare; further economic development; and protect the agricultural and natural resources of that particular region."

SB1 also provides that future regulatory and financing decisions of the Texas Commission on Environmental Quality (TCEQ) and the TWDB be consistent with approved regional plans.

The TWDB divided the state into 16 planning regions and appointed members to the regional planning groups. As shown in Figure ES-1, the South Central Texas Region (Region L) includes all of 20 counties as well as the portion of Hays County located in the Guadalupe River Basin. The South Central Texas Regional Water Planning Group (SCTRWPG) has a total of 25 voting members. The members represent 11 interests or stakeholders (Public, Counties, Municipalities, Industry, Agriculture, Environmental, Small Business, Electric Generating Utilities, River Authorities, Water Districts, and Water Utilities), serve without pay, and are responsible for the development of the South Central Texas Regional Water Plan (Table ES-1).

The SCTRWPG adopted bylaws to govern its operations and, in accordance with its bylaws, selected the San Antonio River Authority (SARA) to serve as its administrative agency (Qualified Political Subdivision) to: (1) Develop scopes of work; (2) Apply for TWDB planning grants; (3) Contract with the TWDB for the grants; and (4) Manage the development of the Regional Water Plan, including supervision of technical, facilitation, and public participation consultants. Members of the SCTRWPG and key staff of several participants serve as an ad hoc Staff Workgroup to review and guide SARA and consultants' work.

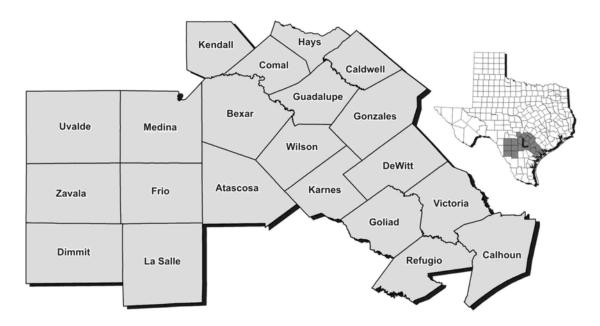


Figure ES-1. South Central Texas Planning Region (Region L)

Table ES-1.
South Central Texas Regional Water Planning Group Members

Name	Interest	Membership	Affiliation
Con Mims	River Authorities	Chair, Exec. Comm.	Nueces RA
Mike Mahoney	Water Districts	Vice-Chair, Exec. Comm.	Evergreen UWCD
Gary Middleton	Municipalities	Secretary, Exec. Comm.	City of Victoria
Evelyn Bonavita	Public	Member, Exec. Comm.	League of Women Voters
Ron Naumann	Water Utilities	Vice-Chair, Exec. Comm.	Springs Hill WSC
Jason Ammerman	Industry	Member	Union Carbide Corporation
Tim Andruss	Water Districts	Member	Victoria County GCD
Donna Balin	Environmental	Member	Geologist
Darrell Brownlow	Small Business	Member	Environmental Consultant
Velma Danielson	Water Districts	Member	Edwards Aquifer Authority
Garrett Engelking	Water Districts	Member	Refugio GCD
Mike Fields	Electricity Generating Utilities	Member	International Power
Vacant	Industry	Member	
Bill Jones	Agriculture	Member	D.M. O'Connor Ranches
Comm. John Kight	Counties	Member	Kendall County
David Langford	Agriculture	Member	Texas Wildlife Association
Comm. Jay Millikin	Counties	Member	Comal County
Iliana Peña	Environmental	Member	Mitchell Lake Audubon Center
Robert Puente	Municipalities	Member	San Antonio Water System
Steve Ramsey	Water Utilities	Member	New Braunfels Utilities
Suzanne Scott	River Authorities	Member	San Antonio River Authority
Milton Stolte	Agriculture	Member	Texas Farm Bureau
Thomas Taggart	Municipalities	Member	City of San Marcos
Bill West	River Authorities	Member	Guadalupe-Blanco RA
Tony Wood	Small Business	Member	National Spill Control School

Pursuant to Regional and State Water Planning Guidelines (Texas Administrative Code, Title 31, Part 10, Chapters 357 and 358), the SCTRWPG developed the 2001 and 2006 South Central Texas Regional Water Plans, which were then integrated into Water for Texas – 2002 and 2007, respectively, by the TWDB. The 2011 South Central Texas Regional Water Plan, of which this Executive Summary is a part, represents the second update of a regional water plan as presently required to occur on a five-year cycle. The TWDB will integrate this Regional Water Plan into a State Water Plan to be issued in 2012.

The structure of the 2011 Regional Water Plan is organized in accordance with TWDB guidelines and summarized by section title as follows.

- 1) Description of South Central Texas Region (Volume I)
- 2) Population and Water Demand Projections (Volume I)
- 3) Water Supply Analyses (Volume I)
- 4A) Comparison of Supply and Demand Projections to Determine Needs (Volume I)
- 4B) Water Supply Plans (Volume I)
- 4C) Technical Evaluations of Water Management Strategies (Volume II)
- 5) Impacts of Water Management Strategies on Key Parameters of Water Quality and Moving Water from Rural and Agricultural Areas (Volume I)
- 6) Water Conservation and Drought Management Recommendations (Volume I)
- 7) Consistency with Long-Term Protection of the State's Water, Agricultural, and Natural Resources (Volume I)
- 8) Policies and Recommendations (Volume I)
- 9) Water Infrastructure Funding Recommendations (Volume I)
- 10) Regional Water Plan Adoption (Volume I)

ES.2 Description of South Central Texas Region

The South Central Texas Region includes counties that are located in whole or in part in the Rio Grande, Nueces, San Antonio, Guadalupe, Lavaca, and Colorado River Basins and the San Antonio-Nueces, Lavaca-Guadalupe, and Colorado-Lavaca Coastal Basins. Major urban population centers include the cities of San Antonio, Victoria, Seguin, New Braunfels, and San Marcos which are located within Bexar, Victoria, Guadalupe, Comal, and Hays Counties, respectively. The regional economy is dominated by the trades & services and manufacturing sectors with much smaller, but significant, contributions from the agricultural and mining sectors. Physical terrain of the region ranges from the Hill Country of the Edwards Plateau to the Coastal Plains. Vegetational areas include the Edwards Plateau, South Texas Plains, Blackland Prairies, Post Oak Savannah, and Gulf Prairies and Marshes. Many species occur within the

region that are listed by the U.S. Fish & Wildlife Service (USFWS) or Texas Parks & Wildlife Department (TPWD) as rare, threatened, or endangered. Several of the species listed as endangered occur in or near Comal and San Marcos Springs, the two largest springs in Texas. Average annual precipitation ranges from less than 22 inches in Dimmit County up to 40 inches in Calhoun County.

ES.3 Population and Water Demand Projections

In order to develop water plans to meet future water needs, it is necessary to make projections of future water demands for the region. Integrating information from the 2000 Census and reported water uses from the around the state, the TWDB provided draft population and water demand projections for cities, rural areas, and water user groups within each of the 21 counties of the region. The population of the South Central Texas Region was estimated at about 2.0 million in 2000 and is projected to grow to about 4.3 million in 2060. Of this 2060 total, 68 percent are projected to reside in the San Antonio River Basin. Demand projections were prepared by the TWDB for each water user category, including municipal, industrial, steam-electric power generation, irrigation, mining, and livestock. Municipal projections are at the level of detail of each city, individual utility providing more than 280 acft/yr, rural area, and county or part of county of each river basin. As the results of the 2010 Census will not be available until after the 2011 South Central Texas Regional Water Plan is approved, population and municipal water demand projections are identical to those used in the 2006 plan are used herein. Recent (2007) data from the Texas State Data Center indicates that current Region L population is only 0.15 percent greater than projected values and that only four (Bexar, Comal, DeWitt, and Guadalupe) of 21 counties are growing at rates faster than projected for the 2006 plan. Projections were also provided at the county and river basin area level of detail for industry, steam-electric power generation, irrigation, mining, and livestock. Only water demand projections for steam-electric power generation were updated for the 2011 plan. Final, approved water demand projections are summarized below.

Municipal water is fresh water used for drinking, sanitation, and other purposes in homes and commercial establishments of both cities and rural areas. Total municipal water use in the South Central Texas Region in 2000 was 340,030 acft/yr and is projected to increase to 637,235 acft/yr by 2060 (Figure ES-2). Industrial water is fresh water used in the manufacture of

industrial products. All industries in the region used 100,195 acft of water in 2000 and are projected to have a demand of 179,715 acft/yr in 2060 (Figure ES-2).

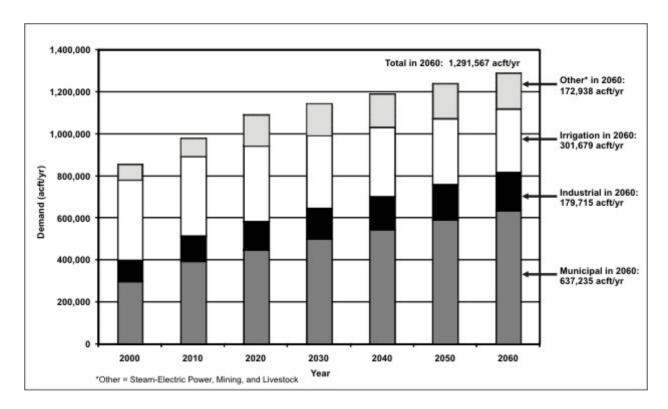


Figure ES-2. Projected Water Demands

Eight counties (Atascosa, Bexar, Calhoun, Frio, Goliad, Guadalupe, Hays, and Victoria) of the region use cooling and boiler feed water in steam-electric power production. In 2000, 35,379 acft of water were used, and it is estimated that by the year 2060, 128,340 acft/yr of water will be needed for the production of steam-electric power (Figure ES-2). Considerable uncertainty exists in what the regulatory requirements may be in the future for the control of atmospheric carbon emissions from fossil fuel fired steam-electric power plants. Carbon sequestration and geologic storage may prove to be a mandated or economically attractive option for controlling such emissions. This technology, if employed, would consume considerably more water than existing power plants and remove a significant amount of it from the hydrologic cycle. Since carbon control technologies and legal mandates are not yet established, and because such plants in Region L currently hold excess water capacity, these potential and unquantifiable future effects are not considered in this 2011 Regional Water Plan and will be addressed in the 2016 Regional Water Plan

In the South Central Texas Region, the principal uses of water for mining are for the extraction of stone, clay, and petroleum and for sand and gravel washing. In the region, total mining water use was 11,757 acft in 2000 and is projected to increase to 18,644 acft/yr in 2060, an increase of over 58 percent (Figure ES-2).

The TWDB *irrigation* water use data show annual use for irrigation to grow cotton, grain, vegetables, and tree crops in the South Central Texas Region in 2000 of 383,332 acft/yr, or 3.8 percent of the total irrigation water used in Texas in 2000. Projected irrigation water demands in 2060 are 301,679 acft/yr, or 21 percent less than in 2000 (Figure ES-2). The projected decline is based upon increased irrigation efficiency, economic factors, and reduced government programs affecting the profitability of irrigated agriculture. In 2000, water use in the region for *livestock* purposes was estimated at 25,660 acft/yr. The TWDB projections for livestock use in the region in the years 2010 through 2060 are 25,954 acft/yr.

Projected total water demand for the South Central Texas Region is the sum of water demand projections for municipal, industrial, steam-electric power generation, mining, irrigation, and livestock uses. Projected percentage changes in the composition of total water demand by use category from 2000 to 2060 are shown in Figure ES-3.

In accordance with TWDB guidelines, the SCTRWPG identified seven Wholesale Water Providers in the South Central Texas Region. These providers are listed in Table ES-2, along with a general description of their service areas. TWDB guidance defines a Wholesale Water Provider as a provider such as a river authority, water supply corporation, or city that has, or is expected to have, contracts to sell more than 1,000 acft wholesale in a year. The SCTRWPG has worked with each of the Wholesale Water Providers in an effort to quantify their projected demands, which typically include the demands of several cities, utilities, and other water user groups.

ES.4 Water Supply

There are five major and three minor aquifers supplying water to the region. The five major aquifers are the Edwards (Balcones Fault Zone), Carrizo-Wilcox¹, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers. The three minor aquifers are the Sparta, Queen City, and Yegua-Jackson Aquifers. The Region is located in parts of the Rio Grande, Nueces, San Antonio,

HR

¹ Although traditionally identified by the Texas Water Development Board as one major aquifer, the Carrizo and Wilcox formations are generally separated by an aquitard which serves to limit or preclude hydrologic connectivity between the two formations in some portions of the planning region.

Guadalupe, Colorado, and Lavaca River Basins and parts of the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basins. The existing surface water supplies of the region include storage reservoirs and run-of-river water rights.

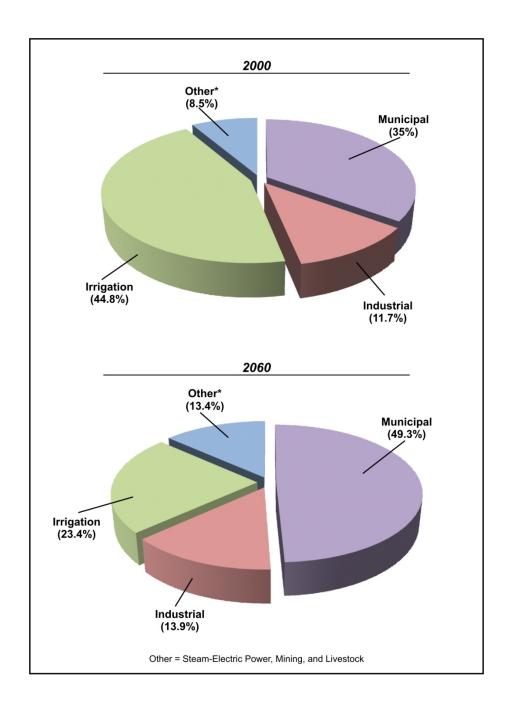


Figure ES-3. Distribution of Total Demand Among Uses

Table ES-2.
Wholesale Water Providers and Service Areas

Wholesale Water Provider	Service Areas
San Antonio Water System (SAWS)	Bexar County
Bexar Metropolitan Water District (BMWD)	Bexar, Atascosa, Comal, and Guadalupe Counties
Canyon Regional Water Authority (CRWA)	Bexar, Caldwell, Comal, Guadalupe, Hays, and Wilson Counties
Guadalupe-Blanco River Authority (GBRA)	Kendall, Comal, Hays, Caldwell, Guadalupe, Gonzales, DeWitt, Victoria, Refugio, and Calhoun Counties
Schertz-Seguin Local Government Corporation (SSLGC)	Schertz, Seguin, Selma, Universal City, Garden Ridge, and Springs Hill WSC
Springs Hill WSC	Springs Hills WSC, La Vernia, Crystal Clear WSC, and East Central WSC
Texas Water Alliance	Gonzales, Guadalupe, Comal, Hays, and Caldwell Counties

The total quantity of water obtained from aquifers of the region and used within the region in 2000 was 705,661 acft. Of this total, 55.6 percent was from the Edwards Aquifer, 36.1 percent was from the Carrizo, 5.6 percent was from the Gulf Coast, 2.1 percent was from the Trinity, and the remaining 0.6 percent was from the Queen City, Sparta, and Edwards-Trinity (Plateau) Aquifers.

Projected future groundwater supplies available in the South Central Texas Region during the drought of record are 947,078 acft/yr in 2010, 939,680 acft/yr in 2030, and 939,356 acft/yr in 2060. Such available supplies may be limited subject to the determinations of Managed Available Groundwater (MAG) based on Desired Future Conditions (DFC) established by Groundwater Management Area (GMA) pursuant to House Bill 1763 of the 79th Texas Legislature as well as the permitting authority of groundwater conservation districts. Supplies available from the Sparta, Queen City, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers are projected to hold steady on an annual basis throughout the 2010 through 2060 projections period. These aquifers are projected to supply only about 15 percent of the total groundwater available to the region in 2060. The supply available from the Carrizo Aquifer is projected to decline from 438,539 acft/yr for the 2010 through 2020 period to 431,141 acft/yr for the period after 2020. The supply available from the Trinity Aquifer is projected to decline from 49,327 acft/yr for the 2010 through 2040 period to 49,003 acft/yr for the period after 2040.

In the case of the Edwards Aquifer, Senate Bill 3 of the 80th Texas Legislature limits the permitted quantity of water that can be withdrawn from the Edwards Aquifer in each calendar year for the period beginning January 1, 2008 to no more than 572,000 acft. Senate Bill 3 specifies that the Edwards Aquifer Authority shall implement and enforce water management practices, procedures, and methods to ensure that not later than December 31, 2012, the continuous minimum spring flows of Comal and San Marcos Springs are maintained to protect endangered and threatened species to the extent required by federal law. Senate Bill 3 also specifies critical period management stages, triggers, and associated withdrawal reductions with the provision that, after January 1, 2013, the Authority may not require permitted withdrawals to be less than an annualized rate of 320,000 acft unless necessary for the protection of listed threatened or endangered species to the extent required by federal law.

For planning purposes, an estimate of 320,000 acft/yr of available supply during a drought of record from the Edwards Aquifer was agreed upon by the South Central Texas Regional Water Planning Group and the staff of the Texas Water Development Board. This quantity was adopted as a placeholder number until the EAA obtains approval from the U.S. Fish and Wildlife Service of a Habitat Conservation Plan (HCP). Senate Bill 3 established the Edwards Aquifer Recovery Implementation Program which is in the midst of a facilitated, consensus-based process involving diverse stakeholders and federal, state, regional, and local technical resources supporting HCP development and long-term management of the Edwards Aquifer. Depending on the outcome of this process, the available supply from the Edwards Aquifer during drought may change from the assumed value of 320,000 acft/yr.

Development of surface water resources has been limited in the South Central Texas Region because of the presence of significant quantities of groundwater. The largest run-of-river water rights are concentrated below the confluence of the Guadalupe and San Antonio Rivers and are held by the Guadalupe-Blanco River Authority and Dow Chemical Company. These diversion rights total about 175,500 acft/yr. Significant water rights associated with existing reservoirs are held by the Guadalupe-Blanco River Authority (Canyon Reservoir), Bexar-Medina-Atascosa Counties WCID #1 (Medina Lake System), San Antonio City Public Service (Calaveras and Braunig Lakes), and Coleto Creek Power (Coleto Creek Reservoir). Authorizations for consumptive use associated with these reservoirs total about 218,000 acft/yr.

ES.5 Water Demand and Water Supply Comparisons

The South Central Texas Region water supply and demand data are shown graphically, by decade, for the years 2010 to 2060 in Figure ES-4. The amount by which drought demand exceeds current supply is defined, for regional water planning purposes, as the needs. In year 2010, needs (shortages) are about 174,234 acft/yr, in 2030, the projected need is about 308,443 acft/yr, and, in 2060, the projected need for drought of record conditions is about 436,750 acft/yr (Figure ES-4).

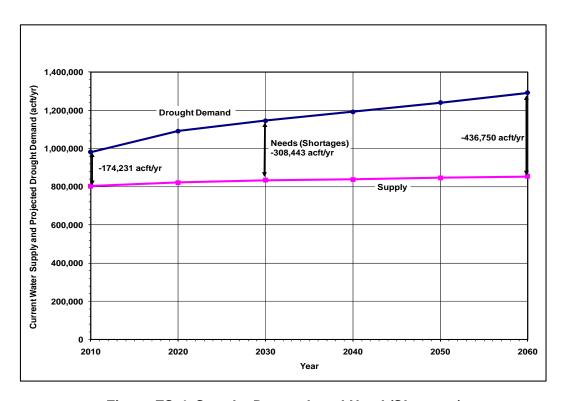


Figure ES-4. Supply, Demand, and Need (Shortage)

Figure ES-5 shows the projected water needs for the region at each decade. In 2010, the projected need (shortage) for municipal, industrial, steam-electric, and mining is approximately 105,766 acft/yr, and the need for irrigation and livestock is about 68,470 acft/yr. The projected needs in 2060 are about 394,967 acft/yr for municipal, industrial, steam-electric, and mining, and about 41,780 acft/yr for irrigation and livestock. Table ES-3 identifies the counties in which one or more water user groups have a projected water need (shortage) during the planning period. Twelve of the counties in the region have municipal water user groups for which there are projected shortages. There are four counties with projected manufacturing or industrial water needs (shortages), two counties with projected steam-electric power generation water needs,

three counties with projected irrigation water needs, and three counties with projected mining water needs.

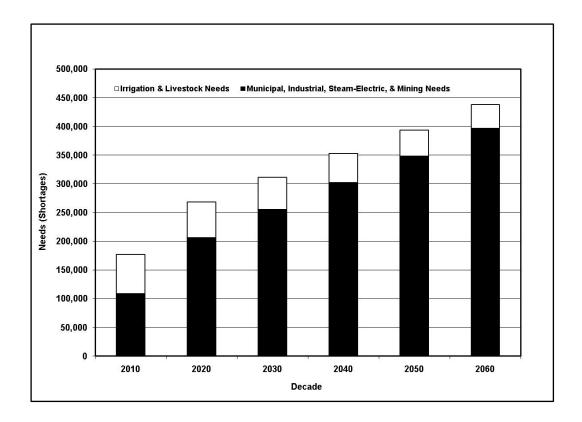


Figure ES-5. Projected Water Needs (Shortages)

ES.6 Social and Economic Impacts of Not Meeting Projected Water Needs²

The SCTRWPG identified 82 individual water user groups that showed an unmet need during drought-of-record supply conditions during the 2010 to 2060 planning period. Of the 21 counties of the South Central Texas Region, 14 have water user groups with projected water needs (shortages). The estimated value of lost income due to lost production resulting from projected water shortages is \$5.28 billion per year in 2020 and \$8.94 billion per year in 2060. If the water needs are left entirely unmet, the level of shortage in 2020 results in 19,948 fewer jobs than would be expected if the water needs of 2020 are fully met. The gap in job growth due to water shortages grows to 78,736 by 2060. Lost taxes paid to local and state governments due to unmet water needs are \$563.75 million in 2020 and \$964.71 million in 2060.

² Norvell, Stuart, and S. Doug Shaw, "Socioeconomic Impacts of Projected Water Needs for the South Central Texas Regional Water Planning Area (Region L)," Texas Water Development Board, Austin, Texas, June 2010.

Table ES-3.

Counties and Types of Water User Groups with Projected Water Needs (Shortages)

County	Municipal	Manufacturing	Steam-Electric Power	Mining	Irrigation	Livestock
Atascosa	✓		✓		✓	
Bexar	✓	✓		✓		
Caldwell	✓					
Calhoun	✓	✓				
Comal	✓	✓		✓		
DeWitt						
Dimmit						
Frio						
Goliad						
Gonzales						
Guadalupe	✓					
Hays (part)	✓			✓		
Karnes	✓					
Kendall	✓					
La Salle						
Medina	✓				✓	
Refugio						
Uvalde	✓					
Victoria		✓	✓			
Wilson	✓					
Zavala					✓	
Total	12	4	2	3	3	0

ES.7 Water Management Strategies to Meet Projected Water Needs

The regional water planning process includes making projections of the water needs of each water user group, identification of potentially feasible water management strategies (WMS) through public input, and evaluation of such strategies in accordance with TWDB rules. Technical evaluation of water management strategies includes calculation of potential quantity of water during drought conditions, reliability of supplies, cost of water delivered to the water users' distribution systems in a form ready to be distributed for end use, environmental and implementation issues, effects upon other water resources of the state, threats to agricultural and

natural resources, consistency comparisons among strategies, recreational effects, third party social and economic impacts of voluntary transfers, efficient use of existing supplies, and water quality considerations. The planning process for the South Central Texas Region is summarized in Figure ES-6.

ES.8 South Central Texas Regional Water Plan

The South Central Texas Regional Water Plan includes recommended water management strategies that emphasize water conservation; maximize utilization of available resources, water rights, and reservoirs; engage the efficiency of conjunctive use of surface and groundwater; include new surface water appropriations while avoiding development of large mainstem reservoirs; and limit depletion of storage in aquifers. There are additional strategies that have significant support within the region, yet require further study regarding quantity of dependable water supply made available during severe drought, feasibility, and/or cost of implementation, that are also included in the Plan. Water management strategies recommended to meet projected needs in the South Central Texas Region could produce new supplies in excess of 755,000 acft/yr in 2060 and may be categorized by source as shown in Figure ES-7.

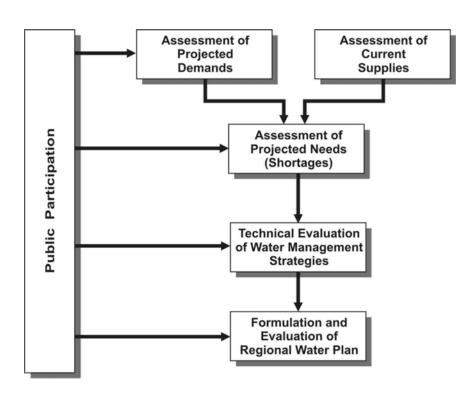


Figure ES-6. Regional Planning Process

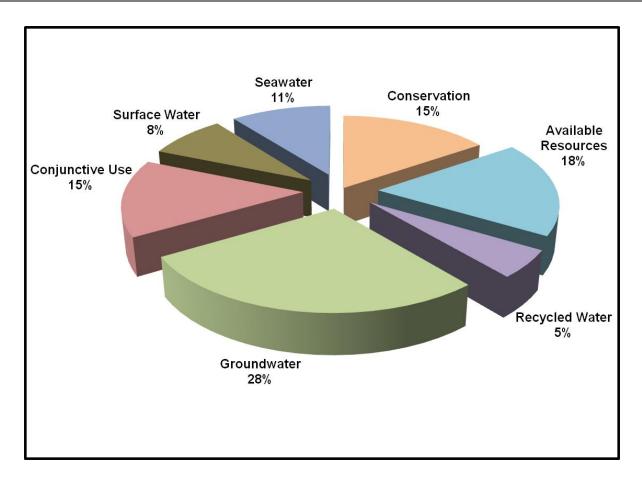


Figure ES-7. Sources of New Supply

Specific recommended water management strategies in the Plan are summarized by approximate timing of potential implementation in Figure ES-8. Water management strategies emphasizing conservation comprise about 15.5 percent of recommended new supplies and include:

- Municipal Water Conservation (72,666 acft/yr @ \$648/acft/yr³);
- Irrigation Water Conservation (7,238 acft/yr @ \$143/acft/yr);
- Drought Management (41,240 acft/yr); and
- Mining Water Conservation (2,493 acft/yr).

HR

³ \$648/acft/yr is an average cost of municipal water conservation. Actual unit costs vary from WUG to WUG and from decade to decade.

Figure ES-8. Phased Implementation of Water Management Strategies

Water management strategies maximizing use of available resources, water rights, and reservoirs comprise about 18.0 percent of recommended new supplies and include:

- Edwards Transfers (51,875 acft/yr @ \$454/acft/yr);
- GBRA-Exelon Project (49,126 acft/yr @ \$641/acft/yr);
- GBRA Lower Basin Storage (100 acre site) (28,369 acft/yr @ \$104/acft/yr);
- Medina Lake Firm-Up (ASR) (9,933 acft/yr @ \$1,696/acft/yr);
- Wimberley & Woodcreek Water Supply Project (4,480 acft/yr @ \$2,453/acft/yr);
- Surface Water Rights⁴; and
- Facilities Expansions.

The Regional Water Plan includes the Recycled Water Programs water management strategy at 41,737 acft/yr which could represent approximately 5.2 percent of the recommended new supplies.

⁴ As new supplies and associated costs have not been quantified, this strategy is more explicitly identified as an activity consistent with the 2011 Regional Water Plan.

Water management strategies that simultaneously develop groundwater supplies and limit depletion of storage in regional aquifers comprise about 27.9 percent of recommended new supplies and include:

- GBRA Simsboro Project (49,777 acft/yr @ \$982/acft/yr)⁵;
- Local Groundwater Supplies (Carrizo⁶, Gulf Coast, and Trinity) (38,471 acft/yr @ \$687/acft/yr \$1,823/acft/yr);
- Hays/Caldwell PUA Project (35,000 acft/yr @ \$1,245/acft/yr);
- TWA Regional Carrizo (27,000 acft/yr @ \$1,523/acft/yr);
- Brackish Wilcox Groundwater for SAWS (26,400 acft/yr @ \$1,245/acft/yr);
- Regional Carrizo for SAWS (11,687 acft/yr @ \$1,343/acft/yr);
- Brackish Wilcox Groundwater for Regional Water Alliance (14,700 acft/yr @ \$1,293/acft/yr);
- CRWA Wells Ranch Project (11,000 acft/yr @ \$725/acft/yr);
- Regional Carrizo for SSLGC Project Expansion (10,364 acft/yr @ \$608/acft/yr); and
- Brackish Wilcox Groundwater for SSWSC (1,120 acft/yr @ \$1,883/acft/yr).

Water management strategies that engage the efficiency of conjunctive use of surface and groundwater as well as maximize the use of available resources and water rights comprise approximately 14.6 percent of recommended new supplies and include:

- LCRA-SAWS Water Project (90,000 acft/yr @ \$2,394/acft/yr);
- Edwards Aquifer Recharge Type 2 Projects (21,577 acft/yr @ \$1,728/acft/yr); and
- CRWA Siesta Project (5,042 acft/yr @ \$1,421/acft/yr).

Water management strategies that involve new surface water appropriations while avoiding development of large mainstem reservoirs comprise approximately 8.2 percent of recommended new supplies and include:

- Lavaca River Off-Channel Reservoir (26,242 acft/yr @ \$701/acft);
- GBRA Mid-Basin Project (Surface Water) (25,000 acft/yr @ \$2,204/acft/yr);
- GBRA New Appropriation (Lower Basin) (11,300 acft/yr @ \$1,953/acft/yr); and
- Storage Above Canyon Reservoir (ASR) (3,140 acft/yr @ \$1,772/acft/yr).

⁶ The portion of the new firm supply for this strategy to be obtained by Bexar Metropolitan Water District from the Carrizo-Wilcox Aquifer in Bexar County is identified as a "temportary overdraft." See the response to TWDB Level I Comment No. 52 in Section 10 for additional information.

⁵ The new firm supply associated with this strategy was reduced from 50,000 acft/yr to 49,777 acft/yr to resolve a potential inter-regional conflict with Region G. This small change did not warrant revision of Section 4C.21. A portion of the new firm supply for this strategy to be obtained from the Carrizo-Wilcox Aquifer in Bastrop County is identified as an "overdraft" to resolve a potential inter-regional conflict with Region K. See the response to TWDB Level I Comment No. 52 in Section 10 for additional information.

Finally, the Regional Water Plan includes the development of a Seawater Desalination water management strategy at 84,012 acft/yr (75 mgd) (\$2,284/acft/yr) which could represent approximately 10.5 percent of the recommended new supplies.

The South Central Texas Regional Water Planning Group identifies the following as alternative water management strategies that have been technically evaluated in accordance with TWDB rules and may, subject to an appropriate amendment process defined by TWDB rules, replace a recommended water management strategy in the 2011 Regional Water Plan:

- Lower Guadalupe Water Supply Project for Upstream GBRA Needs (60,000 acft/yr @ \$1,506/acft/yr);
- GBRA Lower Basin Storage (500 acre site) (59,569 acft/yr @ \$109/acft/yr);
- Lower Guadalupe Water Supply Project for Upstream GBRA Needs at Reduced Capacity (35,000 acft/yr @ \$2,565/acft/yr);
- GBRA Mid-Basin Project (Conjunctive Use) (25,000 acft/yr @ \$1,779/acft/yr);
- Regional Carrizo for Guadalupe Basin (GBRA) (25,000 acft/yr @ \$1,280/acft/yr);
- Medina Lake Firm-Up (OCR) (9,078 acft/yr @ \$1,197/acft/yr);
- Local Groundwater Supplies (Barton Springs Edwards) (1,358 acft/yr @ \$203/acft/yr);
- Calhoun County Brackish Groundwater Project (1,344 acft/yr @ \$2,679/acft/yr); and
- Local Groundwater Supplies (Carrizo) (Yancey WSC) (1,210 acft/yr @ \$517/acft/yr).

The Regional Water Plan includes several water management strategies that require further study and funding prior to recommendation for implementation. Several of these strategies employ technologies that have been used previously, but further research is necessary to determine the cost of implementation, optimal scale and location, and quantity of dependable water supply that would be available in severe drought. These strategies are:

- Brush Management;
- Weather Modification;
- Rainwater Harvesting;
- Storage Above Canyon Reservoir (Off-Channel);
- Edwards Aquifer Recharge & Recirculation Systems;
- Palmetto Bend Stage II (LNRA);
- Seawater Desalination for Guadalupe River Basin;
- Mesa Water Supply Project (SAWS);
- SAWS Other Water Supplies (Planned RFP);
- Regional Carrizo for BMWD;

• Regional Carrizo for SSLGC Project Expansion – Wilson County Option;

- CRWA Dunlap Project; and
- Balancing Storage (ASR and/or Surface)⁷.

Although specific quantities of new supply dependable in drought have not been determined for these strategies, it is understood that their implementation will contribute positively to storage and system management of many diverse strategies in the Regional Water Plan. The SCTRWPG recommends that State funding be made available to cooperatively support the refinement and implementation of these strategies.

There are significant quantities of projected water supply needs or shortages in the region for municipal, industrial, steam-electric, and mining uses. As indicated in Figure ES-8, implementation of a number of water management strategies on an expedited basis will be necessary to avoid significant hardship, water rationing, and/or cessation of discharge from Comal Springs in the event of severe drought during the next decade. Substantial water supply needs or shortages are also projected for irrigation use in the South Central Texas Region. However, based upon present economic conditions for agriculture and the fact that there are no really low-cost water supplies to be developed, the SCTRWPG has determined that it is not economically feasible to meet projected irrigation needs at this time, since the net farm income to pay for water is less than the costs of water at the potential sources.

Implementation of the 2011 South Central Texas Regional Water Plan will result in the development of new water supplies that will be reliable in the event of a repeat of the most severe drought on record. It is evident in Figure ES-8 that implementation of all recommended water management strategies is not likely to be necessary in order to meet projected needs within the planning period. The SCTRWPG explicitly recognizes the difference between additional supplies and projected needs as System Management Supplies and has recommended water management strategies over and above those apparently needed to meet projected demands in the Regional Water Plan for the following reasons:

 To recognize both the long lead times and the uncertainty associated with risk factors that may prevent implementation of water management strategies and necessitate replacement strategies;

_

⁷ As new supplies and associated costs have not been quantified, this strategy is more explicitly identified as an activity consistent with the 2011 Regional Water Plan.

• To preserve flexibility for water user groups or wholesale water suppliers to select the most feasible projects among several consistent with the Regional Plan and, therefore, ensure that such projects are potentially eligible for permitting and funding;

- To serve as additional supplies in the event that rules, regulations, or other restrictions limit use of any planned strategies; and/or
- To ensure adequate supplies in the event of a drought more severe than that which occurred historically.

Costs associated with the implementation and long-term operations and maintenance of water management strategies have been estimated in accordance with TWDB rules and general guidelines and reflect regional water treatment capacity and balancing storage facilities sufficient to meet peak daily and seasonal water demands in the larger urban areas. Total estimated project cost (in 2008 dollars) for the recommended water management strategies for municipal supply that will likely require long-term financing for implementation is about \$7.6 billion. Annual unit costs for recommended water management strategies for municipal supply in the 2011 South Central Texas Regional Water Plan (in 2008 dollars) are estimated to range from a low of about \$104/acft/yr (\$0.32 per 1,000 gallons) for GBRA Lower Basin Storage to a high of about \$2,429/acft/yr (\$7.45 per 1,000 gallons) for the Wimberley/Woodcreek Water Supply Project and average about \$1,209/acft/yr (\$3.71 per 1,000 gallons). No costs have been included for projects that are presently under construction, alternative water management strategies, and potentially feasible water management strategies requiring further study.

The South Central Texas Regional Water Planning Group has identified the following environmental benefits and concerns associated with the implementation of the Regional Water Plan.

ES.9 Environmental Benefits

- Substantial commitment to water conservation through adoption of an aggressive
 water conservation water management strategy effectively reduces projected water
 shortages thereby delaying or eliminating the need for implementation of other water
 management strategies having greater associated environmental impacts.
 Implementation of economically appropriate drought management strategies, as
 determined at the water user group level, may provide similar benefits while projects
 delivering reliable water supplies to meet projected needs are permitted and
 constructed.
- Development of new water supply sources for Bexar, Comal, and Hays Counties reduces reliance on the Edwards Aquifer during drought thereby contributing to maintenance of springflow and protection of endangered species. The Regional Water

Plan recognizes the on-going efforts of the participants in the Edwards Aquifer Recovery Implementation Program (EARIP) to develop a Habitat Conservation Plan which will help to define the requirements for maintenance of springflow and protection of endangered species and meet with approval from the U.S. Fish & Wildlife Service.

- Implementation of the 2011 Regional Water Plan is likely to result in increased instream flows in the San Antonio River. These increases in flow are attributable to increases in treated effluent from all wastewater discharges (most notably associated with projected growth in Bexar County) and increases in springflow (associated with Edwards Aquifer Recharge Type 2 Projects).
- Edwards Aquifer Recharge Enhancement through the construction of Type 2 recharge dams contributes not only to municipal water supply, but also to maintenance of springflow, protection of endangered species in and below the springs, increased instream flows, and increased freshwater inflows to the Guadalupe Estuary.
- The 2011 Regional Water Plan emphasizes beneficial use of existing surface water rights thereby minimizing the development of new water supply sources and associated environmental impacts. Examples include reliance on presently underutilized water rights held by the Guadalupe-Blanco River Authority (GBRA) and Dow Chemical Company (Dow) below the confluence of the Guadalupe and San Antonio Rivers and by the Lower Colorado River Authority (LCRA) on the Lower Colorado River. Enhanced use of existing surface water rights accounts for approximately one-quarter of the total new water supplies for municipal, industrial, steam-electric, and mining uses by 2060.
- The Regional Water Plan avoids large-scale development of new mainstem reservoirs having associated terrestrial and aquatic habitat and cultural resources impacts and focuses on smaller, off-channel reservoirs.
- Inclusion of Edwards Aquifer transfers from irrigation use to municipal use through lease/purchase of pumpage rights and development of conserved water through installation of LEPA irrigation systems results in substantial increases in municipal water supply without construction of additional transmission and storage facilities having associated environmental effects.
- Inclusion of groundwater development has limited associated environmental effects as compared to those typically associated with development of new surface water supply reservoirs.
- Inclusion of Seawater Desalination is perceived to have fewer associated environmental effects, as compared to those typically associated with development of new (fresh) surface water supplies.

ES.10 Environmental Concerns

Potential reductions in freshwater inflows to bays and estuaries, including associated
effects on wetland and marsh habitats and marine species, are identified as matters of
concern. Primary concerns focus upon the potential effects of the LCRA-SAWS
Water Project on freshwater inflows to Matagorda Bay and the GBRA New
Appropriation (Lower Basin) on freshwater inflows to the Guadalupe Estuary. It is
important to note, however, that as part of the studies directed through the LCRA-

SAWS Definitive Agreement, the Matagorda Bay inflow criteria and the Aquatic Habitat Instream Flow studies were studied thoroughly and shown to meet the legislative directives of protecting Bay Health and the Lower Colorado River aquatic systems. Concerns have also been expressed that increased uses of existing water rights may reduce freshwater inflows to bays and estuaries.

- Concentration of Edwards Aquifer pumpage closer to Comal Springs as a result of implementation of Edwards Transfers tends to reduce discharge from Comal Springs.
- Potential conflicts with stream segments identified by TPWD as ecologically significant are associated with the LCRA-SAWS Water Project, Edwards Recharge Type 2 Projects, GBRA New Appropriation (Lower Basin), Lavaca River Off-Channel Reservoir, and Storage Above Canyon (ASR).
- Potential effects on small springs and instream flows below these springs may be associated with the development of groundwater supplies.
- Intake siting, brine discharge location(s), and potential effects on marine habitat and species, as well as large demands for electrical power, are environmental concerns associated with Seawater Desalination.

ES.11 Regional Water Plan Summary

Recommended water management strategies to meet the projected needs of each city, utility, water user group, and wholesale water provider in the South Central Texas Region are summarized by county in Table ES-4.

ES.12 Summary of the First Biennium Studies

ES.12.1 Study 1 - Lower Guadalupe Water Supply Project for Upstream GBRA Needs

The purpose of Study 1 was to further analyze and refine the Lower Guadalupe Water Supply Project for GBRA Needs (LGWSP for GBRA Needs), a water management strategy recommended to meet projected needs in the 2006 South Central Texas Regional Water Plan (SCTRWP). Further analyses were precipitated by issues that arose during final preparation of the 2006 SCTRWP and interpretation of language in House Bill 3776 of the 80th Texas Legislature.

The results of Study 1 provided information of relevance to the SCTRWPG for consideration of a refined LGWSP for Upstream GBRA Needs as a recommended or alternative water management strategy (WMS) in the 2011 SCTRWP. Ultimately, both the LGWSP for Upstream GBRA Needs WMS (Section 4C.12) and the LGWSP for Upstream GBRA Needs at Reduced Capacity WMS (Section 4C.11) are listed as alternative WMS for GBRA in the 2011 Initially Prepared Plan.

Table ES-4.
Regional Water Supply Plan Summary

	Den	nand	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Atascosa County		Table 2-12	Ta	able 4A-1	Section 4B.2.1		
	1,189	2,569	0	885	Municipal Water Conservation		153
Benton City WSC					Local Carrizo Aquifer		1,613
					Purchase from WWP (BMWD)		
	296	350	0	0	Municipal Water Conservation	20	43
					Drought Management	15	
Charlotte					Purchase from WWP (BMWD)		
					Local Carrizo Aquifer		
					Facilities Expansions		
	801	1,026	112	338	Municipal Water Conservation	60	222
Jourdanton					Drought Management	40	
					Local Carrizo Aquifer	403	403
	479	526	141	188	Municipal Water Conservation	38	108
Lytle					Edwards Transfers	141	188
					Drought Management	24	
	1,106	2,328	0	812	Municipal Water Conservation		129
McCoy WSC					Local Carrizo Aquifer		1,613
	1,906	2,151	0	0	Municipal Water Conservation	156	615
Pleasanton					Local Carrizo Aquifer		
					Facilities Expansions		
Poteet	735	752	0	0	Municipal Water Conservation	60	213
	449	97	0	0	Municipal Water Conservation	11	
					Drought Management ¹		
Rural					Purchase from WWP (BMWD)		
					Edwards Transfers		
					Facilities Expansions		
Industrial	6	6	0	0			
Steam-Electric	7,000	7,672	263	942	Local Carrizo Aquifer	807	1613
Mining	1,298	1,509	0	0			
Irrigation	40,885	34,502	6,095	291	Irrigation Water Conservation	5369	291
Livestock	1,745	1,745	0	0			
Bexar County			Ta	able 4A-1	Section 4B.2.2		
	2,071	2,170	592	691	Municipal Water Conservation	175	865
Alamo Heights					Edwards Transfers	592	691
					Drought Management	104	
	941	1,613	546	1,218	Municipal Water Conservation		22
Atanana Barat MOO					Edwards Transfers	546	1,218
Atascosa Rural WSC					Drought Management	47	
					Purchase from WWP (BMWD)	120	120
Balcones Heights	514	670	0	0	Municipal Water Conservation	4	37
Davin Material State Material District	9,888	12,405	3,944	7,038	Municipal Water Conservation		293
Bexar Metropolitan Water District					Purchase from WWP (BMWD)	3,944	7,038
	820	771	96	47	Municipal Water Conservation	61	166
Castle Hills					Drought Management	41	
					Purchase from WWP (BMWD)	96	47
China Grove	376	695	0	0	Municipal Water Conservation	28	217
Converse	1,907	3,564	0	969	Municipal Water Conservation		110
	1	-,			Purchase from WWP (BMWD)	0	969

Table ES-4 (Continued)

	Dem			hortage)		W	nt from MS
County/Water User Group	2010 (acft)	2060 (acft)	2010 (acft)	2060 (acft)	Recommended Management Strategies to Meet Needs (Shortages)	2010 (acft)	2060 (acft)
East Central SUD	1,523	2,793	0	942	Municipal Water Conservation	(acri)	104
East Contral COD	1,020	2,700		012	Purchase from WWP (CRWA)	0	942
Elmendorf	112	156	0	0	Municipal Water Conservation		6
Fair Oaks Ranch	1,434	1,479	0	0	Municipal Water Conservation	125	509
Helotes	1,537	4,047	0	0	Municipal Water Conservation	115	993
Hill Country Village	838	826	730	718	Municipal Water Conservation Purchase from WWP (BMWD)	77 730	365 718
Filli Country Village					Drought Management	42	710
	2,314	2,616	1,969	2,271	Municipal Water Conservation	212	1,154
Hollywood Park	_,	_,	.,	_,	Purchase from WWP (BMWD)	1,969	2,271
•					Drought Management	116	
Kirby	1,005	1,034	335	364	Edwards Transfers	335	364
<u> </u>					Drought Management	50	
Lackland AFB (CDP)	3,104	3,016	0	0	Municipal Water Conservation	268	1300
Leon Valley Live Oak	1,091 1,145	1,036 1,284	0	0	Municipal Water Conservation Municipal Water Conservation		12
Olmos Park	403	484	0	0	Municipal Water Conservation	9	33
Olifios Fairk	216,945	317,727	77,783	194,228	Municipal Water Conservation	5,752	23,711
	2.0,0.0	011,121	,	- , -	Purchase from WWP (SAWS)	68,477	169,336
San Antonio					Purchase from WWP (BMWD)	9,023	24,476
					Drought Management (SAWS)	37,622	
					Drought Management (BMWD)	1,233	
Selma	1,667	2,605	0	749	Municipal Water Conservation	135	1,122
	040	200	000	004	Purchase from WWP (SSLGC)	0	749
Shavano Park	819	880	320	381	Municipal Water Conservation Drought Management	73 41	382
Silavallo Faik					Purchase from WWP (SAWS)	320	381
Somerset	405	709	0	0	Municipal Water Conservation	29	177
St. Hedwig	310	501	0	0	Municipal Water Conservation	20	14
Terrell Hills	863	1,057	0	0	Municipal Water Conservation	14	65
	2,608	3,101	113	606	Municipal Water Conservation		148
Universal City					Edwards Transfers	113	606
					Drought Management	130	
	951	2,058	911	2,018	Municipal Water Conservation		105
Water Service Inc. (Apex Water Ser.)					Edwards Transfers Purchase from WWP (TWA)	587	1,116 1,000
					Purchase from WWP (SSLGC)	324	324
	1,204	1,182	235	214	Municipal Water Conservation	99	385
Windcrest	1,=01	.,			Edwards Transfers	235	235
	6,624	7,496	0	655	Municipal Water Conservation	49	505
Rural	5,5=:	.,			Purchase from WWP (SAWS)	0	655
Industrial	25,951	42,112	1,340	17,588	Purchase from WWP (SAWS)	12,000	30,000
					Recycled Water	1,340	17,588
Steam-Electric	20,395	39,614	0	0			
Mining	3,582	4,766	0	1,216	Mining Water Conservation		1,216
Irrigation Livestock	15,273 1,319	12,306 1,319	0	0			
Caldwell County	Table			9 4A-1	Section 4B.2.3		
Calawon County	267	580	49	362	Municipal Water Conservation		19
Aqua WSC					Local Carrizo Aquifer	403	403
					Drought Management	13	
Creedmoor-Maha WSC	244	583	108	447	Municipal Water Conservation		11
Credinion Mana Wee					Purchase from WWP (GBRA)	108	447
	2,451	5,285	0	2,512	Municipal Water Conservation		333
Lockhart					Local Carrizo Aquifer Purchase from WWP (GBRA)	1	2823 1,120
					Drought Management	123	1,120
	1,067	1,594	0	506	Municipal Water Conservation	70	192
LePen	,	,			Local Carrizo Aquifer		807
Luling					Purchase from WWP (GBRA)		1,680
					Drought Management	53	
Martindale	125	158	0	0	Purchase from WWP (CRWA)	0	0
	100	222		400	Drought Management	6	
Martindale WSC	189	329	42	182	Purchase from WWP (CRWA)	396	896
	660	1,733	0	689	Drought Management Municipal Water Conservation	9	55
Maxwell WSC	000	1,733	U	009	Purchase from WWP (CRWA)	0	2,000
	135	329	19	213	Municipal Water Conservation	10	116
Mustang Ridge				1.0	Purchase from WWP (GBRA)	19	213
					Drought Management	6	
Polonia WSC	668	1,656	0	265	Local Wilcox		323
Rural	237	143 29	0	0	Municipal Water Conservation	21	29
Industrial	15		0	0			

•	Den	and	Need (S	hortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Steam-Electric	0	0	0	0			
Mining	14	18	0	0			
Irrigation	1,044	578	0	0			
Livestock	918	918	0 Table	0	Section 4D 2.4		
Calhoun County Calhoun County WSC	436	2-12 632	0	4A-1	Section 4B.2.4		
Camoun County WSC	224	667	46	489	Municipal Water Conservation	18	98
Point Comfort	224	007	40	409	Purchase from WWP (LNRA)	46	489
1 oint Connort					Drought Management	11	403
Port Lavaca	1,769	2,345	0	0	Municipal Water Conservation	- ''	89
Seadrift	252	258	0	0	Municipal Water Conservation	20	41
Rural (Port O'Conner MUD)	267	269	0	0	Municipal Water Conservation	20	11
Industrial	49,784	72,238	0	209	Purchase from WWP (LNRA)	10,000	10,000
Steam-Electric	0	0	0	0	r drendes from TTTT (2.11.11)	.0,000	. 0,000
Mining	32	38	0	0			
Irrigation	15,568	9,581	0	0			
Livestock	342	342	0	0			
Comal County		2-12		4A-1	Section 4B.2.5		
•	1,053	4,995	653	4,595	Municipal Water Conservation		430
Bulverde City	,	,		,	Purchase from WWP (GBRA)	653	4,595
•					Drought Management	53	,
	2,928	13,331	0	6,769	Municipal Water Conservation		1,414
0	,,,,,,	-,		-,	Purchase from WWP (GBRA)	1	6,769
Canyon Lake WSC					Drought Management ¹	1	- ,. 30
					Purchase from WWP (TWA)		12,000
	565	1,360	257	1,052	Municipal Water Conservation	42	460
Garden Ridge		1,000		.,	Purchase from WWP (SSLGC)	257	1052
Caraon raago					Drought Management	28	
	10,509	26,226	0	13,920	Municipal Water Conservation	815	8,152
New Braunfels	10,000	20,220	Ů	.0,020	Drought Management	525	0,102
Tion Bradings					Purchase from WWP (GBRA)	525	13,920
	2,721	3,998	1,782	2,960	Municipal Water Conservation	1	85
	_,,	0,000	1,702	2,000	Purchase from WWP (GBRA)	891	1,480
Rural					Purchase from NBU (term)	891	.,
					Purchase from WWP (TWA)	55.	1,480
Industrial	7,729	11,553	5,199	9,022	Recycled Water	5,199	9,022
Steam-Electric	0	0	0	0	,	2,122	-,
Mining	2,678	3,401	439	1,173	Mining Water Conservation	439	1,173
Irrigation	204	119	0	0	Thinking Tracer Concertation	.00	.,
Livestock	298	298	0	0		1	
DeWitt County	Table		_	e 4A-1	Section 4B.2.6		
Cuero	1,249	1,177	0	0	Municipal Water Conservation	99	218
Yoakum	352	328	0	0	Municipal Water Conservation	14	27
Yorktown	343	318	0	0	Municipal Water Conservation		13
Rural	1,013	912	0	0	Municipal Water Conservation		
Industrial	184	254	0	0			
Steam-Electric	0	0	0	0			
Mining	64	71	0	0			
Irrigation	159	54	0	0			
Livestock	1,689	1,689	0	0			
Dimmit County		2-12	Table	4A-1	Section 4B.2.7		
Asherton	286	279	0	0	Municipal Water Conservation	20	64
Big Wells	149	145	0	0	Municipal Water Conservation	11	33
Carrizo Springs	1,842	1,836	0	0	Municipal Water Conservation	152	777
		263	0	0	•		
Rural	284						
Rural Industrial	0	0	0	0			
		0	0	0			
Industrial	0						
Industrial Steam-Electric	0	0	0	0			
Industrial Steam-Electric Mining	0 0 1,003	0 1,095	0	0			
Industrial Steam-Electric Mining Irrigation	0 0 1,003 10,611 552	0 1,095 8,987	0 0 0	0 0 0	Section 4B.2.8		
Industrial Steam-Electric Mining Irrigation Livestock	0 0 1,003 10,611 552	0 1,095 8,987 552	0 0 0	0 0 0	Section 4B.2.8 Municipal Water Conservation	104	772
Industrial Steam-Electric Mining Irrigation Livestock Frio County	0 0 1,003 10,611 552 Table	0 1,095 8,987 552 2-12	0 0 0 0 Table	0 0 0 0		104 116	
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley	0 0 1,003 10,611 552 Table 1,229	0 1,095 8,987 552 • 2-12 1,825	0 0 0 0 Table	0 0 0 0 0 2 4A-1	Municipal Water Conservation		324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall	0 0 1,003 10,611 552 Table 1,229 1,443	0 1,095 8,987 552 2-12 1,825 1,449	0 0 0 0 Table 0	0 0 0 0 2 4A-1	Municipal Water Conservation Municipal Water Conservation		324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial	0 0 1,003 10,611 552 Table 1,229 1,443 727 0	0 1,095 8,987 552 2-12 1,825 1,449 1,007	0 0 0 0 Table 0	0 0 0 0 0 2 4A-1 0 0	Municipal Water Conservation Municipal Water Conservation		324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric	0 0 1,003 10,611 552 Table 1,229 1,443 727 0	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91	0 0 0 0 Table 0 0	0 0 0 0 2 4A-1 0 0 0	Municipal Water Conservation Municipal Water Conservation		32
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining	0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91	0 0 0 0 Table 0 0 0	0 0 0 0 2 4A-1 0 0 0	Municipal Water Conservation Municipal Water Conservation		32
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation	0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592	0 0 0 0 Table 0 0 0 0	0 0 0 0 2 4A-1 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation		32
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation Livestock	0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017 1,209	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592 1,209	0 0 0 0 Table 0 0 0 0 0	0 0 0 0 2 4A-1 0 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation		324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation Livestock Goliad County	0 0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017 1,209 Table	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592 1,209	0 0 0 0 7 Table 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 4A-1 0 0 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Section 4B.2.9	116	324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation Livestock Goliad County Goliad	0 0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017 1,209 Table	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592 1,209	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 4A-1 0 0 0 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Section 4B.2.9 Municipal Water Conservation		772 32 ² 18
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation Livestock Goliad County Goliad Rural	0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017 1,209 Table 416	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592 1,209 2-12 594 848	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 4A-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Section 4B.2.9	116	324
Industrial Steam-Electric Mining Irrigation Livestock Frio County Dilley Pearsall Rural Industrial Steam-Electric Mining Irrigation Livestock Goliad County Goliad	0 0 0 1,003 10,611 552 Table 1,229 1,443 727 0 289 109 82,017 1,209 Table	0 1,095 8,987 552 2-12 1,825 1,449 1,007 0 91 96 68,592 1,209	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 4A-1 0 0 0 0 0 0 0 0	Municipal Water Conservation Municipal Water Conservation Municipal Water Conservation Section 4B.2.9 Municipal Water Conservation	116	100

Table ES-4 (Continued)

	Den	nand	Need (S	hortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Irrigation Livestock	309 920	149 920	0	0	Livestock Water Conservation		
Gonzales County		920 2-12		e 4-10	Section 4B.2.10		
Gonzales	1,545	1,759	0	0	Municipal Water Conservation	116	41
	1,748	2,360	0	0	Municipal Water Conservation	143	1,00
Gonzales County WSC	1,740	2,500	-		Purchase from WWP (TWA)	140	1,00
Nixon	438	488	0	0	Municipal Water Conservation	35	9
Waelder	154	203	0	0	Municipal Water Conservation	00	1
Rural	393	204	0	0	Municipal Water Conservation	6	
Industrial	2,400	3,402	0	0	manopar traisi school talish		
Steam-Electric	0	0	0	0			
Mining	28	24	0	0			
Irrigation	1,304	621	0	0			
Livestock	5,453	5,453	0	0			
Guadalupe County		2-12	Table	e 4A-1	Section 4B.2.11		
•	866	2,730	0	0	Municipal Water Conservation	65	64
Cibolo				T.	Purchase from WWP (CRWA)	700	7,18
					Purchase from WWP (BMWD)	500	50
	2,041	5,551	0	2,716	Municipal Water Conservation		18
	,-	-,		,	Local Wilcox Aquifer		2,82
Crystal Clear WSC					Purchase from WWP (CRWA)	1,300	5,18
. ,					Purchase from WWP (SSLGC)	,	90
					Purchase from WWP (SHWSC)	0	
	3,039	7,826	0	547	Municipal Water Conservation	1	2
Green Valley SUD	2,223	.,==5			Purchase from WWP (CRWA)	700	9,50
					Purchase from NBU	552	55
	164	251	0	75	Municipal Water Conservation		1
Marion					Purchase from WWP (CRWA)	100	40
City of New Berlin	70	180	0	0	T dronded from TTTT (CTTTT)		
City of 1404 Bollin	220	954	76	810	Municipal Water Conservation	1	7
Santa Clara				0.0	Purchase from WWP (CRWA)	100	90
					Drought Management	11	
	1,451	12,059	0	2,420	Municipal Water Conservation	22	1,08
Schertz	1,101	12,000		2,120	Purchase from WWP (SSLGC)	0	5,92
	5,018	9,047	0	0	Municipal Water Conservation	377	2,13
Seguin	0,010	0,011			Purchase from WWP (SSLGC)	011	2,10
	2,349	4,330	0	0	Municipal Water Conservation	174	87
	2,545	7,550	-		Purchase from WWP (TWA)	177	3,00
Springs Hill WSC					Brackish Wilcox Groundwater for RWA		1,50
					Facilities Expansions	+	1,50
Rural	270	13	0	0	Municipal Water Conservation	2	
Industrial	2,638	4,097	0	0	Warnerpar Water Gongervation		
Steam-Electric	4,788	7,515	0	0			
Mining	306	353	0	0			
Irrigation	1,070	705	0	0		+	
Livestock	1,070	1,057	0	0		+	
Hays (Part) County		2-12		9 4A-1	Section 4B.2.12		
riayo (r art) ocumy	1,151	3,677	0	2,386	Municipal Water Conservation	43	47
	1,101	0,011		2,000	Local Trinity Aquifer	10	2,42
County Line WSC					Purchase from WWP (CRWA)	0	57
202.Ry Ellio 1700					Drought Management	58	31
					Recycled Water	30	
	1,156	3,485	0	1,872	Municipal Water Conservation	1 1	11
Goforth WSC	1,100	3,703		1,012	Hays/Caldwell PUA Project	1 1	163
20.0141 1100					Purchase from WWP (GBRA)	1	30
	2,740	5,203	0	1,699	Municipal Water Conservation	1	44
Kyle	2,140	3,203	<u>_</u>	1,000	Hays/Caldwell PUA Project	1	9,35
Tylo	—				Drought Management	137	3,30
	45	183	0	134	Municipal Water Conservation	137	2
Mountain City	40	103	U	134	Hays/Caldwell PUA Project	+	15
	130	449	58	377	Municipal Water Conservation	1	15
Niederwald	130	443	30	311	Purchase from WWP (GBRA)	58	37
I NOGO: WAIG	—				Drought Management	7	31
	566	1,630	0	657	Municipal Water Conservation	+ '	5
Plum Creek Water Company	500	1,030	U	007	Purchase from WWP (GBRA)	1	65
	8,038	24,439	0	11,387	Municipal Water Conservation	417	2,65
San Marcos	0,038	24,439	U	11,307	Hays/Caldwell PUA Project	417	
	770	1.000	240	4 400		1	11,9
Wimborlov WSC	776	1,966	219	1,409	Municipal Water Conservation	200	1 11
Wimberley WSC			-		Wimberley and Woodcreek Water Supply	320	1,48
	0.10	040		207	Drought Management	39	
Mandanal.	246	610	23	387	Municipal Water Conservation	400	3
Woodcreek	———				Wimberley and Woodcreek Water Supply	100	40
	.	2,873	455	2,580	Drought Management Municipal Water Conservation	12 56	
	748				 Butterional Water Concervation 		77

Table ES-4 (Continued)	Den	nand	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Rural	1,444	2,584	0	0	Municipal Water Conservation		184
Industrial	212	386	0	0			
Steam-Electric	1,009	3,627	0	0	Mining Metal Consolition	00	400
Mining Irrigation	142 353	163 338	82 0	103	Wining Water Conservation	82	103
Livestock	280	280	0	0			
Karnes County		2-12		e 4A-1	Section 4B.2.13		
El Oso WSC	555	728	0	0	Municipal Water Conservation	41	139
Falls City	113	145	0	0	Municipal Water Conservation	8	23
Karnes City	432	512	182	262	Municipal Water Conservation		11
	700	000		440	Local Carrizo	323	323
Kenedy	763	993	0	118	Municipal Water Conservation Local Gulf Coast Aquifer	58	268 161
Runge	195	247	0	0	Municipal Water Conservation	15	37
Rural (TDCJ)	500	500	0	0	Wallicipal Water Conscivation	10	
Rural	372	822	0	0	Municipal Water Conservation	68	258
Industrial	118	137	0	0			
Steam-Electric	0	0	0	0			
Mining	106	100	0	0			
Irrigation	1,382	836	0	0			
Livestock Kendall County	1,185	1,185	0 Table	0	Section 4D 2.44		
	1,570	4,282	0	276	Section 4B.2.14 Municipal Water Conservation	98	816
Boerne	1,570	7,202		210	Western Canyon WTP Expansion	90	276
	2,750	7,460	0	3,514	Municipal Water Conservation		264
Rural	,	ĺ		,	Purchase from WWP (GBRA)		3,140
					Western Canyon WTP Expansion		374
Industrial	0	0	0	0			
Steam-Electric	0	0	0	0			
Mining	6	6	0	0			
Irrigation Livestock	714 446	646 446	0	0			
LaSalle County		2-12		e 4A-1	Section 4B.2.15		
Cotulla	1,407	1,743	0	0	Municipal Water Conservation	118	745
Encinal	110	107	0	0	Municipal Water Conservation	9	14
Rural	282	500	0	0	Municipal Water Conservation	3	42
Industrial	0	0	0	0			
Steam-Electric	0	0	0	0			
Mining	0	0	0	0			
Irrigation	4,791 1,687	4,097 1,687	0	0			
Livestock Medina County		2-12		e 4A-1	Section 4B.2.16		
meana county	680	961	294	575	Municipal Water Conservation	53	302
0				0.0	Edwards Transfers	294	575
Castroville					Drought Management	34	
					Purchase from WWP (BMWD)		
Devine	837	896	0	0	Municipal Water Conservation	63	196
E 0110	881	1,385	0	491	Municipal Water Conservation		54
East Medina SUD					Edwards Transfers	44	491
	1,784	2,717	319	1,252	Drought Management Municipal Water Conservation	125	640
Hondo	1,704	2,111	313	1,202	Edwards Transfers	319	1,252
-					Drought Management	89	.,_52
	205	281	92	168	Municipal Water Conservation		11
La Coste					Edwards Transfers	92	168
					Drought Management	10	
	330	519	194	383	Municipal Water Conservation	24	73
Natalia	1		 		Edwards Transfers	194	383
	832	1,603	214	985	Drought Management Municipal Water Conservation	17 61	316
Yancey WSC	032	1,003	Z14	905	Edwards Transfers	214	985
D. and	1,527	2,949	0	1,296	Municipal Water Conservation		244
Rural	.,02.	_,0.0	Ť	-,00	Edwards Transfers		1,296
Industrial	67	103	0	0			
Steam-Electric	0	0	0	0			
Mining	130	143	0	0			
Irrigation	54,450	44,015	7,770	0	Irrigation Water Conservation	7,770	C
Livestock	1,298	1,298	0 Tobl	0	Seedien 4D 0.47		
Refugio County Refugio	645	2-12	0	9 4A-1 0	Section 4B.2.17 Municipal Water Conservation	4.4	1//
Woodsboro	283	777 293	0	0	Municipal Water Conservation Municipal Water Conservation	44 5	144
Rural	321	232	0	0	mamorpai vvator Conscivation		20
				0		1	
Industrial	0	0	0	U			
Industrial Steam-Electric	0	0	0	0			

	Dem	and	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Irrigation	69	69	0	0			
Livestock	623	623	0	0			
Uvalde County	Table			e 4A-1	Section 4B.2.18		
	407	389	127	109	Municipal Water Conservation	34	14
Sabinal					Edwards Transfers	127	10
					Drought Management	20	
	6,087	6,178	3,172	3,263	Municipal Water Conservation	521	2,65
Uvalde					Edwards Transfers	3,172	3,26
					Drought Management	304	
Rural	1,572	2,532	0	0	Municipal Water Conservation		13
Industrial	432	538	0	0			
Steam-Electric	0	0	0	0			
Mining	313	418	0	0			
Irrigation	55,791	45,703	0	0			
Livestock	1,284	1,284	0	0			
Victoria County	Table	2-12	Table	e 4A-1	Section 4B.2.19		
Victoria	11,924	14,360	0	0	Municipal Water Conservation	874	2,48
	2,666	3,674	0	310	Municipal Water Conservation		- ;
Rural					Purchase from WWP (GBRA)		3
ndustrial	28,726	43,520	0	14,441	Purchase from WWP (GBRA)		14,4
	4,052	53,178	1,791	51,076	Purchase from WWP (GBRA - Exelon)	1	49,1
Steam-Electric	.,002	,	.,	,	Purchase from WWP (GBRA)	1,791	1,9
2.000					Steam Electric Water Conservation	500	5
Mining	3,944	6,041	0	0	Clouin Prator Conscivation	300	
Irrigation	9,936	4,759	0	0		1	
Livestock	1,085	1,085	0	0		1	
					Section 4B 2 20		
Wilson County	Table			e 4A-1	Section 4B.2.20	400	
Floresville	1,805	3,000	0	433	Municipal Water Conservation	136	7
				_	Local Carrizo Aquifer		4
_a Vernia	278	764	0	0	Municipal Water Conservation	21	2
					Purchase from WWP (CRWA)	400	4
Oak Hills WSC	693	2,160	0	298	Municipal Water Conservation		1:
					Local Carrizo Aquifer		3
Poth	348	585	0	0	Municipal Water Conservation	20	
	1,563	5,030	223	3,690	Municipal Water Conservation		2:
SS WSC					Local Carrizo Aquifer	807	4,0
00 W00					Purchase from WWP (CRWA)		69
					Brackish Wilcox Groundwater for SS WSC		112
					Drought Management	78	
Stockdale	350	558	0	0	Municipal Water Conservation	27	1
Sunko WSC	613	1,326	0	16	Municipal Water Conservation	3	,
Suliko WSC					Local Carrizo Aquifer		10
Rural	609	2,006	0	33	Municipal Water Conservation		1
ndustrial	1	1	0	0			
Steam-Electric	0	0	0	0			
Mining	242	218	0	0			
rrigation	11,296	6,330	0	0		1	
Livestock	1,808	1,808	0	0			
Zavala County	Table			e 4A-1	Section 4B.2.21		
Crystal City	2,247	2,370	0	0	Municipal Water Conservation	192	1,0
Rural	864	1,371	0	0	Municipal Water Conservation	42	1.
ndustrial	1,043	1,315	0	0		74	
Steam-Electric	0	0	0	0		1	
Mining	122	130	0	0		 	
rrigation	71,800		54,600	41,492	Irrigation Water Conservation	6,948	6,9
Livestock	71,800	58,692 756	0 0	41,492	migation water conservation	0,540	0,9
Wholesale Water Providers	Tables 2-13 1			e 4A-3	Section 4B.3		
Wildlesale Water Froviders	217,954	328,442	73.600				
	211,354	520,442	13,000	193,264	Municipal Water Conservation ² Drought Management	27.622	
			1		Edwards Transfers	37,622 35,935	35,9
	 		 	-	ASR Project and Phased Expansion	35,935	16,0
	 		 	-	Recycled Water Program Expansion	15,127	15,1
San Antonio Water System	 		-			13,121	
•	<u> </u>		-	-	Regional Carrizo for SAWS	1	11,6
					Edwards Aquifer Recharge – Type 2 Projects		21,5
					Brackish Groundwater Desalination (Wilcox)		26,4
					LCRA/SAWS Water Project	1 1	90,0
					Seawater Desalination		84,0
	137,065	279,484	0	67,580	Municipal Water Conservation ²		
]	Wimberley and Woodcreek Water Supply	4,480	
					Project		
Guadalupe-Blanco River Authority					Simsboro Groundwater Project		49,7
Judadalupe-Dialico Rivel Authority					GBRA Mid-Basin/Gonzales Project (Surface	I	
	<u> </u>				Water)		25,0
	<u></u>				Storage Above Canyon Reservoir (ASR)	<u> </u>	3,1
			I	ı	GBRA/Exelon Project		49,1

Table ES-4 (Concluded)

	Dema	and	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
					GBRA Lower Basin Storage		26,452
Guadalupe-Blanco River Authority					GBRA New Appropriation (Lower Basin)		11,500
					Western Canyon WTP Expansion		5,600
	43,439	57,954	16,638	35,418	Municipal Water Conservation ²		
					Edwards Transfers	3,000	3,000
Bexar Met					Local Trinity	2,016	2,016
Dexai iviet					Local Carrizo	4,030	16,129
					Medina Lake Firm-Up (ASR – 15 wells)	9,933	9,933
					Purchase from WWP (CRWA)	2,800	8,250
	21,054	53,534	7,920	40,400	Municipal Water Conservation ²		
					Wells Ranch Project Phase I	5,200	5,200
Canyon Regional Water Authority					Wells Ranch Project Phase II	5,800	5,800
					Purchase from WWP (GBRA)		5,000
					Brackish Wilcox Groundwater for RWA		11,200
					Siesta Project		5,042
					Hays/Caldwell PUA Project		10,260
Lavaca-Navidad River Authority			10,046	10,489	Municipal Water Conservation ²		
Lavaca-Navidad River Admonly					Lavaca River Off-Channel Reservoir	26,242	26,242
Cabanta Cannia I and Cananana	12,704	21,071	0	4,935	Municipal Water Conservation ²		
Corp.					Regional Carrizo for SSLGC Project Expansion		10,364
Corp.	n Local Government Regional Carrizo for SSLGC Project Expansion Brackish Wilcox Groundwater for RWA			2,000			
	3,384	5,365	0	0	Municipal Water Conservation ²		
Springs Hill WSC					Purchase from WWP (TWA)		3,000
		•			Brackish Wilcox Groundwater for RWA		1,500
Texas Water Alliance	0	18,480	0	18,480	Municipal Water Conservation ²		
Texas vvalet Attlatice		•			TWA Regional Carrizo	27,000	27,000
 Historical per capita water use data unav Municipal Water Conservation 	ailable or insuffici	ent for calcula	tion of yield			•	

ES.12.2 Study 2 – Brackish Groundwater Supply Evaluation

Study 2 included evaluations of example brackish groundwater projects in: (1) the Gulf Coast Aquifer with projects in southern Calhoun County and Refugio County for the City of Woodsboro and potential developments near Copano Bay; and (2) the Wilcox and Edwards Aquifers in the vicinity of southern Bexar County for municipal supplies in Bexar County. These three aquifers and diverse locations were related, in part, as illustrative examples for evaluation of brackish groundwater as municipal water supply. Evaluations of these water management strategies were intended to demonstrate the range of technical considerations and potential costs associated with development of this water source in Region L.

Based on preliminary information on brackish groundwater and water supply needs in the three areas of interest, the following four strategies were identified for the use of brackish groundwater. They are:

- Gulf Coast Aquifer in southern Calhoun County for potential new development in the vicinity of Seadrift and Port O'Connor;
- Gulf Coast Aquifer in southeastern Refugio County that would replace the conventional groundwater supply for the City of Woodsboro and potential new developments near Copano Bay;
- Wilcox Aquifer in Bexar, Atascosa, and Wilson Counties to provide supplemental water to SAWS (Bexar County); and

• Edwards Aquifer from southern Bexar County to provide supplemental water to SAWS (Bexar County).

In the 2011 Plan, the Wilcox Aquifer in Bexar, Atascosa, and Wilson Counties portion of Study 2 is revised and presented as the Brackish Wilcox Groundwater for SAWS WMS (Section 4C.23). It is a recommended water management strategy for SAWS that will provide up to 26,400 acft/yr of new supply. In addition, a smaller scale version of the Gulf Coast Aquifer in southern Calhoun County portion of Study 2, called Calhoun County Brackish Groundwater Project (Section 4C.26), is listed as an alternative WMS for GBRA to potentially meet needs in portions of Calhoun County should other supplies be unavailable.

ES.12.3 Study 3 – Enhanced Water Conservation, Drought Management, and Land Stewardship

Study 3, Enhanced Water Conservation, Drought Management, and Land Stewardship of the First Biennium of the 2011 South Central Texas Regional Water Plan (SCTRWP) focused on four subject areas of particular interest to the South Central Texas Regional Water Planning Group (SCTRWPG). These four subject areas were fundamental water conservation, as recommended to meet projected needs for additional water supply throughout the South Central Texas Regional Water Planning Area in the 2006 South Central Texas Regional Water Plan, and enhanced water conservation through such means as condensate collection for water supply, drought management, and land stewardship.

Water Conservation (Section 4C.1) continues to be a primary water management strategy in the 2011 Plan. Drought Management (Section 4C.2) is a recommended water management strategy in the 2011 IPP. In addition, Land Stewardship, also identified as Brush Management (Above Canyon Reservoir) (Section 4C.7) has been evaluated in cooperation with Texas A&M University researchers, and is designated as a water management strategy requiring further study and/or funding.

ES.12.4 Study 4 – Environmental Studies

The purpose of Study 4 was to continue environmental studies focused on bays & estuaries, instream flows, bottomland hardwoods, endangered species, and other relevant subjects of interest to the regional water planning group. The results of Study 4 provided information relevant to the potential environmental effects of the regional water plan and aided planning group members in making decisions regarding water management strategies to be

recommended for implementation in the 2011 South Central Texas Regional Water Plan (SCTRWP).

Study 4 Part A (Study 4A) focused on three tasks:

- 1. Research and refine estimates of historical diversions and effluent discharges affecting flows in the lower Guadalupe River and freshwater inflows to the Guadalupe Estuary prior to 1977.
- 2. Perform ecologically-based streamflow assessments (similar to those for the Guadalupe Estuary in Section 7 of the 2006 Regional Plan) for the Guadalupe River at Victoria and the San Antonio River at Falls City.
- 3. Develop and deliver presentation materials and GIS-based graphics to support SCTRWPG and education programs focused on regulatory processes, endangered species habitat ranges, and other factors potentially affecting implementation of planned strategies.

Study 4B summarized work performed by Texas A&M University (TAMU) and was presented in a separate report. TAMU developed an ecosystem simulation model that integrated existing project field data with information from the scientific literature to project possible ecosystem responses to variation in freshwater inflows to the Guadalupe Estuary.

The procedures outlined in the ecologically-based streamflow assessment of Study 4A were used to quantify and assess the cumulative effects of the 2011 Plan as summarized in Section 7.

ES.12.5 Study 5 - Environmental Evaluations of Water Management Strategies

The South Central Texas Regional Water Planning Group (SCTRWPG) has prepared two regional water plans^{8,9} with unique focus on quantitative reporting of potential effects of plan implementation on surface water flows, groundwater levels, surface water / groundwater interactions, water quality and aquatic habitat, vegetation and terrestrial habitat, endangered and threatened species, and cultural resources. Despite its past efforts, the SCTRWPG has continued to improve its environmental assessments in the 2011 South Central Texas Regional Water Plan (SCTRWP). Seeking the best environmental assessments economically feasible for regional

HR

⁸ South Central Texas Regional Water Planning Group, "2001 South Central Texas Regional Water Plan," Vols. I, II, & III, Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., et al., January 2001.

⁹ South Central Texas Regional Water Planning Group, "2006 South Central Texas Regional Water Plan," Vols. I & II, Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., et al., January 2006.

planning purposes as a long-term goal, the South Central Texas Regional Water Planning Group (SCTRWPG) formed an Environmental Assessment Committee in November 2007. The Environmental Assessment Committee made a number of recommendations to the SCTRWPG regarding the environmental evaluations of WMSs. All of these recommendations are reflected in the technical evaluations of WMS (Volume II) and assessments of cumulative effects (Section 7, Volume I) in the 2011 Plan.

(This page intentionally left blank.)

Section 1 Description of the South Central Texas Region [31 TAC §357.7(a)(1)]

1.1 Background

Water supplies of the South Central Texas Region are obtained from the Edwards-Balcones Fault Zone, Carrizo-Wilcox, Trinity, Edwards-Trinity (Plateau), and Gulf Coast Aquifers; from three minor aquifers (Queen City, Sparta, and Yegua-Jackson); and from the rivers, streams, and reservoirs within the region. The water supply picture of the region is very complex, involving intricate relationships between surface water and groundwater. The Edwards-Balcones Fault Zone Aquifer (hereinafter referred to as the Edwards Aquifer) supplied approximately 56 percent of the total water used in the South Central Texas Region in 2000. Water demands for the area that is now being supplied from the Edwards Aquifer are projected to grow at a rate of approximately 1.0 percent per year between 2000 and 2020. However, not even the present level of use can be sustained while maintaining levels of flows at Comal and San Marcos Springs adequate to support habitats of threatened and endangered species and also meet downstream water rights. Demands on the Trinity and Carrizo-Wilcox (hereinafter referred to as the Carrizo Aquifer) Aquifers of the South Central Texas Region exceed recharge in some areas. In other areas that now depend upon the Carrizo and Gulf Coast Aquifers, present withdrawal rates are substantially less than recharge. Throughout the region, there is an awareness of the dynamic interrelationships of surface water and groundwater and of the importance of maintaining instream flows and freshwater inflows to bays and estuaries.

Operations of the largest existing surface water supply sources in the region are also directly linked to the Edwards Aquifer. Dependable supplies from Canyon Reservoir for municipal and industrial customers are a function of springflows from the Edwards Aquifer, since inflow passage through Canyon Reservoir is necessary to meet downstream water rights when springflows drop below certain levels. Storage in the Medina Lake System contributes significantly to recharge of the Edwards Aquifer, and reservoirs used for steam-electric power generation (Coleto Creek, Calaveras, and Braunig) and hydropower generation are dependent upon springflows and/or treated municipal effluent that originate from the Edwards Aquifer. Surface water supplies available to the region are also a function of recharge to and withdrawal

from the aquifers, as are the quantities of streamflows permitted for use in counties of the Nueces, San Antonio, and Guadalupe River Basins outside of the South Central Texas Region. In water planning for the South Central Texas Region, these factors, together with the numerous potential water management strategies available to the South Central Texas Region, are taken into account herein.

1.2 Physical Description of the South Central Texas Region

The South Central Texas Region includes counties that are located in whole or in part in the Rio Grande, Nueces, San Antonio, Guadalupe, Colorado, and Lavaca River Basins, and the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basins (Table 1-1). The physical terrain of the region ranges from the Hill Country of the Edwards Plateau to the Coastal Plains. A general description of the region, including geology, climate, water resources, vegetational areas, and major water demand centers, is presented in the following sections.

1.2.1 Climate¹

The South Central Texas Region lies in three climatic divisions of Texas: the Edwards Plateau, the South Central, and the Upper Coast. The climate of the region is classified as humid subtropical. Summers are usually hot and humid, while winters are often mild and dry. The hot weather is rather persistent from late May through September, accompanied by prevailing southeasterly winds. There is little change in the day-to-day summer weather, except for the occasional thunderstorm, which produces much of the annual precipitation within the region. The cool season, beginning about the first of November and extending through March, is also typically the driest season of the year. Winters are ordinarily short and mild, with most of the precipitation falling as drizzle or light rain. Any accumulation of snow is a rare occurrence. Polar air masses, which penetrate the region in winter, bring northerly winds and sharp drops in temperature for short periods of time.

In the coastal region, the climate is dominated by proximity to the Gulf of Mexico and characterized by prevailing southeasterly winds. During the long humid summers, high daytime temperatures, which are common in inland areas, are moderated in coastal areas by the Gulf breeze.

-

¹ Texas Water Development Board (TWDB) "Continuing Water Resources Planning and Development for Texas," May 1977.

Table 1-1.
South Central Texas Region – List of Counties
Location by River Basin and Edwards Aquifer Area

County	Edwards Aquifer Area ¹	Nueces Basin	San Antonio Basin	Guadalupe Basin	Lower Colorado Basin	Colorado-Lavaca Coastal Basin	Lavaca Basin	Lavaca-Guadalupe Coastal Basin	San Antonio-Nueces Coastal Basin	Rio Grande
Atascosa	×	×	×							
Bexar	×	×	×							
Caldwell	×			×	×					
Calhoun				×		×		×	×	
Comal	X		×	×						
DeWitt			×	×			×	×		
Dimmit		×								×
Frio		×								
Goliad			×	×					×	
Gonzales				×			×			
Guadalupe	×		×	×						
Hays (Part)	×			×						
Karnes		×	×	×					×	
Kendall			×	×	×					
LaSalle		×								
Medina	×	×	×							
Refugio			×						×	
Uvalde	×	×								
Victoria			×	×			×	×		
Wilson		×	×	×						
Zavala		×								
An X in the co	lumn indicate	s that all or	r part of the co	ounty is locat	ted in the River o	of the county is located in the River or Coastal Basin named in the column heading	amed in the	e column heading.		
¹ Edwards Aqu	ifer Area is th	e area with	nin the Edwar	ds Aquifer Au	¹ Edwards Aquifer Area is the area within the Edwards Aquifer Authority statutory boundaries.	boundaries.				

Mean annual precipitation in the region ranges from a high of 38 inches per year in DeWitt County in the eastern part of the region, to a low of 23 inches per year in the Nueces River Basin in the west (Table 1-2). There is a general trend of decreasing precipitation from the eastern portions of the region to western portions. There is also a general trend of increasing precipitation from inland areas to coastal areas.

Table 1-2.
Climatological Data for the
South Central Texas Region

					Te	mperatu	re		
		Precipitation	on		Mean Minin	•	Mean Maxir	-	Annual Net Reservoir
River Basin	Mean Annual (inches)	Wettest Month(s)	Driest Month(s)	Mean Annual (°F)	January (°F)	July (°F)	January (°F)	July (°F)	Surface Evaporation (inches)
Rio Grande	25	Sept.	Mar.	74	48	74	71	96	65
Nueces	23	May, Sept.	Mar.	71	40	72	65	98	45
San Antonio	30	Sept.	Mar., Dec.	70	41	74	64	96	31
Guadalupe	32	May, Sept.	Mar.	79	37	71	60	95	37
Colorado	34	May, Sept.	Jan.	68	39	74	60	96	35
Lavaca	38	May, Sept.	Mar., July	70	41	72	65	98	24
Lavaca-Guadalupe	37	Sept.	Mar., July	70	44	76	64	94	25
San Antonio-Nueces	33	Sept.	Mar.	71	43	73	65	96	30
Colorado-Lavaca	41	Sept.	Mar., July	70	43	78	64	91	20
Source: Texas Water De	evelopment	Board, "Cont	tinuing Water	Resources	Planning a	nd Develo	ppment for T	exas," Ma	ny 1977.

Although mean annual temperatures are basically uniform throughout the region, there are some marked seasonal variations, which lead to widely varied values for annual net reservoir surface evaporation. The values for annual net reservoir surface evaporation range from a high of 65 inches per year, for the portion of Dimmit County located in the Rio Grande River Basin, to a low of 24 inches per year, for the portion of DeWitt County that lies in the Lavaca River Basin (Table 1-2).

The South Central Texas Region is subject to the threat of hurricanes each year from mid-June through the end of October, and in those parts of the region along and near the coastline, the hazard of hurricane tides is prevalent. Although hurricane winds and tornadoes spawned by hurricanes cause extensive damage and occasional loss of life, surveys of hurricanes

reaching the Texas Coast indicate that storm tides cause by far the greatest destruction and largest number of deaths. Elsewhere, in the inland areas of the region, the greatest concern with regard to hurricanes is the damage that results from winds and flooding. Records dating back to 1871 show that, on average, a tropical storm or hurricane has affected the region once every 3 years.

1.2.2 General Geology²

The Hill Country area of the South Central Texas Region is underlain by Cretaceous Age limestone, which forms the Edwards Plateau. East and south of the Plateau are upper Cretaceous chalk, limestone, dolomite, and clay, with the extensive Balcones Fault Zone System marking the boundary between the Edwards Plateau and the Gulf Coastal Region. The entire sequence dips gently toward the southeast.

A Tertiary Age sequence of southeasterly dipping sand, silts, clay, glauconite, volcanic ash, and lignite overlie the Cretaceous Age strata. The primary water-bearing unit of this sequence is the Carrizo Aquifer. A sequence of clay, sand, caliche, and conglomerate of the Pliocene Age Goliad Formation underlie the coastal areas of the region.

Overlying the Goliad Formation is the Quaternary Age Lissie Formation, which consists of sand, silt, clay and minor amounts of gravel. Clay, silt, and fine-grained sand of the Beaumont Formation overlie the Lissie Formation. Throughout the region, alluvial sediments of Recent Age occur along streams and coastal areas.

1.2.3 Vegetational Areas³

Biologically, the South Central Texas Region is a region of transition from the lowland forests of the southeastern United States to the arid grasslands of the western uplands and tropical thorn scrub to the south. The essence of this landscape consists of dendritic networks of wooded stream corridors populated by typically eastern species that dissect upland grasslands, and savannahs that harbor western species. The vegetational areas containing portions of the South Central Texas Region are the Edwards Plateau, South Texas Plains, Blackland Prairies, Gulf Prairies and Marshes, and the Post Oak Savannah (Figure 1-1). Each area is described below.

_

³ HDR Engineering, Inc. (HDR), et al., "Trans-Texas Water Program, West Central Study Area, Phase I Interim Report," Volume 2, San Antonio River Authority, et al., May 1994.

² TWDB, Op. Cit., May 1977.

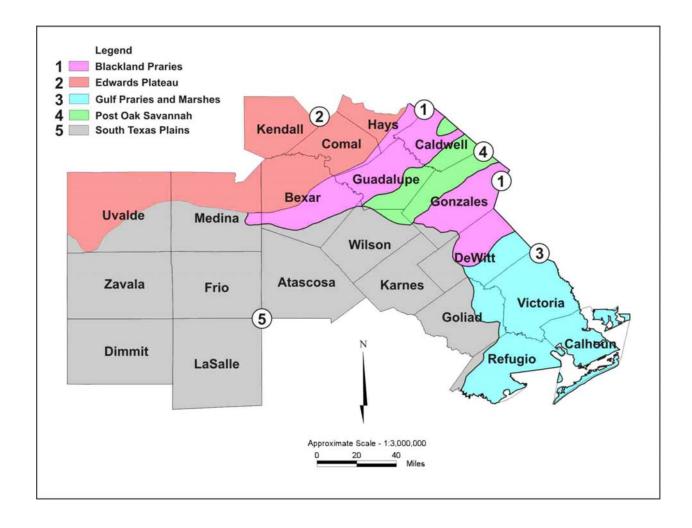


Figure 1-1. Eco-Regions — South Central Texas Region

1.2.3.1 Edwards Plateau

In the South Central Texas Region, the Edwards Plateau vegetational area includes all of Kendall County, the northern portions of Uvalde, Medina, Bexar, and Comal Counties, and the western portion of Hays County located within the planning area. This limestone-based area is characterized by springfed, perennially flowing streams that originate in its interior and flow across the Balcones Escarpment, which bounds it on the south and east. This area is also characterized by the occurrence of numerous ephemeral streams that are important conduits of storm runoff, which contributes to the recharge of the Edwards Aquifer. The soils are shallow, ranging from sands to clays, and are calcareous in reaction. This area is predominantly rangeland, with cultivation confined to limited areas having deeper soils.

Noteworthy is the growth of Bald cypress (*Taxodium distichum*) along the perennially flowing streams. Separated by many miles from cypress growth of the moist Southern Forest Belt, they constitute one of Texas' several "islands" of vegetation.

The principal grasses of the clay soils are several species of bluestem (*Schizachyrium* and *Andropogon* spp.), gramas (*Bouteloua* spp.), Indiangrass (*Sorghastrum nutans*), common curlymesquite (*Hilaria belangeri*), buffalograss (*Buchloe dactyloides*), and Canadian wild rye (*Elymus canadensis*). The rocky areas support tall or mid-grasses with an overstory of live oak (*Quercus virginiana*) and other oaks (*Q. fusiformis*, *Q. buckleyi*, *Q. sinuata* var. *breviloba*), cedar elm (*Ulmus crassifolia*) and mesquite (*Prosopis glandulosa*). The heavy clay soils have a mixture of buffalograss, sideoats grama (*Bouteloua curtipendula*), and mesquite.

1.2.3.2 South Texas Plains

South of San Antonio, including all or parts of Uvalde, Zavala, Dimmit, Medina, Frio, LaSalle, Bexar, Atascosa, Wilson, Karnes, DeWitt, Goliad, and Refugio Counties, lies the South Texas Plains vegetational area, which is characterized by subtropical dryland vegetation consisting of small trees, shrubs, cactus, weeds and grasses. Principal plants are honey mesquite (*Prosopis glandulosa* var. *torreyana*), live oak (*Quercus virginiana*), post oak (*Q. stellata*), several members of the cactus family (Cactaceae), blackbrush acacia (*Acacia rigidula*), guajillo (*Acacia berlandieri*), huisache (*Acacia farnesiana*) and others that often grow very densely. The original vegetation was mainly perennial warm-season bunchgrass in post oak, live oak, and mesquite savannahs. Other brush species form dense thickets on the ridges and along streams. Long-continued grazing, as well as the control of wildfires, has contributed to the dense cover of brush. Most of the desirable grasses have persisted under the protection of brush and cacti.

There are distinct differences in the original plant communities on various soils. Dominant grasses on the sandy loam soils are seacoast bluestem (*Schizachyrium scoparium* var. *littoralis*), bristlegrasses (*Setaria* spp.), and silver bluestem (*Bothriochloa saccharoides*). Dominant grasses on the clay and clay loams are silver bluestem, Arizona cottontop (*Trichachne californica*), buffalograss, common curlymesquite, bristlegrasses, gramas, and Texas wintergrass (*Stipa leucotricha*). Gulf cordgrass (*Spartina* spp.) and seashore saltgrass (*Distichlis spicata*) characterize low saline areas. In the post oak and live oak savannahs, the grasses are mainly seacoast bluestem, Indiangrass, and switchgrass (*Panicum virgatum*).

1.2.3.3 Blackland Prairies

This area, including parts of Bexar, Comal, Guadalupe, Hays, Caldwell, Gonzales, and DeWitt Counties, while called a "prairie," has timber along the streams, including a variety of oaks, pecan (*Carya illinoinensis*), cedar elm and mesquite. In its native state, it was largely a grassy plain.

Most of this fertile area has been cultivated, and only small acreages of meadowland remain in original vegetation. In heavily grazed pastures, buffalograss, Texas grama (*Bouteloua rigidiseta*) and other less-productive grasses have replaced the tall bunchgrass. Mesquite and other woody plants have invaded the grasslands.

The original grass vegetation included big bluestem (*Andropogon gerardii*) and little bluestem (*Schizachyrium scoparium var. frequens*), Indiangrass, switchgrass, sideoats grama, hairy grama (*Bouteloua hirsuta*), tall dropseed (*Sporobolus asper*), Texas wintergrass and buffalograss. Non-grass vegetation is largely legumes and composites.

1.2.3.4 Gulf Prairies and Marshes

The Gulf Prairies and Marshes vegetational area includes all or parts of Victoria, DeWitt, Goliad, Refugio, and Calhoun Counties. There are two subunits: (1) the marsh and salt grasses immediately at tidewater; and (2) a little farther inland, a strip of bluestems and tall grasses, with some gramas in the western part. Many of these grasses make excellent grazing. Oaks, elm, and other hardwoods grow to some extent, especially along streams, and the area has some post oak and brushy extensions along its borders. Much of the Gulf Prairies is fertile farmland.

Principal grasses of the Gulf Prairies are tall bunchgrasses, including big bluestem, little bluestem, seacoast bluestem, Indiangrass, eastern gamagrass (*Tripsacum dactyloides*), Texas wintergrass, switchgrass, and gulf cordgrass. Seashore saltgrass occurs on most saline sites. Heavy grazing has changed the range vegetation in many cases so that the predominant grasses are less desirable broomsedge (*Andropogon virginicus*), smutgrass (*Sporobolus indicus*), threeawns (*Aristida* spp.) and many other inferior grasses. The other plants that have invaded the productive grasslands include oak underbrush, huisache, mesquite, pricklypear (*Opuntia* spp.), ragweed (*Ambrosia psilostachya*), broomweed (*Xanthocephalum* spp.), and others.

1.2.3.5 Post Oak Savannah

This secondary forest region, also called the Post Oak Belt, includes parts of Guadalupe, Caldwell, Wilson, and Gonzales Counties. It is immediately west of the primary forest region, with less annual rainfall and a little higher elevation. Principal trees are post oak, blackjack oak (*Quercus marilandica*) and cedar elm. Pecans, walnuts (*Juglans* spp.) and other kinds of water-demanding trees grow along streams. The southwestern extension of this belt is often poorly defined, with large areas of prairie.

The original vegetation consisted mainly of little bluestem, big bluestem, Indiangrass, switchgrass, silver bluestem, Texas wintergrass, post oak and blackjack oak. The area is still largely native or improved grasslands, with farms located throughout. Intensive grazing has contributed to dense stands of a woody understory of yaupon (*Ilex vomitoria*) and oak brush, and mesquite has become a serious problem. In addition, the control of wildfires has affected the encroachment of brush species on Savannah range lands. Such plants as broomsedge, broomweed, and ragweed have replaced good forage plants.

1.2.4 Natural Resources

1.2.4.1 Water Resources

The South Central Texas Region includes parts of six major river basins (Rio Grande, Nueces, San Antonio, Guadalupe, Lavaca, and Lower Colorado) and overlies the Edwards and Gulf Coast Aquifers, and southern parts of the Trinity, Carrizo, and Edwards-Trinity (Plateau) Aquifers. In addition to these water resources, the area also overlies three minor aquifers (Queen City, Sparta, and Yegua-Jackson). Details about these water resources are presented in Sections 1.7 and 3.

Springs also serve as a significant water resource in the South Central Texas Region. The two most noteworthy springs are the Comal and San Marcos Springs, which both contribute to flow in the Guadalupe River. The San Marcos Springs have the greatest flow dependability and environmental stability of any spring system in the southwestern United States. Constancy of its springflow is apparently key to the unique ecosystem found in the uppermost San Marcos River. Comal Springs, located in New Braunfels, serve as the source for the Comal River, which is a tributary of the Guadalupe River. Unlike the San Marcos Springs, Comal Springs is more responsive to drought conditions and ceased flowing in June of 1956 in response to severe drought conditions. In addition, numerous springs in northern Uvalde and Medina Counties

provide surface flows that recharge the Edwards Aquifer and a few springs, such as Leona Springs and Soldier Springs at Uvalde, flow from below the Edwards Aquifer recharge zone providing surface flows for many miles downstream.

1.2.4.2 Fish and Wildlife Resources

The streams and reservoirs of the South Central Texas Region encompass habitats that range from the clear, rocky headwaters of the Guadalupe and Nueces Rivers on the Edwards Plateau to the sluggish, turbid river reaches of the coastal plains, all supporting fish communities typical of warm, carbonate dominated hard waters. These include gar, minnows, topminnows, sunfishes and bass, catfish, and a few species of darters and suckers. Although strongly dependant on the physical habitat factors present, typical species include the common carp, red shiner, blacktail shiner, topminnow, longear and bluegill sunfish, largemouth and Guadalupe bass, channel catfish, bullheads, dusky darter, bigscale logperch, and grey redhorse. The Guadalupe Estuary, at the mouth of the Guadalupe River, is habitat to brown and white shrimp, blue crabs, eastern oysters, red drum, spotted seatrout, black drum, flounder, mullet, Atlantic croaker, sharks, and kingfish.

Common types of wildlife found in the area include white-tailed deer, raccoons, ringtails, gray foxes, coyotes, bobcats, and several species of skunks. Wintering songbirds such as robins and cedar waxwings may also be found. In addition, a growing population of endangered whooping cranes winters in and near the Aransas National Wildlife Refuge which is located on Blackjack Peninsula and Matagorda Island adjacent to San Antonio Bay.

A key concern in the South Central Texas Region is that of threatened and endangered species. There are a number of species listed in the planning region by the U.S. Fish and Wildlife Service or the Texas Parks and Wildlife Department as threatened or endangered. These species are listed by county in Appendix H with notations concerning their habitat preferences and protected status, if any.

1.2.4.3 Agricultural Resources

Of the 12.8 million acres of land area in the planning region, over 10.67 million acres (83 percent) are classified as farmland and ranchland (Table 1-3). In 2007, there were 25,981 farms and ranches in the region with an average size of 695 acres. Of the 10.67 million acres of

Table 1-3. Agricultural Resources — 2007 South Central Texas Region

County	Total Land Area (acres)	Farms and Ranches (number)	Land in Farms and Ranches (acres)	Average Size (acres)	Total Cropland (acres)	Harvested Cropland (acres)	Irrigated Land (acres)
Atascosa	788,480	1,810	643,594	356	139,080	52,418	22,644
Bexar	798,080	2,496	425,909	171	124,952	59,827	14,091
Caldwell	349,440	1,421	304,737	214	71,459	43,862	909
Calhoun	327,680	291	230,400	792	88,885	61,537	3,569
Comal	359,680	939	192,454	205	37,467	13,468	517
De Witt	581,760	1,811	549,237	303	78,581	42,802	1,213
Dimmit	851,840	388	708,015	1,825	29,108	5,630	5,519
Frio	725,120	724	645,429	891	151,274	57,479	42,895
Goliad	546,560	1,083	469,513	434	58,898	31,576	903
Gonzales	683,520	1,861	654,077	351	99,016	50,836	5,275
Guadalupe	455,040	2,462	385,015	156	125,959	83,517	1,094
Hays (part) ¹	239,360	568	117,784	207	19,633	7,779	471
Karnes	480,000	1,208	417,484	346	104,454	57,740	1,390
Kendall	424,320	1,164	342,515	294	34,071	10,069	694
LaSalle	952,960	399	649,126	1,627	76,270	12,859	8,822
Medina	849,920	2,139	748,144	350	173,541	95,022	41,210
Refugio	492,800	295	490,565	1,663	94,329	75,615	(D)
Uvalde	996,480	690	989,917	1,435	131,420	66,273	45,344
Victoria	565,120	1,351	493,823	366	134,085	79,299	2,844
Wilson	516,480	2,570	467,187	182	153,867	73,012	13,462
Zavala	831,360	311	752,017	2,418	101,534	36,032	26,117
Total	12,816,000	25,981	10,676,942	695	2,031,883	1,016,652	238,983+(D)

Estimate for that portion of Hays County located in the planning region.
 (D) – Withheld to avoid disclosing data for individual producers.

Source: 2007 Census of Agriculture, Vol. 1 Geographic Area Series, "Table 1: County Summary Highlights — 2007."

farmland, over 2.03 million acres were classified as cropland, of which about 1.02 million acres were harvested in 2007. Approximately 12 percent (238,983 acres) of the total cropland in the region was reported to be irrigated in 2007. The leading irrigation counties are located in the western part of the region and include Uvalde, Frio, Medina, Atascosa, and Zavala. The sum of irrigated acres in these five counties decreased by 7.1 percent between 2002 and 2007. In Uvalde and Medina Counties, which rely primarily on the Edwards Aquifer, irrigated acres decreased by 17.1 and 25.8 percent respectively, between 2002 and 2007. Major irrigated crops are corn, cotton, grain sorghum, wheat, rice, soybeans, and vegetables. Cow-calf operations are the predominant type of livestock industry, although beef cattle, hogs and pigs, sheep and lambs, and poultry are also produced. (Agricultural production and livestock production are discussed in greater detail in Sections 1.4.2 and 1.4.3, respectively.)

1.2.5 Major Water Demand Centers

In the South Central Texas Region, there are four major water demand centers. These centers are the Interstate Highway 35 (IH-35) corridor from San Antonio to San Marcos, the Edwards Aquifer region west of the City of San Antonio, the Winter Garden area south of the Edwards Aquifer area, and the Coastal area. The San Antonio, New Braunfels, and San Marcos corridor along IH-35 is one of the fastest growing areas in Texas. In the next 60 years, its water use will follow the same trend as population growth, with most of the demand being for municipal use.

The Edwards Aquifer region west of San Antonio, including Uvalde and Medina Counties, is a major demand center for water to be used for irrigated agriculture. The Winter Garden area, including Zavala, Dimmit, Frio, LaSalle, and Atascosa Counties, is also a major demand center for water for irrigated agriculture. The Coastal area, including the cities of Victoria and Port Lavaca, are major demand centers for water for industrial purposes, with some demand for irrigation in Calhoun County.

1.3 Population and Demography

1.3.1 Historical and Recent Trends in Population

According to the Bureau of the Census, the South Central Texas Region population has increased from 806,770 in 1950 to 2,042,221 in 2000, an increase of 1,235,451 or 2.5 times

⁴ 2007 Census of Agriculture, Volume 1 Geographic Area Series, "Table 1. County Summary Highlights: 2007."

(Table 1-4). The largest percentage increase occurred between the years 1950 and 1960 (25.8 percent), while the smallest occurred between 1960 and 1970 (16.2 percent). During the period 1950 to 2000, 15 counties had a positive annual growth rate, while six counties (DeWitt, Dimmit, Gonzales, Karnes, LaSalle, and Refugio) had a negative annual growth rate. Historically, the fastest growing counties in the region were Hays (3.30 percent), Comal (3.17 percent), Kendall (3.00 percent), and Guadalupe (2.54 percent), while the slowest growing counties were Zavala (0.07 percent), Goliad (0.22 percent), Frio (0.91 percent), and Uvalde (0.97 percent). Section 2.1 summarizes population projections through the year 2060 for the South Central Texas Region.

There are 111 cities or other water supply entities in the South Central Texas Region for which the TWDB has made population and water demand projections. Of the 111 cities and entities, 44 have a population greater than 5,000. These entities are relatively equally distributed among the 21 counties in the planning region and are located in three commonly used regional references (Coastal, Hill Country, and Winter Garden) (Table 1-5). Bexar County contains 14 entities having a population of 5,000 or more, including San Antonio and its surrounding suburbs. Four counties, Goliad, Karnes, La Salle, and Refugio, do not have an entity of 5,000 or greater in population.

1.3.2 Demographic Characteristics

In 2000, 81 percent of the South Central Texas Region population resided in urban areas, while only 19 percent resided in rural areas (Figure 1-2). LaSalle County had the lowest population in 2000, with 5,866 residents (averaging 3.9 persons per square mile), while Bexar County had the highest population in the region with 1,392,931 residents (averaging 1,117 persons per square mile) (Table 1-6).

Age distribution across the region is characterized by a relatively young population. The two age groups that include the highest percentage of the population are under 18 years of age (28.2 percent) and from 34 to 44 years of age (14.9 percent) (Figure 1-3). The age groups with the lowest percentage of the population are ages 55 to 64 (8.7 percent) and ages 18 to 24 (9.3 percent) (Figure 1-3).

Table 1-4.
Population Growth — 1950 to 2000
South Central Texas Region

	Year						Growth
County	1950	1960	1970	1980	1990	2000	Rate ¹ (%)
Atascosa	20,048	18,828	18,696	25,055	30,533	38,628	1.32
Bexar	500,460	687,151	830,460	988,800	1,185,394	1,392,931	2.07
Caldwell	19,350	17,222	21,178	23,637	26,392	32,194	1.02
Calhoun	9,222	16,592	17,831	19,574	19,053	20,647	1.63
Comal	16,357	19,844	24,165	36,446	51,832	78,021	3.17
DeWitt	22,973	20,683	18,660	18,903	18,840	20,013	-0.28
Dimmit	10,654	10,095	9,039	11,367	10,433	10,248	-0.08
Frio	10,357	10,112	11,159	13,785	13,472	16,252	0.91
Goliad	6,219	5,429	4,869	5,193	5,980	6,928	0.22
Gonzales	21,164	17,845	16,375	16,883	17,205	18,628	-0.25
Guadalupe	25,392	29,017	33,554	46,708	64,873	89,023	2.54
Hays (part) ²	14,272	15,947	22,114	32,475	52,491	72,499	3.30
Karnes	17,139	14,995	13,462	13,593	12,455	15,446	-0.21
Kendall	5,423	5,889	6,964	10,635	14,589	23,743	3.00
LaSalle	7,485	5,972	5,014	5,514	5,254	5,866	-0.49
Medina	17,013	18,904	20,249	23,164	27,312	39,304	1.69
Refugio	10,113	10,975	9,494	9,289	7,976	7,828	-0.51
Uvalde	16,015	16,814	17,348	22,441	23,340	25,926	0.97
Victoria	31,241	46,475	53,766	68,807	74,361	84,088	2.00
Wilson	14,672	13,267	13,041	16,756	22,650	32,408	1.60
Zavala	11,201	12,696	11,370	11,666	12,162	11,600	0.07
Total	806,770	1,014,752	1,178,808	1,420,691	1,696,597	2,042,221	1.87

¹ Compound annual growth rate.

Source: Bureau of the Census, Decadal Censuses of 1950, 1960, 1970, 1980, 1990, and 2000, U.S. Department of Commerce.

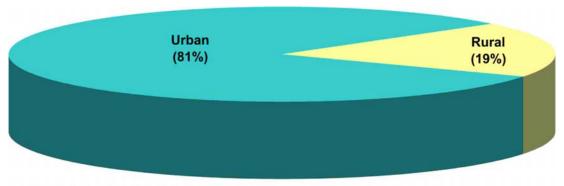

² Estimate that 80 percent of the total county population resides within the planning area.

Table 1-5. Major Entities in the South Central Texas Region*

City Name	County Name	Regional Classification
Alamo Heights	Bexar	Hill Country
Atascosa Rural WSC	Bexar	Hill Country
Benton City WSC	Atascosa	Winter Garden
Bexar Met Water District	Bexar	Hill Country
Boerne	Kendall	Hill Country
Canyon Lake WSC	Comal	Hill Country
Carrizo Springs	Dimmit	Winter Garden
Converse	Bexar	Hill Country
Crystal City	Zavala	Winter Garden
Crystal Clear WSC	Guadalupe	Hill Country
Cuero	DeWitt	Coastal
East Central WSC	Bexar	Hill Country
East Medina SUD	Medina	Hill Country
Floresville	Wilson	Winter Garden
Goforth WSC	Hays	Hill Country
Gonzales	Gonzales	Coastal
Gonzales County WSC	Gonzales	Coastal
Green Valley SUD	Guadalupe	Hill Country
Hondo	Medina	Hill Country
Kirby	Bexar	Hill Country
Kyle	Hays	Hill Country
Lackland AFB	Bexar	Hill Country
* Entities with pop	oulation of 5,00	00 or more in 2000.

City Name	County Name	Regional Classification
Leon Valley	Bexar	Hill Country
Live Oak	Bexar	Hill Country
Lockhart	Caldwell	Hill Country
Luling	Caldwell	Hill Country
McCoy WSC	Atascosa	Winter Garden
New Braunfels	Comal	Hill Country
Pearsall	Frio	Winter Garden
Pleasanton	Atascosa	Winter Garden
Port Lavaca	Calhoun	Coastal
San Antonio	Bexar	Hill Country
San Marcos	Hays	Hill Country
Schertz	Guadalupe	Hill Country
Seguin	Guadalupe	Hill Country
Springs Hill WSC	Guadalupe	Hill Country
SS WSC	Wilson	Winter Garden
Terrell Hills	Bexar	Hill Country
Universal City	Bexar	Hill Country
Uvalde	Uvalde	Winter Garden
Victoria	Victoria	Coastal
Water Services Inc.	Bexar	Hill Country
Wimberley WSC	Hays	Hill Country
Windcrest	Bexar	Hill Country

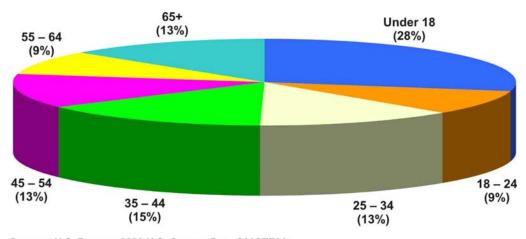

Source: U.S. Bureau; 2000 U.S. Census Data C90STF3A

Figure 1-2. Percentages of Population Residing in Urban and Rural Areas (2000) South Central Texas Region

Table 1-6.
County Population and Area
South Central Texas Region

County	Population (2000)	Area (sq. mi.)	County	Population (2000)	Area (sq. mi.)
Atascosa	38,628	1,232	Hays (part)	72,499	374
Bexar	1,392,931	1,247	Karnes	15,446	750
Caldwell	32,194	546	Kendall	23,743	663
Calhoun	20,647	512	LaSalle	5,866	1,489
Comal	78,021	562	Medina	39,304	1,328
DeWitt	20,013	909	Refugio	7,828	770
Dimmit	10,248	1,331	Uvalde	25,926	1,557
Frio	16,252	1,133	Victoria	84,088	883
Goliad	6,928	854	Wilson	32,408	807
Gonzales	18,628	1,068	Zavala	11,600	1,299
Guadalupe	89,023	711	Total	2,042,221	20,025
Source: U.S. Cens	us Bureau, U.S. Dep	artment of Com	merce.		

HR

Source: U.S. Bureau; 2000 U.S. Census Data C90STF3A

Figure 1-3. Age Distribution of the Population (2000)
South Central Texas Region

The regional population can also be characterized by its level of education. Of those residents in the South Central Texas Region who are 25 years of age or older, 68.2 percent have at least a high school diploma, while 31.8 percent do not. The two largest groups rated according to educational achievement are those who have completed high school, but have not gone on to college (29.0 percent) and those who have completed some college education, but have no degree (20.0 percent). Only 4.7 percent of the population who are 25 years or older have a graduate degree (Figure 1-4).

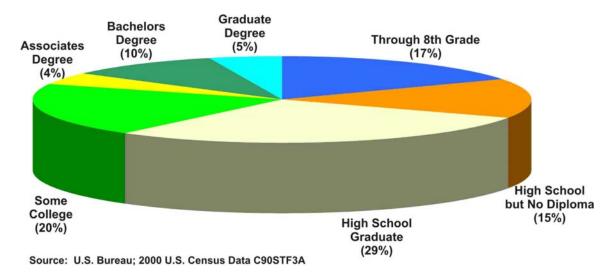


Figure 1-4. Level of Educational Achievement (2000) South Central Texas Region

1.4 Economy — Major Sectors and Industries

1.4.1 Summary of the South Central Texas Regional Economy⁵

The South Central Texas Region has an economic base centered on agricultural production, livestock production, mining, manufacturing, and trades and services. The region has experienced economic ups and downs throughout the past decade, but all sectors of the economy, with the exception of the mining sector, have experienced solid growth in recent years. Paralleling economic growth, employment in the diversified regional economy is supported by a strong trades and services sector, which accounts for approximately 76 percent of the value of output and a thriving tourism industry in San Antonio. Fabricated metal products, industrial machinery, petrochemicals, and food processing form the core of the manufacturing sector, which accounts for approximately 21 percent of the value of output in the South Central Texas Region. Beef cattle, corn, and grain sorghum are the dominant agricultural enterprises, although vegetables produced in the Winter Garden area add diversity to the agricultural sector. More detailed summaries of the agricultural, livestock, mining, manufacturing, and trades and services sectors are presented in the following sections.

1.4.2 Agricultural Production

It is estimated that over 2.7 million acres in the South Central Texas Region were used in crop production in 2007. Of this total, only 238,983 acres (8.7 percent) were irrigated while the remaining 91.3 percent of the total cropland was farmed using dryland techniques. The leading irrigation counties are found primarily in the western part of the region and include Uvalde, Frio, Medina, Atascosa, and Zavala.

According to the 2007 Census of Agriculture, all crops grown in the South Central Texas Region had a market value of over \$373 million in 2007. The leading agricultural producing counties in the region, by market value of products, are Bexar, Medina, Frio, Uvalde, and Victoria. The major crops grown in the region include corn, grain sorghum, wheat, soybeans and cotton (Table 1-7).

_

⁵ Information summarized from reports by the Texas Comptroller's Office.

Table 1-7. Summary of Farm Production Data 2007 South Central Texas Region

		Parola o''					tolog.		0.400		
		Cropiana		Market			Dalac	serected crops narvested	pars		
County	Total Cropland (acres)	Irrigated Land (acres)	Non-Irrigated Land (acres)	Value of all Crops (\$1,000)	Corn (bushels)	Grain Sorghum (bushels)	Wheat (bushels)	Rice (100 lbs)	Cotton (bales)	Soybeans (bushels)	Hay, Alfalfa, Other (tons)
Atascosa	139,080	22,644	116,436	16,569	167,289	100,757	11,250	0	5,342	(D)	96,226
Bexar	124,952	14,091	110,861	64,471	667,681	322,503	163,134	0	4,655	21,220	96,455
Caldwell	71,459	908	70,550	7,463	482,631	300,172	(D)	0	6,114	0	69,987
Calhoun	88,885	3,569	85,316	20,061	2,859,126	801,557	0	179,313	23,008	(D)	6,653
Comal	37,467	517	36,950	2,920	162,004	103,602	34,097	0	0	0	22,161
DeWitt	78,581	1,213	77,368	6,657	620,914	(D)	6,479	0	569	0	93,751
Dimmit	29,108	5,519	23,589	2,617	(D)	32,822	(D)	0	(D)	(D)	4,857
Frio	151,274	42,895	108,379	39,640	452,648	544,033	206,960	0	6,355	0	33,061
Goliad	58,898	903	57,995	4,707	614,410	120,832	(D)	0	3,576	(D)	53,487
Gonzales	99,016	5,275	93,741	15,281	552,774	29,770	(D)	0	0	0	140,070
Guadalupe	125,959	1,094	124,865	18,807	1,422,369	736,145	266,105	0	1,403	0	101,164
Hays (part) ¹	19,633	471	19,162	2,394	53,603	(D)	27,058	0	(D)	0	25,617
Karnes	104,454	1,390	103,064	10,638	1,343,055	244,614	44,276	0	(D)	0	82,729
Kendall	34,071	694	33,377	981	4,700	0	2,750	0	0	0	21,800
LaSalle	76,270	8,822	67,448	7,779	(D)	(D)	38,489	0	0	0	9,017
Medina	173,541	41,210	132,331	43,287	2,770,486	1,160,786	255,277	0	19,220	0	82,326
Refugio	94,329	(D)	(D)	20,039	488,000	2,062,653	(D)	0	40,500	0	8,783
Uvalde	131,420	45,344	86,076	31,783	1,956,506	1,352,904	208,482	0	17,093	0	27,040
Victoria	134,085	2,844	131,241	23,491	4,243,626	544,032	(D)	(D)	7,652	148,791	51,559
Wilson	153,867	13,462	140,405	15,566	960,096	440,412	43,099	0	3,256	0	132,380
Zavala	101,534	26,117	75,417	18,443	230,138	654,839	185,939	0	8,647	0	10,257
Total	2,738,015	238,983+(D)	2,499,032+(D)	373,594	20,052,056+(D) 9,552,433+(D)	9,552,433+(D)	1,493,395+(D)	179,313+(D)	147,390+(D)	170,011+(D)	1,169,380

Estimate for that portion of Hays County located in the planning region.
(D) – Withheld to avoid disclosing data for individual producers.

Source: 2007 Census of Agriculture, Volume 1 Geographic Area Series, "Table 1. County Su mmary Highlights: 2007.

Corn and grain sorghum have historically been the leading crops in the region. In 2007, it was estimated that over 20 million bushels of corn were harvested in the South Central Texas Region, having a market value of \$64.8 million. The leading corn producing counties in the region are Victoria, Medina, Calhoun, and Uvalde (Table 1-7).

Grain sorghum also contributes significantly to the agricultural sector. In 2007, it was estimated that over 9 million bushels of grain sorghum were harvested in the region, having a market value of \$29.5 million. The leading grain sorghum producing counties in the region are Refugio, Uvalde, Medina, and Calhoun (Table 1-7).

Although wheat production is not as widespread as corn and grain sorghum production, it is still an important part of the regional agricultural production with over 1 million bushels of wheat harvested in 2007, with a market value of close to \$8.0 million. The leading wheat producing counties in the region are Guadalupe, Medina, Uvalde, and Frio (Table 1-7).

Because of favorable climatic and soil conditions, the coastal counties of Calhoun and Victoria are able to produce rice. In 2007, these two counties combined produced over 179,000 hundredweight (cwt) of rice which had a market value of over \$1.7 million (Table 1-7).

Cotton production is widespread throughout the region. In 2007, the 17 counties in which cotton is produced combined to harvest over 147,000 bales with a market value of over \$34 million (Table 1-7).

The majority of soybean production in the region occurs in the area extending from the Gulf Coast to DeWitt and Karnes Counties. The two leading soybean producing counties are Victoria and Bexar, while all counties engaged in soybean production combined to harvest over 170,000 bushels of soybeans with a market value of approximately \$1.3 million in 2007 (Table 1-7).

1.4.3 Livestock Production

According to the 2007 Census of Agriculture, livestock marketed in the South Central Texas region had a market value of over \$854 million, or about 2.3 times the value of crop production. Major types of livestock produced in the area include cattle and calves, beef cattle, and sheep and lambs. Layers, pullets, and broilers also contribute significantly to livestock production, with Gonzales County producing over 99 percent of these types of livestock within the region. In 2007, the leading livestock producing counties in the region by market value were Gonzales, Uvalde, Zavala, and Caldwell Counties (Table 1-8).

Table 1-8.
Summary of Livestock Production Data — 2007
South Central Texas Region

	Mouleet			Li	vestock and	Poultry		
County	Market Value of Livestock (\$1,000)	Cattle & Calves (Number)	Beef Cows (Number)	Milk Cows (Number)	Hogs & Pigs (Number)	Sheep & Lambs (Number)	Layers & Pullets (Number)	Broilers (Number)
Atascosa	33,684	94,226	(D)	(D)	208	1,049	1,584	(D)
Bexar	19,751	35,820	(D)	(D)	1,241	3,403	11,118	1,252
Caldwell	39,570	45,291	28,401	0	93	516	(D)	1,128,540
Calhoun	8,901	19,057	13,174	0	10	254	453	0
Comal	3,636	12,868	7,988	0	137	3,512	2,946	0
DeWitt	34,326	108,324	(D)	(D)	491	356	61,229	(D)
Dimmit	19,074	29,045	11,398	0	30	184	269	0
Frio	30,637	51,411	21,386	0	133	98	311	0
Goliad	15,304	58,236	38,686	46	62	108	884	0
Gonzales	388,738	160,799	74,967	15	606	889	4,909,610	75,471,968
Guadalupe	22,371	52,045	(D)	(D)	1,118	2,676	140,828	(D)
Hays (part) ¹	3,333	8,155	4,970	2	128	785	15,568	28
Karnes	13,925	59,840	(D)	(D)	81	411	572	0
Kendall	6,651	15,485	9,311	25	442	9,491	1,819	(D)
LaSalle	23,271	33,550	15,277	0	27	125	(D)	0
Medina	37,562	55,759	(D)	(D)	360	2,981	2,488	(D)
Refugio	9,338	33,197	23,318	0	47	(D)	154	0
Uvalde	45,903	52,366	17,961	0	120	10,050	846	(D)
Victoria	19,933	59,059	39,441	22	149	303	878	0
Wilson	37,350	96,310	(D)	(D)	714	1,308	3,645	302
Zavala	41,327	66,641	(D)	(D)	(D)	70	162	0
Total	854,585	1,147,484	306,278+(D)	110+(D)	6,197+(D)	38,569+(D)	5,155,434+(D)	76,602,090+(D)

¹ Estimates that 50 percent of all livestock production in Hays County occurs in the planning region.

⁽D) – Withheld to avoid disclosing data for individual producers.

Source: 2007 Census of Agriculture, Volume 1 Geographic Area Series, "Table 1. County Summary Highlights: 2007."

1.4.4 Mining

The South Central Texas Region contains many sand and gravel quarries and is also rich in petroleum products including oil, natural gas, and lignite. Much of the stone quarried is used in the production of cement. The leading cement producing areas in the region are located in Bexar and Hays Counties. Most of the stone, gravel, and sand mining activities are located in Bexar, Comal, Gonzales, and Victoria Counties.

The region also derives a significant portion of its mining income from oil and gas activities. All but three counties (Comal, Hays, and Kendall) derived some of their revenues from oil and gas production in 2002. Oil and gas production in the remaining 18 counties generated over \$290 million in 2002 and provided approximately 3,500 jobs in the region. The leading oil and gas producing counties in the region are Refugio, Goliad, Victoria, DeWitt, and La Salle.

1.4.5 Manufacturing⁶

In 2002, manufacturing facilities contributed over \$13 billion in sales and provided 56,448 jobs in the South Central Texas Region (Table 1-9).⁷ The leading manufacturing counties, by value of shipments, in the region are Bexar, Calhoun, Guadalupe, and Victoria. The leading types of manufacturing plants in the region (in 2002) were printing and related support activities; fabricated metal products; miscellaneous products; and food products.

1.4.6 Trades and Services⁸

In 2002, wholesale trade, retail trade, and services contributed over \$59 billion in sales or receipts and provided 450,148 jobs in the South Central Texas Region (Table 1-10). Wholesale trade accounted for 31.5 percent of the total sales or receipts and provided 6.9 percent of the jobs within the trades and services classification in 2002. The leading type of wholesale trade within the South Central Texas Region is durable goods, which includes automobile parts and supplies; lumber and construction materials, and machinery, equipment, and supplies. In 2002, the leading counties in wholesale trade were Bexar, Victoria, Guadalupe, and Comal.

⁹ Data for 2002 are the most recent data available.

⁶ Source: 2002 Census of Manufacturing, U.S. Department of Commerce.

⁷ Data for 2002 are the most recent data available.

⁸ Source: 2002 Economic Census, U.S. Department of Commerce.

Table 1-9.
Summary of Manufacturing Activity — 2002
South Central Texas Region

County	Total Number of Establishments	Total Number of Employees	Value of Shipments (million dollars)
Atascosa	0	0	\$0
Bexar	1,019	35,121	\$6,290
Caldwell	0	0	\$0
Calhoun	22	3,815	\$2,689
Comal	101	3,272	\$611
DeWitt	27	847	\$114
Dimmit	0	0	\$0
Frio	0	0	\$0
Goliad	0	0	\$0
Gonzales	20	1,131	\$197
Guadalupe	100	5,224	\$1,547
Hays (part) ¹	113	2,618	\$514
Karnes	0	0	\$0
Kendall	41	818	\$157
LaSalle	0	0	\$0
Medina	21	538	\$42
Refugio	0	0	\$0
Uvalde	0	0	\$0
Victoria	75	3,064	\$1,245
Wilson	0	0	\$0
Zavala	0	0	\$0
Region Total	1,539	56,448	\$13,406

Estimated that 90 percent of Hays County's total manufacturing industry is located within the planning region

Source: 2002 Economic Census, U.S. Department of Commerce.

Table 1-10.
Trades and Services Industry — 2002
South Central Texas Region

County	Total Number of Establishments	Total Number of Employees	Value of Shipments (million dollars)
Atascosa	381	4,357	\$496
Bexar	22,487	358,555	\$47,486
Caldwell	335	2,514	\$262
Calhoun	285	1,509	\$187
Comal	1,513	14,846	\$1,901
DeWitt	270	2,385	\$282
Dimmit	117	974	\$92
Frio	154	1,280	\$168
Goliad	70	282	\$31
Gonzales	254	1,920	\$307
Guadalupe	1,045	11,592	\$1,666
Hays (part) ¹	1,190	14,275	\$1,575
Karnes	165	1,369	\$174
Kendall	583	4,065	\$717
LaSalle	62	282	\$47
Medina	406	3,315	\$455
Refugio	93	723	\$87
Uvalde	401	3,992	\$556
Victoria	1,589	19,208	\$2,517
Wilson	263	2,420	\$190
Zavala	72	285	\$35
Region Total	31,735	450,148	\$59,231

Estimated that 70 percent of Hays County's trades and services industry is located within the planning region.

Source: 2002 Economic Census, U.S. Department of Commerce.

Retail trade accounted for 37.4 percent of the total sales or receipts and provided 22.6 percent of the jobs within the trades and services classification in 2002. The leading types of retail trade within the South Central Texas Region are apparel and accessory stores, gas stations, motor vehicle and parts stores, and food and beverage stores. In 2002, the leading counties in retail trade were Bexar, Victoria, Hays, and Comal.

Services accounted for 31.1 percent of the total sales or receipts and provided 70.5 percent of the jobs within the trades and services classification in 2002. The leading types of services within the South Central Texas Region are healthcare and social services, professional and technical services, and accommodation and food services.

1.5 Water Uses¹⁰

Water use in 2000 within the South Central Texas Region is summarized for each of the river and coastal basin areas of the region in the following paragraphs.

In 2000, total water use in that part of the Rio Grande Basin located in the South Central Texas Region (part of Dimmit County) was approximately 107 acre-feet (acft) of which 2 acft (2 percent) was used for municipal-type (household) purposes, while the remaining 105 acft was for livestock watering.

In the South Central Texas Region portion of the Nueces River Basin, groundwater resources supply about 90 percent of the water used for all purposes in the basin, with surface water resources supplying the remaining 10 percent. In 2000, total water use within the South Central Texas Region of the basin was 367,959 acft. Irrigated agriculture accounts for nearly 87 percent of all the water used in that portion of the Nueces River Basin located in the planning region, while municipal water use accounts for only about 8 percent.

In the San Antonio River Basin, groundwater resources supply about 91 percent of the water used for all purposes, with surface water resources supplying the remaining 9 percent. In 2000, water use for municipal, industrial, and agricultural purposes within the South Central Texas Region totaled 336,944 acft. Municipal water use accounts for about 73 percent of all water use in that portion of the basin located in the planning region, with water used for irrigated agriculture accounting for about 13 percent. Groundwater resources supply about 99 percent of

1/

¹⁰ Data provided by the TWDB.

the water for municipal use in the basin and about 72 percent of the water used for irrigated agriculture.

In the Guadalupe River Basin, groundwater resources supply about 30 percent of the water used for all purposes, with surface water resources supplying the remaining 70 percent. Total basin water use in 2000 was 120,930 acft within the South Central Texas Region. Municipal is the largest water use category in that part of the basin located within the planning region, accounting for more than 45 percent of the total water use, followed by manufacturing, which accounts for about 29 percent.

In 2000, total water use in that part of the Lower Colorado River Basin located in the South Central Texas Region (parts of Caldwell and Kendall Counties) was approximately 562 acft. Of this total, 365 acft (64.9 percent) was used for municipal purposes, 15 acft (2.7 percent) for irrigation purposes, 13 acft (2.3 percent) for mining purposes, and the remaining 169 acft for livestock purposes.

Total basin water use in 2000 for the South Central Texas portion of the Lavaca River Basin was 867 acft. Municipal water use accounts for about 59.2 percent of all water use in that portion of the basin located in the planning region, followed by livestock use, which accounts for 35.8 percent.

In 2000, water use for municipal, industrial, and livestock purposes in that portion of the Colorado-Lavaca Coastal Basin located in the South Central Texas Region totaled 20,128 acft. Industrial water use is the largest in that part of the basin located within the planning area, accounting for nearly 99 percent of all water used.

In the South Central Texas portion of the Lavaca-Guadalupe Coastal Basin, annual water use totaled 45,693 acft in 2000. The largest water-using category in that part of the basin located within the planning region is manufacturing, which accounts for about 51 percent of all water used.

In the South Central Texas portion of the San Antonio-Nueces Coastal Basin, annual water use totaled about 3,162 acft in 2000. The largest water use category in that part of the basin located within the planning region is municipal, which accounts for about 40 percent of all water used.

1.6 Wholesale Water Providers

The Texas Water Development Board's (TWDB) definition of a Wholesale Water Provider (WWP) is as follows:

"A WWP is any person or entity, including river authorities and irrigation districts, that has contracts to sell more than 1,000 acft of water wholesale in any one year during the five years immediately preceding the adoption of the last Regional Water Plan."

Under this definition, the list of WWPs for the South Central Texas Region is as follows:

- San Antonio Water System (SAWS),
- Bexar Metropolitan Water District (BMWD),
- Guadalupe-Blanco River Authority (GBRA),
- Canyon Regional Water Authority (CRWA),
- Schertz-Seguin Local Government Corporation (SSLGC), and
- Springs Hill Water Supply Corporation (SHWSC).

In addition, the recently-formed Texas Water Alliance (TWA) is included as a WWP because it is expected to enter into contracts to sell more than 1,000 acft/yr wholesale during the planning period. Each wholesale water provider is briefly described in the following sections. Detailed water demand projections for each wholesale water provider are presented in Section 2.10.

1.6.1 San Antonio Water System

The San Antonio Water System (SAWS) is a public utility owned by the City of San Antonio, and its primary water supply source is the Edwards Aquifer. Additional sources include the Carrizo and Trinity Aquifers, Canyon Reservoir, and direct reuse. SAWS has 260,000 separate customers, and serves approximately 1 million people in the urbanized portion of Bexar County. The water supply service area includes most, but not all, of the City of San Antonio, several suburban municipalities, and adjacent areas of Bexar County. In addition to serving its own retail customers, SAWS also provides wholesale water supplies to several utility systems within Bexar County (Section 2.10). SAWS is in the process of developing supplies from other sources, including groundwater from the Carrizo-Wilcox Aquifer and surface water from the Nueces, Guadalupe-San Antonio, and Colorado River Basins and San Antonio Bay.

1.6.2 Bexar Metropolitan Water District

Created in 1945 by the Texas State Legislature, Bexar Metropolitan Water District (BMWD) serves a population of more than 250,000 in the City of San Antonio and other areas in Bexar, Atascosa, and Medina Counties. It is the second-largest water supplier in Bexar County and, at present, obtains most of its water from the Edwards Aquifer with additional supplies from the Trinity and Carrizo Aquifers, the Medina Lake System, and run-of-river water rights on the Medina River. BMWD is in the process of developing supplies from other sources including additional groundwater from the Carrizo and Trinity Aquifers and surface water from the Guadalupe-San Antonio River Basin.

1.6.3 Guadalupe-Blanco River Authority

The Guadalupe-Blanco River Authority (GBRA) was created by the Texas Legislature in 1933 for the purposes of developing, storing, preserving, and distributing the waters of the Guadalupe River Basin for all useful purposes. GBRA is a regional entity serving Hays, Comal, Guadalupe, Caldwell, Gonzales, DeWitt, Victoria, Kendall, Refugio, and Calhoun Counties. GBRA's activities include supplying hydroelectric power through operations of six hydroelectric dams located on the Guadalupe River in Guadalupe and Gonzales Counties, supplying potable water, treatment of wastewater, and supplying raw water through management of substantial run-of-river rights and storage rights in Canyon Reservoir. GBRA is in the process of developing water supplies from sources including surface water in the Guadalupe-San Antonio River Basin and groundwater from the Simsboro Aquifer, and developing transmission and treatment facilities to deliver these supplies to customers.

1.6.4 Canyon Regional Water Authority

Canyon Regional Water Authority (CRWA) is a subdivision of the State of Texas created by the Texas Legislature in 1989. CRWA is the water planning and development agency for water purveyors that serve large areas of Guadalupe County and portions of Bexar, Hays, Caldwell, Wilson, and Comal Counties. It works as a partnership of 12 water supply corporations, cities, and districts responsible for acquiring, treating, and transporting potable water (Section 2.10). CRWA owns and operates treatment plants at Lake Dunlap on the Guadalupe River and in far western Caldwell County near the San Marcos River for surface water purchased from the GBRA or leased from other water rights owners. CRWA is pursuing

the development of additional water supplies including groundwater from the Carrizo and Wilcox Aquifers and surface water from Cibolo Creek.

1.6.5 Schertz-Seguin Local Government Corporation

The Cities of Schertz, located partially in Guadalupe County and partially in Bexar County, and Seguin, located in Guadalupe County, have joined to create the Schertz-Seguin Local Government Corporation (SSLGC). This Corporation is responsible for creating and operating a wholesale water supply system to serve the long-term needs of these two communities. In addition the Corporation sells water to Selma, Universal City, Garden Ridge, and Springs Hill WSC (Section 2.10). The Carrizo Aquifer in Gonzales and Guadalupe Counties is the current source of supply for SSLGC. SSLGC is pursuing the development of additional water supplies from the Carrizo and Wilcox Aquifers.

1.6.6 Springs Hill WSC

Springs Hill Water Supply Corporation (WSC) is a retail and wholesale water supplier serving customers located primarily in Guadalupe County. In addition to serving its own customers, Springs Hill WSC also supplies water to La Vernia (via CRWA), Crystal Clear WSC, and East Central WSC (via CRWA). Springs Hill WSC's current water supply sources include water from Canyon Reservoir (supplied by GBRA and CRWA), and the Carrizo Aquifer (self-supplied and purchased from SSLGC) (Section 2.10). Springs Hill WSC is pursuing development of additional water supplies from the Carrizo and Wilcox Aquifers.

1.6.7 Texas Water Alliance

The Texas Water Alliance (TWA) is a group of landowners located in northeast Gonzales County organized for the purpose of selling groundwater on a wholesale basis to wholesale water providers (WWPs) and water user groups (WUGs) most likely located in the South Central Texas Regional Water Planning Area (Region L). To date, all of the listed WWPs and several WUGs (i.e. Canyon Lake WSC, Gonzales County WSC, San Marcos, and Kyle) in Region L have shown some measure of interest in groundwater supplies potentially available from northeast Gonzales County. It is highly uncertain at this time which one or more of these entities will enter into water supply agreements with the TWA and/or other proximate landowners and whether necessary production permits can be obtained from the Gonzales County Underground

Water Conservation District for use of this groundwater. Hence, for the purposes of this regional water plan, the TWA is designated a WWP to ensure the flexibility necessary to facilitate the activities of individual sponsors and/or coalitions of sponsors in their independent or collective efforts to develop water supplies from groundwater sources in northeast Gonzales County.

1.7 Water Resources and Quality Considerations

1.7.1 Groundwater¹¹

There are five major and minor aquifers supplying water to the South Central Texas Region. The five major aquifers are the Edwards, Carrizo, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers (Figure 1-5). The three minor aquifers are the Sparta, Queen City, and Yegua-Jackson Aquifers. Each aquifer is described and a general assessment of water quality is provided in the following subsections¹². A summary of estimated groundwater supplies is presented in Section 3.

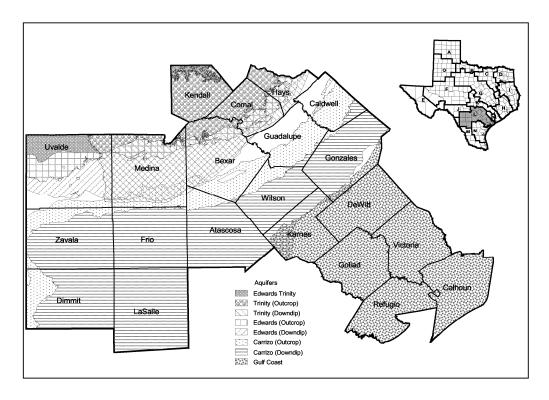


Figure 1-5. Major Aquifers — South Central Texas Region

. .

¹¹ "Ground-water Availability in Texas," Texas Department of Water Resources, Austin, Texas, September 1979. ¹² Summary descriptive information regarding the Yegua-Jackson Aquifer is available in "Water for Texas 2007" prepared and published by the Texas Water Development Board. Information is not included herein as existing supplies from this aquifer are not known to be relied upon in Region L and no water management strategies contemplate its use in Region L.

1.7.1.1 Edwards-Balcones Fault Zone Aquifer (Edwards Aquifer)

The Edwards Aquifer underlies parts of nine counties (Uvalde, Medina, Bexar, Atascosa, Comal, Guadalupe, Hays, Frio, and Zavala) in the South Central Texas Region. The aquifer forms a narrow belt extending from a groundwater divide in Kinney County through the San Antonio area northeastward to the Leon River in Bell County. A groundwater divide near Kyle, in Hays County, hydrologically separates the aquifer into the San Antonio and the Austin regions except during severe drought. The name Edwards-BFZ distinguishes this aquifer from the Edwards-Trinity (Plateau) and the Edwards-Trinity (High Plains) Aquifers, however, in this document, it will be referred to as the Edwards Aquifer (Figure 1-5).

The Edwards Aquifer supplied approximately 44 percent of the total water used in the South Central Texas Region in 2000. Water demands of the area that is now being supplied from the Edwards Aquifer are growing at a rate of approximately 1.7 percent per year. Present levels of use cannot be sustained during a repeat of the drought of record without interruption of flow at Comal Springs. Maintenance of adequate levels of flows at Comal and San Marcos Springs are desirable to support habitats of endangered species and provide for downstream water rights.

Water from the aquifer is primarily used for municipal, irrigation, and industrial purposes. In 2008, approximately 62 percent of the total water pumped from the aquifer in the region was used for municipal supply, with 26 percent used for irrigation purposes, 7 percent used for industrial purposes, and an estimated 5 percent used for domestic and livestock purposes and federal facilities. San Antonio, which presently obtains the vast majority of its municipal water supply from the aquifer, is the largest city in the United States and one of the largest in the world that has relied on a single groundwater source. The Edwards Aquifer also supplies water to industries in the San Antonio area and is the source of flow from Comal, San Marcos, Leona, San Antonio, and San Pedro Springs. Both the Guadalupe and San Antonio Rivers are supplied with base flows from springs, which, in turn, are used downstream for municipal, industrial, and agricultural purposes.

The aquifer, composed predominantly of limestone formed during the early Cretaceous Period, exists under water-table conditions in the outcrop and under artesian conditions where it is confined below the overlying Del Rio Clay. The Aquifer consists of the Georgetown Limestone, formations of the Edwards Group (the primary water-bearing unit) and their

_

¹³ Edwards Aquifer Authority, "Hydrologic Data Report for 2008," July 2009.

equivalents, and the Comanche Peak Limestone where it exists. Saturated thickness ranges from 200 to 600 feet.

Recharge to the aquifer occurs primarily by the downward percolation of surface water from streams draining off of the Edwards Plateau to the north and west and by direct infiltration of precipitation on the outcrop. This recharge reaches the aquifer through crevices, faults, and sinkholes in the unsaturated zone. Unknown amounts of groundwater enter the aquifer as lateral underflow from the Glen Rose Formation. Water in the aquifer generally moves from the recharge zone toward natural discharge points such as Comal and San Marcos Springs. Water is withdrawn through hundreds of wells, particularly municipal and industrial wells in Bexar, Comal, and Hays Counties, and irrigation wells in Bexar, Medina, and Uvalde Counties.

In the updip portion, groundwater moving through the aquifer system has dissolved large volumes of rock to create highly permeable solution zones and channels that facilitate rapid flow and relatively high storage capacity within the aquifer. Highly fractured strata in fault zones have also been preferentially dissolved to form conduits capable of transmitting large amounts of water. Due to its extensive honeycombed and cavernous character, the aquifer yields moderate to large quantities of water to wells, with some wells yielding in excess of 16,000 gallons per minute (gpm) (35.6 cfs, 25,810 acft/yr). One well drilled in Bexar County flowed 24,000 gpm (53.5 cfs, 38,720 acft/yr) from a 30-inch diameter pipe. The aquifer is significantly less permeable farther downdip where the concentration of dissolved solids in the water exceeds 1,000 milligrams per liter (mg/L).

Due to its highly permeable nature in the fresh-water zone, the Edwards Aquifer responds quickly to changes and extremes of stress placed on the system. This is indicated by rapid water-level fluctuations during relatively short periods of time. During times of high rainfall and recharge, the Edwards Aquifer is able to supply significant quantities of water for municipal, industrial, and irrigation uses, as well as sustain springflows. However, under conditions of below-average rainfall or drought, when discharge and withdrawals exceed recharge, springflows may decline to levels that are unacceptable to both environmental and downstream water rights concerns.

Operations of the largest existing surface water supply sources in the South Central Texas Region are linked to the Edwards Aquifer. Dependable supplies from Canyon Reservoir for municipal and industrial customers are a function of springflows from the Edwards Aquifer, since inflow passage through Canyon Reservoir is necessary to meet downstream senior water

rights when springflows drop below certain levels. Storage in the Medina Lake System contributes significantly to recharge of the Edwards Aquifer, and reservoirs used to provide cooling for steam-electric power generation (Coleto Creek, Calaveras, and Braunig) are dependent to some degree upon springflows and/or treated municipal effluent, which originated from the Edwards Aquifer. Surface water supplies available to the region are also a function of recharge to and withdrawal from the Edwards and other aquifers, as well as the quantities of streamflows permitted for use in counties of the Nueces River Basin outside the South Central Texas Region.

An important management issue for the Edwards Aquifer includes establishing levels of groundwater withdrawals and enhancing natural recharge to ensure adequate water levels and at least minimum springflows. In the three river basin area where the Edwards Aquifer is located, growing demands are increasing the competition for scarce water resources. Aquifer recharge and pumpage affect streamflows and springflows, which in turn affect endangered species at and below the springs, streamflows for downstream water rights holders, instream flows for fish and wildlife, and freshwater inflows to the Guadalupe Estuary.

In 1959, after the severe drought and increasing pumpage from 1950 to 1957 that lowered water levels in the aquifer to record lows and caused Comal Springs in Comal County to go dry for several months, the Texas Legislature created the Edwards Underground Water District. The district included Bexar, Comal, Hays, Medina, and Uvalde Counties and was charged with conserving, protecting, and recharging the underground water-bearing formations within the district and preventing waste and pollution of such underground water. In 1989, Medina and Uvalde Counties withdrew from the district and each formed a countywide district. In 1993, while under threat of federal intervention for alleged failure to protect federally protected species that rely on springflows from the Edwards Aquifer, the Texas Legislature enacted Senate Bill 1477.

Senate Bill 1477 abolished the Edwards Underground Water District and created a new entity, the Edwards Aquifer Authority. Senate Bill 1477 directs the Authority to implement a comprehensive management plan for the aquifer that regulates pumpage, while taking into consideration the interests and needs of all the individuals and entities that rely on the aquifer as a water source, and maintains the delicate relationship between springflows and the environment. In 2007, Senate Bill 3 of the 80th Texas Legislature established a maximum annual amount of permitted withdrawals from the aquifer, specific critical period management plan provisions,

interim minimum annualized rates for permitted withdrawals in the critical period, and a Recovery Implementation Program for protection of endangered species.

A "bad water" line generally runs west-east through southern Uvalde and Medina Counties, the northern tip of Atascosa County, Southeastern Bexar, Comal, and Hays Counties, and the western tip of Guadalupe County. South and southeast of the "bad water" line, the aquifer contains water having more than 1,000 milligrams per liter of dissolved solids. The potential for movement of this poor quality water into the fresh water zone, as fresh water levels are lowered during periods of low recharge and high pumpage, is considered a threat to the quality of water in the fresh water zone of the aquifer, and consequently may be a threat to the water supplies of those who depend upon the aquifer.

1.7.1.2 Carrizo-Wilcox Aquifer (Carrizo Aquifer)

The Wilcox Group, including the Calvert Bluff, Simsboro, and Hooper Formations, and the overlying Carrizo Formation of the Claiborne Group, form a hydrologically connected system known as the Carrizo-Wilcox Aquifer, which is referred to in this plan as the Carrizo Aquifer. This aquifer extends from the Rio Grande in South Texas northeastward into Arkansas and Louisiana, providing water to all or parts of 60 counties in Texas, 13 of which are located in the South Central Texas Region. The Carrizo Sand and Wilcox Group outcrop along a narrow band that is located about 130 miles inland from the Gulf of Mexico at the eastern edge of the South Central Texas Region and about 200 miles inland at the western edge. The aquifer dips beneath the land surface toward the coast.

The Carrizo Aquifer is predominantly composed of sand locally interbedded with gravel, silt, clay, and lignite deposited during the Tertiary Period. Water-bearing thickness of the aquifer ranges from 200 feet in Dimmit County to more than 1,500 feet in the downdip artesian portion in Atascosa County. Where it is found at the surface, the aquifer exists under water-table conditions and, in the subsurface, is under artesian conditions. Yields of wells are commonly 500 gpm (1.1 cfs, 810 acft/yr), and some may reach 3,000 gpm (6.7 cfs, 4,840 acft/yr) downdip where the aquifer is under artesian conditions. Some of the greatest yields are produced from the Carrizo Sand in the southern, or Winter Garden, area of the aquifer.

¹⁴ "Groundwater Resources, and Model Applications for the Edwards (Balcones Fault Zone) Aquifer in the San Antonio Region, Texas," Texas Department of Water Resources, Klemt, William B., Tommy R. Knowles, Glenward R. Elder, and Thomas W. Sieb, Report 239, Austin, Texas, October 1979.

Historically, municipal and irrigation pumpage account for about 35 percent and 51 percent, respectively, of total pumpage from the Carrizo Aquifer within the region, with irrigation being the predominant use in the Winter Garden region. Significant water-level declines have occurred in the semiarid Winter Garden portion of the Carrizo Aquifer, as the region is heavily dependent on groundwater for irrigation. Since 1920, water levels have declined 100 feet in much of the area and more than 250 feet in the Crystal City area of Zavala County.

In the South Central Texas Region, water from the Carrizo Aquifer is fresh to slightly saline. In the outcrop, the water is hard yet usually low in dissolved solids. Downdip, the water is softer, has a higher temperature, and contains more dissolved solids. A downdip "bad water" line generally runs northeast-southwest through the southeast portion of La Salle and McMullen Counties, the northeast portion of Live Oak and Karnes Counties, and southeast Gonzales County. Southeast of the "bad water" line the groundwater has more than 1,000 mg/L of total dissolved solids. Localized contamination of the aquifer in the Winter Garden region is attributed to direct infiltration of oil field brines on the surface and to downward leakage of saline water from the overlying Bigford Formation. Some sampled wells in Dimmit and Zavala Counties were found to contain high concentrations of dissolved solids, chloride, and/or sulfate. Downward leakage of more highly-mineralized water from overlying strata through the uncemented annular space between the well casings and boreholes of such wells is considered to be the most likely cause. Nitrate and gross alpha above maximum concentration limits have been observed in the Winter Garden District. Caldwell and Gonzales Counties have areas where water from the aquifer is high in iron and manganese. The Calvert Bluff, Simsboro, and Hooper formations of the Wilcox group all contain mean iron concentrations greater than the secondary drinking water standard of 0.3 mg/L. Water from all three formations is hard to very hard. Mean concentrations of sulfate and chloride are below regulatory standards in all three formations.

1.7.1.3 Trinity Aquifer

The Trinity Aquifer provides water to all or parts of 55 counties in Texas, including six counties (Hays, Comal, Kendall, Bexar, Medina, and Uvalde) in the South Central Texas Region. The Trinity Aquifer consists of early Cretaceous Age formations of the Trinity Group that are organized into the lower Trinity Aquifer (Hosston Sand and Sligo Limestone), the middle Trinity Aquifer (lower Glen Rose Limestone, the Hensell Sand, and Cow Creek Limestone), and the

upper Trinity Aquifer (upper Glen Rose Limestone). ¹⁵ Because of its depth and poor quality, the lower Trinity has not been extensively developed. The middle Trinity is the most widely used part of the aquifer in the South Central Texas Region. The upper Trinity yields are low due to low porosity and permeability, and water quality is poor due to the presence of evaporate beds.

Trinity well yields are rarely more than 100 gpm (0.22 cfs, 160 acft/yr) in the South Central Texas Region although the SAWS is presently obtaining an average of about 500 gpm from several Trinity wells in northern Bexar County. At the present time, the aquifer is being stressed due to rapid growth in the number of wells being drilled to supply new homes and commercial establishments. Due to the heavy demands being placed upon the aquifer in relation to supplies available, much of the area underlain by the Trinity Aquifer in the Hill Country has been included in a Priority Groundwater Management Area.

Water quality from the Trinity Aquifer is acceptable for most municipal and industrial purposes; however, excess concentrations of certain constituents in many places exceed drinking water standards for municipal supplies. In the southern Hill Country region, the primary contribution to poor quality is wells that have not been adequately cased through the evaporite beds in the upper part of the Glen Rose. Water quality naturally deteriorates in the downdip direction within all the Trinity water-bearing units. A downdip "bad water" line for the Trinity Aquifer generally trends east-west through southern Uvalde and Medina Counties, then trends southeast-northwest through central Bexar County and the southeast edge of Comal and Hays Counties. South and southeast of this "bad water" line, the groundwater contains greater than 1,000 mg/L of total dissolved solids. Average concentrations of nitrates, fluorides, chlorides, and sulfates are below regulatory standards. However, localized areas of nitrate pollution due to human or animal waste, and ranching and farming activities have been identified in parts of Kendall and Hays Counties.

1.7.1.4 Gulf Coast Aquifer

The Gulf Coast Aquifer forms a wide belt along the Gulf of Mexico from Florida to Mexico. In Texas, the aquifer provides water to all or parts of 54 counties, including all or parts of seven coastal counties (Karnes, Gonzales, DeWitt, Goliad, Victoria, Refugio, and Calhoun) in

-

¹⁵ "Groundwater Availability of the Lower Cretaceous Formations in the Hill Country of South-Central Texas," Texas Department of Water Resources, Austin, Texas, 1983.

the South Central Texas Region. Municipal and irrigation uses have historically accounted for 90 percent of the total pumpage for the aquifer in the planning region.

The aquifer consists of complex interbedded clays, silts, sands, and gravels of the Cenozoic Age, which are hydrologically connected to form a large, leaky artesian aquifer system. This system is comprised of four major components consisting of the following generally recognized water-producing formations. The deepest is the Catahoula, which contains groundwater near the outcrop in relatively restricted sand layers. Above the Catahoula, is the Jasper Aquifer, primarily contained within the Oakville Sandstone. The Burkeville confining layer separates the Jasper from the overlying Evangeline Aquifer, which is contained within the Fleming and Goliad Sands. The Chicot Aquifer, or upper component of the Gulf Coast Aquifer system, consists of the Lissie, Willis, Bentley, Montgomery, and Beaumont Formations, and overlying alluvial deposits. Not all formations are present throughout the system, and nomenclature often differs from one end of the system to the other. In the South Central Texas Region, saturated thickness ranges from 500 feet in Karnes County to about 1,500 feet in Victoria County. Average well yields are about 1,600 gpm. Water quality tends to deteriorate from about 500 mg/L of dissolved solids in Karnes County to over 1,000 mg/L near the coast. Water levels have declined in local areas where significant withdrawals have been made for municipal, industrial, and irrigation purposes. As water levels decline, the threats of land subsidence and salt-water intrusion increase.

In the Gulf Coast Aquifer, water quality is generally good in the shallower portion of the aquifer. Groundwater containing less than 500 mg/L dissolved solids is usually encountered to a maximum depth of 3,200 feet in the aquifer from the San Antonio River basin northeastward to Louisiana. From the San Antonio River Basin southwestward to Mexico, quality deterioration is evident in the form of increased chloride concentration and salt-water encroachment along the coast. Little of this groundwater is suitable for prolonged irrigation use due to either high salinity, or alkalinity, or both. The downdip extent of fresh water in the Gulf Coast Aquifer is approximately equal to or somewhat inland from the coast line of the Gulf of Mexico. Elevated levels of TDS, chloride, and/or arsenic can occur locally (e.g., Karnes, Refugio, and Calhoun Counties) necessitating more advanced treatment processes.

1.7.1.5 Edwards-Trinity (Plateau) Aquifer

The Edwards-Trinity (Plateau) Aquifer provides water to the northern portions of Uvalde and Kendall Counties in the South Central Texas Region. The aquifer consists of saturated sediments of lower Cretaceous Age Trinity Group, including the Fredericksburg Group and Washita Group. ¹⁶ The Glen Rose Limestone is the primary unit in the Edwards-Trinity (Plateau) Aquifer in the southern areas of its extent. This unit is estimated to have a thickness of up to 300 feet in these southern areas of its extent.

The aquifer generally exists under water-table conditions, however, where the Trinity (Plateau) Aquifer is fully saturated and a zone of low permeability occurs near the base of the overlying Edwards, artesian conditions may exist. Reported well yields commonly range from less than 50 gpm where saturated thickness is thin to more than 1,000 gpm where wells are completed in jointed and cavernous limestone. Water quality ranges from fresh to slightly saline. The water is generally hard and varies in concentrations of calcium, magnesium, and bicarbonate. Average concentrations of nitrate, fluoride, chloride, and sulfates are below regulatory drinking water standards.

1.7.1.6 Sparta Aquifer

The Sparta Aquifer extends in a narrow band from the Frio River in South Texas northeastward to the Louisiana border, and underlies parts of five counties (Frio, LaSalle, Atascosa, Wilson, and Gonzales) in the South Central Texas Region. The southwestern boundary is placed at the Frio River because of a facies change in the formation, which makes it difficult to delineate the boundaries of the Sparta and contiguous formations southwestward. The facies change results in reduced amounts of water and poorer quality water being produced from the interval. The Sparta provides water for domestic and livestock supply throughout its extent in the region.

The Sparta Formation, part of the Claiborne Group deposited during the Tertiary, consists of sand and interbedded clay with massive sand beds in the basal section. These beds gently dip to the south and southeast toward the Gulf Coast and reach a total thickness of up to 300 feet. Usable quality water is commonly found within the outcrop and for a few miles downdip and in some areas may occur down to depths approaching 2,000 feet. Yields of individual wells are

-

¹⁶ Barker, Rene A., and Ardis, Ann F., "Hydrogeologic Framework of the Edwards-Trinity Aquifer System, West Central Texas," USGS Professional Paper 1421-B, 1996.

generally less than 100 gpm, although some wells average 400 to 500 gpm, and a few wells produce as much as 1,200 gpm. Water occurs under water-table conditions in the outcrop and under artesian conditions downdip where the Sparta is covered by younger, non water-bearing rocks.

The Sparta Aquifer produces water of excellent quality throughout most of its extent in the South Central Texas Region; however, water quality deteriorates with depth due to high chlorides and dissolved solids in the downdip direction. The extent of downdip fresh water in the Sparta Aquifer generally runs along a line trending southwest-northeast from northern La Salle and McMullen Counties through southeast Atascosa and Wilson Counties to central Gonzales County. In some locations, water within the aquifer may contain iron concentrations in excess of secondary drinking water standards.

1.7.1.7 Queen City Aquifer

The Queen City Aquifer extends across Texas from the Frio River in South Texas northeastward into Louisiana and underlies six counties (Frio, LaSalle, Atascosa, Wilson, Gonzales, and Caldwell) in the South Central Texas Region. The southwestern boundary is placed at the Frio River because of a facies change in the formation. This facies change results in reduced amounts of poorer quality water produced from this interval southwest of the Frio River. The aquifer provides water for domestic and livestock purposes throughout most of its extent and water for irrigation in Wilson County.

Sand, loosely cemented sandstone, and interbedded clay units of the Queen City Formation of the Tertiary Claiborne Group make up the aquifer. These rocks dip gently to the south and southeast toward the Gulf Coast. Total aquifer thickness is usually less than 500 feet. In the outcrop area, water occurs under water-table conditions, while in the downdip subsurface, where the Queen City is covered by younger, non-water-bearing rocks, the water is under artesian conditions. Yields of individual wells are commonly low, but a few exceed 400 gpm.

Water of excellent quality is generally found within the outcrop and for a few miles downdip, but water quality deteriorates with depth in the downdip direction due to high chlorides and dissolved solids. The extent of downdip fresh water in the Queen City Aquifer is approximately the same as the Sparta Aquifer in the previous subsection. Queen City Aquifer groundwater contains relatively high iron concentrations in some locations.

1.7.2 Surface Water

The South Central Texas Region includes parts of the Rio Grande, Nueces, San Antonio, Guadalupe, Colorado, and Lavaca River Basins and parts of the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basins (Figure 1-6). Existing surface water supplies of the region include those derived from storage reservoirs and run-of-river water rights. The geographical characteristics of the various river basins are described in the following subsections, along with major reservoirs and/or water rights. In addition, general information is provided regarding water quality characteristics and specific notation is made of stream segments on the 2008 draft list prepared by the Texas Commission on Environmental Quality (TCEQ) pursuant to Section 303(d) of the Federal Clean Water Act. Appearance on this list indicates the possibility that a stream or water body does not meet applicable water quality standards or is threatened for one or more designated uses by one or more pollutants which could lead to a Total Maximum Daily Load (TMDL) assessment. Existing surface water supplies available during drought are summarized in Section 3.

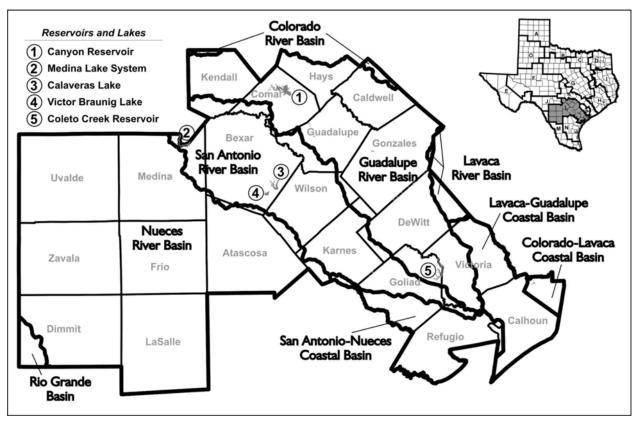


Figure 1-6. River Basins, Coastal Basins, and Reservoirs of the South Central Texas Region

1.7.2.1 Rio Grande Basin

The southwestern corner of Dimmit County, an area of approximately 164 square miles, is located in the Rio Grande Basin and in the South Central Texas Region. The only surface water presently available to this area is that which can be captured in stock tanks.

1.7.2.2 Nueces River Basin

The Nueces River Basin is bounded on the north and east by the Colorado, San Antonio, and Guadalupe River Basins and the San Antonio-Nueces Coastal Basin, and on the west and south by the Rio Grande Basin and the Nueces-Rio Grande Coastal Basin. Total drainage area of the basin is about 16,920 square miles above Calallen Dam, of which 8,973 square miles are located in the South Central Texas planning region. The Nueces River rises in Edwards County and flows 371 river miles from the gage at Laguna in Uvalde County to Nueces Bay on the Gulf of Mexico near Corpus Christi. Principal tributaries of the Nueces River are the Frio and Atascosa Rivers. Major population centers located in the basin include the cities of Uvalde (Uvalde County), Crystal City (Zavala County), Pearsall (Frio County), Pleasanton (Atascosa County), Hondo (Medina County), and Carrizo Springs (Dimmit County). Major water rights in the Nueces River Basin within the South Central Texas Region include those held by the Zavala-Dimmit County WCID #1, which total 28,000 acft/yr.

Water quality in the upper portion of the Nueces River Basin in the less-inhabited reaches is good, except for relatively high nitrate-nitrogen levels occurring naturally in the spring-fed streams. A substantial part of the flow of the upper Nueces River and its tributaries upstream of the Edwards Aquifer recharge zone enters the fractured and cavernous limestone formation of the Edwards Aquifer. As a result, streamflows in the Nueces River Basin downstream from the recharge zone consist almost entirely of stormwater. During low-flow conditions, chloride, sulfate, and total dissolved solids levels increase due to natural and human activities. The Atascosa River has experienced elevated bacteria, depressed dissolved oxygen levels, and impaired fish communities downstream of the City of Pleasanton. Elevated bacteria levels have been observed in the Frio and Leona Rivers and in San Miguel Creek, but additional data and information are needed before a TMDL may be scheduled.

1.7.2.3 San Antonio River Basin

The San Antonio River Basin is bounded on the north and east by the Guadalupe River Basin and on the west and south by the Nueces River Basin and the San Antonio-Nueces Coastal Basin. Total drainage area of the basin is about 4,180 square miles, of which 3,506 square miles are located in the planning region. The San Antonio River has its source in large springs within and near the city limits of San Antonio. The river flows more than 230 river miles across the Coastal Plain to a junction with the Guadalupe River near the Gulf of Mexico. Its principal tributaries are the Medina River and Cibolo Creek, both spring-fed streams. Major population centers located in the basin include the cities of San Antonio (Bexar County), Universal City (Bexar County), Schertz (Bexar County), Live Oak (Bexar County), Leon Valley (Bexar County), Converse (Bexar County), Kirby (Bexar County), Alamo Heights (Bexar County), and Floresville (Wilson County). The largest water rights in the San Antonio River Basin are associated with major reservoirs including the Medina Lake System (66,750 acft/yr), Calaveras Lake (37,000 acft/yr), and Braunig Lake (12,000 acft/yr).

In the past, water quality in the San Antonio Basin varied from very good in the upper basin to relatively poor in the lower basin, particularly during periods of low flow. Since 1987, advanced water treatment has been instituted at the three major San Antonio area water recycling plants, Dos Rios, Leon Creek, and Salado Creek. As a result, dissolved oxygen concentrations in the San Antonio River have been maintained well above the State stream standard of 5.0 mg/L and aquatic life has been significantly enhanced. However, certain water quality concerns remain in the basin. Elevated bacteria levels have occurred in the lower San Antonio River, throughout Cibolo Creek, and in lower Leon Creek. Depressed dissolved oxygen levels have been observed in lower Leon Creek. Impaired fish and macro-benthic communities have been observed in Salado Creek. Finally, PCBs have been found in fish tissue in lower Leon Creek and a high priority has been assigned to initiating TMDL studies.

1.7.2.4 Guadalupe River Basin

The Guadalupe River Basin is bounded on the north by the Colorado River Basin, on the east by the Lavaca River Basin and the Lavaca-Guadalupe Coastal Basin, and on the west and south by the Nueces and San Antonio River Basins. The Guadalupe River rises in the west-central part of Kerr County. A spring-fed stream, it flows eastward through the Hill Country until it issues from the Balcones Escarpment near New Braunfels. It then crosses the Coastal Plain to

San Antonio Bay. Its total length is more than 430 river miles, and its drainage area is approximately 10,128 square miles above the Lower Guadalupe Saltwater Barrier and Diversion Dam, of which about 4,180 square miles are located within the San Antonio River Basin. Its principal tributaries are the San Marcos River, another spring fed stream, which joins the Guadalupe River in Gonzales County; the San Antonio River, which joins it just above its mouth on San Antonio Bay; and the Comal River, which joins it at New Braunfels. Comal Springs are the source of the Comal River, which flows about 2.5 miles before joining the Guadalupe River. Major population centers located in the basin include the cities of Victoria (Victoria County), San Marcos (Hays County), New Braunfels (Comal County), Seguin (Guadalupe County), Lockhart (Caldwell County), Cuero (DeWitt County), Gonzales (Gonzales County), and Luling (Caldwell County). Major reservoirs in the Guadalupe River Basin include Canyon Reservoir with authorized diversions averaging 90,000 acft/yr and Coleto Creek Reservoir with authorized diversions from the Guadalupe River of up to 20,000 acft/yr (excluding supplemental supplies from Canyon Reservoir). In addition, there are groups of run-of-river water rights having significant authorized annual consumptive uses. These rights are held by the GBRA (175,501 acft/yr), INVISTA/DuPont (33,000 acft/yr), and the City of Victoria (20,000 acft/yr).

The Guadalupe River Basin is characterized by generally high water quality throughout. Low dissolved oxygen concentrations have been observed in Peach, Elm, and Sandies Creeks. Elevated levels of bacteria have occurred in Sandies, Geronimo, Plum, and Peach Creeks. In addition, mercury was detected in edible fish tissue from Canyon Reservoir, however, additional data and information are needed before a TMDL may be scheduled.

1.7.2.5 Lower Colorado River Basin

Only a small portion of Kendall and Caldwell Counties is located in that part of the Lower Colorado River Basin located inside the planning region. The total drainage area of the Colorado River Basin is 41,763 square miles, of which only 76 square miles are located in the planning region. The only surface water presently available to these two areas of the South Central Texas Region is from local stock tanks.

1.7.2.6 Lavaca River Basin

Small portions of DeWitt, Gonzales, and Victoria Counties are located in that part of the Lavaca River Basin inside the planning region. The total drainage area of the Lavaca River Basin

is 2,309 square miles, of which 156 square miles are located in the planning region. The Lavaca-Navidad River Authority owns and operates Lake Texana and has contracts to provide 32,000 acft/yr of water to customers in the Colorado-Lavaca Coastal Basin, 41,840 acft/yr to Corpus Christi in the Nueces-Rio Grande Coastal Basin, and 594 acft/yr for use in the Lavaca-Guadalupe Coastal Basin.

1.7.2.7 Coastal Basins

Parts of the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basins are located within the South Central Texas Region. None of these coastal basins has large surface water projects. Because of limited surface water availability from local runoff and groundwater quality considerations, these basins generally rely on adjoining river basins to provide surface water to meet their needs. The Colorado-Lavaca Coastal Basin obtains 32,000 acft/yr of surface water from Lake Texana in the Lavaca River Basin. The Lavaca-Guadalupe Coastal Basin obtains approximately 69,000 acft/yr of imported surface water, the majority of which is supplied from the Guadalupe River. The San Antonio-Nueces Coastal Basin obtains approximately 26,000 acft/yr of imported surface water supplied from the Nueces River Basin.

The TCEQ routinely monitors the Victoria Barge Canal segment in the Lavaca-Guadalupe Coastal Basin, which has no known water quality problems. All water quality standards and uses are supported, although phosphorus and chlorophyll-a levels are occasionally elevated. At certain times during the year, the canal is very biologically productive, but other parameters do not indicate water quality instability. According to the TCEQ, water quality in the Mission and Aransas River tidal segments, located in the San Antonio-Nueces Coastal Basin, may experience elevated bacteria levels, but the rivers otherwise have good water quality.

1.7.3 Major Springs

According to selected references,17,18 there are six major springs located within the planning area (Comal, San Marcos, Hueco, Leona, San Antonio, and San Pedro Springs).

• **Comal Springs:** Comal Springs is located in Landa Park, New Braunfels in Comal County. Comal Springs discharges water from the Edwards and associated limestones of the Edwards Aquifer and issues through the Comal Springs Fault. Senate Bill 3

¹⁷ TWDB, "Major and Historical Springs of Texas (Report #189)," March 1975.

¹⁸ Brune, Gunnar, "Springs of Texas," Volume I, Branch-Smith, Inc., Fort Worth, Texas, 1981.

limits the quantity of water that can be withdrawn from the Edwards Aquifer in each calendar year for the period beginning January 1, 2008 to no more than 572,000 acft. Senate Bill 3 specifies that the Edwards Aquifer Authority shall implement and enforce water management practices, procedures, and methods to ensure that not later than December 31, 2012, the continuous minimum spring flows of Comal and San Marcos Springs are maintained to protect endangered and threatened species to the extent required by federal law. Senate Bill 3 also specifies critical period management stages, triggers, and associated withdrawal reductions with the provision that, after January 1, 2013, the Authority may not require permitted withdrawals to be less than an annualized rate of 320,000 acft unless necessary for the protection of listed threatened or endangered species to the extent required by federal law. Long-term average discharge from Comal Springs is about 290 cfs.

- San Marcos Springs: San Marcos Springs is located 2 miles northeast of San Marcos, in Hays County. San Marcos Springs discharges water from the Edwards and associated limestones of the Edwards Aquifer and issues through the San Marcos Springs Fault. Senate Bill 3, as described in the Comal Springs text above, also applies to San Marcos Springs. Long-term average discharge from San Marcos Springs is about 176 cfs.
- **Hueco Springs:** Hueco Springs is located about 3 miles north of New Braunfels near the confluence of Elm Creek and the Guadalupe River in Comal County. There are two main springs issuing from a fault in the Edwards limestone at this location. Sources of water for these springs include the Edwards Aquifer and, possibly, underflow from the Guadalupe River. Long-term average discharge from Hueco Springs is about 40 cfs.
- **Leona Springs:** Leona Springs consists of three groups of springs located from 1 to 6 miles southeast of Uvalde, in Uvalde County. These springs discharge water from the Edwards Aquifer. Long-term average discharge from Leona Springs is about 25 cfs.
- San Antonio Springs: San Antonio Springs is located just above East Hildebrand Street in San Antonio, in Bexar County. San Antonio Springs discharge water from the Edwards Aquifer. Long-term average discharge from San Antonio Springs is about 20 cfs.
- San Pedro Springs: San Pedro Springs is located in San Pedro Park, San Antonio in Bexar County. San Pedro Springs discharges water from the Edwards Aquifer. Longterm average discharge from San Pedro Springs is about 5 cfs.

Since present levels of withdrawals from the Edwards Aquifer are greater than the withdrawal rates necessary to ensure continuous minimum discharges at Comal and San Marcos Springs, it may be necessary to either limit future withdrawals during drought or to increase recharge to the aquifer in sufficient quantities to protect endangered species and meet the future needs of those who depend upon it for their water supplies. Therefore, actions to limit withdrawals from the Edwards Aquifer and/or to supplement supplies from the aquifer, directly affect water supplies of the South Central Texas Region. To the extent that critical period

pumping restrictions are imposed to limit withdrawals to those specified by Senate Bill 3 in order to maintain flows at Comal and San Marcos Springs at levels sufficient to protect endangered and threatened species to the extent required by federal law, then those that now obtain water from the Edwards Aquifer will be required to obtain water from other sources to meet a part of their present needs and provide for growth.

1.8 Threats to Agricultural and Natural Resources

Pursuant to 31 TAC 357.7(a)(1)(L), the South Central Texas Regional Water Planning Group (SCTRWPG) identified the following threats to agriculture in the South Central Texas Regional Water Planning Area:

- A shortage of economically accessible fresh water of suitable quantity and quality for irrigation and for livestock drinking and sanitation purposes. For example, such a shortage could result from groundwater production at insufficiently sustainable rates and/or lack of control over groundwater production.
- Deterioration of water quality, such that the quantities available are not usable for irrigation or livestock drinking and sanitation. Increased salinity is an example of a water quality threat to agriculture.

The SCTRWPG identified the following threats to natural resources in the planning region:

- Reductions of quantity and/or quality of fresh water available to fish and wildlife.
- Changes to aquatic and riparian habitats associated with use of water from streams and aquifers.
- Temporary or permanent inundation of aquatic, riparian, and terrestrial habitats associated with surface water impoundment.

Technical evaluations of water management strategies (Section 4C, Volume II) and/or assessments of the cumulative effects of plan implementation (Section 7, Volume I) include quantitative and/or qualitative discussion of how identified threats to agriculture or natural resources are expected to be addressed or affected by a water management strategy and/or the plan. Following is a summary of specific quantitative and/or qualitative measures used to meet this requirement:

- Application of Groundwater Availability Models (GAMs) to illustrate projected changes in regional aquifer levels, spring discharges, and surface water/groundwater interactions during the planning period.
- Comparison of the Gross Business Effects (as provided by the TWDB) associated with failure to meet projected agricultural water needs with the costs of potential water management strategies available to the region.

- Applications of Surface Water Availability Models (WAMs) to quantify projected changes in streamflow and/or freshwater inflows to bays and estuaries. Graphical and tabular summaries of projected changes focus on time series data, monthly medians, and/or frequency of occurrence.
- Qualitative assessment of potential changes in groundwater or surface water quality based on available information.
- Acreage temporarily or permanently inundated by a planned reservoir and the frequency of such inundation.

1.9 Summary of Existing Plans

1.9.1 2007 State Water Plan¹⁹

In Section 26.051 of the Texas Water Code, the Executive Administrator of the TWDB is charged with producing a State Water Plan that addresses the broad public interest of the State. As currently specified in Sections 16.055 and 16.056, the Plan is to be periodically reviewed and updated and serve as a flexible guide to state policy for the development of its water resources. The TCEQ shall consider the State Water Plan in its water regulatory actions, although its actions are not bound by the Plan.

The 2007 Texas Water Plan provides a statewide perspective that places local and regional needs within the state context. Available individual and county-level studies were built into the overall findings, and in formulating water supply solutions, the Plan focused on economic viability while taking environmental sensitivity into consideration. Legislation, passed in the 75th Legislature, specifies a 5-year update period for the Plan that is based on regional planning studies, and provides that related financial assistance applications must be consistent with the regional and State plans for regulatory approval by State agencies.

The ultimate goal of the State Water Plan is to identify those policies and actions that may be needed to meet Texas' near- and long-term water needs, based on a reasonable projected use of water, affordable water supply availability, and the goal of conservation of the State's natural resources.

The 2007 State Water Plan includes water management strategies for the South Central Texas Region that could produce new supplies of as much as 732,779 acft in 2060. These strategies include (1) water conservation; (2) water reuse; (3) purchase/lease and transfer of

¹⁹ TWDB, State Water Plan: Water for Texas – 2007, Austin, Texas, 2007.

irrigation rights for municipal use; (4) aquifer storage and recovery; (5) increased use of Canyon Reservoir; (6) Lower Guadalupe River diversions (including 19,000 acft of off-channel storage); (7) Colorado River diversion; (8) brackish groundwater desalination; (9) desalination of seawater; (10) recharge of the Edwards aquifer; (11) enhanced use of the Carrizo Aquifer from Wilson, Gonzales, and Bastrop Counties; and (12) expansion of existing well fields.

1.9.2 2006 Regional Water Plan

The 2006 South Central Texas Regional Water Plan was adopted in January 2006. However, because the SCT Regional Water Plan was not adopted until after the statutory deadline, the SCT Regional Water Plan was not formally approved by the TWDB until 2009 pursuant to an amendment process established by House Bill 3776 of the 80th Texas Legislature. The SCT Regional Water Plan, outlines the water management strategies recommended by the planning group to meet the identified needs in the region. These water management strategies are listed in Appendix 2.1 of the 2007 State Water Plan.

1.9.3 Local Water Plans

During this planning process the South Central Texas Planning Group worked with each local entity to develop a water management plan to meet any identified needs. These plans are contained in Section 4 of this document.

1.9.4 Current Preparations for Drought

Under requirements of Senate Bill 1, 1997 Texas Legislature, drought contingency plans are required by the TCEQ for wholesale water suppliers, irrigation districts, and retail water suppliers. Senate Bill 1 also requires that TCEQ require surface water right holders that supply 1,000 acft or more of water for non-irrigation use and 10,000 acft/yr for irrigation use prepare a water conservation plan. In addition, conservation plans are commonly included in the management plans of groundwater conservation districts.

All drought contingency plans are required to set triggering criteria for initiation and termination of drought response stages and contain supply and demand management measures to be implemented during each stage. The retail and wholesale water suppliers' plans contain measures to limit or restrict the use of water for purposes such as the irrigation of landscaped

areas, to wash any motor vehicle, to fill or add water to any indoor or outdoor swimming pool, operation of any ornamental fountain, and the irrigation of golf course greens, tees, and fairways.

The groundwater conservation district management plans also contain conservation plans that set goals and objectives for conserving groundwater within the district. The districts use methods such as requiring wells in areas that are in danger of over producing groundwater and damaging the aquifers to restrict production by means of production permits, metering the amount of water produced, and by working with water utilities, agricultural, and industrial users within the district to promote the efficient use of water.

SAWS' Water Conservation and Reuse Plan aims to reduce the impacts of drought in the San Antonio area of the South Central Texas Region by water conservation programs for its customers. One of the goals of this plan is to increase the public's awareness of water-saving methods, in order to encourage customers to voluntarily conserve water, thus reducing Edwards Aquifer use. Reuse of treated municipal wastewater for landscape irrigation is also a part of the SAWS Conservation and Reuse Plan designed to reduce the use of potable groundwater for non-potable applications. A major goal of this part of the plan is to virtually eliminate the use of groundwater for irrigation and stream augmentation while preserving the integrity of the Edwards Aquifer.

Senate Bill 3 of the 80th Texas Legislature established Critical Period management provisions to address Edwards Aquifer usage during times of drought. These provisions apply to all holders of regular permits, the customers of all permittees who are retail water utilities, and owners of exempt wells. Under these provisions, during times of drought, water use restrictions are placed into effect, as appropriate and necessary.

The South Central Texas Regional Water Plan relies upon local water management agencies and water utilities drought contingency plans to identify factors specific to each source of water supply to be considered in determining whether to initiate a drought response, and actions to be taken as part of the response. Section 6.2 includes additional information and recommendations of the SCTRWPG regarding drought management.

1.10 Water Loss Audits

In accordance with 31 TAC 357.7(a)(1)(M), the South Central Texas 2011 Regional Water Plan includes water loss information below that was compiled by the TWDB from water loss audits performed by retail public utilities of the South Central Texas Regional Water

Planning Area pursuant to §358.6 of this title (relating to Water Loss Audits). In addition, in accordance with 31 TAC 357.7(a)(7)(A)(iv), the regional water planning group has considered strategies to address issues identified in the information compiled by the TWDB from the water loss audits performed by retail public utilities pursuant to §358.6 of this title (relating to Water Loss Audits).

The 2005 Water Loss Data presented herein were submitted to the Texas Water Development Board (TWDB) by water utilities in Texas as required by HB 3338 of the 78th Texas Legislature. HB 3338 required the TWDB to compile the information included in the water audits by type of retail public utility and by regional water planning area, and provide that information to the regional planning groups for use in identifying appropriate water management strategies in the development of their regional water plan. The water loss data presented below were acquired as part of the 2005 Water Loss Audit reporting requirements. The methodology used relies upon self-reporting data provided by public utilities, and due to this, the self-reported data discussed in the TWDB Water Loss Report indicates that some of the data may be suspect and in need of further refinement.²⁰

The TWDB provided the list of 119 public utilities of the South Central Texas Water Planning Region that filed a water loss audit report, including the reported information for each of the following 27 factors: (1) population served, (2) quantity of water delivered, (3) percent of master meter accuracy, (4) quantity of water billed and metered, (5) quantity of water billed and unmetered, (6) quantity of water unbilled and metered, (7) quantity of water unbilled and unmetered, (8) total quantity of authorized consumption, (9) percent of customer meter accuracy, (10) quantity of customer meter accuracy loss, (11) quantity of unauthorized consumption, (12) quantity of apparent loss, (13) quantity of main line leaks, (14) quantity of customer line leaks, (15) quantity of storage tank overflows, (16) quantity of real loss, (17) quantity of total loss, (18) quantity of total water loss plus authorized consumption, (19) number of service connections, (20) number of miles of main lines, (21) number of connections per mile of mail lines, (22) quantity of loss per mile of mail lines, (23) quantity of loss per connection, (24) production water cost, (25) dollar value of real loss, (26) retail water cost, and (27) dollar value of apparent loss. On December 15, 2009, staff of TWDB informed the Technical

²⁰ Alan Plummer Associates, Inc. and Water Prospecting and Resource Consulting, LLC, "An Analysis of Water Loss, as Reported by Water Suppliers in Texas," Texas Water Development Board, Austin, Texas, January, 2007.

Consultants that the TWDB "methodology used in calculating percentage water loss for water systems that receive TWDB loans is as follows: (Balancing Error + Total Water Loss) divided by (Corrected input volume) equals Percentage Water Loss." Data for each of the factors presented in the previous sentence (Balancing Error, Total Water Loss, and Corrected input volume) were included in the data provided by the TWDB, and are shown in Table 1-11. In Table 1-11, Corrected input volume is "Water Produced" and "Water Loss" is the sum of Balancing Error and Total Water Loss.

The cut off point the TWDB uses for inclusion of a water utility as a Water User Group (WUG) member for which population projections and water demand projections are made for regional planning is 280 acft of deliveries during the first year of the planning period, which in the present case is 2000. Of the 119 public utilities that responded to the water loss survey, 68 reported having delivered less than 280 acft in 2005, and 51 reported having delivered more than 280 acft in 2005.

The 119 water utilities that responded to the water loss survey, reported having served 1,982,769 people (about 87 percent of the 2005 estimated regional population) in 2005 (Table 1-11). Total reported quantity of water produced was 305,030 acre-feet, with a reported quantity of water loss of 28,856 acre-feet (Table 1-11). The quantity of water loss, as a percent of estimated total water originating at the source is calculated at about 9.5 percent (Table 1-11).

Of the 49 utilities that produced more than 280 acft/yr reporting with complete data, 4 (8 percent) reported water loss greater than 30 percent and a total of 11 (22 percent) reported losses greater than 20 percent (Table 1-11). For those utilities having water loss rates greater than about 10 percent, leak detection and repair, one of the leading water conservation measures, should be used to locate and repair leaks, thereby reducing the quantities of additional water needed. There were about 60 percent of the utilities (68 utilities) reporting water losses in the 2005 water loss survey that have water loss rates greater than 10 percent. For all utilities and especially those with water loss rates in excess of 10 percent, it is recommended that leak detection be pursued for the purpose of locating and evaluating leaks and providing information for determining if leak repair is a viable water conservation measure to pursue. However, as explained by the TWDB, the self-reported data from the water loss audits appears to be somewhat unreliable, therefore it may be unsuitable as a basis for recommendations concerning specific water management strategies for specific water user groups. It is hoped that future water loss audit

information will improve in accuracy and be more useful as a basis for specific water management strategy recommendations for water user groups.

Table 1-11.
Water Loss Audit – 2005
South Central Texas Water Planning Region

No.	Utility Name	Population Served	Water Produced (acft)	Water Loss (acft)	Percent Loss (%)	Per Capita Use (gpcd)
	Utilities with Do	eliveries Less Tha	an 280 acft			
1	BERRY OAKS WATER CO	72	16.04	5.28	32.96	199
2	BexarMet Water District-HEB/Bulverde	30	13.49	1.24	9.20	401
3	BIGFOOT WSC	375	39.44	0.01	0.02	94
4	BMWD BULVERDE HILLS	933	176.44	73.48	41.64	169
5	BMWD CANYON PARK ESTATES	303	61.70	9.89	16.03	182
6	BMWD CHAPARRAL	1,389	201.72	56.89	28.20	130
7	BMWD COUNTRY OAKS ESTATES	357	22.38	2.15	9.60	56
8	BMWD ELM VALLEY PARK	693	146.13	39.36	26.93	188
9	BMWD GERONIMO FOREST WATER SYSTEM	471	87.09	24.98	28.69	165
10	BMWD HIDDEN SPRINGS	81	22.91	0.22	0.98	253
11	BMWD LEON SPRINGS MOBILE VILLA	717	61.39	10.53	17.15	76
12	BMWD MEADOWOOD ACRES WSC	744	85.77	9.34	10.89	103
13	BMWD MOBILE CITY ESTATES	153	14.04	1.49	10.61	82
14	BMWD NORTH SAN ANTONIO HILLS	540	135.61	32.07	23.65	224
15	BMWD OAKLAND ESTATES	465	53.97	6.98	12.94	104
16	BMWD VILLAGE GREEN	825	201.40	16.90	8.39	218
17	BMWD WEST VIEW SUBDIVISION	417	33.62	4.43	13.16	72
18	BMWD WOODS OF SPRING BRANCH	90	10.35	3.16	30.53	103
19	CALHOUN COUNTY RURAL WATER SYSTEM	2,718	256.83	12.36	4.81	84
20	CEDAR OAK MESA WSC	500	34.40	1.65	4.80	61
21	CITY OF AUSTWELL	366	21.02	1.02	4.85	51
22	CITY OF CHARLOTTE	1,637	251.04	Not re	ported	137
23	CITY OF FALLS CITY	600	112.14	16.14	14.39	167
24	CITY OF LA VERNIA	1,250	263.29	30.77	11.69	188
25	CITY OF MARION	1,890	234.06	22.67	9.68	111
26	CITY OF POINT COMFORT	781	154.16	-1.54	-1.00	176
27	CITY OF RUNGE	4,563	206.34	53.32	25.84	40
28	CITY OF SMILEY	462	99.47	7.27	7.31	192
29	CITY OF WOODSBORO	1,685	273.73	73.03	26.68	145
30	CLEAR WATER ESTATES	459	140.26	0.80	0.57	273
31	CREEKWOOD RANCHES WSC	450	37.55	2.69	7.17	74
32	DEER CREEK WATER CO	720	48.17	5.48	11.37	60
33	DERBY WSC	51	7.58	2.36	31.16	133
34	ENCINAL WSC	819	185.62	15.77	8.50	202
35	FOWLERTON WSC	75	11.41	0.44	3.90	136
36	FRIO CIELO RANCH ASSO WATER SYSTEM	40	13.15	0.03	0.19	293
37	HANCOCK OAK HILLS SUBDIVISION	123	13.50	6.14	45.50	98
38	HIGHWAY 90 RANCH WSC	300	41.40	6.94	16.76	123
39	HIGHWAY 117 WSC	180	33.36	0.03	0.10	165

No.	1-11 (Continued) Utility Name	Population Served	Water Produced (acft)	Water Loss (acft)	Percent Loss (%)	Per Capita Use (gpcd)
40	KINGS POINT WSC	45	36.61	Not re	ported	NA
41	KNIPPA WSC	750	145.00	29.00	20.00	173
42	LAKE MCQUEENEY ESTATES	756	62.73	9.18	14.64	74
43	LAKE VALLEY RANCH	258	36.66	5.36	14.61	127
44	LSR WSC	44	4.60	-0.12	-2.54	93
45	MCMAHAN WSC	953	92.10	22.30	24.21	86
46	MEDINA COUNTY WCID 2	700	167.59	78.57	46.88	214
47	MOSS WOODS SUBDIVISION WATER SYSTEM	117	10.46	1.55	14.85	80
48	NEW ALSACE WATER CO INC	175	34.62	0.00	0.00	177
49	OAK COUNTRY PROPERTY OWNERS ASSN	60	8.52	0.00	-0.03	127
50	OAK FOREST WATER SYSTEM	306	35.29	2.76	7.82	103
51	PICOSA WSC	1,896	141.64	19.19	13.55	67
52	PLATTEN CREEK WATER SYSTEM	88	7.10	0.37	5.19	72
53	RADIANCE WSC	85	7.05	0.44	6.28	74
54	RANDOLPH PROPERTIES	690	55.47	Not re	ported	72
55	REAL WSC	13	16.35	14.58	89.17	NA
56	REBECCA CREEK MUD	1,170	134.82	26.25	19.47	103
57	REFUGIO COUNTY WCID 1	495	67.99	13.42	19.74	123
58	ROCKY CREEK SUBDIVISION WATER SYSTEM	83	7.63	0.13	1.66	82
59	SADDLERIDGE SUBDIVISION	189	27.10	0.05	0.19	128
60	SEVEN OAKS WATER SUPPLY	112	8.61	-0.05	-0.60	69
61	SPRING BRANCH INDIAN HILLS ESTATES	153	38.95	2.39	6.13	227
62	STAPLES FARMERS CORP	648	67.96	10.30	15.16	94
63	THE OAKS WSC	1,152	272.75	29.18	10.70	211
64	UTOPIA WSC	500	67.90	14.73	21.69	121
65	VICTORIA COUNTY WCID 2	750	65.77	15.03	22.86	78
66	VILLE DALSACE WSC	200	35.00	0.00	0.00	156
67	WEST MEDINA WSC	915	229.55	29.60	12.90	224
68	WESTHAVEN ASSOCIATION INC	280	69.97	37.13	53.07	223
	Subtotal Utilities with Less Than 280 acft/yr	41,907	5,777.77	917.10	15.87	123
	Utilities with De	liveries More Tha	an 280 acft			
69	ATASCOSA RURAL WSC	10,150	1,076.66	42.59	3.96	95
70	BEXAR COUNTY WCID 10 WINDCREST	5,105	1,132.10	50.55	4.46	198
71	BMWD CASTLE HILLS	7,998	1,953.95	167.87	8.59	218
72	BMWD HILL COUNTRY	35,061	9,711.48	718.25	7.40	247
73	BMWD NORTH WEST	36,000	4,394.54	450.26	10.25	109
74	BMWD NORTHEAST	41,226	6,401.64	152.47	2.38	139
75	BMWD TEXAS RESEARCH PARK	114	322.89	98.73	30.58	NA
76	BMWD SOUTHSIDE	101,766	15,543.02	2,816.86	18.12	136
77	BMWD TIMBERWOOD PARK	10,017	2,088.00	502.43	24.06	186
78	CIMARRON PARK WATER CO INC	2,043	330.51	24.97	7.56	144
79	CITY OF ALAMO HEIGHTS	7,319	2,118.36	502.55	23.72	258

Table 1-11 (Concluded)

No.	Utility Name	Population Served	Water Produced (acft)	Water Loss (acft)	Percent Loss (%)	Per Capita Use (gpcd)
80	CITY OF BOERNE	8,900	1,712.56	213.47	12.46	172
81	CITY OF CASTROVILLE	3,500	680.38	143.03	21.02	174
82	CITY OF CIBOLO	8,500	859.91	32.41	3.77	90
83	CITY OF CONVERSE	11,508	1,661.22	262.92	15.83	129
84	CITY OF CUERO	6,571	1,888.44	688.73	36.47	257
85	CITY OF DEVINE	4,140	793.04	12.45	1.57	171
86	CITY OF DILLEY	3,697	647.76	215.69	33.30	156
87	CITY OF GOLIAD	2,018	358.19	22.84	6.38	158
88	CITY OF GONZALES	7,802	2,290.08	803.39	35.08	262
89	CITY OF HONDO	8,481	1,904.69	436.05	22.89	200
90	CITY OF KARNES CITY	3,457	376.51	Not re	ported	97
91	CITY OF KIRBY	8,673	902.79	135.68	15.03	93
92	CITY OF KYLE	18,500	2,105.04	311.36	14.79	102
93	CITY OF LIVE OAK	7,000	1,255.16	149.02	11.87	160
94	CITY OF NIXON	2,036	817.60	24.23	2.96	358
95	CITY OF PEARSALL	7,257	1,656.79	137.75	8.31	204
96	CITY OF PORT LAVACA	12,000	1,498.25	230.72	15.40	111
97	CITY OF REFUGIO	2,941	604.55	133.38	22.06	184
98	CITY OF SAN MARCOS	49,307	6,228.61	883.64	14.19	113
99	CITY OF SCHERTZ	26,780	3,770.62	169.65	4.50	126
100	CITY OF SHAVANO PARK	1,754	781.16	102.48	13.12	398
101	CITY OF STOCKDALE	2,015	488.38	Not re	ported	216
102	CITY OF UNIVERSAL CITY	14,849	2,551.51	167.43	6.56	153
103	CITY OF UVALDE	16,233	3,770.85	653.36	17.33	207
104	CITY OF VICTORIA	61,703	10,493.86	1,348.15	12.85	152
105	CITY OF YOAKUM	5,731	1,013.04	110.33	10.89	158
106	EAST MEDINA COUNTY SUD UNIT 1	8,600	767.66	166.64	21.71	80
107	EL OSO WSC	4,242	717.85	190.24	26.50	151
108	FAIR OAKS RANCH UTILITIES	5,602	1,456.17	131.79	9.05	232
109	GONZALES COUNTY WSC	6,555	1,396.28	233.52	16.72	190
110	GREEN VALLEY SUD	27,741	2,860.25	464.79	16.25	92
111	KENDALL COUNTY WCID 1	2,301	306.14	46.08	15.05	119
112	MAXWELL WSC	5,145	383.90	41.73	10.87	67
113	NEW BRAUNFELS UTILITIES	50,805	10,544.86	1,710.35	16.22	185
114	OAK HILLS WSC	4,000	550.16	2.37	0.43	123
115	PORT OCONNOR MUD	3,759	295.50	27.30	9.24	70
116	S S WSC	11,475	1,585.98	41.39	2.61	123
117	SAN ANTONIO WATER SYSTEM	1,239,399	181,035.57	11,797.59	6.52	130
118	SUNKO WSC	3,486	514.48	89.80	17.45	132
119	WIMBERLEY WSC	5,600	652.82	79.78	12.22	104
	Subtotal Utilities with More than 280 acft/yr	1,940,862	299,252	27,939	9.34	138
	TOTAL	1,982,769	305,030	28,856	9.46	137

Section 2 Population and Water Demand Projections [31 TAC §357.7(a)(2)]

In order to develop water plans to meet future water needs, it is necessary to make projections of future population and water demands for the region. For purposes of the South Central Texas Region, the TWDB has made both population and water demand projections for cities, rural areas, and water using purposes for each of the counties of the region (20 counties and part of Hays County). These counties are located in six major river basins (Nueces, San Antonio, Guadalupe, Lower Colorado, Lavaca, and Rio Grande) and three coastal basins (Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces) (Table 2-1). In accordance with TWDB Rules, Section 357.5(d), which states, "In developing regional water plans, regional water planning groups shall use: (1) state population and water demand projections contained in the state water plan or adopted by the board after consultation with the Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, and the Texas Department of Agriculture in preparation for revision of the state water plan; or (2) in lieu of paragraph (1) of this subsection, population or water demand projection revisions that have been adopted by the board, after coordination with Texas Commission on Environmental Quality, the Texas Parks and Wildlife Department, and the Texas Department of Agriculture based on changed conditions and availability of new information. Within 45 days of receipt of a request from a regional water planning group for revision of population or water demand projections, the executive administrator shall consult with the requesting regional water planning group and respond to their request," the TWDB-approved projections are presented below.

2.1 Population Projections

The year 2000 Census of Population and Housing by the U.S. Bureau of the Census indicates that Texas has the second highest population among the states of the nation, with a population of more than 20.85 million. The population of the South Central Texas Region was 2.04 million in 2000 and is projected to be 4.3 million in 2060 (Table 2-2 and Figure 2-1). Approximately 68 percent of the population of the region is projected to reside in the San Antonio River Basin in the year 2060, with 24 percent in the Guadalupe River Basin (Table 2-2).

Table 2-1.
South Central Texas Region – List of Counties
Location by River and Coastal Basin and Edwards Aquifer Area

County	Edwards Aquifer Area	Nueces Basin	San Antonio Basin	Guadalupe Basin	Lower Colorado Basin	Colorado/ Lavaca Coastal Basin	Lavaca Basin	Lavaca/ Guadalupe Coastal Basin	San Antonio/ Nueces Coastal Basin	Rio Grande
Atascosa	Х	Х	Х							
Bexar	Х	Х	Х							
Caldwell	Х			Х	Х					
Calhoun				Х		Х		Х	Х	
Comal	Х		Х	Х						
DeWitt			Х	Х			Х	Х		
Dimmit		Х								Х
Frio		Х								
Goliad			Х	Х					Х	
Gonzales				Х			Х			
Guadalupe	Х		Х	Х						
Hays (Part)	Х			Х						
Karnes		Х	Х	Х					Х	
Kendall			Х	Х	Х					
LaSalle		Х								
Medina	Х	Х	Х							
Refugio			Х						Х	
Uvalde	Х	Х								
Victoria			Х	Х			Х	Х		
Wilson		Х	Х	Х						
Zavala		Х								

^{*} An X in the column indicates that all or part of the county is located in the River or Coastal Basin named in the column heading.

Table 2-2.
Population Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Cen	sus			Projec	ctions		
	1990	2000	2010	2020	2030	2040	2050	2060
Counties								
Atascosa	30,533	38,628	45,504	52,945	59,598	64,844	69,320	72,578
Bexar	1,185,394	1,392,931	1,631,935	1,857,745	2,059,112	2,222,887	2,369,950	2,500,731
Caldwell	26,392	32,194	45,958	59,722	71,459	83,250	95,103	106,575
Calhoun	19,053	20,647	23,556	26,610	29,964	33,046	34,642	36,049
Comal	51,832	78,021	108,219	146,868	190,873	233,964	278,626	326,655
DeWitt	18,840	20,013	20,460	20,964	21,251	21,341	21,021	20,648
Dimmit	10,433	10,248	10,996	11,733	12,187	12,234	11,966	11,378
Frio	13,472	16,252	18,160	20,034	21,628	22,952	23,913	24,412
Goliad	5,980	6,928	8,087	9,508	10,648	11,395	11,964	12,324
Gonzales	17,205	18,628	19,872	21,227	22,260	23,003	23,219	23,151
Guadalupe	64,873	89,023	114,878	146,511	180,725	214,912	252,857	293,736
Hays (Part)	51,478	72,499	120,199	172,674	213,908	255,183	304,337	342,746
Karnes	12,455	15,446	17,001	18,830	20,759	22,305	23,256	23,774
Kendall	14,589	23,743	35,720	50,283	65,752	78,690	89,312	99,698
LaSalle	5,254	5,866	6,599	7,278	7,930	8,578	9,048	9,407
Medina	27,312	39,304	46,675	54,815	62,416	68,987	75,370	81,104
Refugio	7,976	7,828	8,217	8,505	8,609	8,799	8,915	8,877
Uvalde	23,340	25,926	28,616	31,443	33,802	35,650	36,876	37,810
Victoria	74,361	84,088	93,073	102,487	110,221	116,368	121,416	125,865
Wilson	22,650	32,408	44,078	58,621	74,641	90,187	106,373	123,135
Zavala	12,162	11,600	12,796	14,130	15,227	16,086	16,774	17,133
Total	1,695,584	2,042,221	2,460,599	2,892,933	3,292,970	3,644,661	3,984,258	4,297,786
River and Coastal Ba	sins Summa	aries						
Rio Grande	48	21	23	24	25	25	25	23
Nueces	120,265	143,260	163,549	185,226	204,433	219,978	232,969	242,742
San Antonio	1,261,182	1,503,219	1,783,089	2,059,208	2,315,084	2,530,431	2,729,795	2,914,776
Guadalupe	261,039	330,349	440,279	566,171	683,208	796,948	919,202	1,033,628
Lower Colorado	856	2,960	4,439	6,040	7,482	8,903	10,307	11,666
Lavaca	3,523	3,511	3,582	3,665	3,712	3,724	3,673	3,615
Colorado-Lavaca	1,596	1,515	1,722	2,141	3,124	4,182	4,142	4,118
Lavaca-Guadalupe	38,465	48,968	55,015	61,145	66,386	70,690	74,198	77,277
San Antonio-Nueces	8,610	8,418	8,901	9,313	9,516	9,780	9,947	9,941
Total	1,695,584	2,042,221	2,460,599	2,892,933	3,292,970	3,644,661	3,984,258	4,297,786
Source: Texas Water Dev	elopment Boa	ırd (TWDB), C	Consensus Pr	ojections ado	oted by the TV	VDB, Septem	ber 17, 2003.	



Figure 2-1. Summary of South Central Texas Region's Projected Population

The TWDB's population projections for 165 municipal water user groups (individual cities and water supply districts and/or authorities) and 48 rural areas of each county and part of county of each river basin area of the South Central Texas Region are shown in Table 2-3.

As the next U.S. Census will be performed in 2010 and the results will not be available until 2011 or later, the TWDB has chosen not to perform a comprehensive update of the population projections used in the 2006 regional water plans for the 2011 regional water plans. The TWDB did, however, provide an opportunity for regions to seek revision and approval of updated population projections which could be supported by available estimates of population from the Texas State Data Center and in accordance with specified criteria. Review of 2007 population estimates from the Texas State Data Center provides the following information regarding the South Central Texas Regional Water Planning Area (Region L):

- 1. Overall population for Region L in 2007 was only 0.15 percent more than those in the current TWDB projections.
- 2. 2007 population in 17 of 21 counties within Region L were less than those in the current TWDB projections.

Table 2-3.
Population Projections
South Central Texas Region
River Basins, Counties, and Cities

	Cen	sus			Proje	ctions		
Basin/County/City/Rural	1990*	2000	2010	2020	2030	2040	2050	2060
Rio Grande Basin (part)								
Dimmit (part) – Rio Grande								
County-Other (Rural)	<u>48</u>	<u>21</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>25</u>	<u>25</u>	<u>23</u>
Total	48	21	23	24	25	25	25	23
Rio Grande Basin Total	48	21	23	24	25	25	25	23
Nueces Basin (part)								
Atascosa (part) - Nueces								
Charlotte	1,475	1,637	1,764	1,895	2,010	2,101	2,178	2,234
Jourdanton	3,220	3,732	4,134	4,549	4,914	5,201	5,443	5,620
Lytle	1,911	2,046	2,152	2,261	2,357	2,433	2,497	2,544
Pleasanton	7,678	8,266	8,728	9,205	9,624	9,953	10,231	10,434
Poteet	3,206	3,305	3,383	3,463	3,534	3,589	3,636	3,670
Benton City WSC		4,407	7,046	9,770	12,163	14,042	15,629	16,788
McCoy WSC		6,719	9,798	12,976	15,768	17,961	19,812	21,164
Bexar Met Water District (BMWD)		2,944	3,954	4,996	5,912	6,631	7,238	7,682
County-Other (Rural)	<u>12,367</u>	4,983	3,782	2,871	2,179	1,654	1,256	953
Total	29,857	38,039	44,741	51,986	58,461	63,565	67,920	71,089
Bexar (part) - Nueces								
Lytle	4	14	25	36	46	54	61	67
Atascosa Rural WSC		268	350	427	496	552	602	647
Bexar Met Water District (BMWD)		1,203	1,260	1,314	1,362	1,401	1,436	1,467
County-Other (Rural)	<u>2,747</u>	<u>1,951</u>	2,037	<u>2,118</u>	<u>2,191</u>	2,249	<u>2,302</u>	<u>2,349</u>
Total	2,751	3,436	3,672	3,895	4,095	4,256	4,401	4,530
Dimmit (part) - Nueces								
Asherton	1,608	1,342	1,440	1,536	1,596	1,602	1,567	1,490
Big Wells	834	704	755	806	837	840	822	782
Carrizo Springs	5,745	5,655	6,068	6,474	6,725	6,751	6,603	6,279
County-Other (Rural)	2,198	2,526	2,710	2,893	3,004	3,016	2,949	2,804
Total	10,385	10,227	10,973	11,709	12,162	12,209	11,941	11,355
Frio (part) - Nueces								
Dilley	2,632	3,674	4,389	5,091	5,688	6,184	6,544	6,731
Pearsall	6,924	7,157	7,317	7,474	7,608	7,719	7,800	7,842
Benton City WSC		17	29	40	50	58	64	67
County-Other (Rural)	3,916	5,404	6,425	7,429	8,282	8,991	9,505	9,772
Total	13,472	16,252	18,160	20,034	21,628	22,952	23,913	24,412
Karnes (part) - Nueces								
El Oso WSC		63	68	74	80	85	88	90
County-Other (Rural)	<u>314</u>	<u>107</u>	<u>134</u>	<u>166</u>	<u>200</u>	<u>227</u>	<u>244</u>	<u>253</u>
Total	314	170	202	240	280	312	332	343

Table 2-3 (Continued)	Cen	sus			Proje	ctions		
Basin/County/City/Rural	1990*	2000	2010	2020	2030	2040	2050	2060
LaSalle (part) - Nueces								
Cotulla	3,694	3,614	4,052	4,408	4,598	4,790	4,989	5,188
Encinal	608	629	639	648	656	664	670	675
County-Other (Rural)	952	<u>1,623</u>	<u>1,908</u>	2,222	<u>2,676</u>	<u>3,124</u>	<u>3,389</u>	3,544
Total	5,254	5,866	6,599	7,278	7,930	8,578	9,048	9,407
Medina (part) - Nueces								
Devine	3,928	4,140	4,270	4,414	4,548	4,664	4,777	4,878
Hondo	6,018	7,897	9,050	10,324	11,513	12,541	13,540	14,437
Lytle	340	323	323	323	323	323	323	323
Natalia	1,216	1,663	1,937	2,240	2,523	2,768	3,006	3,219
East Medina SUD		5,703	6,700	7,801	8,829	9,718	10,582	11,358
Benton City WSC		3,193	4,103	5,108	6,047	6,858	7,646	8,354
County-Other (Rural)	10,379	<u>8,264</u>	10,549	13,072	<u>15,428</u>	<u>17,465</u>	19,444	21,221
Total	21,881	31,183	36,932	43,282	49,211	54,337	59,318	63,790
Uvalde (part) - Nueces								
Sabinal	1,584	1,586	1,588	1,590	1,592	1,593	1,594	1,595
Uvalde	14,729	14,929	15,137	15,356	15,538	15,681	15,776	15,848
County-Other (Rural)	7,027	9,411	<u>11,891</u>	14,497	16,672	<u>18,376</u>	<u>19,506</u>	20,367
Total	23,340	25,926	28,616	31,443	33,802	35,650	36,876	37,810
Wilson (part) - Nueces								
McCoy WSC		222	377	571	784	991	1,207	1,430
County-Other (Rural)	<u>849</u>	<u>339</u>	<u>481</u>	658	<u>853</u>	<u>1,042</u>	<u>1,239</u>	1,443
Total	849	561	858	1,229	1,637	2,033	2,446	2,873
Zavala (part) - Nueces								
Crystal City	8,263	7,190	7,514	7,713	8,046	8,118	8,192	8,266
County-Other (Rural)	3,899	4,410	5,282	6,417	7,181	7,968	8,582	8,867
Total	12,162	11,600	12,796	14,130	15,227	16,086	16,774	17,133
Nueces Basin Total	120,265	143,260	163,549	185,226	204,433	219,978	232,969	242,742
San Antonio Basin (part)								
Atascosa (part) - San Antonio								
Benton City WSC		383	612	849	1,057	1,220	1,358	1,459
County-Other (Rural)	<u>676</u>	206	151	110	1,037 80	59	42	30
Total	676	589	763	959	1,137	1,279	1,400	1,489
rotai	0.0	000	700	000	1,101	1,270	1,100	1,100
Bexar (part) - San Antonio								
Alamo Heights	6,502	7,319	7,671	8,039	8,148	8,239	8,331	8,423
Balcones Heights (SAWS)	3,022	3,016	3,327	3,670	3,909	4,154	4,414	4,674
China Grove (SAWS)	1,031	1,247	1,671	2,072	2,430	2,721	2,982	3,214
Converse	8,887	11,508	15,339	19,445	23,204	26,132	28,697	30,892
Elmendorf (SAWS)	645	664	773	876	968	1,042	1,109	1,168
Fairoaks Ranch	1,640	3,799	4,699	4,739	4,779	4,819	4,833	4,857
Helotes (SAWS)	1,535	4,285	7,980	11,812	14,808	17,244	19,432	21,378

Table 2-3 (Continued)	Cer	ısus			Proje	ctions		
Basin/County/City/Rural	1990*	2000	2010	2020	2030	2040	2050	2060
Bexar (part) Continued								
Kirby	8,326	8,673	9,066	9,437	9,768	10,037	10,279	10,494
Leon Valley	9,581	5,876	•	5,933	6,014	6,095		
Leon Valley (SAWS)	,	3,363	•	3,396	3,442	3,488		1
Live Oak	10,023	9,156	•	10,126	10,611	11,096		12,066
Olmos Park (SAWS)	2,161	2,343	•	2,744	2,918	3,059	· ·	
San Antonio (SAWS)	•	1.013.066	1,198,691		1,530,464			
San Antonio (BMWD)	,	130,080		176,434	196,515	212,848	227,513	240,556
San Antonio (OTHERS)		1,500	1,775	2,035	2,266	2,454		
Schertz	3,579	1,045		2,434	3,036	3,525		
Selma	.,	722	4,453	5,658	6,826	6,703		
Shavano Park	1,708	1,754	•	1,855	1,899	1,935	· ·	1,995
Somerset (SAWS)	1,144	1,550	•	2,443	2,830	3,145		3,679
St. Hedwig	1,443	1,875	•	2,826	3,238	3,573		
Terrell Hills	4,592	5,019	•	5,959	6,366	6,697		1
Universal City	13,057	14,849	· '	19,722	21,970	21,970	· ·	1
Castle Hills (BMWD)	4,198	4,202		4,211	4,215	4,218		4,223
Bexar Met Water District	108,988	65,327			73,932	76,049	· ·	
Atascosa Rural WSC	.00,000	6,430		10,248	11,902	13,247	14,455	1
Hill Country Village (BMWD)		1,028		1,028	1,028	1,028		1
Hollywood Park (BMWD)	3,879	2,983		3,232	3,340	3,428	· ·	3,577
Green Valley SUD	0,070	2,598	5,113		9,609	11,333		14,257
Windcrest	5,331	5,105	•		5,003	5,256		
Water Service Inc. (Apex)	0,001	3,009		5,144	6,069	6,821	7,496	•
East Central SUD		7,132	•	12,420	-	16,017	-	· ·
Lackland AFB (CDP)	9,352	7,132		7,123	7,123	7,123		1
County-Other (SAWS)	9,552	42,331			47,907	49,279	· ·	1
County-Other (Rural)	36,086	9,518	•	4,495	3,865	6,194		
			1,628,263					-
Comal (part) - San Antonio								
" ,	E1	246	240	250	252	254	256	258
Fairoaks Ranch Schertz	51 129	246 42	248 71	250 108	252 150	254 191	256 233	
Bulverde City	129	3,730						
•				13,536	19,803	25,940		39,142
Bexar Met Water District (BMWD)		1,620	•	5,593	8,132	10,619	13,196	15,968
Garden ridge		760		1,218	1,511	1,798	· ·	
Selma		16		380	571	658		814
Water Service Inc. (Apex)	0.404	1,632		2,965	3,817	4,651	5,516	
County-Other (Rural) Total	6,134 6,314	<u>838</u> 8,884	940 16,056	<u>1,185</u> 25,235	1,450 35,686	<u>1,808</u> 45,919	2,191 56,526	2,611 67,934
DeWitt (part) - San Antonio								
County-Other (Rural)	<u>890</u>	<u>571</u>	<u>584</u>	<u>598</u>	<u>606</u>	609 600	·	
Total	890	571	584	598	606	609	600	589
Goliad (part) - San Antonio								
Goliad	1,946	1,975	2,306	2,710	3,035	3,248	3,411	3,514
County-Other (Rural)	2,119	2,054	•	2,054	2,054	2,054		2,05 ²
(<u>-,</u>	4,029			5,089	5,302		_,

•	Cer	isus			Proj	ections		
Basin/County/City/Rural	1990	2000	2010	2020	2030	2040	2050	2060
Guadalupe (part) - San Antonio								
Cibolo	1,757	3,035	4,497	6,284	8,216	10,146	12,287	14,593
Marion	1,027	1,099	1,213	1,353	1,504	1,655	1,822	2,002
New Berlin			571	698	854	1,045	1,278	1,563
Schertz	14,891	17,333	24,565	33,403	42,957	52,502	63,092	74,497
Selma		50	173	253	334	389	453	523
Green Valley SUD		5,739	7,615	10,004	12,584	15,154	18,003	21,065
Springs Hill WSC		1,676	1,942	2,268	2,620	2,972	3,362	3,782
East Central SUD		747	509	701	896	1,053	1,187	1,292
Water Service Inc. (Apex)		170	217	274	336	398	466	540
Santa Clara		722	1,439	2,316	3,264	4,211	5,261	6,392
County-Other (Rural)	1,385	462	403	322	231	149	80	18
Total	19,060	31,033	43,144	57,876	73,796	89,674	107,291	126,267
Karnes (part) - San Antonio								
Karnes city	2,916	3,457	3,710	4,008	4,322	4,573	4,728	4,812
Kenedy	3,763	3,487	3,585	3,965	4,266	4,522	4,793	4,950
Runge	1,139	1,080	1,099	1,209	1,294	1,367	1,445	1,503
Falls City		591	644	706	772	825	857	875
El Oso WSC		2,419	2,609	2,833	3,069	3,258	3,374	3,437
Sunko WSC		287	316	350	385	413	430	440
County-Other (Rural)	3,977	3,806	4,656	5,303	6,117	6,749	6,991	7,098
Total	11,795	15,127	16,619	18,374	20,225	21,707	22,618	23,115
Kendall (part) - San Antonio								
Boerne	4,274	6,178	8,600	12,208	16,065	19,286	21,925	24,506
Fairoaks Ranch	169	650	1,234	1,282	1,308	1,335	1,362	1,389
Water Service Inc. (Apex)		255	313	383	457	519	570	620
County-Other (Rural)	4,260	6,543	10,043	14,299	18,820	22,601	<u>25,705</u>	28,740
Total	8,703	13,626	20,190	28,172	36,650	43,741	49,562	55,255
Medina (part) - San Antonio								
Castroville	2,159	2,664	2,974	3,316	3,636	3,912	4,180	4,421
La Coste	1,021	1,255	1,399	1,558	1,706	1,834	1,958	2,070
Yancey WSC		3,550	4,531	5,615	6,627	7,502	8,352	9,115
East Medina SUD		327	384	447	506	557	607	651
Bexar Met Water District (BMWD)		115	186	264	337	400	461	516
County-Other (Rural)	<u>2,251</u>	210	269	333	393	445	494	541
Total	5,431	8,121	9,743	11,533	13,205	14,650	16,052	17,314
Refugio (part) - San Antonio								
County-Other (Rural)	<u>86</u>	<u>72</u>	<u>65</u>	<u>60</u>	<u>59</u>	<u>55</u>	<u>53</u>	<u>54</u>
Total	86	72	65	60	59	55	53	54
Victoria (part) - San Antonio								
County-Other (Rural)	<u>273</u>	<u>48</u>	<u>56</u>	64	<u>71</u>	<u>76</u>	<u>80</u>	84
Total	273	48	<u>56</u>	64	71	76	80	<u>84</u>

LaVernia			ctions	Proje			sus	Cen		Table 2-3 (Continued)
Floresville	2060	2050			2020	2010	2000	1990		Basin/County/City/Rural
LaVernia										Wilson (part) - San Antonio
Poth 1,642 1,850 2,099 2,409 2,750 3,081 3,426 Stockdale 1,268 1,398 1,553 1,747 1,960 2,167 2,304 3,588 S WSC 8,701 13,417 19,294 2,5767 32,049 38,589 S WSC 2,905 3,646 4,570 5,588 6,576 7,604 East Central SUD 654 801 982 1,177 1,371 1,588 6,576 7,604 2,004 3,000 4,59 520 6,000 6,	02 15,846	14,402	12,999	11,653	10,261	9,000	5,868	5,247		Floresville
Stockdale	43 3,645	3,143				1,280	931	757		LaVernia
Stockdale	26 3,783	3,426	3,081	2,750	2,409	2,099	1,850	1,642		Poth
SS WSC			•	•	•	•		•		Stockdale
Caldwell (part) - Guadalupe Basin (part) Luling				1	•			,		
Sunko WSC East Central SUD East Central SUD East Central SUD East Central SUD El Oso WSC 240 284 339 400 459 55.86 1.500 1										
East Central SUD EI Oso WSC 240 284 339 400 459 520 52	*	· -	*	1	•					
El Oso WSC County-Other (Rural)			•	•	-					
County-Other (Rural)			•	•						
Total Z1,246 31,624 42,902 56,958 72,440 87,464 103,106								12.332		
San Antonio Basin Total 1,261,182 1,503,219 1,783,089 2,059,208 2,315,084 2,530,431 2,729,795									Total	County Caron (Haran)
Caldwell (part) - Guadalupe Basin (part) Caldwell (part) - Guadalupe Basin	110,000	100,100	07,101	72,110	00,000	12,002	01,021	21,210	rotai	
Caldwell (part) - Guadalupe Basin Lockhart 9,205 11,615 16,328 21,083 25,111 29,154 33,216 4,661 5,080 6,309 7,301 7,998 8,700 9,407 Polonia WSC 3,304 5,074 6,988 8,684 10,386 12,094 Maxwell WSC 2,757 4,356 6,113 7,685 9,260 10,843 Martindale 1,028 953 1,150 1,291 1,378 1,465 1,553 Martindale WSC 826 1,307 1,468 1,566 1,666 1,765 AQUA WSC 1,260 1,782 2,313 2,764 3,217 3,672 Goforth WSC 1,013 1,770 2,636 3,429 4,226 5,024 County Line WSC 616 929 1,264 1,558 1,854 2,150 Gonzales County WSC 154 215 277 329 381 433 433 A34 A	95 2,914,776	2,729,795	2,530,431	2,315,084	2,059,208	1,783,089	1,503,219	1,261,182		San Antonio Basin Total
Caldwell (part) – Guadalupe Basin 9,205 11,615 16,328 21,083 25,111 29,154 33,216 Luling 4,661 5,080 6,309 7,301 7,998 8,700 9,407 Polonia WSC 3,304 5,074 6,988 8,684 10,386 12,094 Marwell WSC 2,757 4,356 6,113 7,685 9,260 10,843 Martindale 1,028 953 1,150 1,291 1,378 1,465 1,553 Martindale WSC 826 1,307 1,468 1,566 1,666 1,765 AQUA WSC 1,260 1,782 2,313 2,764 3,217 3,672 Goforth WSC 681 1,262 1,939 2,565 3,193 3,824 Creedmoor-Maha WSC 661 929 1,264 1,558 1,854 2,150 Gonzales County WSC 154 215 277 329 381 433 Niederwald 83 203 349 <td></td>										
Lockhart										Guadalupe Basin (part)
Luling										Caldwell (part) – Guadalupe Basin
Polonia WSC Maxwell WSC Maxwell WSC Maxwell WSC Martindale 1,028 953 1,150 1,291 1,378 1,465 1,553 Martindale WSC Maxwell WSC	16 37,148	33,216	29,154	25,111	21,083	16,328	11,615	9,205		Lockhart
Maxwell WSC Martindale 1,028 953 1,150 1,291 1,378 1,465 1,553 1,150 1,291 1,378 1,465 1,553 1,253 1,260 1,782 2,313 2,764 3,217 3,672 3,6	07 10,092	9,407	8,700	7,998	7,301	6,309	5,080	4,661		Luling
Martindale 1,028 953 1,150 1,291 1,378 1,465 1,553 Martindale WSC 826 1,307 1,468 1,566 1,666 1,765 AQUA WSC 1,260 1,782 2,313 2,764 3,217 3,672 Goforth WSC 1,013 1,770 2,636 3,429 4,226 5,024 County Line WSC 681 1,262 1,939 2,565 3,193 3,824 Creedmoor-Maha WSC 616 929 1,264 1,558 1,854 2,150 Gonzales County WSC 154 215 277 329 381 433 Niederwald 83 203 349 489 629 769 Mustang Ridge 37 54 74 90 107 124 County-Other (Rural) 10,804 1,069 1,109 1,054 947 849 760 Calhoun (part) - Guadalupe Basin 70tal 23 0 0 0	94 13,747	12,094	10,386	8,684	6,988	5,074	3,304			Polonia WSC
Martindale WSC RQUA WSC RQU	43 12,374	10,843	9,260	7,685	6,113	4,356	2,757			Maxwell WSC
AQUA WSC Goforth WSC Goforth WSC County Line WSC County Line WSC Creedmoor-Maha WSC Gonzales County WSC Niederwald Nustang Ridge County-Other (Rural) Total	53 1,638	1,553	1,465	1,378	1,291	1,150	953	1,028		Martindale
County Line WSC	65 1,861	1,765	1,666	1,566	1,468	1,307	826			Martindale WSC
Goforth WSC County Line WSC County Line WSC Gonzales County WSC Gonzales County WSC Gonzales County WSC Sonzales Count	72 4,112	3,672	3,217	2,764	2,313	1,782	1,260			AQUA WSC
County Line WSC 681 1,262 1,939 2,565 3,193 3,824 Creedmoor-Maha WSC 616 929 1,264 1,558 1,854 2,150 Gonzales County WSC 154 215 277 329 381 433 Niederwald 83 203 349 489 629 769 Mustang Ridge 37 54 74 90 107 124 County-Other (Rural) 10,804 1,069 1,109 1,054 947 849 764 Calhoun (part) – Guadalupe Basin 25,698 29,448 41,848 54,150 64,593 75,087 85,638 Calhoun (part) – Guadalupe Basin 23 0	24 5,797	5,024	4,226			1,770	1,013			Goforth WSC
Creedmoor-Maha WSC Gonzales County WSC 154 215 277 329 381 433 433 433 434	24 4,434	3,824	3,193	2,565	1,939	1,262				County Line WSC
Niederwald Mustang Ridge Total Niederwald Niede		2,150	1,854	1,558	1,264	929	616			•
Niederwald Mustang Ridge Total Niederwald Niede	-	433	•	•	•	215	154			Gonzales County WSC
County-Other (Rural) Total T	69 904	769	629	489	349	203	83			•
Calhoun (part) – Guadalupe Basin County-Other (Rural) Total 23 0 0 0 0 0 0 0 0 0 0 0 0 0										Mustang Ridge
Calhoun (part) – Guadalupe Basin 23 0					1.054			10.804		
County-Other (Rural) 23 0 2 2 2									Total	
County-Other (Rural) 23 0 2 2 2										Calhoun (nart) – Guadalune Basin
Comal (part) – Guadalupe Basin 1,450 1,122 1,419 1,799 2,232 2,656 3,095 New Braunfels 27,091 35,328 44,826 56,982 70,823 84,376 98,423 Canyon Lake WSC 9,741 19,509 32,010 46,244 60,182 74,628 Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002	0 0	0	0	0	0	0	0	23		. ,
Garden Ridge 1,450 1,122 1,419 1,799 2,232 2,656 3,095 New Braunfels 27,091 35,328 44,826 56,982 70,823 84,376 98,423 Canyon Lake WSC 9,741 19,509 32,010 46,244 60,182 74,628 Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002	0 0								Total	County Cutor (Italian)
Garden Ridge 1,450 1,122 1,419 1,799 2,232 2,656 3,095 New Braunfels 27,091 35,328 44,826 56,982 70,823 84,376 98,423 Canyon Lake WSC 9,741 19,509 32,010 46,244 60,182 74,628 Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002										Comal (nart) – Guadaluna Rasin
New Braunfels 27,091 35,328 44,826 56,982 70,823 84,376 98,423 Canyon Lake WSC 9,741 19,509 32,010 46,244 60,182 74,628 Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002	95 3,567	3 005	2 656	2 222	1 700	1 //10	1 122	1 450		
Canyon Lake WSC 9,741 19,509 32,010 46,244 60,182 74,628 Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002	•	· -	*			-				
Green Valley SUD 1,818 2,617 3,640 4,804 5,944 7,126 Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002								21,001		
Crystal Clear WSC 1,557 2,258 3,155 4,177 5,177 6,214 Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002										
Schertz 274 461 700 972 1,239 1,516 Bexar Met Water District (BMWD) 123 255 424 617 806 1,002		1	*	•	•	•				•
Bexar Met Water District (BMWD) 123 255 424 617 806 1,002		•	•	-						•
									אייייייייייייייייייייייייייייייייייייי	
Rulyordo City 24 67 449 466 260		· -							(מאואוכ)	
·								46.077		-
County-Other (Rural) 16,977 19,143 20,751 22,810 25,153 27,449 29,827 Total 45,518 69,137 92,163 121,633 155,187 188,045 222,100									T	County-Other (Rural)

Table 2-3 (Continued)

		Cer	isus			Proje	ctions		
Basin/County/City/Rural		1990	2000	2010	2020	2030	2040	2050	2060
DeWitt (part) – Guadalupe Basiı									
Cuero		6,700	6,571	6,718	6,883	6,977	7,007	6,902	6,779
Yorktown		2,207	2,271	2,322	2,379	2,411	2,422	2,385	2,343
Gonzales County WS0		,	359	367	376	381	383	377	370
County-Other (Rural)		5,736	6,859	7,012	7,185	7,283	7,314	7,204	7,077
, , , , , , , , , , , , , , , , , , , ,	Total	14,643	16,060	16,419	16,823	17,052	17,126	16,868	16,569
Goliad (part) – Guadalupe Basir	า								
County-Other (Rural)		<u>1,465</u>	<u>2,331</u>	<u>2,720</u>	<u>3,199</u>	<u>3,584</u>	<u>3,834</u>	<u>4,026</u>	4,145
	Total	1,465	2,331	2,720	3,199	3,584	3,834	4,026	4,145
Gonzales (part) – Guadalupe Ba	sin								
Gonzales		6,527	7,202	7,792	8,435	8,925	9,277	9,379	9,347
Nixon		1,995	2,186	2,353	2,535	2,674	2,774	2,803	2,794
Waelder		744	947	1,124	1,316	1,463	1,568	1,599	1,589
Gonzales County WS0			4,612	5,418	6,296	6,965	7,446	7,586	7,542
County-Other (Rural)		7,873	3,598	<u>3,113</u>	2,585	2,183	1,894	1,810	_1,836
	Total	17,139	18,545	19,800	21,167	22,210	22,959	23,177	23,108
Guadalupe (part) – Guadalupe E	Basin								
New Braunfels		243	1,166	2,083	3,204	4,416	5,626	6,969	8,41
Seguin		18,853	22,011	25,309	29,339	33,696	38,048	42,877	48,07
Green Valley SUD			14,042	18,868	24,766	31,142	37,512	44,579	52,19
Springs Hill WSC			9,097	10,543	12,311	14,222	16,131	18,249	20,530
Crystal Clear WSC			9,083	12,367	16,380	20,718	25,052	29,860	35,038
Martindale WSC			232	428	610	831	1,136	1,328	1,55
Santa Clara			177	353	568	800	1,032	1,290	1,56
County-Other (Rural)	Total	<u>26,717</u> 45,813	<u>2,182</u> 57,990	<u>1,783</u> 71,734	1,457 88,635	<u>1,104</u> 106,929	701 125,238	414 145,566	98 167,469
	Total	45,015	37,990	71,734	88,033	100,929	123,236	143,300	107,403
Hays (part) – Guadalupe Basin									
Kyle		2,225	5,314	21,457	31,126	33,613	35,203	39,197	41,850
San Marcos		28,743	34,733	48,814	69,906	90,990	114,477	139,466	158,099
Wimberley WSC		2,520	5,058	7,069	9,370	11,753	14,148	17,026	19,28
Woodcreek		978	1,274	1,730	2,252	2,792	3,335	3,987	4,500
Wood Creek Utilities Ir	nc.		1,950	3,733	5,774	7,888	10,012	12,564	14,57
Goforth WSC			6,006	9,334	13,144	17,090	21,055	25,819	29,56
Crystal Clear WSC			3,114	4,554	6,202	7,909	9,624	11,685	13,30
Plum Creek Water Co.			3,504	5,319	7,397	9,549	11,711	14,309	16,35
County Line WSC			1,512	5,870	12,570	14,684	15,258	16,655	19,01
Maxwell WSC			969	1,360	1,807	2,270	2,735	3,294	3,73
Niederwald			501	818	1,181	1,557	1,935	2,389	2,74
Mountain City	_		135	282	450	624	799	1,009	1,17
Creedmoor-Maha WS	C		70	94	121	149	177	211	23
County-Other (Rural)	Total	<u>17,012</u> 51,478	8,359 72,499	9,765 120,199	<u>11,374</u> 172,674	<u>13,040</u> 213,908	<u>14,714</u> 255,183	<u>16,726</u> 304,337	18,30 342,74
		51,770	. 2,400	120,100	2,017	2.0,000	200,100	334,337	J-2,14
Karnes (part) – Guadalupe Basi	n		05					2.1	_
El Oso WSC			25	27	29	31	33	34	3
County-Other (Rural)	_	<u>116</u>	<u>74</u>	<u>93</u>	<u>115</u>	<u>138</u>	<u>158</u>	<u>170</u>	<u>17</u>
	Total	116	99	120	144	169	191	204	21

	Cer	sus			Proje	ections		
Basin/County/City/Rural	1990	2000	2010	2020	2030	2040	2050	2060
Kendall (part) – Guadalupe Basin								
County-Other (Rural)	5,724	9,903	15,201	21,643	28,486	34,209	38,908	43,50
Total	5,724	9,903	15,201	21,643	28,486	34,209	38,908	43,50
. 2-22.	-,	,,,,,	10,20			- 1,=00	55,555	
Victoria (part) – Guadalupe Basin								
Victoria	43,747	40,726	44,157	47,752	50,705	53,052	54,980	56,67
County-Other (Rural)	9,120	13,388	15,600	17,917	19,821	21,334	22,577	23,67
Total	52,867	54,114	59,757	65,669	70,526	74,386	77,557	80,35
Wilson (part) – Guadalupe Basin								
County-Other (Rural)	<u>555</u>	<u>223</u>	<u>318</u>	<u>434</u>	<u>564</u>	<u>690</u>	<u>821</u>	<u>95</u>
Total	555	223	318	434	564	690	821	95
Guadalupe Basin Total	261,039	330,349	440,279	566,171	683,208	796,948	919,202	1,033,62
Lower Colorado Basin (part)								
Caldwell (part) – Lower Colorado								
Polonia WSC		1,433	2,201	3,031	3,767	4,505	5,246	5,96
Creedmoor-Maha WSC		854	1,288	1,751	2,159	2,569	2,980	3,37
Mustang Ridge		339	501	672	821	970	1,121	1,26
County-Other (Rural)	<u>694</u>	120	120	<u>118</u>	<u>119</u>	<u>119</u>	<u>118</u>	11
Total	694	2,746	4,110	5,572	6,866	8,163	9,465	10,72
Kendall (part) – Lower Colorado								
County-Other (Rural)	162	214	<u>329</u>	<u>468</u>	<u>616</u>	740	<u>842</u>	94
Total	<u>162</u> 162	<u>214</u> 214	329 329	468	616	740 740	842	94 94
Total	102	214	329	400	010	740	042	34
Lower Colorado Basin Total	856	2,960	4,439	6,040	7,482	8,903	10,307	11,66
Lavaca Basin (part)								
DeWitt (part) – Lavaca Basin								
Yoakum	2,154	2,137	2,185	2,239	2,269	2,279	2,245	2,20
County-Other (Rural)	1,129	1,245	1,272	1,304	1,324	1,327	<u>1,308</u>	1,28
Total	3,283	3,382	3,457	3,543	3,593	3,606	3,553	3,49
. • • • •	0,200	0,002	0, .0.	0,010	0,000	0,000	0,000	0, .0
Gonzales (part) – Lavaca Basin								
County-Other (Rural)	<u>66</u>	<u>83</u>	<u>72</u>	<u>60</u>	<u>50</u>	<u>44</u>	<u>42</u>	4
Total	66	83	72	60	50	44	42	4
Vietoria (nort) I aveca Basin								
Victoria (part) – Lavaca Basin	171	46	F2	60	60	74	70	0
County-Other (Rural)	<u>174</u>	<u>46</u>	<u>53</u>	<u>62</u>	<u>69</u>	<u>74</u>	<u>78</u>	8
Total	174	46	53	62	69	74	78	8
Lavaca Basin Total	3,523	3,511	3,582	3,665	3,712	3,724	3,673	3,61
Colorado-Lavaca Coastal Basin (part)								
Calhoun (part) – Colorado-Lavaca CB								
Point Comfort	956	781	1,276	1,870	2,959	4,081	4,081	4,08
County-Other (Rural)							-	-
	<u>640</u>	<u>734</u>	<u>446</u>	<u>271</u>	<u>165</u>	<u>101</u>	<u>61</u>	<u>3</u>
	4 500	4 545	4 700	0 4 4 4	2 4 2 4	4 4 0 0	4 4 4 4 0	1 1 1
Total	1,596	1,515	1,722	2,141	3,124	4,182	4,142	4,11

Table 2-3 (Concluded)	Cer	nsus	Projections					
Basin/County/City/Rural	1990						2050	2060
Lavaca-Guadalupe CB (part)								
Calhoun (part) –Lavaca Guadalupe CB								
Port Lavaca	10,886	12,035	13,163	14,325	15,513	16,717	17,925	19,030
Seadrift	1,277	1,352	1,408	1,459	1,499	1,525		1,545
Calhoun County WSC	.,	4,470	5,891	7,204	8,232	8,906		9,408
County-Other (Rural)	5,231	1,231	1,346	1,465	1,587	1,710	1	1,946
Total	17,394	19,088	21,808	24,453	26,831	28,858		31,929
DeWitt (part) –Lavaca Guadalupe CB								
County-Other (Rural)	<u>24</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u> 0	<u>0</u>	<u>0</u>	!
Total	24	0	0	0	0	0	0	(
Victoria (part) –Lavaca Guadalupe CB								
Victoria	11,329	19,877	21,552	23,306	24,747	25,893	26,834	27,66
County-Other (Rural)	9,718	10,003	11,655	13,386	14,808	15,939		17,68
Total	21,047	29,880	33,207	36,692	39,555	41,832		45,348
. 014	2.,0	20,000	00,20.	00,002	00,000	,552	10,701	.0,0 .0
Lavaca-Guadalupe CB Total	38,465	48,968	55,015	61,145	66,386	70,690	74,198	77,277
San Antonio-Nueces CB (part)								
Calhoun (part) - San Antonio-Nueces CB								
County-Other (Rural)	<u>40</u>	44	<u>26</u>	<u>16</u>	<u>9</u>	<u>6</u>	<u>3</u>	
Total	40	44	26	16	9	6	3	3
Goliad (part) - San Antonio-Nueces CB								
County-Other (Rural)	<u>450</u>	<u>568</u>	663	<u>780</u>	872	935	980	1,01°
Total	450	568	663	780	872	935	980	1,011
Karnas (nort) San Antonia Nucces CB								
Karnes (part) – San Antonio-Nueces CB El Oso WSC		10	14	15	16	17	18	4,
	220	13			69			
County-Other (Rural) Total	<u>230</u>	<u>37</u>	<u>46</u>	<u>57</u> 72	85	<u>78</u> 95		10
Total	230	50	60	12	65	95	102	10:
Refugio (part) – San Antonio-Nueces CB								
Refugio	3,158	2,941	3,511	3,933	4,085	4,364	4,534	4,478
Woodsboro	1,731	1,685	1,806	1,896	1,928	1,987	2,023	2,01
County-Other (Rural)	3,001	3,130	2,835	<u>2,616</u>	2,537	2,393	2,305	2,334
Total	7,890	7,756	8,152	8,445	8,550	8,744	8,862	8,823
San Antonio-Nueces CB Total	8,610	8,418	8,901	9,313	9,516	9,780	9,947	9,941
South Central Texas Region			•	-	•	•	3,984,258	
River and Coastal Basin Summary								
Rio Grande Basin (part)	48	21	23	24	25	25	25	23
Nueces Basin (part)	120,265	143,260	163,549	185,226	204,433	219,978		
San Antonio Basin (part)	1,261,182	1,503,219	1,783,089	2,059,208	2,315,084	2,530,431	2,729,795	2,914,776
Guadalupe Basin (part)	261,039	330,349	440,279	566,171	683,208	796,948	919,202	1,033,628
Lower Colorado Basin (part)	856	2,960	4,439	6,040	7,482	8,903	10,307	11,666
Lavaca Basin (part)	3,523	3,511	3,582	3,665	3,712	3,724	3,673	3,61
Colorado-Lavaca CB (part)	1,596	1,515	1,722	2,141	3,124	4,182	4,142	4,118
Lavaca-Guadalupe CB (part)	38,465	48,968	55,015	61,145	66,386	70,690	74,198	77,27
San Antonio-Nueces CB (part)	8,610	8,418	8,901	9,313	9,516	9,780	9,947	9,94
South Central Texas Region	1 695 584		2,460,599			3 644 661	3 984 258	

3. Region L counties with populations apparently growing faster than shown in current TWDB projections include Bexar, Comal, DeWitt, and Guadalupe.

Twenty-five (25) municipal water suppliers in Region L asked the SCTRWPG to consider revisions to their population projections for the 2011 regional water plan, with 23 of 25 of these requests being for increases. These requests, along with any documentation provided by the water suppliers, were informally reviewed by TWDB staff and HDR. This review indicated that 11 requests for increased population projections could readily be technically supported, while others would require substantial additional documentation to support. In order to accommodate many of the requests for increased population projections, the SCTRWPG would have had to reduce population projections for some entities or counties in order to preserve county or regional totals. During its meeting of February 5, 2009, the SCTRWPG decided not to pursue population projection revisions for the 2011 plan, but to provide due consideration of larger or additional water management strategies to meet the needs of water user groups apparently growing faster than the current TWDB population projections indicate.

2.2 Municipal Water Demand Projections

Municipal water is water used primarily for drinking, bathing, dish and clothes washing, cleaning, sanitation, air conditioning, and landscape watering for residential and commercial establishments and public offices and institutions. Residential and commercial uses are categorized together because they are similar types of uses and they are usually served treated water, of drinking quality, from a common system (e.g., a public water system). The projected quantity of water needed for municipal purposes depends upon the size of the population of the service area, climatic conditions, and water conservation measures. In addition to these factors, per capita water use (gallons per person per day of water use) is a key municipal water planning parameter. Population and per capita water use are used to make projections of municipal water demand for each of the 213 municipal water user groups of the South Central Texas Water Planning Region (Table 2-12).

Per capita water use is projected to decline over the planning period from 148 gallons per person per day (gpcd) in year 2000 to 132 gpcd in 2060 (Figure 2-2). However, due to projected population growth between 2000 and 2060, municipal water demand in the South Central Texas Region is projected to increase from 340,030 acft/yr in 2000 to 637,236 acft/yr in 2060

(Figure 2-2 and Table 2-4). The projected municipal water demand for individual counties in the region is shown in Table 2-4. Since Bexar County has the highest population, it also has the largest projected water demand, with almost 60 percent of the projected total water demand for the region by the year 2060 (Figure 2-2 and Table 2-4).

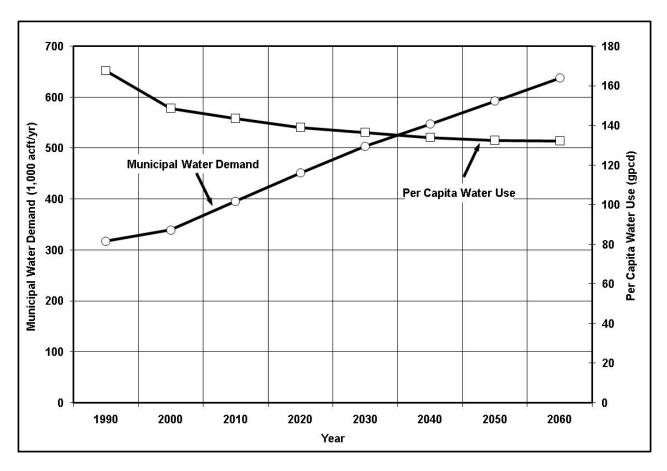


Figure 2-2. Projected Per Capita Water Use and Municipal Water Demand South Central Texas Region – 1990 to 2060

¹ One acre-foot (acft) is 325,851 gallons.

Table 2-4.

Municipal Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in	Projections														
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)									
Counties																	
Atascosa	5,670	6,229	6,941	7,696	8,335	8,809	9,288	9,666									
Bexar	225,626	229,693	262,105	290,071	316,423	336,033	355,246	374,536									
Caldwell	4,931	4,643	6,306	7,898	9,222	10,555	11,926	13,328									
Calhoun	3,916	2,705	2,948	3,222	3,556	3,870	4,007	4,171									
Comal	10,415	14,055	18,771	24,753	31,598	38,304	45,318	53,018									
DeWitt	3,556	3,065	3,064	3,071	3,039	2,982	2,889	2,839									
Dimmit	2,208	2,432	2,561	2,692	2,756	2,725	2,652	2,523									
Frio	3,045	3,114	3,402	3,668	3,890	4,061	4,202	4,287									
Goliad	916	908	1,024	1,181	1,286	1,347	1,401	1,442									
Gonzales	3,832	3,828	4,108	4,404	4,624	4,765	4,794	4,774									
Guadalupe	9,627	13,850	17,113	21,167	25,595	29,907	34,980	40,533									
Hays (Part)	9,805	10,926	17,278	24,409	29,964	35,414	42,121	47,474									
Karnes	2,187	2,726	2,927	3,190	3,465	3,679	3,822	3,909									
Kendall	2,130	3,262	4,649	6,370	8,142	9,610	10,888	12,139									
LaSalle	1,233	1,625	1,799	1,946	2,058	2,162	2,262	2,350									
Medina	5,254	6,616	7,576	8,660	9,656	10,509	11,395	12,234									
Refugio	1,227	1,191	1,249	1,287	1,282	1,299	1,312	1,302									
Uvalde	5,278	7,768	8,066	8,394	8,652	8,846	8,964	9,099									
Victoria	11,545	13,664	14,590	15,614	16,378	16,884	17,435	18,034									
Wilson	3,745	4,813	6,407	8,118	9,977	11,797	13,766	15,836									
Zavala	2,349	2,916	3,111	3,300	3,477	3,578	3,676	3,741									
Total	318,495	340,030	395,996	451,111	503,375	547,136	592,344	637,236									
River and Coastal Bas	sins Summa	aries															
Rio Grande	6	2	2	2	2	2	2	2									
Nueces	24,157	29,599	32,130	34,782	37,029	38,702	40,264	41,555									
San Antonio	239,648	247,068	285,030	319,576	352,949	379,144	405,292	431,850									
Guadalupe	45,608	53,808	68,487	85,556	101,455	116,696	133,722	150,261									
Lower Colorado	236	365	518	676	817	959	1,097	1,239									
Lavaca	590	513	511	512	505	495	479	471									
Colorado-Lavaca	217	251	289	362	523	691	675	672									
Lavaca-Guadalupe	6,696	7,163	7,702	8,269	8,716	9,044	9,394	9,774									
San Antonio-Nueces	1,337	1,261	1,327	1,376	1,379	1,403	1,419	1,412									
Total	318,495	340,030	395,996	451,111	503,375	547,136	592,344	637,236									
Source: Texas Water Dev	elopment Boa	ard (TWDB); (Consensus P	rojections ad	opted by the	TWDB, Septe	ember 17, 20	Source: Texas Water Development Board (TWDB); Consensus Projections adopted by the TWDB, September 17, 2003.									

2.3 Industrial Water Demand Projections

The use of water for the production of goods for domestic and foreign markets varies widely among manufacturing industries in Texas. Manufactured products in Texas range from food and clothing to refined chemical and petroleum products to computers and automobiles. Some processes require direct consumption of water as part of the products being manufactured, while others require very little water consumption, but large volumes of water for cooling or cleaning purposes. Five manufacturing industries account for approximately 90 percent of water used by all manufacturing industries in Texas. These five water-intensive industries are chemical products, petroleum refining, pulp and paper, food and kindred products, and primary metals. The chemical and petroleum refining industries account for nearly 60 percent of the State's annual industrial water use.

The South Central Texas Region's major water using manufacturing sectors are fabricated metal products, industrial machinery, and food processing. All industries in the region used 100,195 acft of water in 2000 and are projected to have a demand of 179,715 acft/yr in 2060 (Figure 2-3 and Table 2-5). As can be seen in Figure 2-3, manufacturing water demand is projected to increase throughout the planning period.

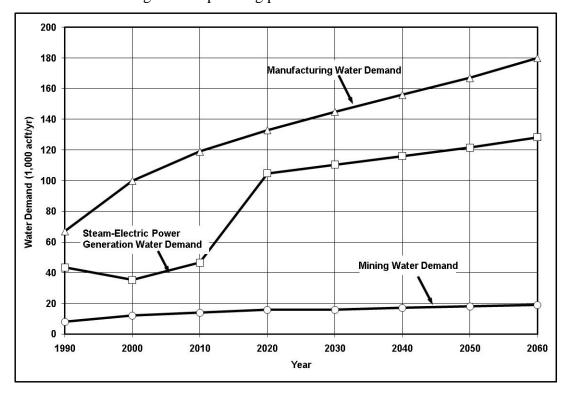


Figure 2-3. Projections of Industrial, Steam-Electric, and Mining Water Demands South Central Texas Region – 1990 to 2060

Table 2-5.
Industrial Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in	Projections								
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)			
Counties											
Atascosa	0	6	6	6	6	6	6	6			
Bexar	14,049	21,252	25,951	29,497	32,775	36,068	38,965	42,112			
Caldwell	0	11	15	18	21	24	27	29			
Calhoun	24,539	42,397	49,784	54,857	59,235	63,575	67,406	72,238			
Comal	3,248	6,283	7,729	8,563	9,314	10,045	10,672	11,553			
DeWitt	91	154	184	199	212	225	236	254			
Dimmit	3	0	0	0	0	0	0	0			
Frio	0	0	0	0	0	0	0	0			
Goliad	0	0	4	8	12	16	20	24			
Gonzales	865	2,051	2,400	2,628	2,822	3,011	3,177	3,402			
Guadalupe	1,661	2,097	2,638	2,957	3,249	3,530	3,771	4,097			
Hays (Part)	57	157	212	249	285	322	355	386			
Karnes	270	107	118	122	125	128	130	137			
Kendall	2	0	0	0	0	0	0	0			
LaSalle	0	0	0	0	0	0	0	0			
Medina	286	56	67	75	82	89	95	103			
Refugio	0	0	0	0	0	0	0	0			
Uvalde	557	378	432	455	473	490	505	538			
Victoria	20,032	24,323	28,726	32,095	35,035	37,962	40,578	43,520			
Wilson	50	1	1	1	1	1	1	1			
Zavala	1,306	922	1,043	1,106	1,154	1,200	1,238	1,315			
Total	67,016	100,195	119,310	132,836	144,801	156,692	167,182	179,715			
River and Coastal Bas	sins Summ	aries									
Rio Grande	0	0	0	0	0	0	0	0			
Nueces	2,152	1,362	1,548	1,642	1,715	1,785	1,844	1,962			
San Antonio	14,323	21,364	26,079	29,633	32,919	36,220	39,123	42,282			
Guadalupe	26,235	35,201	42,051	46,871	51,112	55,306	59,014	63,453			
Lower Colorado	0	0	0	0	0	0	0	0			
Lavaca	0	7	8	9	10	10	11	12			
Colorado-Lavaca	6,343	19,175	22,516	24,810	26,790	28,753	30,486	32,671			
Lavaca-Guadalupe	17,963	23,086	27,108	29,871	32,255	34,618	36,704	39,335			
San Antonio-Nueces	0	0	0	0	0	0	0	0			
Total	67,016	100,195	119,310	132,836	144,801	156,692	167,182	179,715			
Source: Texas Water Development Board (TWDB); Consensus Projections adopted by the TWDB, September 17, 2003.											

2.4 Steam-Electric Power Water Demand Projections

Steam-Electric Power production in Texas is concentrated in ten privately owned utilities, which account for 85 percent of production. Nine percent of power production is from facilities that are both publicly and privately held, and 6 percent is from publicly owned utilities. The industry has faced and will continue to face significant changes in the structure of power generation. These changes range from new generation technology to government regulations on the marketing of electricity. These changes may have an impact on how and where power will be generated and the quantities of water needed.

In the generation of steam-electric power, cooling water is circulated through the power generation plants, with approximately 2 percent being evaporated or consumed, and the remainder being either recirculated or returned to streams. Seven counties (Atascosa, Bexar, Frio, Goliad, Guadalupe, Hays, and Victoria) of the South Central Texas Region have electric power generation plants that use water in steam-electric power production. In 2000, 35,379 acft of water was consumed for electric power generation, and by the year 2060, it is estimated that 128,340 acft/yr of water will be consumed in the production of steam-electric power (Table 2-6 and Figure 2-3).

Considerable uncertainty exists in what the regulatory requirements may be in the future for the control of atmospheric carbon emissions from fossil fuel fired steam-electric power plants. Carbon sequestration and geologic storage may prove to be a mandated or economically attractive option for controlling such emissions. This technology, if employed, would consume considerably more water than existing power plants and remove a significant amount of it from the hydrologic cycle. Since carbon control technologies and legal mandates are not yet established, and because such plants in Region L currently hold excess water capacity, these potential and unquantifiable future effects are not considered in this 2011 Regional Water Plan and will be addressed in the 2016 Regional Water Plan.

2.5 Mining Water Demand Projections

Although the Texas mineral industry is foremost in the production of crude petroleum and natural gas in the United States, it also produces a wide variety of important non-fuel minerals. Texas is the only state to produce native asphalt and is the leading producer nationally of Frasch-mined sulfur. It is also one of the leading states in the production of clay, gypsum,

lime, salt, stone, and aggregate. In the South Central Texas Region, the principal uses of water for mining are for the extraction of stone, clay, and petroleum and for sand and gravel washing.

In the region, total mining water demand was 11,757 acft in 2000 and is expected to increase to 18,644 acft/yr in 2060, an increase of over 58 percent (Table 2-7 and Figure 2-3).

Table 2-6.
Steam-Electric Power Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in	Projections								
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)			
Counties											
Atascosa	6,036	5,814	7,000	4,807	6,101	5,997	7,336	7,672			
Bexar	24,263	17,399	20,395	25,761	30,139	32,973	36,120	39,614			
Caldwell	0	0	0	0	0	0	0	0			
Calhoun	62	684	0	0	0	0	0	0			
Comal	0	0	0	0	0	0	0	0			
DeWitt	0	0	0	0	0	0	0	0			
Dimmit	0	0	0	0	0	0	0	0			
Frio	38	129	289	268	201	192	76	91			
Goliad	12,165	9,027	9,027	16,643	16,643	16,643	16,643	16,643			
Gonzales	0	0	0	0	0	0	0	0			
Guadalupe	0	129	4,788	3,406	3,326	5,136	5,585	7,515			
Hays (Part)	0	0	1,009	718	949	1,949	2,663	3,627			
Karnes	0	0	0	0	0	0	0	0			
Kendall	0	0	0	0	0	0	0	0			
LaSalle	0	0	0	0	0	0	0	0			
Medina	0	0	0	0	0	0	0	0			
Refugio	0	0	0	0	0	0	0	0			
Uvalde	0	0	0	0	0	0	0	0			
Victoria	887	2,197	4,052	53,178	53,178	53,178	53,178	53,178			
Wilson	0	0	0	0	0	0	0	0			
Zavala	0	0	0	0	0	0	0	0			
Total	43,451	35,379	46,560	104,781	110,537	116,068	121,601	128,340			
River and Coastal Bas	ins Summa	ries									
Rio Grande	0	0	0	0	0	0	0	0			
Nueces	6,074	5,943	7,289	5,075	6,302	6,189	7,412	7,763			
San Antonio	24,263	17,399	20,395	25,761	30,139	32,973	36,120	39,614			
Guadalupe	13,052	11,353	18,876	73,945	74,096	76,906	78,069	80,963			
Lower Colorado	0	0	0	0	0	0	0	0			
Lavaca	0	0	0	0	0	0	0	0			
Colorado-Lavaca	62	684	0	0	0	0	0	0			
Lavaca-Guadalupe	0	0	0	0	0	0	0	0			
San Antonio-Nueces	<u>0</u>										
Total	43,451	35,379	46,560	104,781	110,537	116,068	121,601	128,340			

Source: Bureau of Economic Geology (BEG); Water Demand Projections for Power Generation in Texas (Scenario 2L), August 31, 2008 for all counties except Bexar, Goliad, and Victoria. Projections for those counties were developed with local input.

Table 2-7.
Mining Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in	Projections							
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)		
Counties										
Atascosa	664	1,125	1,298	1,370	1,405	1,439	1,472	1,509		
Bexar	1,591	2,902	3,582	3,934	4,150	4,363	4,576	4,766		
Caldwell	27	12	14	15	16	17	18	18		
Calhoun	5	28	32	35	36	37	38	38		
Comal	946	2,224	2,678	2,897	3,029	3,159	3,287	3,401		
DeWitt	129	58	64	67	68	68	70	71		
Dimmit	506	919	1,003	1,034	1,051	1,067	1,082	1,095		
Frio	313	139	109	104	102	100	98	96		
Goliad	0	13	398	282	205	140	76	46		
Gonzales	21	33	28	27	26	25	24	24		
Guadalupe	8	270	306	321	330	338	346	353		
Hays (Part)	0	129	142	151	157	161	162	163		
Karnes	187	119	106	103	102	101	101	100		
Kendall	0	6	6	6	6	6	6	6		
LaSalle	0	0	0	0	0	0	0	0		
Medina	120	118	130	135	137	139	141	143		
Refugio	77	6	7	8	8	8	8	8		
Uvalde	399	250	313	345	364	383	401	418		
Victoria	2,409	3,015	3,944	4,511	4,906	5,308	5,721	6,041		
Wilson	281	277	242	234	229	225	221	218		
Zavala	<u>116</u>	<u>114</u>	122	125	127	128	129	130		
Total	7,799	11,757	14,524	15,704	16,454	17,212	17,977	18,644		
River and Coastal Basin	ns Summari	es								
Rio Grande	0	0	0	0	0	0	0	0		
Nueces	2,212	2,715	3,044	3,193	3,273	3,350	3,424	3,498		
San Antonio	1,973	3,232	3,980	4,273	4,450	4,630	4,811	4,982		
Guadalupe	3,413	4,966	6,288	6,918	7,336	7,758	8,185	8,537		
Lower Colorado	0	13	15	15	16	17	17	17		
Lavaca	108	37	40	42	43	42	43	43		
Colorado-Lavaca	0	1	1	1	1	1	1	1		
Lavaca-Guadalupe	12	769	1,003	1,146	1,244	1,344	1,447	1,527		
San Antonio-Nueces	<u>81</u>	24	<u>153</u>	<u>116</u>	91	70	<u>49</u>	39		
Total	7,799	11,757	14,524	15,704	16,454	17,212	17,977	18,644		
Source: Texas Water Development Board (TWDB); Consensus Projections adopted by the TWDB, September 17, 2003.										

2.6 Irrigation Water Demand Projections

Irrigated agriculture accounted for almost 60 percent of the total water used in the state in the year 2000. Currently, in Texas, approximately 10 million acft of water is used to grow a variety of crops ranging from food and feed grains to fruits, vegetables, and cotton. Of this 10 million acft of water used for irrigation in Texas, groundwater is approximately 70 percent, and surface water is 30 percent. The TWDB irrigation water use data show annual use for irrigation in the South Central Texas Region in 2000 of 383,332 acft/yr, or 3.8 percent of the total irrigation water used in Texas in 2000 (Figure 2-4 and Table 2-8). Projected irrigation water demands in the region in 2060 are 301,679 acft/yr, or 21.3 percent less than in 2000 (Figure 2-4 and Table 2-8). The projected decline is based upon increased irrigation efficiency and reduced profitability of irrigated agriculture.

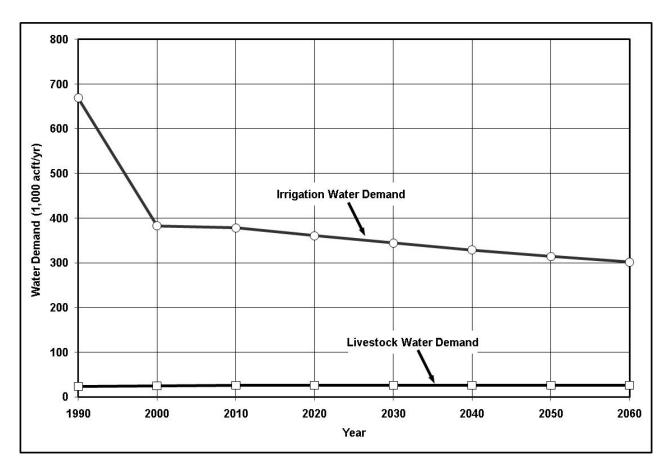


Figure 2-4. Projections of Irrigation and Livestock Water Demands South Central Texas Region – 1990 to 2060

Table 2-8.
Irrigation Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in			Proje	ctions		
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Counties								
Atascosa	47,208	35,053	40,885	39,509	38,185	36,911	35,686	34,502
Bexar	37,012	15,865	15,273	14,628	14,010	13,417	12,850	12,306
Caldwell	1,375	989	1,044	928	824	733	651	578
Calhoun	35,421	8,077	15,568	13,654	12,096	11,041	10,285	9,581
Comal	479	50	204	186	169	152	135	119
DeWitt	285	102	159	132	108	87	69	54
Dimmit	11,185	6,750	10,611	10,333	10,225	9,813	9,391	8,987
Frio	83,233	117,098	82,017	79,098	76,302	73,627	71,065	68,592
Goliad	685	359	309	268	232	200	173	149
Gonzales	3,540	2,438	1,304	1,124	969	835	720	621
Guadalupe	2,646	875	1,070	955	846	742	710	705
Hays (Part)	298	162	353	350	347	344	341	338
Karnes	2,034	1,916	1,382	1,250	1,131	1,023	925	836
Kendall	380	396	714	699	685	671	658	646
LaSalle	7,292	4,003	4,791	4,643	4,500	4,361	4,227	4,097
Medina	157,380	56,422	54,450	52,179	50,005	47,922	45,927	44,015
Refugio	0	850	69	69	69	69	69	69
Uvalde	140,669	58,061	55,791	53,609	51,513	49,498	47,563	45,703
Victoria	13,699	6,708	9,936	8,576	7,402	6,388	5,514	4,759
Wilson	13,697	20,883	11,296	10,034	8,921	7,940	7,077	6,330
Zavala	110,922	46,275	71,800	68,963	66,238	63,621	61,107	58,692
Total	669,440	383,332	379,026	361,187	344,777	329,395	315,143	301,679
River and Coastal Bas	ins Summ	aries						
Rio Grande	0	0	0	0	0	0	0	0
Nueces	539,759	319,890	314,279	302,311	291,011	279,881	269,196	258,935
San Antonio	72,216	42,823	34,568	32,437	30,474	28,668	27,010	25,493
Guadalupe	10,320	5,937	6,032	5,371	4,787	4,263	3,859	3,525
Lower Colorado	20	15	15	14	12	11	10	8
Lavaca	0	0	0	0	0	0	0	0
Colorado-Lavaca	0	0	0	0	0	0	0	0
Lavaca-Guadalupe	47,125	13,806	24,054	20,977	18,417	16,497	14,994	13,645
San Antonio-Nueces	0	861	78	77	76	75	74	73
Total	669,440	383,332	379,026	361,187	344,777	329,395	315,143	301,679
Source: Texas Water Dev	elopment Boa	ard (TWDB);	Consensus P	rojections ad	opted by the	TWDB, Septe	ember 17, 200	03.

2.7 Livestock Water Demand Projections

In the South Central Texas Region in 2007, livestock production was valued at approximately \$854 million, which was 2.3 times the value of crops produced in the region in 2007. In 2007, there were approximately 1.15 million head of cattle and calves, 77 million chickens, 39,000 head of sheep and lambs, and about 6,200 hogs and pigs. Although livestock production is an important component of the regional economy, the industry consumes a relatively small amount of water. In 2000, water use in the South Central Texas Region for livestock purposes was estimated at 25,660 acft/yr (Figure 2-5 and Table 2-9). The TWDB projections for livestock use in the region estimate that in the year 2010 livestock demand will be 25,954 acft/yr. After the year 2010, it is projected that livestock demand will remain level at 25,954 acft/yr throughout the planning period (Figure 2-5 and Table 2-9).

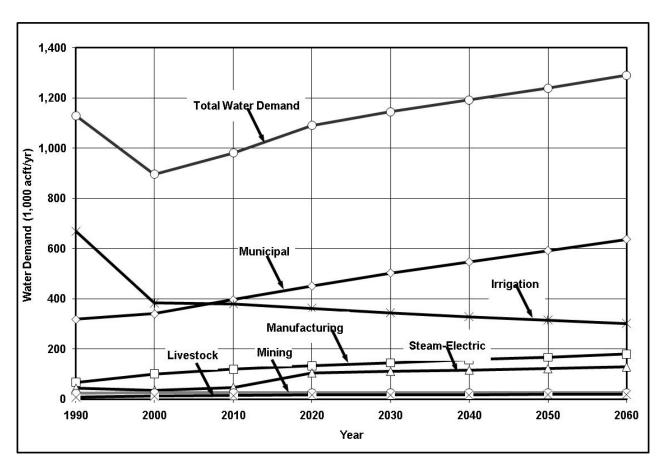


Figure 2-5. Total Water Demand Projections South Central Texas Region – 1990 to 2060

Table 2-9.
Livestock Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in			Projec	ctions		
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Counties								
Atascosa	1,613	1,745	1,745	1,745	1,745	1,745	1,745	1,745
Bexar	1,376	1,319	1,319	1,319	1,319	1,319	1,319	1,319
Caldwell	816	918	918	918	918	918	918	918
Calhoun	291	342	342	342	342	342	342	342
Comal	316	298	298	298	298	298	298	298
DeWitt	1,840	1,689	1,689	1,689	1,689	1,689	1,689	1,689
Dimmit	987	552	552	552	552	552	552	552
Frio	1,097	1,209	1,209	1,209	1,209	1,209	1,209	1,209
Goliad	884	920	920	920	920	920	920	920
Gonzales	4,108	5,159	5,453	5,453	5,453	5,453	5,453	5,453
Guadalupe	1,031	1,057	1,057	1,057	1,057	1,057	1,057	1,057
Hays (Part)	378	280	280	280	280	280	280	280
Karnes	1,371	1,185	1,185	1,185	1,185	1,185	1,185	1,185
Kendall	389	446	446	446	446	446	446	446
LaSalle	988	1,687	1,687	1,687	1,687	1,687	1,687	1,687
Medina	1,560	1,298	1,298	1,298	1,298	1,298	1,298	1,298
Refugio	563	623	623	623	623	623	623	623
Uvalde	994	1,284	1,284	1,284	1,284	1,284	1,284	1,284
Victoria	1,271	1,085	1,085	1,085	1,085	1,085	1,085	1,085
Wilson	1,813	1,808	1,808	1,808	1,808	1,808	1,808	1,808
Zavala	<u>714</u>	<u>756</u>						
Total	24,400	25,660	25,954	25,954	25,954	25,954	25,954	25,954
River and Coastal Basin	ns Summari	es						
Rio Grande	192	105	105	105	105	105	105	105
Nueces	7,767	8,450	8,450	8,450	8,450	8,450	8,450	8,450
San Antonio	5,285	5,058	5,058	5,058	5,058	5,058	5,058	5,058
Guadalupe	8,836	9,667	9,914	9,914	9,914	9,914	9,914	9,914
Lower Colorado	147	169	169	169	169	169	169	169
Lavaca	305	310	357	357	357	357	357	357
Colorado-Lavaca	13	17	17	17	17	17	17	17
Lavaca-Guadalupe	898	868	868	868	868	868	868	868
San Antonio-Nueces	957	1,016	1,016	1,016	1,016	1,016	1,016	1,016
Total	24,400	25,660	25,954	25,954	25,954	25,954	25,954	25,954
Source: Texas Water Develo	opment Board	(TWDB); Con	sensus Proje	ections adopt	ted by the TV	NDB, Septer	mber 17, 200	3.

2.8 Total Water Demand Projections

Total water demand projections for the South Central Texas Region are the sum of water demand projections for municipal, manufacturing, steam-electric power generation, mining, irrigation, and livestock water demand projections (Tables 2-4 through 2-9) and are shown in Table 2-10 and Figure 2-5. Total water use in 2000 was 896,353 acft/yr (Table 2-10). Projected total water demand for the region is 1,145,898 acft/yr in 2030 and 1,291,568 acft/yr in 2060 (Table 2-10 and Figure 2-5). Projections of future water demands for municipal, manufacturing, steam-electric power, mining, and livestock increase while projections for irrigation decrease. The reasons for the decline in the projections of demand in future years for irrigation are predictions of increased efficiency in irrigation and economic factors adversely affecting the profitability of irrigation in future years.

Projections of future water demands for the South Central Texas Region show irrigation demand at 30.09 percent of total demand in 2030 and 23.36 percent in 2060 (Table 2-11). Municipal demand, as a percent of total demand, is projected to increase from 37.93 percent in 2000 to 43.93 percent in 2030, and to 49.34 percent in 2060 (Table 2-11), with livestock demand as a percent of total demand decreasing from 2.86 percent in 2000 to 2.26 percent in 2030, and to 2.01 percent in 2060 (Table 2-11). Manufacturing water demand was 11.18 percent of total demand in 2000, and is projected to be 12.64 percent in 2030, and 13.91 percent in 2060 (Table 2-11). Steam-electric power demand increases from 3.95 percent of total demand in 2000 to 9.65 percent in 2030, and 9.94 percent in 2060 (Table 2-11).

Table 2-10.
Total Water Demand Projections
South Central Texas Region
Individual Counties with River Basin Summaries

	Total in	Total in			Proje	ections		
	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Counties								
Atascosa	61,191	49,972	57,875	55,133	55,777	54,907	55,533	55,100
Bexar	303,917	288,430	325,629	365,210	398,816	424,173	449,076	474,653
Caldwell	7,149	6,573	8,297	9,777	11,001	12,247	13,540	14,871
Calhoun	64,234	54,233	68,674	72,110	75,265	78,865	82,078	86,370
Comal	15,404	22,910	29,680	36,697	44,408	51,958	59,710	68,389
DeWitt	5,901	5,068	5,160	5,158	5,116	5,051	4,953	4,907
Dimmit	14,889	10,653	14,727	14,611	14,584	14,157	13,677	13,157
Frio	87,726	121,689	87,026	84,347	81,704	79,189	76,650	74,275
Goliad	14,650	11,227	11,682	19,302	19,298	19,266	19,233	19,224
Gonzales	12,366	13,509	13,293	13,636	13,894	14,089	14,168	14,274
Guadalupe	14,973	18,278	26,972	29,863	34,403	40,710	46,449	54,260
Hays (Part)	10,538	11,654	19,274	26,157	31,982	38,470	45,922	52,268
Karnes	6,049	6,053	5,718	5,850	6,008	6,116	6,163	6,167
Kendall	2,901	4,110	5,815	7,521	9,279	10,733	11,998	13,237
LaSalle	9,513	7,315	8,277	8,276	8,245	8,210	8,176	8,134
Medina	164,600	64,510	63,521	62,347	61,178	59,957	58,856	57,793
Refugio	1,867	2,670	1,948	1,987	1,982	1,999	2,012	2,002
Uvalde	147,897	67,741	65,886	64,087	62,286	60,501	58,717	57,042
Victoria	49,843	50,992	62,333	115,059	117,984	120,805	123,511	126,617
Wilson	19,586	27,782	19,754	20,195	20,936	21,771	22,873	24,193
Zavala	115,407	50,983	76,832	74,250	71,752	69,283	66,906	64,634
Total	1,130,601	896,353	981,370	1,091,573	1,145,898	1,192,457	1,240,201	1,291,568
River and Coastal Ba	sins Summ	aries						
Rio Grande	198	107	107	107	107	107	107	107
Nueces	582,121	367,959	366,740	355,453	347,780	338,357	330,590	322,163
San Antonio	357,708	336,944	375,110	416,738	455,989	486,693	517,414	549,279
Guadalupe	107,464	120,932	151,648	228,575	248,700	270,843	292,763	316,653
Lower Colorado	403	562	717	874	1,014	1,156	1,293	1,433
Lavaca	1,003	867	916	920	915	904	890	883
Colorado-Lavaca	6,635	20,128	22,823	25,190	27,331	29,462	31,179	33,361
Lavaca-Guadalupe	72,694	45,692	60,735	61,131	61,500	62,371	63,407	65,149
San Antonio-Nueces	2,375	3,162	2,574	2,585	2,562	2,564	2,558	2,540
Total	1,130,601	896,353	981,370	1,091,573	1,145,898	1,192,457	1,240,201	1,291,568
Source: Texas Water De revised for steam-electric	•	,	Consensus	Projections add	opted by the TV	VDB, Septemb	er 17, 2003 as	

INR

Table 2-11.
Composition of Total Water Use
South Central Texas Region
1990, 2000, 2030, and 2060

	199	90	20	000	203	30	200	50
Water Use	acft	% Total	acft	% Total	Acft	% Total	acft	% Total
Municipal	318,495	28.17%	340,030	37.93%	503,375	43.93%	637,236	49.34%
Manufacturing	67,016	5.93%	100,195	11.18%	144,801	12.64%	179,715	13.91%
Steam-Electric Power	43,451	3.84%	35,379	3.95%	110,537	9.65%	128,340	9.94%
Mining	7,799	0.69%	11,757	1.31%	16,454	1.44%	18,644	1.44%
Irrigation	669,440	59.21%	383,332	42.77%	344,777	30.09%	301,679	23.36%
Livestock	24,400	2.16%	25,660	2.86%	25,954	2.26%	25,954	2.01%
Total	1,130,601	100.00%	896,353	100.00%	1,145,898	100.00%	1,291,568	100.00%

2.9 Water Demand Projections for Counties and River Basins

For purposes of this regional planning project, and in accordance with TWDB Rules, Section 357.7(a)(2), water demand projections are tabulated by river and coastal basin, county or part of county located within the river or coastal basin, and city and rural areas of each county or part of county for the South Central Texas Region (Table 2-12).² An illustration of how to read Table 2-12 is given below; however, the entire table will not be verbalized here. For example, a part of the rural area of Dimmit County is located in the Rio Grande Basin. The projected 2 acft/yr of water demand for the people who live in this rural area is shown as municipal water demand (Table 2-12). There is no industry, steam-electric power, irrigation, or mining demand projected for that part of Dimmit County located in the Rio Grande Basin. However, there is a livestock demand of 105 acft/yr (Table 2-12).

A part of Atascosa County is located in the Nueces River Basin, and a part is located in the San Antonio River Basin. That part located in the Nueces River Basin contains the cities of Charlotte, Jourdanton, Lytle, Pleasanton, and Poteet, with each city having a municipal water system. In addition, the Benton Water Supply Corporation, McCoy Water Supply Corporation, and Bexar Metropolitan Water District have water service areas in the Nueces Basin part of the county. Rural areas of Atascosa County located in the Nueces River Basin have population which supplies their own water via individual household systems. The municipal water use by

_

² 31 Texas Administrative Code, Chapter 357, Regional Water Planning Guideline Rules, Texas Water Development Board, Austin, Texas, March 11, 1998.

Charlotte in 1990 was 247 acft/yr, and in 2000 was 282 acft/yr, with projected municipal water demand in 2060 of 350 acft/yr (Table 2-12).

Water use in 1990 by Jourdanton was 670 acft/yr and 740 acft/yr in 2000, with projected 2060 demands of 1,026 acft/yr (Table 2-12). Benton Water Supply Corporation supplied 464 acft/yr in 2000, and has a projected demand in 2060 of 1,617 acft/yr. In 1990, rural areas of Atascosa County located in the Nueces River Basin used 1,633 acft/yr for household purposes (municipal type of water use), used 569 acft/yr in 2000, and are projected to have a 2060 demand of 94 acft/yr (Table 2-12). It is important to note that areas served by Benton Water Supply Corporation, McCoy Water Supply Corporation, and Bexar Metropolitan Water District were included as rural areas in 1990, but have been separated out for 2000 through 2060, thus partly explaining the reduced quantities for 2000 through 2060 for rural areas.

There is no industrial demand in Atascosa County in the Nueces River Basin. However, there was an estimated 6,036 acft/yr of water used for steam-electric power in 1990, and 5,814 acft/yr in 2000, with projected steam-electric power water demand in 2060 of 7,672 acft/yr (Table 2-12). Irrigation water demand in Atascosa County in the Nueces River Basin decreased from 45,792 acft/yr in 1990 to 34,107 acft/yr in 2000, with projected demand in 2060 of 33,570 acft/yr (Table 2-12).

Total water use in Atascosa County in the Nueces River Basin in 1990 was 59,619 acft/yr, in 2000 was 48,892 acft/yr, with projected total water demand for this same area at 53,954 acft/yr in 2060 (Table 2-12).

The reader can see the projections for each county or part of county of each respective river or coastal basin of the region in Table 2-12. Total projections for counties and parts of counties of each river and coastal basin area located in the South Central Texas Region are shown at the end of the listing of individual counties and parts of counties of each river or coastal basin. In addition, the basin totals are listed at the end of Table 2-12. For example, total water use in 1990 in the Nueces River Basin part of the South Central Texas Planning Region was 582,121 acft/yr, of which 24,157 acft/yr was for municipal purposes, 2,152 acft/yr was for industrial purposes, 6,074 acft/yr was for steam-electric power purposes, 539,759 acft/yr was for irrigation, 2,212 acft/yr was for mining, and 7,767 acft/yr was for livestock (Page 2-45). In 2000 in the Nueces River Basin part of the South Central Texas Planning Region, total water use was 367,959 acft/yr, of which 29,599 acft/yr was for municipal purposes, 1,362 acft/yr was for manufacturing (industrial) purposes, 5,943 acft/yr was for steam-electric power purposes,

319,890 acft/yr was for irrigation, 2,715 acft/yr was for mining, and 8,450 acft/yr was for livestock (Page 2-45). Projected water demand for the Nueces River Basin part of the planning region in 2060 is 322,163 acft/yr, with 41,555 acft/yr being for municipal demand, 1,962 acft/yr being for manufacturing, 7,763 acft/yr being for steam-electric power, 258,935 acft/yr being for irrigation, 3,498 acft/yr being for mining, and 8,450 acft/yr being for livestock (Page 2-45).

The reader can see the projections, by type of demand, for the Rio Grande, Nueces, San Antonio, Guadalupe, Lower Colorado, and Lavaca River Basins as well as for the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basin areas of the South Central Planning Region in Table 2-12, Pages 2-45 through 2-47. Total water use in the South Central Texas Region in 1990 was 1,130,601 acft/yr, and in 2000 was 896,353 acft/yr, with projected 2060 water demands of 1,291,568 acft/yr (Page 2-47). The quantities of projected water demands in 2060 are 107 acft/yr for the Rio Grande River Basin, 322,163 acft/yr for the Nueces River Basin, 549,279 acft/yr for the San Antonio River Basin, 316,652 acft/yr for the Guadalupe River Basin, 1,433 acft/yr for the Lower Colorado River Basin, 884 acft/yr for the Lavaca River Basin, 33,361 acft/yr for the Colorado-Lavaca Coastal Basin, 65,149 acft/yr for the Lavaca-Guadalupe Coastal Basin, and 2,540 acft/yr for the San Antonio-Nueces Coastal Basin (Page 2-47).

Table 2-12.

Water Demand Projections

South Central Texas Region

River Basins, Counties, Cities, and Water Supply Districts and Authorities

	Han in	Han in			Proje	ctions		
Basin/County/City/Rural	Use in 1990 (acft)	Use in 2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Rio Grande Basin (part)								
Dimmit (part) - Rio Grande								
County-Other (Rural)	6	2	2	2	2	2	2	2
Municipal Demand	6	2	2	2	2	2	2	2
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	<u>192</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>
Total Demand	198	107	107	107	107	107	107	107
Rio Grande Basin								
Municipal Demand	6	2	2	2	2	2	2	2
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	<u>192</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>
Rio Grande Basin Total	198	107	107	107	107	107	107	107
Nueces Basin (part)								
Atascosa (part) - Nueces								
Charlotte	247	282	296	312	324	332	342	350
Jourdanton	670	740	801	861	914	955	994	1,026
Lytle	410	399	412	423	433	439	448	456
Pleasanton	1,556	1,833	1,906	1,969	2,027	2,063	2,109	2,151
Poteet	1,055	729	735	741	740	740	745	752
Benton City Water Supply Corp.		464	710	963	1,185	1,353	1,506	1,617
McCoy Water Supply Corp.		760	1,065	1,381	1,643	1,851	2,042	2,181
Bexar Met Water District		389	505	621	715	780	843	895
County-Other (Rural)	1,633	569	432	328	242	172	124	94
Municipal Demand	5,571	6,165	6,862	7,599	8,223	8,685	9,153	9,522
Manufacturing Demand	0	6	6	6	6	6	6	6
Steam-Electric Power Demand	6,036	5,814	7,000	4,807	6,101	5,997	7,336	7,672
Irrigation Demand	45,792	34,107	39,782	38,442	37,154	35,914	34,723	33,570
Mining Demand	664	1,125	1,298	1,370	1,405	1,439	1,472	1,509
Livestock Demand	1,556	1,675	1,675	1,675	1,675	1,675	1,675	1,675
Total Demand	59,619	48,892	56,623	53,899	54,564	53,716	54,365	53,954

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Bexar (part) - Nueces								
Lytle	1	3	5	7	8	10	11	12
Atascosa Rural Water Supply Corp.		31	38	44	51	56	60	65
Bexar Met Water District		159	161	163	165	165	167	171
County-Other (Rural)	330	251	258	263	268	270	273	279
Municipal Demand	331	444	462	477	492	501	511	527
Manufacturing Demand	0	0	0	0	0	0	0	(
Steam-Electric Power Demand	0	0	0	0	0	0	0	(
Irrigation Demand	3,374	1,333	1,283	1,229	1,177	1,127	1,080	1,034
Mining Demand	147	106	131	144	152	160	168	175
Livestock Demand	23	24	24	24	24	24	24	2
Total Demand	3,875	1,907	1,900	1,874	1,845	1,812	1,783	1,760
Dimmit (part) - Nueces								
Asherton	215	274	286	299	306	301	293	279
Big Wells	178	142	149	156	159	157	153	14
Carrizo Springs	1,592	1,742	1,842	1,943	1,996	1,981	1,930	1,83
County-Other (Rural)	217	272	282	292	293	284	274	26
Municipal Demand	2,202	2,430	2,559	2,690	2,754	2,723	2,650	2,52
Manufacturing Demand	3	0	0	0	0	0	0	_,,
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	11,185	6,750	10,611	10,333	10,225	9,813	9,391	8,98
Mining Demand	506	919	1,003	1,034	1,051	1,067	1,082	1,09
Livestock Demand	795	447	447	447	447	447	447	44
Total Demand	14,691	10,546	14,620	14,504	14,477	14,050	13,570	13,050
Frio (part) - Nueces								
Dilley	771	1,041	1,229	1,409	1,555	1,683	1,774	1,82
Pearsall	1,602	1,435	1,443	1,448	1,449	1,435	1,442	1,44
Benton City Water Supply Corp.	,	2	3	4	5	6	6	
County-Other (Rural)	672	636	727	807	881	937	980	1,00
Municipal Demand	3,045	3,114	3,402	3,668	3,890	4,061	4,202	4,28
Manufacturing Demand	0	0	0,102	0	0	0	0	.,_0
Steam-Electric Power Demand	38	129	289	268	201	192	76	9
Irrigation Demand	83,233	117,098	82,017	79,098	76,302	73,627	71,065	68,59
Mining Demand	313	139	109	104	102	100	98	9
Livestock Demand	1,097	1,209	1,209	1,209	1,209	1,209	1,209	1,20
Total Demand	87,726	121,689	87,026	84,347	81,704	79,189	76,650	74,27
Karnes (part) - Nueces								
El Oso Water Supply Corp.		12	13	13	14	15	15	1
County-Other (Rural)	39	19	24	29	35	39	42	4
Municipal Demand	39	31	37	42	49	54	57	6
Manufacturing Demand	0	0	0	0	0	0	0	"
Steam-Electric Power Demand		0				_	_	
	0	-	0	0	0	0	0	
Irrigation Demand	0	0	0	0	0	0	0	
Mining Demand	0	0	0	0	0	0	0	40
Livestock Demand	<u>118</u>	<u>107</u>	<u>107</u>	<u>107</u>	<u>107</u>	<u>107</u>	<u>107</u>	<u>10</u>
Total Demand	157	138	144	149	156	161	164	16

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
LaSalle (part) - Nueces								
Cotulla	795	1,271	1,407	1,516	1,566	1,615	1,677	1,743
Encinal	98	110	110	109	108	106	107	107
County-Other (Rural)	340	244	282	321	384	441	478	500
Municipal Demand	1,233	1,625	1,799	1,946	2,058	2,162	2,262	2,350
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	7,292	4.003	4,791	4,643	4,500	4,361	4,227	4,097
Mining Demand	0	0	0	0	0	0	0	.,,,,,
Livestock Demand	988	1,687	<u>1,687</u>	1,687	<u>1,687</u>	<u>1,687</u>	<u>1,687</u>	1,687
Total Demand	9,513	7,315	8,277	8,276	8,245	8,210	8,176	8,134
Medina (part) - Nueces								
Devine	630	830	837	850	856	862	878	896
Hondo	1,456	1,601	1,784	2,001	2,205	2,374	2,548	2,717
Lytle	73	63	62	60	59	58	58	58
Natalia	294	291	330	374	415	450	485	519
East Medina Special Utility Dist.		735	833	944	1,048	1,132	1,221	1,310
Benton City Water Supply Corp.		336	414	504	589	661	737	805
County-Other (Rural)	1,535	1,194	1,489	1,816	2,108	2,367	2,635	2,876
Municipal Demand	3,988	5,050	5,749	6,549	7,280	7,904	8,562	9,181
Manufacturing Demand	286	56	67	75	82	89	95	103
Steam-Electric Power Demand	0	0	0	0	0	0	0	100
Irrigation Demand	133,196	47,000	45,357	43,465	41,654	39,919	38,257	36,665
Mining Demand	133,190	47,000 62	45,557 68	71	72	73	74	75
Livestock Demand	1,336	1,116	1,116	1,116	1,116	1,116	1,116	1,116
Total Demand	138,873	53,284	52,357	51,276	50,204	49,101	48,104	47,140
Uvalde (part) - Nueces								
Sabinal	381	412	407	403	398	393	389	389
Uvalde	3,915	6,070	6,087	6,124	6,144	6,148	6,150	6,178
County-Other (Rural)	982	1,286	1,572	1,867	2,110	2,305	2,425	2,532
Municipal Demand	5,278	7,768	8,066	8,394	8,652	8,846	8,964	9,099
Manufacturing Demand	557	378	432	455	473	490	505	538
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	140,669	58,061	55,791	53,609	51,513	49.498	47,563	45,703
Mining Demand	399	250	313	345	364	383	401	418
Livestock Demand	994	1,284	1,284	1,284	1,284	1,284	1,284	1,284
Total Demand	147,897	67,741	65,886	64,087	62,286	60,501	58,717	57,042
Wilson (part) - Nueces								
McCoy Water Supply Corp.		25	41	61	82	102	124	147
County-Other (Rural)	121	31	42	56	72	86	103	120
Municipal Demand	121	56	83	117	154	188	227	267
Manufacturing Demand	0	0	0	0	0	0	0	207
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	4,096	5,263	2,847	2,529	2,248	2,001	1,783	1,59
_								
Mining Demand	146	0 145	145	145	145	145	145	14
Livestock Demand	<u>146</u> 4,363	<u>145</u> 5,464	<u>145</u> 3,075	<u>145</u> 2,791	<u>145</u> 2,547	<u>145</u> 2,334	<u>145</u> 2,155	

Table 2-12 (Continued)	Use in	Use in			Proje	ctions		
	1990	2000	2010	2020	2030	2040	2050	2060
Basin/County/City/Rural	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Zavala (part) - Nueces								
Crystal City	1,692	2,175	2,247	2,272	2,343	2,337	2,349	2,370
County-Other (Rural)	657	741	864	1,028	1,134	1,241	1,327	1,371
Municipal Demand	2,349	2,916	3,111	3,300	3,477	3,578	3,676	3,741
Manufacturing Demand	1,306	922	1043	1106	1154	1200	1238	1315
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	110,922	46,275	71,800	68,963	66,238	63,621	61,107	58,692
Mining Demand	116	114	122	125	127	128	129	130
Livestock Demand	714	<u>756</u>						
Total Demand	115,407	50,983	76,832	74,250	71,752	69,283	66,906	64,634
Nueces Basin								
Municipal Demand	24,157	29,599	32,130	34,782	37,029	38,702	40,264	41,555
Manufacturing Demand	2,152	1,362	1,548	1,642	1,715	1,785	1,844	1,962
Steam-Electric Power	۷,۱۵۲	1,002	1,040	1,072	1,713	1,700	1,044	1,002
Demand	6,074	5,943	7,289	5,075	6,302	6,189	7,412	7,763
Irrigation Demand	539,759	319,890	314,279	302,311	291,011	279,881	269,196	258,935
Mining Demand	2,212	2,715	3,045	3,193	3,273	3,350	3,424	3,498
Livestock Demand	7,767	<u>8,450</u>						
Nueces Basin Total Demand	582,121	367,959	366,741	355,453	347,780	338,357	330,590	322,163
San Antonia Basin (nort)								
San Antonio Basin (part) Atascosa (part) - San Antonio								
Benton City Water Supply								
Corp.		40	62	84	103	118	131	141
County-Other (Rural)	99	24	17	13	9	6	4	3
Municipal Demand	99	64	79	97	112	124	135	144
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	1,416	946	1,103	1,067	1,031	997	963	932
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	57	70	70	70	70	70	70	70
Total Demand	1,572	1,080	1,252	1,234	1,213	1,191	1,168	1,146
Royar (nart) - San Antonio								
Bexar (part) - San Antonio Alamo Heights	2,210	2.000	2,071	2,134	2,136	2,132	2,146	2,170
Balcones Heights (SAWS)	538	2,000 480	2,071 514	2,134 555	2,136 578	600	633	670
China Grove (SAWS)	217	288	376	457	531	591	645	695
Converse	1,213	1,495	1,907	2,331	2,729	3,044	3,311	3,564
Elmendorf (SAWS)	1,213 52	99	1,907	123	132	140	148	156
Fairoaks Ranch	617	889	1,090	1,094	1,097	1,101	1,099	1,104
Helotes (SAWS)	310	845	1,537	2,249	2,820	3,264	3,679	4,047
Kirby	1,080	1,001	1,005	1,004	1,007	1,001	1,013	1,034
Leon Valley	1,715	711	694	678	667	655	650	659
Leon Valley (SAWS)	.,,,,	407	397	388	382	375	372	377
Live Oak	1,221	1,128	1,145	1,157	1,177	1,193	1,232	1,284
Olmos Park (SAWS)	385	381	403	424	441	452	468	484
San Antonio (SAWS)	166,616	166,813	192,007	213,943	234,865	250,671	265,958	281,204
San Antonio (Served by	.00,010	. 55,515		,	_5 .,555			
BMWD)		21,419	24,654	27,471	30,157	32,187	34,150	36,107
San Antonio (Served by		, -	,	, ,	, -	, -	,	,
OTHERS)		247	284	317	348	371	394	416
Schertz	667	167	272	371	456	525	591	649
Selma		252	1,531	1,927	2,309	2,260	2,204	2,155

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Shavano Park	840	802	819	835	847	856	868	880
Somerset (SAWS)		321	405	484	552	609	660	709
St. Hedwig	187	256	310	358	403	436	469	501
Terrell Hills	817	815	863	914	956	983	1,018	1,057
Universal City	2,323	2,329	2,608	2,916	3,175	3,125	3,101	3,101
Castle Hills (Bexar Met WD)	1,311	838	820	807	793	780	771	771
Bexar Met Water District Atascosa Rural Water	20,741	8,635	8,736	8,869	8,944	8,945	9,081	9,278
Supply Corp. Hill Country Village		735	903	1,068	1,213	1,335	1,441	1,548
(BMWD)		842	838	835	831	828	826	826
Hollywood Park (BMWD) Green Valley Special Utility	2,174	2,229	2,314	2,389	2,458	2,511	2,565	2,616
Dist.		247	458	646	818	939	1,068	1,182
Windcrest	1,329	1,212	1,204	1,196	1,187	1,177	1,174	1,182
Water Service Inc (Apex)		435	570	697	809	902	982	1,061
East Central SUD		975	1,325	1,572	1,790	1,974	2,133	2,289
Lackland AFB (CDP)	4,212	3,136	3,104	3,080	3,056	3,032	3,016	3,016
County-Other (SAWS)	4.4.500	5,595	5,661	5,747	5,796	5,796	5,884	6,012
County-Other (Rural)	14,520	1,226	705	559	472	742	985	1,205
Municipal Demand	225,295	229,249	261,643	289,594	315,931	335,532	354,735	374,009
Manufacturing Demand Steam-Electric Power	14,049	21,252	25,951	29,497	32,775	36,068	38,965	42,112
Demand	24,263	17,399	20,395	25,761	30,139	32,973	36,120	39,614
Irrigation Demand	33,638	14,532	13,990	13,399	12,833	12,290	11,770	11,272
Mining Demand	1,444	2,796	3,451	3,790	3,998	4,203	4,408	4,591
Livestock Demand	1,353	1,295	1,295	1,295	1,295	1,295	1,295	1,295
Total Demand	300,042	286,523	326,725	363,336	396,971	422,361	447,293	472,893
Comal (part) - San Antonio								
Fairoaks Ranch	19	58	58	58	58	58	58	59
Schertz	19	7	11	16	23	28	35	42
Bulverde City		501	1,044	1,728	2,507	3,283	4,089	4,954
Bexar Met Water District		214	429	695	984	1,249	1,537	1,860
Garden ridge		185	228	284	347	411	477	549
Selma		6	77	129	193	222	248	274
Water Service Inc (Apex)		236	308	402	509	615	723	845
County-Other (Rural)	1,718	109	118	145	172	209	250	298
Municipal Demand	1,756	1,316	2,273	3,457	4,793	6,075	7,417	8,881
Manufacturing Demand	0	1	1	1	1	2	2	2
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	409	7	30	28	23	22	20	18
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	45	42	42	42	42	42	42	42
Total Demand	2,210	1,366	2,346	3,528	4,859	6,141	7,481	8,943
DeWitt (part) - San Antonio								
County-Other (Rural)	109	67	67	66	65	63	61	60
Municipal Demand	109	67	67	66	65	63	61	60
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	22	8	12	10	8	7	5	5
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	<u>148</u>	<u>135</u>						
Total Demand	279	210	214	211	208	205	201	200

	Use in	Use in			Proj	ections		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Goliad (part) - San Antonio								
Goliad	412	365	416	480	527	553	577	594
County-Other (Rural)	261	225	252	291	315	329	342	352
Municipal Demand	673	590	668	771	842	882	919	94
Manufacturing Demand	0	0	4	8	12	16	20	2
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	685	298	257	222	193	166	144	12
Mining Demand	0	0	129	91	64	43	21	1
Livestock Demand	345	359	359	359	359	359	359	35
Total Demand	1,703	1,247	1,417	1,451	1,470	1,466	1,463	1,46
Guadalupe (part) - San Antonio								
Cibolo	178	598	866	1,190	1,546	1,898	2,298	2,73
Marion	111	154	164	179	194	209	229	25
New Berlin			70	83	100	122	148	18
Schertz	1,454	2,776	3,797	5,089	6,448	7,822	9,399	11,09
Selma		17	59	86	113	131	152	17
Green Valley Special Utility Dist.		546	683	863	1,072	1,256	1,492	1,74
Springs Hill Water Supply Corp.		323	365	417	475	533	599	67
East Central SUD		102	66	89	112	130	144	15
Water Service Inc (Apex)		25	30	37	45	53	61	7
Santa Clara		92	177	280	395	505	631	76
County-Other (Rural)	1,666	58	50	39	27	17	9	
Municipal Demand	3,409	4,691	6,327	8,352	10,527	12,676	15,162	17,85
Manufacturing Demand	0	3	4	4	5	5	5	,
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	343	113	137	123	109	96	91	ç
Mining Demand	8	14	16	16	17	17	18	1
Livestock Demand	258	264	264	264	264	264	264	26
Total Demand	4,018	5,085	6,748	8,759	10,922	13,058	15,540	18,23
Karnes (part) - San Antonio								
Karnes city	410	418	432	453	474	492	503	51
Kenedy	682	758	763	826	874	912	961	99
Runge	164	195	195	209	219	227	238	24
Falls City		107	113	122	131	138	142	14
El Oso Water Supply Corp.		458	482	514	547	573	590	60
Sunko Water Supply Corp.		46	49	53	57	61	63	(
County-Other (Rural)	820	686	824	933	1,069	1,172	1,214	1,23
Municipal Demand	2,076	2,668	2,858	3,110	3,371	3,575	3,711	3,79
Manufacturing Demand	270	107	118	122	125	128	130	13
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	2,034	1,916	1,382	1,250	1,131	1,023	925	83
Mining Demand	187	1,910	94	91	90	89	89	0.
Livestock Demand	1,088	936	936	936	936	936	936	93
Total Demand	5,655	5,732	5,388	5,509	5,653	<u>930</u> 5,751	<u>930</u> 5,791	5,79

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Kendall (part) - San Antonio								
Boerne	785	1,170	1,570	2,188	2,843	3,370	3,831	4,282
Fairoaks Ranch	64	152	286	296	300	305	310	316
Water Service Inc (Apex)		37	43	52	61	69	75	81
County-Other (Rural)	515	748	1,080	1,506	1,939	2,304	2,620	2,930
Municipal Demand	1,364	2,107	2,979	4,042	5,143	6,048	6,836	7,609
Manufacturing Demand	2	0	0	0	0	0	0	C
Steam-Electric Power Demand	0	0	0	0	0	0	0	(
Irrigation Demand	0	107	194	189	185	181	177	174
Mining Demand	0	0	0	0	0	0	0	c
Livestock Demand	70	80	80	80	80	80	80	80
Total Demand	1,436	2,294	3,253	4,311	5,408	6,309	7,093	7,863
Medina (part) - San Antonio								
Castroville	779	621	680	743	802	854	908	961
La Coste	229	190	205	222	239	251	265	281
Yancey Water Supply Corp.		668	832	1,013	1,180	1,328	1,469	1,603
East Medina Special Utility Dist.		42	48	54	60	65	70	75
Bexar Met Water District		15	24	33	41	47	54	60
County-Other (Rural)	258	30	38	46	54	60	67	73
Municipal Demand	1,266	1,566	1,827	2,111	2,376	2,605	2,833	3,053
Manufacturing Demand	0	0	0	0	0	0	0	, c
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	24,184	9,422	9,093	8,714	8,351	8,003	7,670	7,350
Mining Demand	53	56	62	64	65	66	67	68
Livestock Demand	224	182	182	182	182	182	182	182
Total Demand	25,727	11,226	11,164	11,071	10,974	10,856	10,752	10,653
Refugio (part) - San Antonio								
County-Other (Rural)	11	8	7	6	6	5	5	5
Municipal Demand	11	8	7	6	6	5	5	5
Manufacturing Demand	0	0	0	0	0	0	0	
Steam-Electric Power Demand	0	0	0	0	0	0	0	(
Irrigation Demand	0	0	0	0	0	0	0	(
Mining Demand	0	0	0	0	0	0	0	
Livestock Demand	<u>21</u>	<u>25</u>						
Total Demand	32	33	32	31	31	30	30	30
Victoria (part) - San Antonio								
County-Other (Rural)	34	5	5	6	7	7	7	-
Municipal Demand	34	5	5	6	7	7	7	-
Manufacturing Demand	0	0	0	0	0	0	0	
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	0	0	0	0	0	0	0	
Mining Demand	0	0	0	0	0	0	0	
Livestock Demand	70	6 <u>1</u>	6 <u>1</u>	6 <u>1</u>	61	6 <u>1</u>	6 <u>1</u>	6
Total Demand	104	66	66	67	68	68	68	6

	Use in	Use in			Proje	ctions		
	1990	2000	2010	2020	2030	2040	2050	2060
Basin/County/City/Rural	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Wilson (part) - San Antonio								
Floresville	1,044	1,203	1,805	2,011	2,245	2,475	2,726	3,000
LaVernia	218	206	278	367	464	557	658	764
Poth	361	315	348	389	434	480	530	585
Stockdale	273	321	350	386	426	466	510	558
SS Water Supply Corp.		1,072	1,563	2,204	2,886	3,554	4,279	5,030
Oak Hills Water Supply		470	000	000	4.054	4 500	4.040	0.400
Corp.		479	693	960	1,251	1,536	1,843	2,160
Sunko Water Supply Corp East Central SUD	•	465 89	564 104	691 124	826 146	965 169	1,107 194	1,262 222
El Oso Water Supply Corp		45	52	62	71	81	91	102
County-Other (Rural)	1,660	542	539	770	1,027	1,269	1,533	1,807
Municipal Demand	3,556	4,737	6,296	7,964	9,776	11,552	13,471	15,490
Manufacturing Demand	2,330	1	0,230	1,504	3,770	11,002	15,471	10,430
Steam-Electric Power				· ·				
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	9,485	15,474	8,370	7,435	6,610	5,883	5,245	4,691
Mining Demand	281	261	228	221	216	212	208	206
Livestock Demand	1,606	1,609	1,609	1,609	1,609	1,609	1,609	1,609
Total Demar		22,082	16,504	17,230	18,212	19,257	20,534	21,997
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	-,	,	-,	-,-		,
San Antonio Basin								
Municipal Demand	239,648	247,068	285,029	319,576	352,949	379,144	405,292	431,850
Manufacturing Demand	14,323	21,364	26,079	29,633	32,919	36,220	39,123	42,282
Steam-Electric Power								
Demand	24,263	17,399	20,395	25,761	30,139	32,973	36,120	39,614
Irrigation Demand	72,216	42,823	34,568	32,437	30,474	28,668	27,010	25,493
Mining Demand	1,973	3,232	3,979	4,273	4,450	4,631	4,811	4,981
Livestock Demand	<u>5,285</u>	<u>5,058</u>	<u>5,058</u>	5,058	<u>5,058</u>	5,058	5,058	5,058
San Antonio Basin Tot	al 357,708	336,944	375,109	416,738	455,989	486,694	517,414	549,279
5 II 5 I ()								
Guadalupe Basin (part)								
Caldwell (part) - Guadalupe	4.040	4 705	0.454	0.004	0.000	4.400	4 705	5 005
Lockhart	1,816	1,795	2,451	3,094	3,629	4,180	4,725	5,285
Luling Polonia Water supply Corp	1,207	888 322	1,067 466	1,210 618	1,299 749	1,384 884	1,486	1,594 1,155
Maxwell Water Supply).	322	400		749	004	1,016	1,100
Maxwell Water Subbiv				010				
		224				006	1 166	1 221
Corp.	101	334 107	503	678	844	996 143	1,166 150	1,331 158
Corp. Martindale	101	334 107				996 143	1,166 150	1,331 158
Corp. Martindale Martindale Water Supply	101	107	503 125	678 134	844 139	143	150	158
Corp. Martindale Martindale Water Supply Corp.		107 93	503 125 142	678 134 153	844 139 158	143 162	150 170	158 179
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp		107 93 196	503 125 142 267	678 134 153 339	844 139 158 396	143 162 458	150 170 518	158 179 580
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp		107 93	503 125 142	678 134 153	844 139 158	143 162	150 170	158 179
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply		93 196 112	503 125 142 267 184	678 134 153 339 269	844 139 158 396 342	143 162 458 417	150 170 518 495	158 179 580 571
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp.		107 93 196	503 125 142 267	678 134 153 339	844 139 158 396	143 162 458	150 170 518	158 179 580
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water		93 196 112	503 125 142 267 184	678 134 153 339 269	844 139 158 396 342	143 162 458 417	150 170 518 495	158 179 580 571
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp.		107 93 196 112 114	503 125 142 267 184 204	678 134 153 339 269 308	844 139 158 396 342 405	143 162 458 417 501	150 170 518 495 600	158 179 580 571 695
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water		107 93 196 112 114	503 125 142 267 184 204	678 134 153 339 269 308	844 139 158 396 342 405	143 162 458 417 501	150 170 518 495 600	158 179 580 571 695
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water		93 196 112 114 68	503 125 142 267 184 204 98	678 134 153 339 269 308 127	844 139 158 396 342 405	143 162 458 417 501 181	150 170 518 495 600 207	158 179 580 571 695 235
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp.		93 196 112 114 68 46	503 125 142 267 184 204 98 63	678 134 153 339 269 308 127	844 139 158 396 342 405 154	143 162 458 417 501 181 108	150 170 518 495 600 207	158 179 580 571 695 235 136
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald		107 93 196 112 114 68 46 11	503 125 142 267 184 204 98 63 26	678 134 153 339 269 308 127 79 43	844 139 158 396 342 405 154 94 61	143 162 458 417 501 181 108 78	150 170 518 495 600 207 122 95	158 179 580 571 695 235 136 111
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge		107 93 196 112 114 68 46 11	503 125 142 267 184 204 98 63 26 13	678 134 153 339 269 308 127 79 43 18	844 139 158 396 342 405 154 94 61 21	143 162 458 417 501 181 108 78 25	150 170 518 495 600 207 122 95 29	158 179 580 571 695 235 136 111 33
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural)	1,591	107 93 196 112 114 68 46 11 9 207	503 125 142 267 184 204 98 63 26 13 214	678 134 153 339 269 308 127 79 43 18 201	844 139 158 396 342 405 154 94 61 21 177	143 162 458 417 501 181 108 78 25 154	150 170 518 495 600 207 122 95 29 136	158 179 580 571 695 235 136 111 33 122
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply Corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural) Municipal Demand	1,591 4,715	107 93 196 112 114 68 46 11 9 207 4,302	503 125 142 267 184 204 98 63 26 13 214 5,823	678 134 153 339 269 308 127 79 43 18 201 7,271	844 139 158 396 342 405 154 94 61 21 177 8,468	143 162 458 417 501 181 108 78 25 154 9,671	150 170 518 495 600 207 122 95 29 136 10,915	158 179 580 571 695 235 136 111 33 122 12,185
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural) Municipal Demand Manufacturing Demand	1,591 4,715	93 196 112 114 68 46 11 9 207 4,302 11	503 125 142 267 184 204 98 63 26 13 214 5,823 15	678 134 153 339 269 308 127 79 43 18 201 7,271	844 139 158 396 342 405 154 94 61 21 177 8,468	143 162 458 417 501 181 108 78 25 154 9,671	150 170 518 495 600 207 122 95 29 136 10,915	158 179 580 571 695 235 136 111 33 122 12,185 29
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural) Municipal Demand Manufacturing Demand Steam-Electric Power Demand Irrigation Demand	1,591 4,715 0	107 93 196 112 114 68 46 11 9 207 4,302 11	503 125 142 267 184 204 98 63 26 13 214 5,823 15	678 134 153 339 269 308 127 79 43 18 201 7,271 18	844 139 158 396 342 405 154 94 61 21 177 8,468 21	143 162 458 417 501 181 108 78 25 154 9,671 24	150 170 518 495 600 207 122 95 29 136 10,915 27	158 179 580 571 695 235 136 111 33 122 12,185 29
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural) Municipal Demand Manufacturing Demand Steam-Electric Power Demand	1,591 4,715 0 0 1,355 27	107 93 196 112 114 68 46 11 9 207 4,302 11 0 974 5	503 125 142 267 184 204 98 63 26 13 214 5,823 15 0 1,029 5	678 134 153 339 269 308 127 79 43 18 201 7,271 18 0 914 6	844 139 158 396 342 405 154 94 61 21 177 8,468 21 0 812 6	143 162 458 417 501 181 108 78 25 154 9,671 24 0 722 6	150 170 518 495 600 207 122 95 29 136 10,915 27 0 641 7	158 179 580 571 695 235 136 111 33 122 12,185 29 0 570 7
Corp. Martindale Martindale Water Supply Corp. AQUA Water Supply Corp Goforth Water Supply corp County Line Water Supply Corp. Creedmoor-Maha Water Supply Corp. Gonzales County Water Supply Corp. Niederwald Mustang Ridge County-Other (Rural) Municipal Demand Manufacturing Demand Steam-Electric Power Demand Irrigation Demand	1,591 4,715 0 0 1,355 27 681	93 196 112 114 68 46 11 9 207 4,302 11	503 125 142 267 184 204 98 63 26 13 214 5,823 15	678 134 153 339 269 308 127 79 43 18 201 7,271 18	844 139 158 396 342 405 154 94 61 21 177 8,468 21 0 812	143 162 458 417 501 181 108 78 25 154 9,671 24	150 170 518 495 600 207 122 95 29 136 10,915 27 0 641	158 179 580 571 695 235 136 111 33 122 12,185 29 0 570

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Calhoun (part) - Guadalupe		, ,	, ,			. ,		
County-Other (Rural)	3	0	0	0	0	0	0	0
Municipal Demand	3	0	0	0	0	0	0	0
Manufacturing Demand	233	136	160	176	190	204	216	232
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	13	15	16	17	17	18	18
Livestock Demand	0	3	3	3	3	3	3	3
Total Demand	236	<u></u>	<u> </u>	195	210	224	237	<u></u> 253
Comal (part) - Guadalupe								
Garden Ridge	361	273	337	419	513	607	704	811
New Braunfels	6,199	8,073	10,042	12,510	15,390	18,241	21,168	24,416
Canyon Lake Water supply Corp.		1,495	2,928	4,769	6,838	8,898	11,034	13,331
Green Valley Special Utility Dist.		173	235	314	409	493	591	696
Crystal Clear Water Supply Corp.		174	240	325	426	516	619	731
Schertz		44	71	107	146	185	226	270
Bexar Met Water District		16	33	53	75	95	117	141
Bulverde City		4	9	14	21	27	34	41
County-Other (Rural)	2,099	2,487	2,603	2,785	2,987	3,167	3,408	3,700
Municipal Demand	8,659	12,739	16,498	21,296	26,805	32,229	37,901	44,137
Manufacturing Demand	3,248	6,282	7,728	8,562	9,313	10,043	10,670	11,551
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	70	43	174	158	146	130	115	101
Mining Demand	946	2,224	2,678	2,897	3,029	3,159	3,287	3,401
Livestock Demand	271	256	256	256	256	256	256	256
Total Demand	13,194	21,544	27,334	33,169	39,549	45,817	52,229	59,446
DeWitt (part) - Guadalupe								
Cuero	1,716	1,244	1,249	1,257	1,250	1,232	1,198	1,177
Yorktown	405	343	343	344	340	334	323	318
Gonzales County Water Supply Corp.		106	107	108	108	108	106	104
County-Other (Rural)	762	807	801	797	783	762	734	721
Municipal Demand	2,883	2,500	2,500	2,506	2,481	2,436	2,361	2,320
Manufacturing Demand	91	147	176	190	202	2,430	2,301	242
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	263	94	147	122	100	80	64	49
Mining Demand	21	9	10	10	100	10	10	11
Livestock Demand	1,378	1,267	1,267	1,267	1,267	1,267	1,267	1,267
Total Demand	4,636	4,017	4,100	4,095	4,060	4,008	3,927	3,889
Out of (word) Our defen								
Goliad (part) - Guadalupe	404	252	222	000			200	
County-Other (Rural)	184	256	286	330	357	374	388	399
Municipal Demand	184	256	286	330	357	374	388	399
Manufacturing Demand	0	0	0	0	0	0	0	C
Steam-Electric Power Demand	12,165	9,027	9,027	16,643	16,643	16,643	16,643	16,643
Irrigation Demand	0	50	43	38	32	28	24	21
Mining Demand	0	9	137	98	73	51	30	20
Livestock Demand	<u>195</u>	202	202	202	202	202	202	202
Total Demand	12,544	9,544	9,695	17,311	17,307	17,298	17,287	17,285

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Gonzales (part) - Guadalupe								
Gonzales	1,646	1,460	1,545	1,644	1,710	1,756	1,765	1,75
Nixon	373	414	438	460	479	488	490	48
Waelder	169	133	154	175	190	202	204	20:
Gonzales County Water Supply Corp.		1,364	1,578	1,805	1,982	2,102	2,133	2,12
County-Other (Rural)	1,636	447	384	313	257	212	197	19
Municipal Demand	3,824	3,818	4,099	4,397	4,618	4,760	4,789	4,76
Manufacturing Demand	865	2,051	2,400	2,628	2,822	3,011	3,177	3,40
Steam-Electric Power Demand	0	0	0	0	0	0,011	0,177	0,40
Irrigation Demand	3,540	2,438	1,304	1,124	969	835	720	62
_	3,340	-	25		23	23	22	2
Mining Demand		30		24				
Livestock Demand Total Demand	4,072 12,322	<u>5,107</u> 13,444	<u>5,354</u> 13,182	<u>5,354</u> 13,527	5,354 13,786	<u>5,354</u> 13,983	<u>5,354</u> 14,062	<u>5,3</u> 5
Suadaluno (nart) - Guadaluno								
Guadalupe (part) - Guadalupe New Braunfels	55	266	467	703	960	1,216	1,499	1,8
	3,604	4,463	5,018	5,718	6,454	7,203	8,069	9,0
Seguin	3,604							
Green Valley Special Utility Dist.		1,337	1,691	2,136	2,651	3,109	3,695	4,3
Springs Hill Water Supply Corp.		1,753	1,984	2,262	2,581	2,891	3,250	3,6
Crystal Clear Water Supply Corp.		1,017	1,316	1,688	2,112	2,498	2,977	3,4
Martindale Water Supply Corp.		26	47	64	84	111	128	1
Santa Clara		23	43	69	97	124	155	1
County-Other (Rural)	2,559	274	220	175	129	79	45	
Municipal Demand	6,218	9,159	10,786	12,815	15,068	17,231	19,818	22,6
Manufacturing Demand	1,661	2,094	2,634	2,953	3,244	3,525	3,766	4,0
Steam-Electric Power Demand	0	129	4,788	3,406	3,326	5,136	5,585	7,5
Irrigation Demand	2,303	762	933	832	737	646	619	6
Mining Demand	0	256	290	305	313	321	328	3
Livestock Demand	773	793	793	793	793	793	793	7
Total Demand	10,955	13,193	20,224	21,104	23,481	27,652	30,909	36,0
lays (part) - Guadalupe								
Kyle	326	702	2,740	3,940	4,217	4,377	4,874	5,2
San Marcos	6,321	5,914	8,038	11,198	14,371	17,824	21,559	24,4
Wimberley WS Corp.	732	578	776	997	1,224	1,442	1,736	1,9
Woodcreek	182	188	246	315	385	452	540	6
Wood Creek Utilities Inc.		400	748	1,145	1,564	1,974	2,477	2,8
Goforth WS Corp.		666	972	1,340	1,704	2,075	2,545	2,9
Crystal Clear WS Corp.		349	485	639	806	959	1,165	1,3
Plum Creek Water Co		392	566	762	963	1,168	1,427	1,6
County Line WS Corp.		252	947	1,999	2,319	2,393	2,612	2,9
Maxwell WS Corp.		117	157	200	249	294	354	4
Niederwald		65	104	147	194	238	294	3
Mountain City		22	45	71	98	124	157	1
Creedmoor-Maha WSC		8	10	12	15	17	20	':
County-Other (Rural)	2,244	1,273	1,444	1,644	1,855	2,077	2,361	2,5
				· ·		· ·		, , , , , , , , , , , , , , , , , , ,
Municipal Demand	9,805	10,926	17,278	24,409	29,964	35,414	42,121	47,4
Manufacturing Demand	57	157	212	249	285	322	355	3
Steam-Electric Power Demand	0	0	1,009	718	949	1,949	2,663	3,6
Irrigation Demand	298	162	353	350	347	344	341	3
Mining Demand	0	129	142	151	157	161	162	1
Livestock Demand	<u>378</u>	280	280	280	280	280	280	2
Total Demand	10,538	11,654	19,274	26,157	31,982	38,470	45,922	52,2

Table 2-12 (Continued)	Use in	Use in			Proie	ctions		
	1990	2000	2010	2020	2030	2040	2050	2060
Basin/County/City/Rural	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Karnes (part) - Guadalupe								
El Oso Water Supply Corp.		5	5	5	6	6	6	6
County-Other (Rural)	14	13	16	20	24	27	30	31
Municipal Demand	14	18	21	25	30	33	36	37
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	8	7	7	7	7	7	7
Livestock Demand	<u>94</u>	<u>83</u>	_83	_83	<u>83</u>	<u>83</u>	<u>83</u>	<u>83</u>
Total Demand	108	109	111	115	120	123	126	127
Kendall (part) - Guadalupe								
County-Other (Rural)	746	1,131	1,635	2,279	2,936	3,487	3,966	4,434
Municipal Demand	746	1,131	1,635	2,279	2,936	3,487	3,966	4,434
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	380	289	520	510	500	490	481	472
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	307	353	353	353	353	353	353	353
Total Demand	1,433	1,773	2,508	3,142	3,789	4,330	4,800	5,259
Victoria (part) - Guadalupe								
Victoria	7,269	7,573	8,013	8,505	8,860	9,092	9,361	9,650
County-Other (Rural)	1,220	1,365	1,520	1,686	1,821	1,912	1,998	2,095
Municipal Demand	8,489	8,938	9,533	10,191	10,681	11,004	11,359	11,745
Manufacturing Demand	20,032	24,323	28,726	32,095	35,035	37,962	40,578	43,520
Steam-Electric Power								
Demand	887	2,197	4,052	53,178	53,178	53,178	53,178	53,178
Irrigation Demand	1,995	979	1,450	1,253	1,081	932	805	695
Mining Demand	2,398	2,267	2,965	3,391	3,688	3,990	4,301	4,541
Livestock Demand	626	507	507	507	507	507	507	507
Total Demand	34,427	39,211	47,233	100,615	104,170	107,573	110,728	114,186
Wilson (part) - Guadalupe								
County-Other (Rural)	68	20	28	37	47	57	68	79
Municipal Demand	68	20	28	37	47	57	68	79
Manufacturing Demand	48	0	0	0	0	0	0	0
Steam-Electric Power								
Demand	0	0	0	0	0	0	0	0
Irrigation Demand	116	146	79	70	63	56	49	44
Mining Demand	0	16	14	13	13	13	13	12
Livestock Demand	61	_54	_54	_54	<u>54</u>	<u>54</u>	_54	54
Total Demand	293	236	175	174	177	180	184	189
Guadalupe Basin								
Municipal Demand	45,608	53,808	68,487	85,556	101,455	116,696	133,722	150,261
Manufacturing Demand	26,235	35,201	42,051	46,871	51,112	55,306	59,014	63,453
Steam-Electric Power	-,	,	,	-,	_ ,	,3		,
Demand	13,052	11,353	18,876	73,945	74,096	76,906	78,069	80,963
Irrigation Demand	10,320	5,937	6,032	5,371	4,787	4,263	3,859	3,525
Mining Demand	3,413	4,964	6,289	6,918	7,336	7,758	8,184	8,536
Livestock Demand	8,836	9,667	9,914	9,914	9,914	9,914	9,914	9,914
Guadalupe Basin Total	107,464	120,930	151,649	228,575	248,700	270,843	292,762	316,652

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Lower Colorado Basin (part)	(uort)	(uort)	(uort)	(uon)	(don)	(uon)	(uon)	(done)
Caldwell (part) - Lower Colorado								
Polonia Water supply Corp.		140	202	268	325	384	441	501
Creedmoor-Maha Water Supply Corp.		94	136	177	213	250	287	325
Mustang Ridge		84	122	160	194	228	262	296
County-Other (Rural)	216	23	23	22	22	22	21	21
Municipal Demand	216	341	483	627	754	884	1,011	1,143
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	20	15	15	14	12	11	10	8
Mining Demand	0	7	9	9	10	11	11	11
Livestock Demand	<u>135</u>	<u>156</u>	<u>156</u>	<u>156</u>	<u>156</u>	<u>156</u>	<u>156</u>	156
Total Demand	371	519	663	806	932	1,062	1,188	1,318
Kendall (part) - Lower Colorado								
County-Other (Rural)	20	24	35	49	63	75	86	96
Municipal Demand	20	24	35	49	63	75	86	96
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	6	6	6	6	6	6	6
Livestock Demand	<u>12</u>	<u>13</u>	<u>13</u>	<u>13</u>	<u>13</u>	<u>13</u>	<u>13</u>	_13
Total Demand	32	43	54	68	82	94	105	115
_ower Colorado Basin								
Municipal Demand	236	365	518	676	817	959	1,097	1,239
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	20	15	15	14	12	11	10	8
Mining Demand	0	13	15	15	16	17	17	17
Livestock Demand	<u>147</u>	<u>169</u>	<u>169</u>	<u>169</u>	169	169	169	169
Lower Colorado Basin Total	403	562	717	874	1,014	1,156	1,293	1,433
Lavaca Basin (part)								
DeWitt (part) - Lavaca								
Yoakum	425	352	352	354	351	345	334	328
County-Other (Rural)	136	146	145	145	142	138	133	131
Municipal Demand	561	498	497	499	493	483	467	459
Manufacturing Demand	0	7	8	9	10	10	11	12
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	108	34	37	39	40	40	41	41
Livestock Demand	<u>263</u>	<u>253</u>						
Total Demand	932	792	795	800	796	786	772	765
Gonzales (part) - Lavaca								
County-Other (Rural)	8	10	9	7	6	5	5	5
Municipal Demand	8	10	9	7	6	5	5	5
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	ő	0	0
Irrigation Demand	0	0	0	0	0	ő	0	0
							_	
	0	3	3	3	3	2	2	2
Mining Demand Livestock Demand	0 <u>36</u>	3 <u>52</u>	3 <u>99</u>	3 <u>99</u>	3 <u>99</u>	99	2 <u>99</u>	99

_	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Victoria (part) - Lavaca								
County-Other (Rural)	21	5	5	6	6	7	7	7
Municipal Demand	21	5	5	6	6	7	7	7
Manufacturing Demand	0	0	0	0	0	0	0	(
Steam-Electric Power Demand	0	0	0	0	0	0	0	(
Irrigation Demand	0	0	0	0	0	0	0	
Mining Demand	0	0	0	0	0	0	0	
Livestock Demand	<u>6</u>	<u>5</u>	<u>5</u>	<u>5</u>	_ <u>5</u>	<u>5</u>	<u>5</u>	
Total Demand	27	10	10	11	11	12	12	1:
Lavaca Basin								
Municipal Demand	590	513	511	512	505	495	479	47
Manufacturing Demand	0	7	8	9	10	10	11	1:
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	0	0	0	0	0	0	0	
Mining Demand	108	37	40	41	42	43	43	4
Livestock Demand	305	310	357	357	357	357	357	35
Lavaca Basin Total	1,003	867	916	919	914	905	890	88 ₁
Colorado-Lavaca Coastal Basin (part) Calhoun (part)-Colorado-Lavaca CB ²								
Point Comfort	137	140	224	323	500	677	667	66
County-Other (Rural)	80	111	65	39	23	14	8	00
Municipal Demand	217	251	289	362	523	691	675	67
Manufacturing Demand	6,343	19,175	22,516	24,810	26,790	28,753	30,486	32,67
Steam-Electric Power Demand	•	684	0	•	•	20,733		
Irrigation Demand	62 0	084	0	0	0	0	0	(
Mining Demand	0	1	1	1	1	1	1	
Livestock Demand	1 <u>3</u>	17	17	17	17	17	17	1
Total Demand	6,635	20,128	22,823	25,190	27,331	29,462	31,179	33,36
Colorado Lavaca Coastal Basin								
	0.47	054	000	000	500	004	075	
Municipal Demand	217	251	289	362	523	691	675	67
Manufacturing Demand	6,343	19,175	22,516	24,810	26,790	28,753	30,486	32,67
Steam-Electric Power Demand	62	684	0	0	0	0	0	
Irrigation Demand	0	0	0	0	0	0	0	
Mining Demand	0	1	1	1	1	1	1	
Livestock Demand Colorado Lavaca CB Total	13 6,635	<u>17</u> 20,128	<u>17</u> 22,823	<u>17</u> 25,190	<u>17</u> 27,331	17 29,462	17 31,179	<u>1</u> 33,36
	,,,,,,,,	-,	,-	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lavaca-Guadalupe Coastal Basin (part)								
Calhoun (part)-Lavaca-Guadalupe CB								_
Port Lavaca	1,507	1,658	1,769	1,877	1,981	2,079	2,209	2,34
Seadrift	169	247	252	255	257	256	257	25
Calhoun county WSC		356	436	516	572	609	618	63
County-Other (Rural)	2,016	186	198	210	222	234	248	26
Municipal Demand	3,692	2,447	2,655	2,858	3,032	3,178	3,332	3,49
Manufacturing Demand	17,963	23,086	27,108	29,871	32,255	34,618	36,704	39,33
Steam-Electric Power Demand	0	0	0	0	0	0	0	
Irrigation Demand	35,421	8,077	15,568	13,654	12,096	11,041	10,285	9,58
Mining Demand	1	6	7	8	8	8	8	
Livestock Demand	278	322	322	322	322	322	322	32
Total Demand	57,355	33,938	45,660	46,713	47,713	49,167	50,651	52,74

	Use in	Use in			Proje	ctions		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
DeWitt (part)-Lavaca-Guadalupe CB								
County-Other (Rural)	3	0	0	0	0	0	0	0
Municipal Demand	3	0	0	0	0	0	0	0
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	15	17	18	18	18	19	19
Livestock Demand	<u>51</u>	<u>34</u>	<u>34</u>	<u>34</u>	<u>34</u>	<u>34</u>	<u>34</u>	<u>34</u>
Total Demand	<u>51</u> 54	49	<u>51</u> 51	<u>51</u> 52	<u>51</u> 52	<u>5 1</u> 52	53	53
Victoria (part)-Lavaca-Guadalupe CB								
Victoria	1,883	3,696	3,911	4,151	4,324	4,438	4,569	4,710
County-Other (Rural)	1,118	1,020	1,136	1,260	1,360	1,428	1,493	1,565
Municipal Demand	3,001	4,716	5,047	5,411	5,684	5,866	6,062	6,275
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	11,704	5,729	8,486	7,323	6,321	5,456	4,709	4,064
Mining Demand	11	748	979	1,120	1,218	1,318	1,420	1,500
Livestock Demand	569	512	512	512	512	512	512	512
Total Demand	15,285	11,705	15,024	14,366	13,735	13,152	12,703	12,351
Lavaca-Guadalupe Coastal Basin								
Municipal Demand	6,696	7,163	7,702	8,269	8,716	9,044	9,394	9,774
Manufacturing Demand	17,963	23,086	27,108	29,871	32,255	34,618	36,704	39,335
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	47,125	13,806	24,054	20,977	18,417	16,497	14,994	13,645
Mining Demand	12	770	1,003	1,145	1,244	1,344	1,447	1,527
Livestock Demand	898	868	868	868	868	868	868	868
Lavaca-Guadalupe CB Total	72,694	45,693	60,735	61,130	61,500	62,371	63,407	65,149
San Antonio-Nueces Coastal Basin (part)								
Calhoun (part)-San Antonio-Nueces CB								
County-Other (Rural)	4	7	4	2	1	1	0	0
Municipal Demand	4	7	4	2	1	1	0	0
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	4	8	9	10	10	11	11	11
Livestock Demand	<u>0</u>	_0	_0	_0	_0	_0	_0	_0
Total Demand	8	15	13	12	11	12	11	11
Goliad (part)-San Antonio-Nueces CB								
County-Other (Rural)	59	62	70	80	87	91	94	97
Municipal Demand	59	62	70	80	87	91	94	97
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
	0	11	9	8	7	6	5	4
Irrigation Demand	U							
Irrigation Demand Mining Demand	0	4	132	93	68	46	25	15
Irrigation Demand Mining Demand Livestock Demand			132 359	93 359	68 <u>359</u>	46 <u>359</u>	25 359	15 <u>359</u>

Table 2-12 (Continued)								
	Use in	Use in	2010	2222	2222	2212	2052	
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Karnes (part)-San Antonio-Nueces CB	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,
El Oso Water Supply Corp.		2	3	3	3	3	3	3
County-Other (Rural)	58	7	8	10	12	14	15	15
Municipal Demand	58	9	11	13	15	17	18	18
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	C
Mining Demand	0	6	5	5	5	5	5	5
Livestock Demand	71	<u>59</u>	<u>59</u>	<u>59</u>	<u>59</u>	<u>59</u>	<u>59</u>	<u>59</u>
Total Demand	129	74	75	77	79	81	82	82
Refugio (part)-San Antonio-Nueces CB								
Refugio	569	557	645	709	723	763	787	777
Woodsboro	309	272	283	291	289	292	295	293
County-Other (Rural)	338	354	314	281	264	239	225	227
Municipal Demand	1,216	1,183	1,242	1,281	1,276	1,294	1,307	1,297
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	850	69	69	69	69	69	69
Mining Demand	77	6	7	8	8	8	8	8
Livestock Demand	542	598	598	598	598	598	598	598
Total Demand	1,835	2,637	1,916	1,956	1,951	1,969	1,982	1,972
San Antonio-Nueces Coastal Basin								
Municipal Demand	1,337	1,261	1,327	1,376	1,379	1,403	1,419	1,412
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	861	78	77	76	75	74	73
Mining Demand	81	24	154	116	91	69	49	39
Livestock Demand	<u>957</u>	<u>1,016</u>	<u>1,016</u>	<u>1,016</u>	<u>1,016</u>	<u>1,016</u>	<u>1,016</u>	<u>1,016</u>
San Antonio-Nueces CB Total South Central Texas Region River and Coa	2,375 stal Basin	3,162 Summar	2,575 v	2,585	2,562	2,563	2,558	2,540
Court Central Texas Region River and Coa	star Dasiii.	3 Cummar	<u>, </u>					
Rio Grande Basin								
Municipal Demand	6	2	2	2	2	2	2	2
Manufacturing Demand	0	0	0	0	0	0	0	0
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	0	0	0	0	0	0	0	0
Mining Demand	0	0	0	0	0	0	0	0
Livestock Demand	<u>192</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>	<u>105</u>
Rio Grande Basin Total	198	107	107	107	107	107	107	107
Nueces Basin								
Municipal Demand	24,157	29,599	32,130	34,782	37,029	38,702	40,264	41,555
Manufacturing Demand	2,152	1,362	1,548	1,642	1,715	1,785	1,844	1,962
Steam-Electric Power Demand	6,074	5,943	7,289	5,075	6,302	6,189	7,412	7,763
Irrigation Demand	539,759	319,890	314,279	302,311	291,011	279,881	269,196	258,935
Mining Demand	2,212	2,715	3,045	3,193	3,273	3,350	3,424	3,498
Livestock Demand	<u>7,767</u>	<u>8,450</u>	<u>8,450</u>	<u>8,450</u>	<u>8,450</u>	<u>8,450</u>	<u>8,450</u>	<u>8,450</u>
Nueces Basin Total Demand	582,121	367,959	366,741	355,453	347,780	338,357	330,590	322,163

		Use in	Use in			Projec	ctions		
	Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
San Ant	tonio Basin								
	Municipal Demand	239,648	247,068	285,029	319,576	352,949	379,144	405,292	431,85
	Manufacturing Demand	14,323	21,364	26,079	29,633	32,919	36,220	39,123	42,28
	Steam-Electric Power Demand	24,263	17,399	20,395	25,761	30,139	32,973	36,120	39,61
	Irrigation Demand	72,216	42,823	34,568	32,437	30,474	28,668	27,010	25,49
	Mining Demand	1,973	3,232	3,979	4,273	4,450	4,631	4,811	4,98
	Livestock Demand	5,285	5,058	5,058	5,058	5,058	5,058	5,058	5,05
	San Antonio Basin Total		336,944	375,109	416,738	455,989	486,694	517,414	549,27
Guadalı	uno Pasin								
Guadan	upe Basin								
	Municipal Demand	45,608	53,808	68,487	85,556	101,455	116,696	133,722	150,26
	Manufacturing Demand Steam-Electric Power Demand	26,235	35,201	42,051	46,871	51,112	55,306	59,014	63,45
		13,052	11,353	18,876	73,945	74,096	76,906	78,069	80,96
	Irrigation Demand	10,320	5,937	6,032	5,371	4,787	4,263	3,859	3,52
	Mining Demand	3,413	4,964	6,289	6,918	7,336	7,758	8,184	8,53
	Livestock Demand	<u>8,836</u>	<u>9,667</u>	<u>9,914</u>	9,914	<u>9,914</u>	<u>9,914</u>	9,914	<u>9,91</u>
	Guadalupe Basin Total	107,464	120,930	151,649	228,575	248,700	270,843	292,762	316,65
Lower C	Colorado Basin								
Lower		236	365	518	676	817	959	1,097	1,23
	Municipal Demand Manufacturing Demand	230		0	0/0	0	959		1,23
	9		0				_	0	
	Steam-Electric Power Demand	0	0	0	0	0	0	0	
	Irrigation Demand	20	15	15	14	12	11	10	,
	Mining Demand	0	13	15	15	16	17	17	1
	Livestock Demand	<u>147</u>	<u>169</u>	<u>169</u>	<u>169</u>	<u>169</u>	<u>169</u>	<u>169</u>	<u>16</u>
	Lower Colorado Basin Total	403	562	717	874	1,014	1,156	1,293	1,43
Lavaca	Basin								
	Municipal Demand	590	513	511	512	505	495	479	47
	Manufacturing Demand	0	7	8	9	10	10	11	1
	Steam-Electric Power Demand	0	0	0	0	0	0	0	
	Irrigation Demand	0	0	0	0	0	0	0	
	Mining Demand	108	37	40	41	42	43	43	4
	Livestock Demand	305	310	357	<u>357</u>	357	<u>357</u>	357	<u>35</u>
	Lavaca Basin Total	1,003	867	916	919	914	905	890	88
	Lavaca Dasiii Totai	1,003	007	310	313	317	303	030	
Colorad	lo Lavaca Coastal Basin								
	Municipal Demand	217	251	289	362	523	691	675	67
	Manufacturing Demand	6,343	19,175	22,516	24,810	26,790	28,753	30,486	32,67
	Steam-Electric Power Demand		684			26,790			32,07
	Irrigation Demand	62		0	0	-	0	0	
	Mining Demand	0	0	0	0	0	0	0	
	Livestock Demand	0	1	1	1	1	1	1	
		<u>13</u>	<u>17</u>	<u>17</u>	<u>17</u>	<u>17</u>	<u>17</u>	<u>17</u>	<u>1</u>
	Colorado Lavaca CB Total	6,635	20,128	22,823	25,190	27,331	29,462	31,179	33,3

Table 2-12 (Concluded)

	Use in	Use in			Proje	ections		
Basin/County/City/Rural	1990 (acft)	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Lavaca-Guadalupe Coastal Basin								
Municipal Demand	6,696	7,163	7,702	8,269	8,716	9,044	9,394	9,774
Manufacturing Demand	17,963	23,086	27,108	29,871	32,255	34,618	36,704	39,335
Steam-Electric Power Demand	0	0	0	0	0	0	0	0
Irrigation Demand	47,125	13,806	24,054	20,977	18,417	16,497	14,994	13,645
Mining Demand	12	770	1,003	1,145	1,244	1,344	1,447	1,527
Livestock Demand	898	868	868	868	868	868	868	868
Lavaca-Guadalupe CB Total	72,694	45,693	60,735	61,130	61,500	62,371	63,407	65,149
San Antonio-Nueces Coastal Basin								
Municipal Demand	1,337	1,261	1,327	1,376	1,379	1,403	1,419	1,412
Manufacturing Demand	0	0	0	0	0	0	0	(
Steam-Electric Power Demand	0	0	0	0	0	0	0	C
Irrigation Demand	0	861	78	77	76	75	74	73
Mining Demand	81	24	154	116	91	69	49	39
Livestock Demand	957	<u>1,016</u>						
San Antonio-Nueces CB Total	2,375	3,162	2,575	2,585	2,562	2,563	2,558	2,540
South Central Texas Region								
Municipal Demand	*	340,030	· '	451,111	503,375	547,136	592,344	637,236
Manufacturing Demand		100,195	•	132,836	144,801	156,692	167,182	179,715
Steam-Electric Power Demand	43,451	35,379	· ·	104,781	110,537	116,068	121,601	128,340
Irrigation Demand	669,440		379,026	361,187	344,777	329,395	315,143	301,679
Mining Demand	7,799	11,757	•	15,703	16,454	17,213	17,976	18,644
Livestock Demand	<u>24,400</u>	<u>25,660</u>		<u>25,954</u>	<u>25,954</u>	<u>25,954</u>	<u>25,954</u>	<u>25,954</u>
Region Total	1,130,601	896,353	981,370	1,091,572	1,145,898	1,192,458	1,240,200	1,291,568
River and Coastal Basin Totals								
Rio Grande Basin (part)	198	107	107	107	107	107	107	107
Nueces basin (part)	582,121	_	366,741	355,453	347,780	338,357	330,590	322,163
San Antonio Basin (part)	357,708		375,109	416,738	455,989	486,694	517,414	549,279
Guadalupe Basin (part)	107,464	,	151,649	,	248,700	270,843	,	316,652
Lower Colorado Basin (part)	403			228,575		· ·	292,762	•
Lavaca Basin (part)		562	717	874	1,014	1,156	1,293	1,433
Colorado-Lavaca Coastal Basin	1,003	867	916	919	914	905	890	884
(part)	6,635	20,128	22,823	25,190	27,331	29,462	31,179	33,361
Lavaca-Guadalupe Coastal Basin (part)	72,694	45,693	60,735	61,130	61,500	62,371	63,407	65,149
San Antonio-Nueces Coastal	6.07-	0.405	0.555	0.50-				
Basin(part)	<u>2,375</u>	3,162		<u>2,585</u>	<u>2,562</u>	<u>2,563</u>	<u>2,558</u>	<u>2,540</u>
Region Total				1,091,572		1,192,458	1,240,200	1,291,568

Data for Water Supply Corporations and Districts were included in County Other in the 2001 Plan.
 CB means Coastal Basin.

2.10 Water Demand Projections for Wholesale Water Providers

The TWDB defines a Wholesale Water Provider (WWP) as any person or entity, including river authorities and irrigation districts, that has contracts to sell more than 1,000 acft of water wholesale in any one year during the five years immediately preceding the adoption of the last Regional Water Plan. Under this definition, the list of WWPs for the South Central Texas Region is as follows:

- San Antonio Water System (SAWS);
- Bexar Metropolitan Water District (BMWD);
- Guadalupe-Blanco River Authority (GBRA);
- Canyon Region Water Authority (CRWA);
- Schertz-Sequin Local Government Corporation (SSLGC); and
- Springs Hill WSC (SHWSC)

In addition, the recently-formed Texas Water Alliance (TWA) is included as a WWP because it is expected to enter into contracts to sell more than 1,000 acft/yr wholesale during the planning period.

2.10.1 San Antonio Water System

The San Antonio Water System (SAWS) provides wholesale water supplies to five utility systems, retail water supplies to six suburban municipalities, retail water supplies for most, but not all, of the City of San Antonio, a portion of County-Other in Bexar County, and a portion of the industrial supplies in Bexar County. SAWS is the sole water provider for the Cities of Elmendorf, Balcones Heights, China Grove, Helotes, Olmos Park, Terrell Hills, and Palm Park Water Co., and provides part of the water supply for East Central WSC, Live Oak, Windcrest, Leon Valley, and San Antonio. SAWS is also projected to meet the needs of Shavano Park.

As noted in the preceding paragraph, several of SAWS' customers also obtain water from other WWPs or supply a portion of their own water. East Central WSC is a customer of BMWD and CRWA, although historically East Central WSC has not obtained water from BMWD. Leon Valley obtains water from SAWS and also supplies a portion of their own water (Table 2-13). The total amount of water needed by SAWS to meet its customers' projected demands in 2030 is 267,501 acft/yr and in 2060 is 328,422 acft/yr (Table 2-13).

Year 2000 2010 2020 2030 2040 2050 2060 Water Purchaser (acft) (acft) (acft) (acft) (acft) (acft) (acft) **Balcones Heights** 514 600 China Grove 288 376 457 645 695 531 591 Elmendorf 112 123 140 148 156 99 132 Helotes 1,537 3,679 4,047 845 2,249 2,820 3,264 Leon Valley 407 397 388 382 375 372 377 Live Oak1 338 344 347 353 358 370 385 Olmos Park 403 424 452 484 381 441 468 San Antonio 166,813 192,007 213,943 234,865 250,671 265,958 281,204 Shavano Park^{1,2} 303 320 336 348 357 369 381 Terrell Hills 863 914 983 1,018 1,057 815 956 Windcrest 61 60 60 59 59 59 59 East Central WSC 2,240 2,240 2,240 2,240 2,240 2,240 2,240 East Central WSC (Palm Park) 1,120 1,120 1,120 0 0 Rural 5,595 5,661 5,747 5,796 5,923 6,287 6,667 Industrial (Bexar County) 7,723 12,000 16,000 18,000 22,000 30,000 30,000 187,508 217,954 244,903 267,501 288,013 312,246 328,422 **Total Demand**

Table 2-13.
San Antonio Water System Water Demand Projections

2.10.2 Bexar Metropolitan Water District

The Bexar Metropolitan Water District (BMWD) supplies retail water within the District's service area, as well as currently providing water to, or projected to provide water to Atascosa Rural WSC, Castle Hills, Cibolo, Hill Country Village, Hollywood Park, San Antonio, Somerset, East Central WSC, Converse, and Live Oak. The total amount of water needed by BMWD to meet its customers' projected demands in 2030 is 50,369 acft/yr and in 2060 is 58,923 acft/yr (Table 2-14).

Water demands may be greater than shown due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Shavano Park projected needs for additional water supply assigned to SAWS.

Year 2010 2020 2030 2040 2050 2000 2060 Water Purchaser (acft) (acft) (acft) (acft) (acft) (acft) (acft) Atascosa Rural WSC 0 120 120 120 120 120 120 Bexar Met Water District (Atascosa County) 389 505 621 715 780 843 895 8,794 8.897 9,032 9,109 9,248 9,449 Bexar Met Water District (Bexar County) 9,110 Bexar Met Water District (Comal County) 748 1,059 1,654 2,001 230 462 1,344 Bexar Met Water District (Medina County) 15 33 41 47 54 60 24 Castle Hills 838 820 807 793 780 771 771 Cibolo¹ 0 500 500 500 500 500 500 Hill Country Village 842 838 835 831 828 826 826 2,229 Hollywood Park 2,314 2,389 2,458 2,511 2,565 2,616 San Antonio 21,419 24.654 27.471 30.157 32.187 34.150 36.107 Somerset 321 405 484 552 609 660 709 East Central WSC 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,500 Converse 0 1,500 1,634 1,949 2,216 2,469 Live Oak1 1,000 1,000 1,000 1,000 1,000 0 1,000 **Total Demand** 36,477 43,439 46,940 50,369 53,165 56,007 58,923

Table 2-14.
Bexar Metropolitan Water District Water Demand Projections

2.10.3 Guadalupe-Blanco River Authority

The Guadalupe-Blanco River Authority (GBRA) supplies potable water and raw water for municipal, industrial, irrigation, and steam-electric purposes through management of substantial quantities of run-of-river rights and storage rights in Canyon Reservoir. As of April 2009, the Authority had contracts to provide water to over 40 public and private entities. The total amount of water needed by GBRA to meet its customers' current contract amounts and projected future contract amounts in 2030 is 238,440 acft/yr, with 22,042 acft/yr being for use in the upper basin (at or above Canyon Dam), 79,056 acft/yr being for use in the mid-basin (below Canyon Dam and above Victoria), and 137,342 acft/yr being for use in the lower basin (at or below Victoria) (Table 2-15). The total amount of water needed by GBRA to meet its customers' current contract amounts and projected future contract amounts in 2060 is 279,484 acft/yr, with 33,151 acft/yr being for use in the upper basin, 95,003 acft/yr being for use in the mid-basin, and 151,330 acft/yr being for use in the lower basin (Table 2-15).

Water demands may be greater than shown due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Table 2-15.
Guadalupe-Blanco River Authority Water Demand Projections

				Year			
Water Purchaser	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Municipal (Canyon Reservoir)							
Upper Basin - At or above Canyon Reservoir							
Canyon Lake WSC	4,000	6,000	6,000	6,129	8,198	10,466	12,76
City of Blanco	600	600	600	600	600	600	6
HH Ranch Properties	0	250	250	250	250	250	2
Domestic Contracts	25	17	17	17	17	17	
Rebecca Creek MUD	130	130	130	130	130	130	1
Kendall County Rural	0	221	865	1,522	2,073	2,726	3,5
Kerr County MOU	0	0	0	2,000	2,000	2,000	2,0
WW Sports	1	1	1	1	1	1	
Yacht Club	4	4	4	4	4	4	
SJWTX - Bulverde (Western Canyon)	0	400	400	400	400	400	4
SJWTX – Park Village (Western Canyon)	0	322	322	322	322	322	3
Bulverde City (Western Canyon)	0	653	1,342	2,128	2,910	3,723	4,5
City of Boerne (Western Canyon)	0	1,176	1,794	2,449	2,976	3,436	3,8
City of Fair Oaks Ranch (Western Canyon)	0	1,850	1,850	1,850	1,850	1,850	1,8
Cordillera Ranch (Western Canyon)	0	1,000	1,000	1,000	1,000	1,000	1,0
DH InvestJohnson Ranch (Western Canyon)	0	400	400	400	400	400	.,,
Kendall & Tapatio (Western Canyon)	0	750	750	750	750	750	
Comal Trace (Western Canyon)	0	100	100	100	100	100	
Kendall County Rural	0	0	0	0	0	0	;
SAWS (Western Canyon)	0	4,550	3,243	1,802	0	0	
Western Canyon Sub-Total	0	11,201	11,201	11,201	10,708	11,981	13,
Total Upper Basin Municipal (Canyon Reservoir)	4,760	18,424	19,068	21,854	23,981	28,175	32,9
Total Opper Basili Mullicipal (Callyon Reservoir)	4,700	10,424	19,000	21,034	23,361	20,173	32,
Mid Basin- Below Canyon Dam to Above Victoria							
= ==== Zoon vanjon zani to riboro ribtoria							
CRWA – BMWD		3,500	0	0	0	0	
		3,500 1,350	0 1,350	0 1,350	0 1,350	0 1,350	1,
CRWA – BMWD				-		-	1,
CRWA – BMWD CRWA – Cibolo		1,350	1,350	1,350	1,350	1,350	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC		1,350 500	1,350	1,350	1,350	1,350	
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD		1,350 500 1,100	1,350 0	1,350 0	1,350 0	1,350 0 0	
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC		1,350 500 1,100 300	1,350 0 0 300	1,350 0 0 300	1,350 0 0 300	1,350 0 0 300	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion		1,350 500 1,100 300 1,800 100	1,350 0 0 300 1,700	1,350 0 0 300 1,700	1,350 0 0 300 1,700	1,350 0 0 300 1,700	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC		1,350 500 1,100 300 1,800 100 1,425	1,350 0 0 300 1,700 100 1,425	1,350 0 0 300 1,700 100 1,425	1,350 0 0 300 1,700 100 1,425	1,350 0 0 300 1,700 100 1,425	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD		1,350 500 1,100 300 1,800 100 1,425 500	1,350 0 0 300 1,700 100 1,425 500	1,350 0 0 300 1,700 100 1,425 500	1,350 0 0 300 1,700 100 1,425 500	1,350 0 0 300 1,700 100 1,425 500	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA – Dunlap In District Balance	10.025	1,350 500 1,100 300 1,800 100 1,425 500 0	1,350 0 0 300 1,700 100 1,425 500 5,200	1,350 0 0 300 1,700 100 1,425 500 5,200	1,350 0 0 300 1,700 100 1,425 500 5,200	1,350 0 0 300 1,700 100 1,425 500 5,200	1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA – Springs Hill WSC / Green Valley SUD CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Current Contract Subtotal	10,025	1,350 500 1,100 300 1,800 100 1,425 500	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575	1, 1, 5, 10,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Current Contract Subtotal CRWA Dunlap Future Contract		1,350 500 1,100 300 1,800 100 1,425 500 0 10,575	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000	1, 1, 5, 10, 5, 5, 5, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other	0	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333	1,· 1,· 5,· 10,· 5,·
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities ¹		1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081	1,; 1,; 1,,; 1,,; 5,; 5,; 20,, 9,0
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing	0 6,720	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141	1,4 5,3 10,4 5,4 20,4 9,0
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities Comal County Manufacturing City of Seguin	0 6,720 3,000	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000	1,4 1,4 5,2 10,4 5,1 20,4
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities Comal County Manufacturing City of Seguin Dittmar, Gary	0 6,720 3,000 5	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5	1,350 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5	1,, 1,, 5,, 10,, 5,, 20,, 9,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing City of Seguin Dittmar, Gary Dittmar, Ray	0 6,720 3,000 5 5	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Current Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing City of Seguin Dittmar, Gary Dittmar, Ray Gonzales County WSC	0 6,720 3,000 5 5 700	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5 700	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5 5	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5 5	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing City of Seguin Dittmar, Gary Dittmar, Ray Gonzales County WSC Green Valley SUD	0 6,720 3,000 5 5 700 200	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5 700 1,000	1,1,1,1 1,1,1 1,1,1 1,1,1 1,1,1
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing City of Seguin Dittmar, Gary Dittmar, Ray Gonzales County WSC Green Valley SUD Springs Hill WSC	0 6,720 3,000 5 5 700 200 2,500	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5 700 1,000 2,500	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5 5 700 1,000 2,500	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5 700 1,000 2,500	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5 700 1,000 2,500	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5 700 1,000 2,500	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
CRWA – BMWD CRWA – Cibolo CRWA – BMWD / Cibolo CRWA – East Central WSC CRWA – East Central WSC / Green Valley SUD CRWA – Green Valley SUD CRWA – Marion CRWA – Springs Hill WSC CRWA – Springs Hill WSC / Green Valley SUD CRWA – Springs Hill WSC / Green Valley SUD CRWA Dunlap In District Balance CRWA Dunlap Future Contract Subtotal CRWA Dunlap Future Contract 50% of Comal County Other New Braunfels Utilities¹ Comal County Manufacturing City of Seguin Dittmar, Gary Dittmar, Ray Gonzales County WSC Green Valley SUD	0 6,720 3,000 5 5 700 200	1,350 500 1,100 300 1,800 100 1,425 500 0 10,575 891 6,720 5,199 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 986 7,627 6,033 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,089 10,764 6,784 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,181 13,871 7,514 1,000 5 700 1,000	1,350 0 0 300 1,700 100 1,425 500 5,200 10,575 5,000 1,333 17,081 8,141 1,000 5 700 1,000	1,1,1,1 1,1,1 1,1,1 1,1,1 1,1,1

				Year			
Water Purchaser	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
City of Mustang Ridge (San Marcos WTP)	0	19	62	99	137	175	21
City of Niederwald (San Marcos WTP)	0	58	118	183	244	317	37
2428 Partners (San Marcos WTP)	0	3,136	3,136	3,136	3,136	3,136	3,13
Plum Creek WC/Monarch (San Marcos WTP)	0	560	560	560	755	1,014	1,21
City of San Marcos (San Marcos WTP)	5,000	10,000	10,000	10,000	10,000	10,000	10,00
Wimberley WSC (San Marcos WTP)	0	219	440	667	885	1,179	1,40
Woodcreek & Woodcreek Utilities (San Marcos WTP)	0	478	944	1,433	1,910	2,501	2,96
County Line WSC (San Marcos WTP)	0	0	0	0	0	0	
Creedmoor-Maha WSC (San Marcos WTP)	0	108	180	246	312	378	44
Crystal Clear WSC (San Marcos WTP)	800	800	800	800	800	800	80
Maxwell WSC (San Marcos WTP)	0	0	0	0	0	0	
Martindale WSC (San Marcos WTP)	0	0	0	0	0	0	
Goforth WSC (San Marcos WTP)	250	1,050	1,050	1,350	1,350	1,350	1,3
Hays County-Other (San Marcos WTP)	0	1,344	1,344	1,344	1,344	1,344	1,34
San Marcos WTP Sub-Total	7,759	21,849	22,711	23,895	24,950	26,271	27,3
Total Mid Basin Municipal (Canyon Reservoir)	32,952	52,482	60,180	65,355	70,339	75,649	81,3
Lower Basin – At or Below Victoria							
City of Victoria (pursuant to Canyon Amendment)	1,240	1,240	1,240	1,240	1,240	1,240	1,2
Calhoun County Rural WSC	500	0	0	0	0	0	
City of Port Lavaca	1,500	0	0	0	0	0	
Port O'Conner MUD	60	0	0	0	0	0	
Total Lower Basin Municipal (Canyon Reservoir)	3,300	1,240	1,240	1,240	1,240	1,240	1,2
La La via Victoria de Caracteria (Caracteria Caracteria							
Industrial/Steam-Electric (Canyon Reservoir)							
Mid Basin – Below Canyon Dam to Above Victoria	0.5	0.5	0.5	0.5	0.5	0.5	
Acme	25	25	25	25	25	25	:
CMC Steel	700	700	700	700	700	700	7
Comal Fair	1	1	1	1	1	1	
Comal Road Department	3	3	3	3	3	3	
GPP (Panda Energy)	6,840	6,840	6,840	6,840	6,840	6,840	6,8
Guadalupe County	1	1	1	1	1	1	
Hays Energy LP	2,464	2,464	2,464	2,464	2,464	2,464	2,4
Henk Paving	0	1	1	1	1	1	
Std. Gypsum	258	258	258	258	258	258	2
Total Mid Basin Industrial/SE (Canyon Reservoir)	10,292	10,293	10,293	10,293	10,293	10,293	10,2
Lower Basin – At or Below Victoria	4.000	4.000	0.000	0.000	0.000	0.000	0.0
Coleto Creek	4,000	4,000	6,000	6,000	6,000	6,000	6,0
Ineous (BP)	1,100	0	0	0	0	0	
Seadrift Coke	334	0	0	0	0	0	
Dow/UCC	100	0	0	0	0	0	
Total Lower Basin Industrial/SE (Canyon Reservoir)	5,534	4,000	6,000	6,000	6,000	6,000	6,0
Irrigation (Canyon Reservoir)							
Irrigation Contracts (Upper Basin)	173	188	188	188	188	188	18
Irrigation Contracts (Mid-Basin)	736	608	608	608	608	608	6
Canyon Reservoir Total	57,747	87,235	97,577	105,538	112,649	122,153	132,5
Mid-Basin Municipal (Run-of-River)	VI,11-11	5.,200	0.,011		,0-,0	,,,,,,	. 32,0
Lockhart	1,120	1,120	1,120	1,120	1,120	1,120	1,1:
Luling	1,680	1,680	1,680	1,680	1,680	1,680	1,6

Table 2-15 (Concluded)

				Year			
Water Purchaser	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Mid-Basin Municipal (Run-of-River) Total	2,800	2,800	2,800	2,800	2,800	2,800	2,800
Lower Basin Municipal (Run-of-River)							
Calhoun County Rural WSC	356	436	516	572	609	618	632
Port Lavaca	1,658	1,769	1,877	1,981	2,079	2,209	2,345
Port O'Conner MUD	186	198	210	222	234	248	264
Victoria County Rural	0	0	0	0	81	193	310
Total Lower Basin Municipal (Run-of-River, Firm)	2,200	2,403	2,603	2,775	3,003	3,268	3,551
Lower Basin Industrial/SE (Run-of-River)							
Ineous (BP)	2,200	3,300	3,300	3,300	3,300	3,300	3,300
Seadrift Coke	666	1,000	1,000	1,000	1,000	1,000	1,000
Victoria County Industry	0	0	2,969	5,921	8,860	11,489	14,441
Victoria County Steam Electric		1,791	1,836	1,865	1,895	1,927	1,950
Dow/UCC	15,000	15,100	15,100	15,100	15,100	15,100	15,100
Dow/UCC and Other Existing & New Industry	5,356	7,868	10,647	13,045	15,422	17,520	20,167
Total Lower Basin Industrial/SE (Run-of-River, Firm)	23,222	29,059	34,852	40,231	45,577	50,336	55,958
Lower Basin Industrial/SE (Run-of-River, Interruptible)							
Exelon	0	0	75,000	75,000	75,000	75,000	75,000
Total Lower Basin Industrial/SE (Run-of-River, Interruptible)	0	0	75,000	75,000	75,000	75,000	75,000
La constitución (Describio de Constitución (Desc							
Lower Basin Irrigation (Run-of-River, Interruptible)	0.077	45 500	40.054	40.000	44.044	40.005	0.504
Irrigation Agreements Lower Basin (Run-of-River, Firm) Total	8,077 25,422	15,568	13,654 37,455	12,096 43,006	11,041	10,285 53,604	9,581 59,509
		31,462			48,580		
Lower Basin (Run-of-River, Interruptible) Total	8,077	15,568	88,654	87,096	86,041	85,285	84,581
Total Demand	94,046	137,065	226,486	238,440	250,070	263,842	279,484
	34,340	.01,000	220,400	200,170	200,0.0	200,072	2.0,404
Total Upper Basin Demand	4,933	18,612	19,256	22,042	24,169	28,363	33,151
Total Mid Basin Demand	46,780	66,183	73,881	79,056	84,040	89,350	95,003
Total Lower Basin Demand	42,333	52,270	133,349	137,342	141,861	146,129	151,330
Total Demand	94,046	137,065	226,486	238,440	250,070	263,842	279,484

Water demands may be greater than shown due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

2.10.4 Canyon Regional Water Authority

Canyon Regional Water Authority (CRWA) is a water planning and development agency for water purveyors that serve large areas of Guadalupe County, and portions of Bexar, Caldwell, Hays, Wilson, and Comal Counties. CRWA also serves as a planning and development agency for its 12 member entities. CRWA provides all or part of the water supply for Bexar Metropolitan Water District, Cibolo, County Line WSC, East Central WSC, Green Valley SUD, Marion, Martindale WSC, Springs Hills WSC, Maxwell WSC, and Crystal Clear WSC. In

addition to these existing customers, CRWA is projected to meet a portion of the projected demands for the La Vernia, and SS WSC. The total amount of water needed by CRWA to meet its customers' projected demands in 2030 is 43,599 acft/yr and 53,534 acft/yr in 2060 (Table 2-16).

2.10.5 Schertz-Seguin Local Government Corporation

The Schertz-Seguin Local Government Corporation (SSLGC) supplies water to the cities of Schertz and Seguin as well as Springs Hill WSC, Selma, and the Universal City. In addition to these current customers, the SSLGC is projected to meet a portion of the projected demands for Crystal Clear WSC and Garden Ridge. The total amount of water needed by SSLGC to meet its customers' projected demands in 2030 is 15,297 acft/yr and in 2060 is 21,071 acft/yr (Table 2-17).

2.10.6 Springs Hill Water Supply Corporation

Springs Hill WSC provides retail water service within the WSC's service area as well as wholesale water to Crystal Clear WSC. In addition, Springs Hill WSC also supplies water on a wholesale basis to the City of La Vernia and East Central SUD via CRWA. The total amount of water needed by Springs Hill WSC to meet its customers' projected demands in 2030 is 4,091 acft/yr and in 2060 is 5,365 acft/yr (Table 2-18).

Table 2-16.
Canyon Regional Water Authority Water Demand Projections

	Year						
Water Purchaser	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Bexar Met Water District	4,000	6,800	8,800	12,800	13,800	14,505	14,505
City of Cibolo ¹	800	2,050	3,030	8,230	8,730	9,230	9,230
County Line WSC	1,267	1,308	1,878	1,878	1,878	1,878	1,878
East Central WSC	1,400	2,585	2,885	2,635	2,635	2,635	2,635
Green Valley SUD ¹	1,800	2,500	3,600	9,300	9,800	10,800	11,300
City of La Vernia	0	400	400	400	400	400	400
City of Marion ¹	100	200	300	500	500	500	500
Martindale	158	190	190	190	190	190	190
Martindale WSC	288	396	396	696	896	896	896
Springs Hill WSC	1,925	2,025	2,025	2,025	2,025	2,025	2,025
SS WSC ¹	0	0	0	0	0	0	690
Santa Clara	0	100	250	350	500	650	900
Maxwell WSC	867	900	1,300	1,700	2,100	2,500	2,900
Crystal Clear WSC ¹	382	<u>1,600</u>	<u>2,895</u>	<u>2,895</u>	<u>2,895</u>	<u>5,485</u>	<u>5,485</u>
Total Demand	12,987	21,054	27,949	43,599	46,349	51,694	53,534

Water demands may be greater than shown due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Table 2-17.
Schertz-Seguin Local Government Corporation Water Demand Projections

	Year						
Water Purchaser	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Schertz ¹	5,143	5,143	5,143	6,082	7,567	9,258	11,066
Seguin ¹	5,144	5,144	5,144	5,144	5,144	5,144	5,144
Selma	800	800	1,086	1,559	1,557	1,548	1,549
Springs Hill WSC	560	560	560	560	560	560	560
Universal City	800	800	800	800	800	800	800
Crystal Clear WSC ¹	0	0	300	600	900	900	900
Garden Ridge ¹	0	257	395	552	710	873	1,052
Total Demand	12,447	12,704	13,428	15,297	17,238	19,083	21,071

Water demands may be greater than shown due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Year 2000 2010 2020 2030 2040 2050 2060 Water Purchaser (acft) (acft) (acft) (acft) (acft) (acft) (acft) Springs Hill WSC 2,076 2,349 2,679 3,056 3,424 3,849 4,330 La Vernia (via CRWA) 400 400 400 400 400 400 400 Crystal Clear WSC 250 250 250 250 250 250 250 East Central SUD (via CRWA) 385 385 385 385 385 385 385 **Total Demand** 3,714 4,091 4,884 3,111 3,384 4,459 5,365

Table 2-18.
Springs Hill Water Supply Corporation Water Demand Projections

2.10.7 Texas Water Alliance

The Texas Water Alliance (TWA) is a group of landowners located in northeast Gonzales County organized for the purpose of selling groundwater on a wholesale basis to wholesale water providers (WWPs) and water user groups (WUGs) most likely located in the South Central Texas Regional Water Planning Area (Region L). To date, all of the listed WWPs and several WUGs (i.e., Canyon Lake WSC, Gonzales County WSC, San Marcos, and Kyle) in Region L have shown some measure of interest in groundwater supplies potentially available from northeast Gonzales County. It is highly uncertain at this time which one or more of these entities will enter into water supply agreements with the TWA and/or other proximate landowners and whether necessary production permits can be obtained from the Gonzales County Underground Water Conservation District for use of this groundwater. The estimated amounts of water needed by TWA to meet potential customer demands are shown in Table 2-19 and total 22,575 acft/yr in 2060.

Table 2-19.
Texas Water Alliance Water Demand Projections

	Year							
Water Purchaser ¹	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)	
Canyon Lake WSC	0	0	0	3,000	6,000	9,000	12,000	
Water Service Inc.	0	0	1,000	1,000	1,000	1,000	1,000	
Comal County Rural Areas	0	0	986	1,089	1,181	1,333	1,480	
Gonzales County WSC	0	0	500	500	500	500	500	
Springs Hill WSC (WWP)	0	0	1,500	3,000	3,000	3,000	3,000	
Bulverde	<u>0</u>	<u>0</u>	<u>1,342</u>	<u>2,128</u>	<u>2,910</u>	<u>3,723</u>	<u>4,595</u>	
Total Demand	0	0	5,328	10,717	14,591	18,556	22,575	

Actual customers of TWA may differ from those shown herein as all wholesale water providers and several water user groups in Region L have shown interest in available groundwater supplies in northeast Gonzales County.

Section 3 Water Supply Analyses [31 TAC §357.7(a)(3)]

3.1 Groundwater Supplies

There are five major and three minor aquifers supplying water to the South Central Texas Region. The five major aquifers are the Edwards-Balcones Fault Zone, Carrizo-Wilcox¹, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers (Figure 3-1). The three minor aquifers are the Sparta, Queen City, and Yegua-Jackson Aquifers. Section 1.7.1 includes more detailed descriptions of the aquifers, including water quality characteristics.

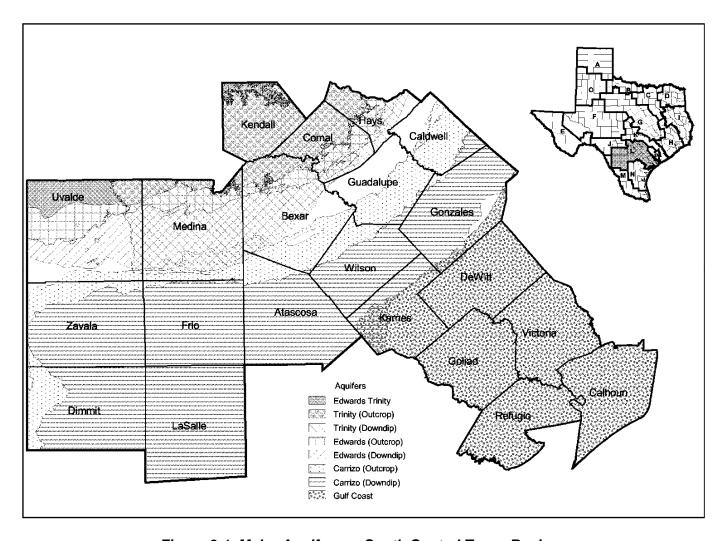


Figure 3-1. Major Aquifers — South Central Texas Region

¹ Although traditionally identified by the Texas Water Development Board as one major aquifer, the Carrizo and Wilcox formations are generally separated by an aquitard which serves to limit or preclude hydrologic connectivity between the two formations in some portions of the planning region.

There are 16 groundwater conservation districts (GCDs) in the South Central Texas Region (Figure 3-2). With the exceptions of Calhoun County, a GCD serves all or a portion of each county in the region. The responsibilities and authorities of these GCDs vary depending upon creating legislation and governing law, and some districts are not responsible for all aquifers within the geographic boundaries of the district. For example, the statutory district of the Edwards Aquifer Authority (EAA) includes (among others) Bexar, Medina, and Uvalde Counties, but the EAA exercises permitting authority only with respect to the Edwards Aquifer in those counties. Other aquifers within this three-county area are managed by the Trinity-Glen Rose GCD, Medina County GCD, and the Uvalde County Underground Water Conservation District. The Carrizo-Wilcox Aquifer in Bexar County, however, is not managed by a GCD.

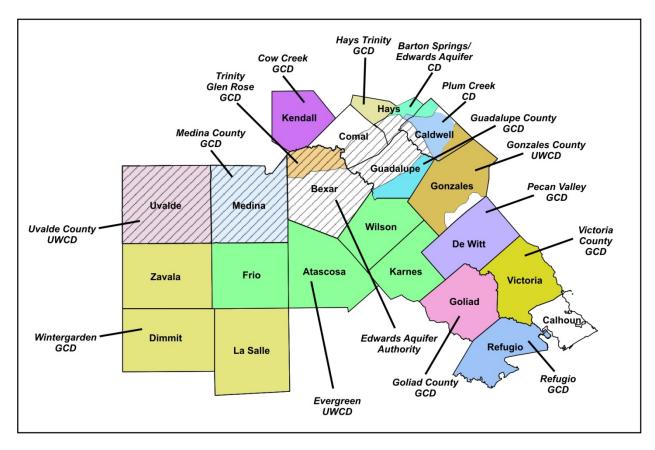


Figure 3-2. Groundwater Conservation Districts

3.1.1 Groundwater Availability

TWDB Guidelines for Regional Water Plan Development describe available groundwater supply as follows:

"The largest amount of water that can be pumped from a given aquifer without violating the most restrictive physical or regulatory or policy conditions limiting withdrawals under drought of record conditions. Regulatory conditions refer specifically to any limitations on pumping withdrawals imposed by groundwater conservation districts through their rules and permitting programs."

HB1763 of the 79th Texas Legislature directs the GCDs within a Groundwater Management Area (GMA) to determine Desired Future Conditions (DFCs) for the groundwater resources within the boundaries of the GMA. These DFCs are used by the Texas Water Development Board (TWDB) to estimate Managed Available Groundwater (MAG) from each aquifer source within each county. The MAG estimates are then to be used by Region L as the official estimates of groundwater supplies available to meet current and future water demands within the region or wherever such supplies may be permitted for use.

The TWDB set a deadline of January 2008 for the GMAs to submit DFCs to the TWDB in order for such DFCs and the resulting MAG estimates to be included in the 2011 regional water plans. Despite significant efforts, none of the GMAs in Region L (GMAs 7, 9, 10, 13, and 15) met this deadline. The SCTRWPG recognized that the process for selection of DFCs is quite challenging and preferred to use MAG estimates in the 2011 South Central Texas Regional Water Plan. Hence, the SCTRWPG decided that final MAG estimates received on or before November 26, 2008 would be used in the 2011 South Central Texas Regional Water Plan. Region L received MAG estimates for the Edwards Group of the Edwards-Trinity (Plateau) Aquifer in GMA 9 in April 2009 and has included them in this plan. As of January 20, 2010, the SCTRWPG has not received MAG estimates from any of the other four GMAs in Region L.

Therefore, as a matter of policy, the SCTRWPG has chosen to accept estimates of available groundwater supply from the management plans of the GCDs for regional planning purposes². When a GCD management plan is not available or an area is not represented by a GCD, the SCTRWPG has chosen to retain the estimates of groundwater supply used in the 2006 South Central Texas Regional Water Plan. The SCTRWPG also acknowledges that county

-

² The SCTRWPG has assumed that estimates of groundwater availability reported in approved groundwater management plans were derived with due consideration of the results of groundwater availability model (GAM) applications in accordance with 31 TAC §356.5.

commissioners' courts have adopted water availability requirements for subdivision platting in Comal, Guadalupe, Hays, Kendall, and Medina Counties. Table 3-1 provides a summary of information pertinent to groundwater supply and availability by county, GCD, and aquifer for all major aquifers with the exception of the Edwards and the Edwards-Trinity (Plateau) Aquifers. In the rightmost column of Table 3-1, the existing groundwater supply "allocated" to meet local demands at year 2010 is shown for reference and comparison to estimates of overall supply. With respect to municipal utilities, it is important to note that this "allocated" supply is, after generally accounting for the ratio of peak to average day water demands, equal to the lesser of the tested well capacities as reported to the Texas Commission on Environmental Quality (TCEQ) or the available groundwater supply adopted by the SCTRWPG and is not necessarily representative of current or projected groundwater use.

In the case of the Edwards Aquifer, Senate Bill 3 of the 80th Texas Legislature established a maximum annual amount of permitted withdrawals from the aquifer of 572,000 acft/yr, specific critical period management plan provisions, interim minimum annualized rates for permitted withdrawals in critical period of 320,000 acft/yr, and a Recovery Implementation Program for protection of endangered species. Thus, for purposes of water supply analyses for the 2011 South Central Texas Regional Water Plan, the permitted supply from the Edwards Aquifer is assumed to be 320,000 acft/yr.³

Projected groundwater supplies available in the South Central Texas Region under drought of record conditions are 947,078 acft/yr in 2010, 939,680 acft/yr in 2030, and 939,356 acft/yr in 2060 (Table 3-2). Supplies available from the Edwards, Sparta, Queen City, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers are projected to hold steady on an annual basis throughout the 2010 through 2060 projection period, and represent about 49 percent of the total groundwater available to the region in 2060 (Table 3-2). The supply available from the Carrizo Aquifer is projected to decline from 438,539 acft/yr for the 2010 through 2020 period to 431,141 acft/yr for the period after 2020. The supply available from the Trinity Aquifer is projected to decline from 49,327 acft/yr for the 2010 through 2040 period to 49,003 acft/yr for the period after 2040.

³ For planning purposes, an estimate of 320,000 acft/yr of available supply during a drought of record from the Edwards Aquifer was agreed upon by the SCTRWPG and the staff of the TWDB. This quantity is adopted as a placeholder number until the EAA obtains approval of a Habitat Conservation Plan (HCP) from the U.S. Fish and Wildlife Service.

Table 3-1.
Available Groundwater Supply for the Gulf Coast, Carrizo-Wilcox, and Trinity Aquifers

		Maj	Major Aquifer(s) ²)2			2010 Supply	//ddn	
County	Groundwater Conservation District [†]	Gulf Coast	Carrizo- Wilcox	Trinity	Management Plan Status³	Production Limits ⁴ (acft/ac/yr)	2006 RWP ⁵ (acft/yr)	GCD Mgmt. Plan (acft/yr)	2010 Supply Allocated (acft/yr)
Calhoun					No GCD		2,940		2,594
Gonzales					No GCD		2,083		101
Refugio	Refugio				Current			24,500	2,952
Goliad	Goliad Co.				Current	0.5		8,000	4,869
Victoria	Victoria Co.				Current	0.5		35,000	34,897
DeWitt	Pecan Valley				Current	1.0		15,000	10,334
Karnes	Evergreen				Current	2.0		15,200	5,069
Karnes					No GCD		669		669
Wilson	Evergreen				Current	2.0		21,804	19,656
Atascosa	Evergreen				Current	2.0		47,806	47,806
Frio	Evergreen				Current	2.0		130,765	123,320
Zavala	Wintergarden				Current	2.5		23,936	23,936
Dimmit	Wintergarden				Current	2.5		23,780	13,537
LaSalle	Wintergarden				Current	2.5		27,341	8,013
Gonzales	Gonzales Co.				Current	2.0		60,440	23,161
Guadalupe	Guadalupe Co.				Current	0.5		12,583	8,912
Caldwell	Plum Creek & Gonzales Co.				Current			24,460	7,172
Uvalde	Uvalde Co.				Current	2.5		33,276	2,486
	Uvalde Co.				Current	2.5		712	12
Medina	Medina Co.				Current	2.0		13,700	8,695
	Medina Co.				Current	2.0		8,900	209
Bexar					DOS ON		17,950		13,498
	Trinity -Glen Rose				Current			32,767	14,827
Comal					DOS ON		1,800		1,800
Hays	Hays Trinity				Current			1,213	1,213
Kendall	Cow Creek				Current			3,935	3,141
	Edwards Aquifer Authority and Barton Spr	ings/Edwards Aq	uifer Conservati	ion District are	ings/Edwards Aquifer Conservation District are not included in this table.				
	Edwards-Balcones Fault Zone Aquifer and various minor aquifers are not included in this table.	various minor a	quifers are not ir	ncluded in this	table.				
3 Management 4 Production lin	Management Plan status as of January 2010. Production limits obtained from available GCD rules.	oro. GCD rules.							
	e of a current GCD Manager	nent Plan the ec	timated arounds	water cumply us	Transcription and a commentation of the activistic formulation of the 2008 South Central Texas Recional Mater Dian was adopted the assertion of a circuit GCD Management Dian the activistic formulation of a circuit GCD Management Dian the activistic formulation of a circuit GCD Management Dian the activistic formulation of the activities of the ac	Padional Water Pla	hetopted agonted		
	סטו מ נשווסווג טטט וווועוועטטי	וופוול ו ומוו, מוכ כס	IIIIated ground	יים נושאחם יים	שלה וווופ לרכי המתנו הפוויתי יבית	S Negronal water.	all was auchies.		

3.1.2 Assumptions for Assessment of Groundwater Supply

1. Groundwater availability by county is subdivided into river basin parts of each county according to the ratios used in the 2006 Regional Water Plan. The ratios are the percent of land surface located in each river and coastal basin. Groundwater supplies for municipal utilities using water from the Carrizo, Gulf Coast, and Trinity Aquifers are based upon well capacities obtained from the TCEQ Water Utility Database.

Table 3-2.
Available Groundwater Supply by Aquifer

		Α	nnual Quan	tity Availab	le					
Aquifer Name and TWDB Aquifer No. ¹	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)				
Edwards (11) ²	320,000	320,000	320,000	320,000	320,000	320,000				
Carrizo (10)	438,539	438,539	431,141	431,141	431,141	431,141				
Sparta (27)	8,990	8,990	8,990	8,990	8,990	8,990				
Queen City (24)	23,269	23,269	23,269	23,269	23,269	23,269				
Trinity (28)	49,327	49,327	49,327	49,327	49,003	49,003				
Gulf Coast (15)	102,723	102,723	102,723	102,723	102,723	102,723				
Edwards-Trinity (Plateau) (13)	4,230	4,230	4,230	4,230	4,230	4,230				
Total	947,078	947,078	939,680	939,680	939,356	939,356				
Percent of Total										
Edwards (11)	33.79%	33.79%	34.05%	34.05%	34.07%	34.07%				
Carrizo (10)	46.30%	46.30%	45.88%	45.88%	45.89%	45.89%				
Sparta (27)	0.95%	0.95%	0.96%	0.96%	0.96%	0.96%				
Queen City (24)	2.46%	2.46%	2.48%	2.48%	2.48%	2.48%				
Trinity (28)	5.21%	5.21%	5.25%	5.25%	5.22%	5.22%				
Gulf Coast (15)	10.85%	10.85%	10.93%	10.93%	10.93%	10.93%				
Edwards-Trinity (Plateau) (13)	0.44%	0.44%	0.45%	0.45%	0.45%	0.45%				
Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%				

TWDB aquifer identification number is shown in parentheses in column number 1.

- 2. Groundwater availability during drought of record conditions from the Edwards Aquifer is set at a total of 320,000 acft/yr. Initial regular permit amounts from the EAA are prorated down to achieve a total value of 320,000 acft/yr as the sum of all permits. Permanent acquisitions of permits or portions of permits are accounted for prior to proration. Leases and dry year options are considered a water management strategy (Section 4C.3, Vol. II) rather than existing water supply.
- 3. Municipal supplies from the Carrizo, Sparta, Queen City, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers are estimated as follows:

Availability value does not include 1,537 acft/yr from the Edwards Aquifer – Barton Springs segment for use in Hays and Caldwell Counties. These values are however, shown in Tables C-3 and C-12 and are also included in the TWDB database.

- a. For cities using water from the Carrizo, Gulf Coast, and Trinity Aquifers, supply is based on reported well capacities with adjustment to account for a peak to average day water demand ration of 2:1. In cases in which the total demand on that portion (i.e., county and river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- b. For rural areas, it is assumed that the rural household (municipal type) demand would be met from aquifers underlying that river basin portion of the county. The rural supply is generally calculated as 125 percent of the year 2000 use from each particular aquifer. In cases in which the total demand on that portion (i.e., county and river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- 4. Industrial supply from the Carrizo, Sparta, Queen City, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers is associated with aquifers underlying the river basin portion of the county. The industrial supply is generally calculated as 130 percent of the year 2000 use from each particular aquifer. In cases in which the total demand on that portion (i.e. county & river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- 5. Steam-electric supply from the Carrizo, Sparta, Queen City, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers is associated with aquifers underlying the river basin portion of the county. The steam-electric supply is generally calculated as 130 percent of the year 2000 use from each particular aquifer. In cases in which the total demand on that portion (i.e., county and river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- 6. Irrigation supply from the Carrizo, Sparta, Queen City, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers is associated with aquifers underlying the river basin portion of the county. The irrigation supply is calculated as being equal to the projected demand in each decade. In cases in which the total demand on that portion (i.e., county and river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- 7. Mining supply from the Carrizo, Sparta, Queen City, Trinity, Gulf Coast, and Edwards-Trinity (Plateau) Aquifers is associated with aquifers underlying the river basin portion of the county. The mining supply is calculated as being equal to the projected demand in each decade. In cases in which the total demand on that portion (i.e., county and river basin) of the aquifer exceeds the total availability, supply is prorated downwards for every entity using that particular source.
- 8. For all areas within the planning region, livestock water demand is assumed to be met 50 percent from quantified groundwater sources and 50 percent from local surface water and unquantified groundwater sources such as stock tanks, streams, and windmills. Livestock water supply is set equal to projected livestock demand.

3.2 Surface Water Supplies

The South Central Texas Region includes parts of the Rio Grande, Nueces, San Antonio, Guadalupe, Colorado, and Lavaca River Basins, and parts of the Colorado-Lavaca, Lavaca-Guadalupe, and San Antonio-Nueces Coastal Basins. As indicated in Figure 3-3, however, the Nueces, San Antonio, and Guadalupe are the major river basins of interest in considering surface water supplies. Although the Guadalupe and San Antonio River Basins have been delineated in Figure 3-3 as separate river basins, the two rivers join prior to discharge into San Antonio Bay. In part because of the large concentration of senior water rights below the confluence of the two rivers, the two watersheds are considered as one (the Guadalupe-San Antonio River Basin) when evaluating surface water supplies available under existing water rights. All of the major reservoirs within the South Central Texas Region are located in the Guadalupe-San Antonio River Basin and are identified in Figure 3-3. Owners and locations of major run-of-river rights having authorized annual consumptive use in excess of 10,000 acft/yr are also shown in Figure 3-3. Major reservoirs and run-of-river water rights are discussed in the following subsections.

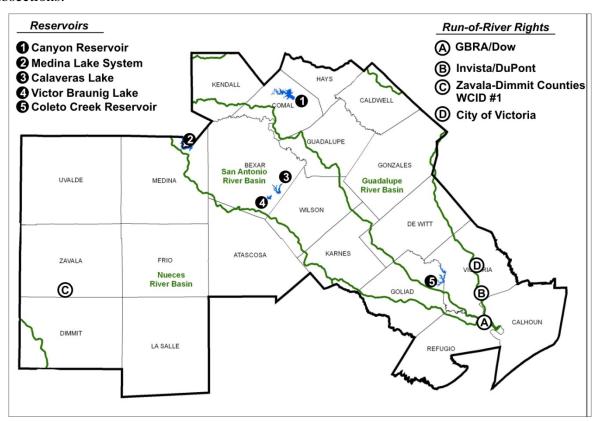


Figure 3-3. Major River Basins, Reservoirs, and Run-of-River Rights

3.2.1 Major Reservoirs and Associated Water Rights

Major reservoirs and associated water rights within the South Central Texas Region are summarized in Table 3-3. The firm yield, or dependable supply of water available during a repeat of the drought of record, for each of these reservoirs is also listed in Table 3-3. Additional information regarding each of the major reservoirs is provided in the following paragraphs.

The Medina Lake System is located on the Medina River, a tributary of the San Antonio River, in Medina and Bandera Counties. The Medina Lake System is owned by the Bexar-Medina-Atascosa Counties Water Control and Improvement District No. 1 (BMA) and has traditionally been used to supply irrigation water to farms in Bexar, Medina, and Atascosa Counties via the Medina Canal System. Bexar Metropolitan Water District (BMWD) has contracts with BMA to obtain municipal water supplies from the Medina Lake System which are delivered via the bed and banks of the Medina River to a point of diversion near Von Ormy in southwestern Bexar County. The Medina Lake System is unique among the major reservoirs in the South Central Texas Region because waters impounded therein contribute recharge, estimated to average over 42,000 acft/yr,4 to the Edwards Aquifer. Because of surface water "losses" to recharge and special conditions within Certificate of Adjudication #19-2130, as amended, it has been determined that the firm yield of the Medina Lake System in a repeat of the drought of record is essentially zero. Hence, the Medina Lake System has not been included as an existing source of surface water supply in the South Central Texas Region. Because of its location on the boundary of Regions L and J, the TWDB has designated the Medina Lake System as a special water resource. As the South Central Texas Region is not relying upon the Medina Lake System as a source of supply during drought, it is assumed that there are no conflicts with any water supply contracts or option agreements held by entities in the Plateau Region. It is further assumed that interests upstream of Medina Lake will obtain the necessary water rights permit(s) for diversion from the Medina River and/or its tributaries and will mitigate any associated impacts upon recharge of the Edwards Aquifer within Region L.

⁴ HDR Engineering, Inc. (HDR), "Edwards Aquifer Recharge Analyses," Trans-Texas Water Program, West Central Study Area, Phase II, Texas Water Development Board, San Antonio River Authority, et al., March 1998.

Table 3-3. List of Major Reservoirs

		to ofcoiling	A A.	Live	
Reservoir	Water Right Owner	Adjudicate or Adjudication Number	Authorized Diversion (acft/yr)	rimi Yield (acft/yr)	Purposes
San Antonio River Basin	Ŀ				
Medina Lake System	Bexar-Medina-Atascosa Counties WCID #1	19-2130	66,750	01	Irrigation, municipal, domestic, livestock
Victor Braunig Lake	City Public Service Board of San Antonio	19-2161	12,000 ²	>12,000 ³	Steam-electric power generation
Calaveras Lake	City Public Service Board of San Antonio	19-2162	37,000 ⁴	>37,000³	Steam-electric power generation
Guadalupe River Basin					
Canyon Reservoir	Guadalupe-Blanco River Authority	18-2074	90,000 ⁵	~90,000 ⁵	Municipal, industrial, steam- electric, hydropower, irrigation, flood protection
Coleto Creek Reservoir	Coleto Creek Power	18-5486	12,500 ⁶	>12,500 ³	Steam-electric power generation
,					

¹ Based on operation of the Medina Lake System in accordance with CA #19-2130C.

Includes rights to divert up to 12,000 acft/yr from the San Antonio River to Braunig Lake and to consume up to 12,000 acft/yr at Braunig Lake. 7 3

The reservoir and supplemental authorized diversions from the adjacent river could support a firm yield in excess of the authorized consumptive use, however, operations of steam-electric power generation facilities could be impaired

The firm yield of Canyon Reservoir is dependent upon a number of factors including points of diversion for contracted supplies, Edwards Aquifer springflow, term recreational flow agreements, and discharge of treated effluent throughout the Guadalupe – San Antonio River Basin. Subject to the hydrologic assumptions and operational procedures listed in Section 3.2.3.1, estimates of Canyon Reservoir firm yield range from 87,700 acftlyr to 87,275 acftlyr in Includes rights to divert up to 60,000 acft/yr of reclaimed wastewater from the San Antonio River to Calaveras Lake and to consume up to 37,000 acft/yr. years 2000 and 2060, respectively. 4

Includes rights to divert up to 20,000 acft/yr from the Guadalupe River to Coleto Creek Reservoir and to consume up to 12,500 acft/yr.

Braunig and Calaveras Lakes, owned by the City Public Service Board of San Antonio, are located in the San Antonio River Basin in Bexar County to the southeast of San Antonio and are used for steam-electric power plant cooling water. Runoff from the watersheds above the reservoirs and diversions from the San Antonio River (including treated effluent discharged by the San Antonio Water System) are used to maintain necessary lake levels to facilitate efficient power plant operations.

Constructed by the U.S. Army Corps of Engineers, Canyon Reservoir in the Guadalupe River Basin is located in Comal County on the mainstem of the Guadalupe River. Uses of the reservoir include water supply for municipal, industrial, steam-electric power generation, irrigation, and hydroelectric power generation, as well as flood protection and recreation. Diversions from Canyon Reservoir are currently authorized up to an average of 90,000 acft/yr. Water supplies from Canyon Reservoir are managed by the Guadalupe-Blanco River Authority (GBRA) and made available to customers both within their ten-county district and in adjacent counties and/or river basins. Because a portion of its watershed is located in the Plateau Region (J), the TWDB has designated Canyon Reservoir as a special water resource. The South Central Texas Region (L) has included existing contracts between GBRA and entities in the Plateau Region in its assessments of surface water supplies using the Guadalupe-San Antonio River Basin Water Availability Model (GSA WAM). Pursuant to a Memorandum of Understanding (MOU) between GBRA and the Commissioners' Court of Kerr County, the SCTRWPG recognizes a potential commitment of approximately 2,000 acft/yr from the firm yield of Canyon Reservoir for the calendar years 2021 through 2060. GBRA's hydrology studies have indicated that a commitment of about 2,000 acft/yr would be necessary to allow permits for 6,000 acft/yr to be issued by TCEQ for diversion in Kerr County. No additional supplies from Canyon Reservoir are specifically reserved for entities within the Plateau Regional Water Planning Area (Region J) at this time. The SCTRWPG also recognizes commitments of about 600 acft/yr and 1120 acft/yr from Canyon Reservoir to meet projected needs for the Cities of Blanco and Buda, respectively, located in the Lower Colorado Regional Water Planning Area (Region K).

Coleto Creek Reservoir, owned by Coleto Creek Power (an International Power of America Company) and operated by GBRA, is located at the border of Victoria and Goliad Counties in the lower Guadalupe River Basin, and is a cooling reservoir for steam-electric power generation. Sources of water include runoff from the Coleto Creek watershed and diversions from the Guadalupe River, backed by storage in Canyon Reservoir, when needed. The reservoir

supplies water for steam-electric power generation at the Coleto Creek Power Station located in Goliad County.

Lakes Dunlap, McQueeny, Placid, Nolte, Gonzales, and Wood, on the Guadalupe River between New Braunfels and Gonzales, form pools for hydroelectric power generation and are the sites of hydroelectric power plants providing service to the Guadalupe Valley Electric Cooperative. These reservoirs and water rights are owned by GBRA. In addition to those owned by GBRA, there are other small reservoirs and associated priority and non-priority water rights for hydroelectric power generation located along the Guadalupe River at Seguin, Gonzales, and Cuero. Since hydroelectric power generation is a non-consumptive use of water, water available to these rights is not listed in Table 3-3. All water rights are, however, included on a priority basis in the assessment of surface water supply using the GSA WAM.

3.2.2 Run-of-River Water Rights

In addition to those associated with major reservoirs, surface water rights have been issued by the TCEQ and predecessor agencies to individuals, cities, industries, and water districts and authorities for diversion from flowing streams of the South Central Texas Region. Each right bears a priority date, diversion location, maximum diversion rate, and annual quantity of diversion. Some rights may include off-channel storage authorization, instream flow requirements, and various special conditions. The principle of prior appropriation or "first-in-time-first-in-right" is applied, which means that the most senior, or oldest, right has first call on flows, with the second, third, and more recent rights having second, third, and later priorities for diversions. This procedure gives senior right holders priority when streamflows are low, as in periods of drought, and renders junior rights less reliable during droughts. The most junior water right holders may not be able to divert any water during severe droughts if so directed by the TCEQ acting through the South Texas Watermaster.

It is important to note that many run-of-river rights are for irrigation purposes, where chances are taken at planting time upon whether or not water will be available for crop production during the growing season. In fact, when reviewing applications for irrigation rights, TCEQ staff has traditionally considered whether 75 percent of the proposed diversion would be available in 75 percent of the years. Municipal, industrial, and steam-electric power users, however, typically require more reliable supplies than are available from run-of-river flows.

Hence, these types of users will often develop storage and/or alternative supplies to increase the reliability of their run-of-river rights.

For the Nueces River Basin part of the South Central Texas Region, run-of-river water rights total more than 120,000 acft/yr and are primarily used for irrigation purposes. Consumptive run-of-river rights in the Guadalupe-San Antonio River Basin total over 446,000 acft/yr and are used primarily for irrigation, municipal, and industrial purposes.

3.2.3 Surface Water Availability

Surface water supplies for the vast majority of the South Central Texas Region have been quantified using the Nueces and Guadalupe-San Antonio River Basin Water Availability Models (WAMs).^{5,6} These WAMs were originally developed under a contract with the TCEQ and have been modified and improved for more accurate simulation of specific water rights and special conditions including those associated with operations of Canyon Reservoir and the Medina Lake System. Modifications to the basic Guadalupe-San Antonio River Basin WAM also include daily time-step computational procedures necessary to quantify water availability for new appropriations associated with potentially feasible water management strategies subject to Consensus Criteria for Environmental Flow Needs (CCEFN).

Surface water supply analyses for the South Central Texas Region have been completed using the WAMs to quantify the firm diversion associated with run-of-river water rights, calculate the firm yields associated with Canyon Reservoir and the Medina Lake System, and ensure the reliability of authorized consumptive uses associated with steam-electric power generation at major reservoirs. These analyses were performed subject to specific hydrologic assumptions and operational procedures adopted by the SCTRWPG (Section 3.2.3.1) and approved by the TWDB for the assessment of surface water supply. Reliability information, including firm (or minimum monthly) diversion, for water rights in the Nueces and Guadalupe–San Antonio River Basins is summarized in Appendix B. Firm diversion and firm yield amounts have been assigned to specific water users, county-aggregated water user groups, river basins, and sources as appropriate. This assignment of firm diversion and yield amounts is representative of existing surface water supplies and is detailed by county, river basin, and water user group in the Comprehensive Water Needs Assessment Data included as Appendix C.

5

⁵ HDR, "Water Availability in the Guadalupe-San Antonio River Basin," Texas Natural Resource Conservation Commission (TNRCC), December 1999.

⁶ HDR, "Water Availability in the Nueces River Basin," TNRCC, October 1999.

3.2.3.1 Hydrologic Assumptions and Operational Procedures for Assessment of Surface Water Supply

- 1. Full exercise of surface water rights.
- 2. Edwards Aquifer permitted pumpage consistent with Senate Bill 3 (80th Texas Legislature). Breakdown of use type and geographical distribution of pumpage is based on EAA permits (including permanent transfers). Minimum permitted Edwards Aquifer supply of 320,000 acft/yr during drought.
- 3. Operation of Canyon Reservoir at firm yield in accordance with Certificate of Adjudication No. 18-2074E, including subordination of all senior Guadalupe River hydropower permits to Canyon Reservoir.
- 4. Delivery of GBRA's present contractual obligations from Canyon Reservoir (about 86,000 acft/yr) to points of diversion. Uncommitted yield assumed to be diverted at Lake Dunlap.
- 5. Effluent discharge / return flow in the Guadalupe San Antonio River Basin is assumed equal to that reported for 2006, adjusted for current SAWS direct recycled water commitments. Smaller reuse deliveries by San Marcos, New Braunfels, Seguin, Kyle, San Antonio River Authority, and Cibolo Creek Municipal Authority in 2006 are reflected in analyses of cumulative effects of plan implementation.
- 6. Operation of power plant reservoirs (Braunig, Calaveras, and Coleto Creek) subject to authorized consumptive uses at the reservoir, with makeup diversions as needed to maintain full conservation storage to the extent possible subject to senior water rights, instream flow constraints, and/or applicable contractual provisions.
- 7. Desired San Antonio River flows at Falls City gage of 55,000 acft/yr under current SAWS/SARA/CPS draft agreement (reporting purposes only).
- 8. Operation of Choke Canyon Reservoir/Lake Corpus Christi (CCR/LCC) System at firm yield subject to the Corpus Christi Phase 4 (maximum yield) policy and TCEQ Agreed Order regarding freshwater inflows to the Nueces Estuary.
- 9. Historical Edwards Aquifer recharge estimates developed by EUWD/HDR.
- 10. Period of record for simulations: Guadalupe-San Antonio River Basin (1934-89, Critical Drought = 1950s) and Nueces River Basin (1934-97, Critical Drought = 1990s).

3.3 Reuse Supplies

Current water supplies in the South Central Texas Region involving reuse of treated wastewater are associated with the Recycled Water Program of the San Antonio Water System (SAWS) and contractual commitments by the Guadalupe-Blanco River Authority (GBRA) and the City of San Marcos. SAWS has installed a distribution system capable of transmitting up to about 35,000 acft/yr of recycled water from its Leon and Dos Rios Water Recycling Centers to a number of customers in the San Antonio area. For regional planning purposes, current reuse supplies of 3,435 acft/yr for landscape irrigation (municipal) use, 4,616 acft/yr for irrigation

(non-municipal) use, and 1,716 acft/yr for industrial use from the SAWS Recycled Water Program have been included for water users of Bexar County. In addition to these amounts, 230 acft/yr of reuse water from the San Antonio River Authority (SARA) and 24 acft/yr of reuse water from the Cibolo Creek Municipal Authority (CCMA) have been included as a supply for Bexar County irrigation. A commitment of 92 acft/yr by the City of New Braunfels has been included as a reuse supply for irrigation in Comal County. A reuse supply of 2,240 acft/yr by the City of Seguin has been included as supply for steam-electric use in Guadalupe County. Similarly, a contractual commitment of 3,696 acft/yr by the City of San Marcos has been included as a reuse supply for steam-electric use in Hays County.

(This page intentionally left blank.)

Section 4A Comparison of Supply and Demand Projections to Determine Needs [31 TAC §357.7(a)(5-7)]

4A.1 Water Needs Projections by Water User Group

In this section, the demand projections from Section 2 and the supply projections from Section 3 are brought together to estimate projected water needs in the South Central Texas Region through the year 2060. If projected demands exceed projected supplies for a water user group, the difference or shortage, is identified as a water need for that water user group. As a recap, Section 2 presents demand projections for six types of use: municipal, industrial, steam-electric, mining, irrigation, and livestock. The projections are for dry-year demands. Municipal water demand projections are shown for each entity that supplied more than 280 acft of water in the year 2000, and for the County-Other category in each county. Section 3 presents estimates of surface water and groundwater availability.

This section contains a summary of the water needs (shortages) for each Water User Group (WUG) located in the South Central Texas Region. For a detailed analysis of water needs in the region by river and coastal basin as well as supply sources and amount supplied from each source, see Appendix C, entitled, "Comprehensive Water Needs Assessment Data." Table 4A-1 provides a summary of the water needs for each WUG located in the planning area by county. If a WUG is located in multiple counties, it is shown in its "primary" county in Table 4A-1. Table 4A-2 shows WUGs that are located in multiple counties and the "primary" county to which that WUG has been assigned for presentation herein. Region L has a projected annual water need of 174,234 acft in 2010, increasing to 436,750 acft by 2060 (Table 4A-1, end of table).

Table 4A-1.
Summary of Water Needs (Shortages) by WUG

			Υe	ear		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Atascosa County						
Benton City WSC	0	0	199	454	696	885
Charlotte	0	0	0	0	0	0
Jourdanton	112	172	225	267	306	338
Lytle	141	152	162	169	179	188
McCoy WSC	0	12	208	436	650	812
Pleasanton	0	0	0	0	0	0
Poteet	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	253	336	794	1,326	1,831	2,223
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	263	0	0	0	604	942
Mining	0	0	0	0	0	0
Irrigation	6,095	4,734	3,413	2,141	924	291
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	6,611	5,070	4,207	3,467	3,359	3,456
Bexar County						
Alamo Heights	592	655	657	653	667	691
Atascosa Rural WSC	546	717	869	996	1,106	1,218
Balcones Heights	0	0	0	0	0	0
Bexar Met Water District	3,944	4,569	5,357	5,784	6,373	7,038
Castle Hills	96	83	69	56	47	47
China Grove	0	0	0	0	0	0
Converse	0	0	134	449	716	969
East Central WSC	0	0	251	495	716	942
Elmendorf	0	0	0	0	0	0
Fair Oaks Ranch	0	0	0	0	0	0
Helotes	0	0	0	0	0	0
Hill Country Village	730	727	723	720	718	718
Hollywood Park	1,969	2,044	2,113	2,166	2,220	2,271
Kirby	335	334	337	331	343	364
Lackland AFB (CDP)	0	0	0	0	0	0
Leon Valley	0	0	0	0	0	0
Leon Valley (SAWS)	0	0	0	0	0	0
Live Oak	0	0	0	0	0	0
Olmos Park	0	0	0	0	0	0
San Antonio (BMWD)	9,023	15,840	18,526	20,556	22,519	24,476
San Antonio (SAWS)	68,476	93,385	116,922	137,353	153,358	169,336
San Antonio (Others)	284	317	348	371	394	416

			Ye	ar		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Bexar County (continued)						
Selma	0	316	762	757	748	749
Shavano Park	320	336	348	357	369	381
Somerset	0	0	0	0	0	0
St. Hedwig	0	0	0	0	0	0
Terrell Hills	0	0	0	0	0	0
Universal City	113	421	680	630	606	606
Water Ser Inc (Apex Water Ser)	911	1,148	1,384	1,599	1,801	2,018
Windcrest	235	227	219	209	206	214
County-Other	0	0	0	127	403	655
County-Other (SAWS)	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	87,574	121,160	149,700	173,610	193,311	213,110
Manufacturing	1,340	4,886	8,240	11,537	14,438	17,588
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	921	1,020	1,122	1,216
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	88,914	126,046	158,861	186,167	208,871	231,914
Caldwell County						
Aqua WSC	49	121	178	240	300	362
Creedmoor-Maha WSC	108	180	246	312	378	447
Lockhart	0	321	856	1,407	1,952	2,512
Luling	0	122	211	296	398	506
Martindale	0	0	0	0	0	0
Martindale WSC	42	70	95	126	151	182
Maxwell WSC	0	0	77	246	476	689
Mustang Ridge	19	62	99	137	175	213
Polonia WSC	0	0	0	0	66	265
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	218	876	1,762	2,764	3,896	5,176
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	218	<u>-</u> 876	1,762	2,764	3,896	<u>-</u> 5,176

			Υe	ear		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Calhoun County						
Calhoun County WSC	0	0	0	0	0	C
Point Comfort	46	145	322	499	489	489
Port Lavaca	0	0	0	0	0	(
Seadrift	0	0	0	0	0	(
County-Other (Port O'Connor MUD)	0	0	0	0	0	(
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>.</u>
Municipal Total	46	145	322	499	489	48
Manufacturing	0	0	0	0	0	2,02
Steam-Electric Power	0	0	0	0	0	(
Mining	0	0	0	0	0	(
Irrigation	0	0	0	0	0	(
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>.</u>
County Total	46	145	322	499	489	2,51
Comal County						
Bulverde	653	1,342	2,128	2,910	3,723	4,59
Canyon Lake WSC	0	0	129	2,198	4,466	6,76
Garden Ridge	257	395	552	710	873	1,05
New Braunfels	0	907	4,044	7,151	10,361	13,92
County-Other	<u>1,782</u>	<u>1,972</u>	<u>2,178</u>	<u>2,362</u>	<u>2,665</u>	<u>2,96</u>
Municipal Total	2,692	4,616	9,031	15,331	22,088	29,29
Manufacturing	5,199	6,033	6,784	7,514	8,141	9,02
Steam-Electric Power	0	0	0	0	0	
Mining	439	635	753	870	1,068	1,17
Irrigation	0	0	0	0	0	
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
County Total	8,330	11,284	16,568	23,715	31,297	39,49
DeWitt County						
Cuero	0	0	0	0	0	
Yoakum	0	0	0	0	0	
Yorktown	0	0	0	0	0	
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
Municipal Total	0	0	0	0	0	
Manufacturing	0	0	0	0	0	
Steam-Electric Power	0	0	0	0	0	
Mining	0	0	0	0	0	
Irrigation	0	0	0	0	0	
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
County Total	0	0	0	0	0	

			Ye	ear		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Dimmit County						
Asherton	0	0	0	0	0	0
Big Wells	0	0	0	0	0	0
Carrizo Springs	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	0	0	0	0	0	0
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	0	0	0	0	0	0
Frio County						
Dilley	0	0	0	0	0	0
Pearsall	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	0	0	0	0	0	0
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	c
Mining	0	0	0	0	0	C
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	0	0	0	0	0	0
Goliad County						
Goliad	0	0	0	0	0	C
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>c</u>
Municipal Total	0	0	0	0	0	
Manufacturing	0	0	0	0	0	
Steam-Electric Power	0	0	0	0	0	
Mining	0	0	0	0	0	
Irrigation	0	0	0	0	0	
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>C</u>
County Total	0	0	0	0	0	
Gonzales County	Ť	•	•			
Gonzales	0	0	0	0	0	c
Gonzales County WSC	0	0	0	0	0	
Nixon	0	0	0	0	0	
Waelder	0	0	0	0	0	
County-Other	<u>0</u>	<u>0</u>	<u>0</u>			
Municipal Total	0	<u>0</u> 0	<u>0</u> 0	<u>0</u> 0	<u>0</u> 0	<u>(</u>
Manufacturing	0	0	0	0	0	
Steam-Electric Power						
	0	0	0	0	0	(
Mining	0	0	0	0	0	(
Irrigation	0	0	0	0	0	(
Livestock	0	<u>0</u>	<u>0</u>	0	0	<u>(</u>
County Total	0	0	0	0	0	

			Ye	ar		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Guadalupe County						
Cibolo	0	0	0	0	0	0
Crystal Clear WSC	0	0	509	1,138	1,926	2,716
Green Valley SUD	0	0	0	0	0	640
Marion	0	3	18	33	53	75
New Berlin	0	0	0	0	0	0
Santa Clara	76	205	348	485	642	810
Schertz	0	0	0	0	647	2,436
Seguin	0	0	0	0	0	0
Springs Hill WSC	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>C</u>
Municipal Total	76	208	875	1,656	3,268	6,677
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	C
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0
County Total	76	208	875	1,656	3,268	6,677
Hays County						
County Line WSC	0	1,049	1,433	1,603	1,921	2,386
Goforth WSC	0	29	433	879	1,427	1,872
Kyle	0	436	713	873	1,370	1,699
Mountain City	0	22	49	75	108	134
Niederwald	58	118	183	244	317	377
Plum Creek Water Company	0	0	0	195	454	657
San Marcos	0	0	1,319	4,772	8,507	11,387
Wimberley WSC	219	440	667	885	1,179	1,409
Woodcreek	23	92	162	229	317	387
Woodcreek Utilities Inc	455	852	1,271	1,681	2,184	2,580
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>C</u>
Municipal Total	755	3,038	6,230	11,436	17,784	22,888
Manufacturing	0	0	0	0	0	,;;;
Steam-Electric Power	0	0	0	0	0	C
Mining	82	91	97	101	102	103
Irrigation	0	0	0	0	0	(
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	C
County Total	837	3,129	6,327	11,537	17,886	22,991

			Ye	ear		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Karnes County						
El Oso WSC	0	0	0	0	0	0
Falls City	0	0	0	0	0	0
Karnes City	182	203	224	242	253	262
Kenedy	0	0	0	37	86	118
Runge	0	0	0	0	0	0
County-Other (TDCJ)	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	182	203	224	279	339	380
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	182	203	224	279	339	380
Kendall County						
Boerne	0	0	0	0	0	276
County-Other	<u>221</u>	<u>865</u>	<u>1,522</u>	2,073	<u>2,726</u>	<u>3,514</u>
Municipal Total	221	865	1,522	2,073	2,726	3,790
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>o</u>	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>
County Total	221	865	1,522	2,073	2,726	3,790
LaSalle County						
Cotulla	0	0	0	0	0	0
Encinal	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Municipal Total	0	0	0	0	0	0
Manufacturing	0	0	0	0	0	0
Steam-Electric Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	0	0	0	0	0	0

				ear		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Medina County						
Castroville	294	357	416	468	522	575
Devine	0	0	0	0	0	(
East Medina SUD	0	104	214	303	397	491
Hondo	319	536	740	910	1,083	1,252
La Coste	92	109	126	138	152	168
Natalia	194	238	279	314	349	38
Yancey WSC	214	395	562	710	851	98
County-Other	<u>o</u>	<u>236</u>	528	<u>787</u>	<u>1,055</u>	1,29
Municipal Total	1,113	1,975	2,865	3,630	4,409	5,15
Manufacturing	0	0	0	0	0	(
Steam-Electric Power	0	0	0	0	0	(
Mining	0	0	0	0	0	
Irrigation	7,770	5,878	4,067	2,332	670	
Livestock	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
County Total	8,883	7,853	6,932	5,962	5,079	5,15
Refugio County						
Refugio	0	0	0	0	0	
Woodsboro	0	0	0	0	0	
County-Other	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
Municipal Total	0	0	0	0	0	
Manufacturing	0	0	0	0	0	
Steam-Electric Power	0	0	0	0	0	
Mining	0	0	0	0	0	
Irrigation	0	0	0	0	0	
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
County Total	0	0	0	0	0	
Uvalde County						
Sabinal	127	123	118	113	109	10
Uvalde	3,172	3,209	3,229	3,233	3,235	3,26
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	-, -
Municipal Total	3,299	3,332	3,347	3,346	3,344	3,37
Manufacturing	0	0	0	0	0	-,-
Steam-Electric Power	0	0	0	0	0	
Mining	0	0	0	0	0	
Irrigation	0	0	0	0	0	
Livestock	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	
County Total	3,299	3,332	3,347	3,346	3,344	3,37

			Year	7		
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Victoria County						
Victoria	0	0	0	0	0	0
County-Other	<u>0</u>	<u>0</u>	<u>0</u>	<u>81</u>	<u>193</u>	<u>310</u>
Municipal Total	0	0	0	81	193	310
Manufacturing	0	2,969	5,921	8,860	11,489	14,441
Steam-Electric						
Power	1,791	50,962	50,991	51,021	51,053	51,076
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	1,791	53,931	56,912	59,962	62,735	65,827
Wilson County						
Floresville	0	0	0	0	159	433
La Vernia	0	0	0	0	0	0
Oak Hills WSC	0	0	0	0	0	298
Poth	0	0	0	0	0	0
SS WSC	223	864	1,546	2,214	2,939	3,690
Stockdale	0	0	0	0	0	0
Sunko WSC	0	0	0	0	0	70
County-Other	<u>o</u>	<u>0</u>	<u>0</u>	<u>o</u>	<u>o</u>	<u>33</u>
Municipal Total	223	864	1,546	2,214	3,098	4,524
Manufacturing	0	0	0	0	0	0
Steam-Electric						
Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	0	0	0	0	0	0
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	223	864	1,546	2,214	3,098	4,524
Zavala County						
Crystal City	0	0	0	0	0	0
County-Other	<u>0</u>	0	0	0	0	0
Municipal Total	0	0	0	0	0	0
Manufacturing	0	0	0	0	0	0
Steam-Electric						
Power	0	0	0	0	0	0
Mining	0	0	0	0	0	0
Irrigation	54,600	51,763	49,038	46,421	43,907	41,492
Livestock	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
County Total	54,600	51,763	49,038	46,421	43,907	41,492

Table 4A-1 (Concluded)

ì			Year			
Water User Group	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Region L (All Counties)						
Municipal	96,652	137,615	178,218	218,245	256,776	297,385
Manufacturing	6,539	13,888	20,945	27,911	34,068	43,072
Steam-Electric Power	2,054	50,962	50,991	51,021	51,657	52,018
Mining	521	726	1,771	1,991	2,292	2,492
Irrigation	68,465	62,375	56,518	50,894	45,501	41,783
Livestock	0	0	0	0	0	0
Region L Total	174,234	265,567	308,443	350,062	390,294	436,750

Table 4A-2. WUGs Located in Multiple Counties

wug			s Served ty Highlighted)	
Benton City WSC	Atascosa	Frio	Medina	
Bexar Met Water District	Atascosa	Bexar	Comal	Medina
County Line WSC	Caldwell	Hays		
Creedmoor-Maha WSC	Caldwell	Hays		
Crystal Clear WSC	Comal	Guadalupe	Hays	
East Central WSC	Bexar	Guadalupe	Wilson	
El Oso WSC	Karnes	Wilson		
Fairoaks Ranch	Bexar	Comal	Kendall	
Goforth WSC	Caldwell	Hays		
Gonzales County WSC	Caldwell	DeWitt	Gonzales	
Green Valley SUD	Bexar	Comal	Guadalupe	
Lytle	Atascosa	Bexar	Medina	
Martindale WSC	Caldwell	Guadalupe		
Maxwell WSC	Caldwell	Hays		
McCoy WSC	Atascosa	Wilson		
New Braunfels	Comal	Guadalupe		
Niederwald	Caldwell	Hays		
Schertz	Bexar	Comal	Guadalupe	
Selma	Bexar	Comal	Guadalupe	
Sunko WSC	Karnes	Wilson		
Water Ser Inc.	Bexar	Comal	Guadalupe	Kendall

4A.1.1 Municipal WUGs with Needs

By the year 2060, there are over 65 municipal WUGs with a projected need (shortage). The total municipal need for the region in 2030 is 178,218 acft/yr, increasing to 297,385 acft/yr in 2060 (Table 4A-1). Thirteen counties (Atascosa, Bexar, Caldwell, Calhoun, Comal, Guadalupe, Hays, Karnes, Kendall, Medina, Uvalde, Victoria, and Wilson) are projected to have at least one WUG with a municipal need (shortage) during the planning period, as shown in Figure 4A-1.

4A1.2 Industrial WUGs with Needs

The total industrial need for the region in 2030 is 20,945 acft, increasing to 43,072 acft in 2060 (Table 4A-1). Four counties (Bexar, Calhoun, Comal, and Victoria) are projected to have an industrial need (shortage) during the planning period, as shown in Figure 4A-2.

4A.1.3 Steam-Electric WUGs with Needs

The total steam-electric need for the region in 2030 is 50,991 acft, increasing to 52,018 acft in 2060 (Table 4A-1). Two counties (Atascosa and Victoria) are projected to have a steam-electric need (shortage) during the planning period, as shown in Figure 4A-3.

4A.1.4 Mining WUGs with Needs

The total mining need for the region in 2030 is 1,771 acft, increasing to 2,492 acft in 2060 (Table 4A-1). Three counties (Bexar, Comal, and Hays) are projected to have a mining need (shortage) during the planning period, as shown in Figure 4A-4.

4A.1.5 Irrigation WUGs with Needs

The total irrigation need for the region in 2030 is 56,518 acft, decreasing to 41,783 acft in 2060 (Table 4A-1). Three counties (Atascosa, Medina, and Zavala) are projected to have an irrigation need (shortage) during the planning period, as shown in Figure 4A-5.

4A.1.6 Livestock WUGs with Needs

There are no projected livestock needs within the planning period.



Figure 4A-1. Municipal Water Needs

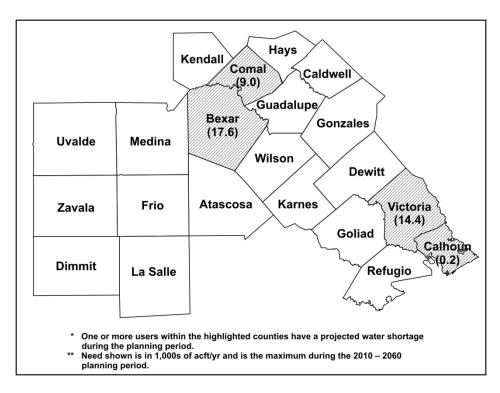


Figure 4A-2. Industrial Water Needs

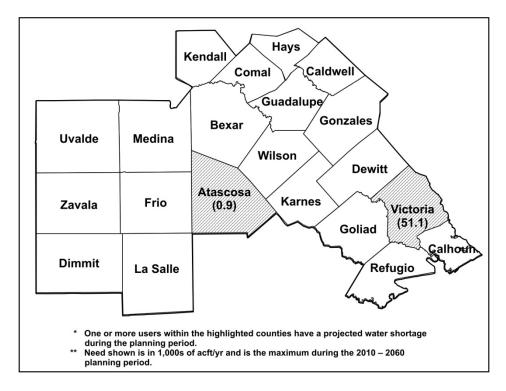


Figure 4A-3. Steam-Electric Water Needs

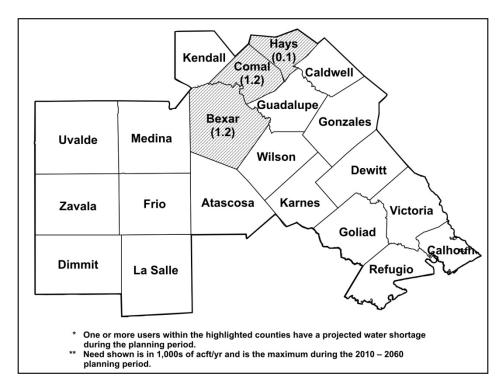


Figure 4A-4. Mining Water Needs

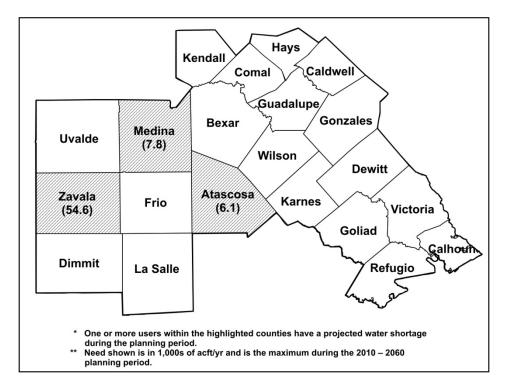


Figure 4A-5. Irrigation Water Needs

4A.2 Water Needs Projections by Wholesale Water Provider

A summary of projected water demands, existing supplies, and needs (shortages) for each Wholesale Water Provider (WWP) in the South Central Texas planning region is provided in Table 4A-3. Projected water demands for each WWP are estimated on the basis of existing and/or future contracts with water user groups (WUGs) expected to continue receiving water or acquire new water supplies from the WWP. Supplies for each WWP are determined in accordance with procedures and assumptions described in Section 3 and are identified by source in Table 4A-3. The Texas Water Alliance, San Antonio Water System (SAWS), Bexar Metropolitan Water District (BMWD), Canyon Regional Water Authority (CRWA), the Guadalupe-Blanco River Authority (GBRA), and Schertz-Seguin Local Government Corporation (SSLGC) each have projected needs for additional water supply throughout the planning period. The Springs Hill WSC (SHWSC), on the other hand, has existing supplies in excess of projected demands throughout the planning period. These existing supplies in excess of projected demand are identified in Table 4A-3 as System Management Supplies.

Table 4A-3.
Water Demands, Supplies, and Needs (Shortages) by
Wholesale Water Providers

			Texas Water Alli	ance			
Projected Demands:							
				Year (acft)			
Water Purchaser	2000	2010	2020	2030	2040	2050	2060
Canyon Lake WSC	0	0	0	3,000	6,000	9,000	12,000
Water Service Inc.	0	0	1,000	1,000	1,000	1,000	1,000
Comal County Rural Areas	0	0	986	1,089	1,181	1,333	1,480
Gonzales County WSC	0	0	500	500	500	500	500
Springs Hill WSC (WWP)	0	0	1,500	3,000	3,000	3,000	3,000
Bulverde	0	0	1,342	2,128	2,910	3,723	4,595
Total Demand	0	0	5,328	10,717	14,591	18,556	22,575
Supply:							
	•			Year (acft)			
Source	2000	2010	2020	2030	2040	2050	2060
Total Supply	0	0	0	0	0	0	0
Projected Needs:							
				Year (acft)			
	2000	2010	2020	2030	2040	2050	2060
System Management Supplies / (Needs)	0	0	(5,328)	(10,717)	(14,591)	(18,556)	(22,575)

		San A	ntonio Water Sys	tem (SAWS)							
Projected Demands:											
	Year (acft)										
Water Purchaser	2000	2010	2020	2030	2040	2050	2060				
Balcones Heights	480	514	555	578	600	633	670				
China Grove	288	376	457	531	591	645	695				
Elmendorf	99	112	123	132	140	148	156				
Helotes	845	1,537	2,249	2,820	3,264	3,679	4,047				
Leon Valley	407	397	388	382	375	372	377				
Live Oak	338	344	347	353	358	370	385				
Olmos Park	381	403	424	441	452	468	484				
San Antonio	166,813	192,007	213,943	234,865	250,671	265,958	281,204				
Shavano Park	303	320	336	348	357	369	381				
Terrell Hills	815	863	914	956	983	1,018	1,057				
Windcrest	61	60	60	59	59	59	59				
East Central WSC	2,240	2,240	2,240	2,240	2,240	2,240	2,240				
East Central WSC (Palm											
Park)	1,120	1,120	1,120	0	0	0	(
Rural	5,595	5,661	5,747	5,796	5,923	6,287	6,667				
Industrial (Bexar County)	7,723	12,000	16,000	18,000	22,000	30,000	30,000				
Total Demand	187,508	217,954	244,903	267,501	288,013	312,246	328,422				

	Year (acft)										
Source	2000	2010	2020	2030	2040	2050	2060				
Edwards Aquifer	117,187	117,187	117,187	117,187	117,187	117,187	117,187				
Carrizo Aquifer	6,400	6,400	6,400	4,925	4,846	4,770	4,704				
Trinity Aquifer	0	3,500	3,500	3,500	3,500	3,500	3,500				
Direct Reuse	9,767	9,767	9,767	9,767	9,767	9,767	9,767				
Aquifer Storage &				•							
Recovery (ASR) Project	0	0	0	0	0	0	(
GBRA (Canyon											
Reservoir)	0	7,500	5,500	4,000	0	0	C				
Total Supply *	133,354	144,354	142,354	139,379	135,300	135,224	135,158				

Frojecieu Neeus.												
		Year (acft)										
	2000	2010	2020	2030	2040	2050	2060					
System Management												
Supplies / (Needs) *	(54,154)	(73,600)	(102,549)	(128,122)	(152,713)	(177,022)	(193,264)					

* Supplies could be up to 5,000 act/yr greater (and needs up to 5,000 act/yr less) as they do not include existing Trinity Aquifer supplies. As indicated in Table 3-1, the Trinity-Glen Rose GCD Management Plan was adopted after completion of the needs assessment for the 2006 regional plan.

Table 4A-3 (Continued)

Bexar Metropolitan Water District (BMWD)

Projected	Demands.

				Year (act	ft)		
Water Purchaser	2000	2010	2020	2030	2040	2050	2060
Atascosa Rural WSC	389	120	120	120	120	120	120
Bexar Met Water District (Atascosa County)	8,794	505	621	715	780	843	895
Bexar Met Water District (Bexar County)	230	8,897	9,032	9,109	9,110	9,248	9,449
Bexar Met Water District (Comal County)	15	462	748	1,059	1,344	1,654	2,001
Bexar Met Water District (Medina County)	838	24	33	41	47	54	60
Castle Hills	842	820	807	793	780	771	771
Cibolo	2,229	500	500	500	500	500	500
Hill Country Village	21,419	838	835	831	828	826	826
Hollywood Park	321	2,314	2,389	2,458	2,511	2,565	2,616
San Antonio	1,400	24,654	27,471	30,157	32,187	34,150	36,107
Somerset	0	405	484	552	609	660	709
East Central WSC	0	1,400	1,400	1,400	1,400	1,400	1,400
Converse		1,500	1,500	1,634	1,949	2,216	2,469
Live Oak		1,000	1,000	1,000	1,000	1,000	1,000
Total Demand	36,477	43,439	46,940	50,369	53,165	56,007	58,923

Supply:

				Year (ac	ft)		
Source	2000	2010	2020	2030	2040	2050	2060
Run-of-River (Medina River)	4,531	3,797	3,797	3,797	3,797	3,797	3,797
CRWA (Canyon Reservoir)	4,000	4,000	4,000	0	0	0	0
Trinity Aquifer (Bexar & Comal Counties)	158	5,224	5,224	5,224	5,224	5,224	5,224
Carrizo Aquifer (Bexar County)	1,000	1,000	1,000	770	757	745	735
Medina Lake System	0	0	0	0	0	0	0
Edwards Aquifer	12,887	12,781	12,781	12,781	12,781	12,781	12,781
Total Supply	22,576	26,802	26,802	22,572	22,559	22,547	22,537

Projected Needs:

	Year (acft)								
	2000	2010	2020	2030	2040	2050	2060		
Needs	(13,901)	(16,638)	(20,139)	(27,798)	(30,607)	(33,461)	(36,387)		

Guadalupe-Blanco River Authority (GBRA)

Projected Demands (acft/yr):

	Basin				Year (act	t)		
Water Purchaser	Location	2000	2010	2020	2030	2040	2050	2060
Municipal (Canyon Reservoir)								
Upper Basin - At or above Canyon Reservoir								
Canyon Lake WSC	U	4,000	6,000	6,000	6,129	8,198	10,466	12,769
City of Blanco	U	600	600	600	600	600	600	600
HH Ranch Properties	U	0	250	250	250	250	250	250
Domestic Contracts	U	25	17	17	17	17	17	17
Rebecca Creek MUD	U	130	130	130	130	130	130	130
Kendall County Rural	U	0	221	865	1,522	2,073	2,726	3,514
Kerr County MOU	U	0	0	0	2,000	2,000	2,000	2,000
WW Sports	U	1	1	1	1	1	1	1
Yacht Club	U	4	4	4	4	4	4	4
SJWTX - Bulverde (Western Canyon)	U	0	400	400	400	400	400	400
SJWTX - Park Village (Western Canyon)	U	0	322	322	322	322	322	322
Bulverde (Western Canyon)	U	0	653	1,342	2,128	2,910	3,723	4,595
City of Boerne (Western Canyon)	U	0	1,176	1,794	2,449	2,976	3,436	3,887
City of Fair Oaks Ranch (Western Canyon)	U	0	1,850	1,850	1,850	1,850	1,850	1,850
Cordillera Ranch (Western Canyon)	U	0	1,000	1,000	1,000	1,000	1,000	1,000
DH InvestJohnson Ranch (Western Canyon)	U	0	400	400	400	400	400	400
Kendall & Tapatio (Western Canyon)	U	0	750	750	750	750	750	750
Comal Trace (Western Canyon)	U	0	100	100	100	100	100	100

Table 4A-3 (Continued)

Guada	alupe-Blanc	o River Autho	rity (GBRA)	(Continued)				
Kendall County Rural	U	0	0	0	0	0	0	37
SAWS (Western Canyon)	U	0	4,550	3,243	1,802	0	0	
Western Canyon Sub-Total		0	11,201	11,201	11,201	10,708	11,981	13,67
Total Upper Basin Municipal (Canyon Reservoir)		4,760	18,424	19,068	21,854	23,981	28,175	32,96
Mid Basin								
CRWA – BMWD	М		3,500	0	0	0	0	
CRWA – Cibolo	М		1,350	1,350	1,350	1,350	1,350	1,3
CRWA – BMWD / Cibolo	М		500	0	0	0	0	
CRWA – East Central WSC	М		1,100	0	0	0	0	
CRWA – East Central WSC / Green Valley SUD	M		300	300	300	300	300	3
CRWA – Green Valley SUD	M		1,800	1,700	1,700	1,700	1,700	1,70
CRWA – Marion	М		100	100	100	100	100	10
CRWA – Springs Hill WSC	M		1,425	1,425	1,425	1,425	1,425	1,42
CRWA - Springs Hill WSC / Green Valley SUD	M		500	500	500	500	500	50
CRWA Dunlap In District Balance	M		0	5,200	5,200	5,200	5,200	5,20
CRWA Dunlap Current Contract Subtotal	M	10,025	10,575	10,575	10,575	10,575	10,575	10,5
CRWA Dunlap Future Contract	M			5,000	5,000	5,000	5,000	5,00
50% of Comal County Other	M	0	891	986	1,089	1,181	1,333	1,48
New Braunfels Utilities ¹	M	6,720	6,720	7,627	10,764	13,871	17,081	20,64
Comal County Manufacturing	M		5,199	6,033	6,784	7,514	8,141	9,02
City of Seguin	M	3,000	1,000	1,000	1,000	1,000	1,000	1,00
Dittmar, Gary	M	5	5	5	5	5	5	
Dittmar, Ray	M	5	5	5	5	5	5	
Gonzales County WSC	M	700	700	700	700	700	700	70
Green Valley SUD	M	200	1,000	1,000	1,000	1,000	1,000	1,00
Springs Hill WSC	M	2,500	2,500	4,000	4,000	4,000	4,000	4,00
Canyon Regional Water Authority (H/C WTP)	М	2,038	2,038	2,038	2,038	2,038	2,038	2,03
City of Buda (San Marcos WTP)	M	1,120	1,120	1,120	1,120	1,120	1,120	1,12
City of Kyle (San Marcos WTP)	M	589	2,957	2,957	2,957	2,957	2,957	2,9
City of Mustang Ridge (San Marcos WTP)	M	0	19	62	99	137	175	2
City of Niederwald (San Marcos WTP)	M	0	58	118	183	244	317	37
2428 Partners (San Marcos WTP)	М	0	3,136	3,136	3,136	3,136	3,136	3,13
Plum Creek WC/Monarch (San Marcos WTP)	M	0	560	560	560	755	1,014	1,2
City of San Marcos (San Marcos WTP)	М	5,000	10,000	10,000	10,000	10,000	10,000	10,00
Wimberley WSC (San Marcos WTP)	М	0	219	440	667	885	1,179	1,40
Woodcreek & Woodcreek Utilities (San Marcos WTP)	М	0	478	944	1,433	1,910	2,501	2,96
County Line WSC (San Marcos WTP)	M	0	0	0	0	0	0	2,50
Creedmoor-Maha WSC (San Marcos WTP)	M	0	108	180	246	312	378	44
Crystal Clear WSC (San Marcos WTP)	M	800	800	800	800	800	800	80
Maxwell WSC (San Marcos WTP)	M	0	0	0	0	0	0	0.
Martindale WSC (San Marcos WTP)	M	0	0	0	0	0	0	
Goforth WSC (San Marcos WTP)	М	250	1,050	1,050	1,350	1,350	1,350	1,3
Hays County-Other (San Marcos WTP)	M	0	1,344	1,344	1,344	1,344	1,344	1,34
San Marcos WTP Sub-Total		7,759	21,849	22,711	23,895	24,950	26,271	27,3
Total Mid Basin Municipal (Canyon Reservoir)	1	32,952	52,482	61,680	66,855	71,839	77,149	82,8
Lower Basin		32,002	,	2.,000	,	,000	,	32,0
City of Victoria (pursuant to Canyon Amendment)	L	1,240	1,240	1,240	1,240	1,240	1,240	1,2
Calhoun County Rural WSC	L	500	1,240	0	0	0	0	1,2
City of Port Lavaca	L	1,500	0	0	0	0	0	
Port O'Conner MUD	L	60	0	0	0	0	0	
Total Lower Basin Municipal (Canyon Reservoir)	-	3,300	1,240	1,240	1,240	1,240	1,240	1,2

Table 4A-3 (Continued)

Table 4A-3 (Continued) Guada	lupe-Bland	o River Auth	ority (GBRA)	(Continued))			
Industrial/Steam-Electric (Canyon Reservoir)	Ī	T	,					
Mid Basin- Below Canyon Dam to Above Victoria								
Acme	М	25	25	25	25	25	25	25
CMC Steel	M	700	700	700	700	700	700	700
Comal Fair	M	1	1	1	1	1	1	1
Comal Road Department	M	3	3	3	3	3	3	3
GPP (Panda Energy)	M	6,840	6,840	6,840	6,840	6,840	6,840	6,840
Guadalupe County	M	1	1	1	1	1	1	1
Hays Energy LP	M	2,464	2,464	2,464	2,464	2,464	2,464	2,464
Henk Paving	M	0	1	1	1	1	1	_,
Std. Gypsum	M	258	258	258	258	258	258	258
Total Mid Basin Industrial/SE (Canyon Reservoir)		10,292	10,293	10,293	10,293	10,293	10,293	10,293
Lower Basin– At or Below Victoria		11,212	10,200	10,200	10,200	10,200	10,200	
Coleto Creek	L	4,000	4,000	6,000	6,000	6,000	6,000	6,000
Ineous (BP)	L	1,100	0	0,000	0,000	0,000	0,000	0,000
Seadrift Coke	L	334	0	0	0	0	0	0
Dow/UCC	L	100	0	0	0	0	0	(
Total Lower Basin Industrial/SE (Canyon Reservoir)	_	5,534	4,000	6,000	6,000	6,000	6,000	6,000
		3,334	4,000	0,000	0,000	0,000	0,000	0,000
Irrigation (Canyon Reservoir)	U	172	188	188	188	188	188	188
Irrigation Contracts (Upper Basin)	M	173 736	608	608	608	608	608	608
Irrigation Contracts (Mid-Basin)	IVI							
Canyon Reservoir Total		57,747	87,235	99,077	107,038	114,149	123,653	134,094
Mid-Basin Municipal (Run-of-River)		4 400						4 400
Lockhart	M	1,120	1,120	1,120	1,120	1,120	1,120	1,120
Luling	M	1,680	1,680	1,680	1,680	1,680	1,680	1,680
Mid-Basin Municipal (Run-of-River) Total		2,800	2,800	2,800	2,800	2,800	2,800	2,800
Lower Basin Municipal (Run-of-River)								
Calhoun County Rural WSC	L	356	436	516	572	609	618	632
Victoria County Rural	L	0	0	0	0	81	193	310
Port Lavaca	L	1,658	1,769	1,877	1,981	2,079	2,209	2,345
Port O'Conner MUD	L	186	198	210	222	234	248	264
Total Lower Basin Municipal (Run-of-River, Firm)		2,200	2,403	2,603	2,775	3,003	3,268	3,551
Lower Basin Industrial/SE (Run-of-River)								
Ineous (BP)	L	2,200	3,300	3,300	3,300	3,300	3,300	3,300
Seadrift Coke	L	666	1,000	1,000	1,000	1,000	1,000	1,000
Victoria County Industry	L	0	0	2,969	5,921	8,860	11,489	14,441
Victoria County Steam Electric			1,791	1,836	1,865	1,895	1,927	1,950
Dow/UCC	L	15,000	15,100	15,100	15,100	15,100	15,100	15,100
Dow/UCC and Other Existing & New Industry	L	5,356	7,868	10,647	13,045	15,422	17,520	20,167
Total Lower Basin Industrial/SE (Run-of-River, Firm)		23,222	29,059	34,852	40,231	45,577	50,336	55,958
Lower Basin Industrial/SE (Run-of-River, Interruptible)								
Exelon		0	0	75,000	75,000	75,000	75,000	75,000
Total Lower Basin Industrial/SE (Run-of-River, Interruptible)		0	0	75,000	75,000	75,000	75,000	75,000
Lower Basin Irrigation (Run-of-River, Interruptible)								
Irrigation Agreements	L	8,077	15,568	13,654	12,096	11,041	10,285	9,581
Lower Basin (Run-of-River, Firm) Total		25,422	31,462	37,455	43,006	48,580	53,604	59,509
Lower Basin (Run-of-River, Interruptible) Total	†	8,077	15,568	88,654	87,096	86,041	85,285	84,581
Total Demand	 	94,046	137,065	227,986	239,940	251,570	265,342	280,984
rotar Defilatio		34,040	137,003	221,300	233,340	231,370	203,342	200,304

Guada	Guadalupe-Blanco River Authority (GBRA) (Continued)										
Total Upper Basin Demand	U	4,933	18,612	19,256	22,042	24,169	28,363	33,151			
Total Mid Basin Demand	M	46,780	66,183	75,381	80,556	85,540	90,850	96,503			
Total Lower Basin Demand	L	42,333	52,270	133,349	137,342	141,861	146,129	151,330			
Total Demand		94,046	137,065	227,986	239,940	251,570	265,342	280,984			

Supply (acft/yr):

	Year (acft)								
Source	2000	2010	2020	2030	2040	2050	2060		
Canyon Reservoir	87,700	87,629	87,558	87,488	87,417	87,346	87,275		
Mid-basin Rights	0	0	0	0	0	0	0		
Lower Basin Rights (Interruptible, Daily Basis)	133,953	133,953	133,953	133,953	133,953	133,953	133,953		
Lower Basin Rights (Firm, Daily Basis)	41,548	41,548	41,548	41,548	41,548	41,548	41,548		
Total Supply	263,201	263,130	263,059	262,989	262,918	262,847	262,776		

Projected Management Supplies (Needs) (acft/yr):

	Year (acft)						
	2000	2010	2020	2030	2040	2050	2060
Canyon Management Supplies/(Needs) ¹	29,953	394	(11,519)	(19,550)	(26,732)	(36,307)	(46,819)
Mid Basin Run-of-River Management Supplies/(Needs) ²	(2,800)	(2,800)	(2,800)	(2,800)	(2,800)	(2,800)	(2,800)
Lower Basin Run-of-River Firm Mgmt. Supplies / (Needs) ³	16,126	10,086	4,093	(1,458)	(7,032)	(12,056)	(17,961)
Lower Basin Run-of-River Interruptible Mgmt. Supplies /							
(Needs)	125,876	118,385	45,299	46,857	47,912	48,668	49,372
Total System Needs ⁴	0	0	10,226	23,808	36,564	51,163	67,580

- U = Upper = At or above Canyon Dam; M = Mid = Below Canyon Dam to Above Victoria; and L = Lower = At or below Victoria.
- 1 Projected needs for GBRA's customers presently associated with Canyon Reservoir are calculated by subtraction of the Canyon Reservoir Total demands near the middle of page 4A-19 from the Canyon Reservoir supplies on page 4A-20.2 Mid-basin run-of-river customer needs are calculated by subtraction of the Mid-Basin Municipal Run-of-River Total demands near the middle of page 4A-19 from the Mid-Basin Rights supply on page 4A-20.
- 3 Lower basin firm customer needs are calculated by subtraction of Lower Basin (Run-of-River, Firm) Total demands near the bottom of page 4A-19 from Lower Basin Rights (Firm, Daily Basis) supplies on page 4A-20.
- 4 Total System Needs are based on firm supplies and demands and are calculated as the sum of Canyon Management Supplies/(Needs), Mid-Basin Run-of-River Management Supplies/(Needs), and Lower Basin Run-of-River Firm Management Supplies/(Needs).

Canyon Regional Water Authority (CRWA)

Projected Demands:

				Year (acft)			
Water Purchaser	2000	2010	2020	2030	2040	2050	2060
Bexar Met Water District	4,000	6,800	8,800	12,800	13,800	14,505	14,505
City of Cibolo	800	2,050	3,030	8,230	8,730	9,230	9,230
County Line WSC	1,267	1,308	1,878	1,878	1,878	1,878	1,878
East Central WSC	1,400	2,585	2,885	2,635	2,635	2,635	2,635
Green Valley SUD	1,800	2,500	3,600	9,300	9,800	10,800	11,300
City of La Vernia	0	400	400	400	400	400	400
City of Marion	100	200	300	500	500	500	500
Martindale	158	190	190	190	190	190	190
Martindale WSC	288	396	396	696	896	896	896
Springs Hill WSC	1,925	2,025	2,025	2,025	2,025	2,025	2,025
SS WSC	0	0	0	0	0	0	690
City of Santa Clara	0	100	250	350	500	650	900
Maxwell WSC	867	900	1,300	1,700	2,100	2,500	2,900
Crystal Clear WSC	382	1,600	2,895	2,895	2,895	5,485	5,485
Total Demand	12,987	21,054	27,949	43,599	46,349	51,694	53,534

Supply:

		Year (acft)								
Source	2000	2010	2020	2030	2040	2050	2060			
GBRA - Lake Dunlap	10,025	10,575	10,575	10,575	10,575	10,575	10,575			
GBRA - Hays/Caldwell	2,038	2,038	2,038	2,038	2,038	2,038	2,038			
Water Right Leases	521	521	521	521	521	521	521			
Total Supply	12,584	13,134	13,134	13,134	13,134	13,134	13,134			

Canyon Regional Water Authority (CRWA) (co	ont.)
--	-------

Projected Needs:

	Year (acft)									
	2000	2010	2020	2030	2040	2050	2060			
System Management Supplies / (Needs)	(403)	(7,920)	(14,815)	(30,465)	(33,215)	(38,560)	(40,400)			

Schertz-Seguin Local Government Corporation (SSLGC)

Projected Demands:

				Year (acft)			
Water Purchaser	2000	2010	2020	2030	2040	2050	2060
Schertz	5,143	5,143	5,143	6,082	7,567	9,258	11,066
Seguin	5,144	5,144	5,144	5,144	5,144	5,144	5,144
Selma	800	800	1,086	1,559	1,557	1,548	1,549
Springs Hill WSC	560	560	560	560	560	560	560
Universal City	800	800	800	800	800	800	800
Crystal Clear WSC	0	0	300	600	900	900	900
Garden Ridge	0	257	395	552	710	873	1,052
Total Demand	12,447	12,704	13,428	15,297	17,238	19,083	21,071

Supply:

		Year (acft)								
Source	2000	2010	2020	2030	2040	2050	2060			
Carrizo Aquifer (Gonzales County) ¹	12,910	12,910	12,910	12,910	12,910	12,910	12,910			
Carrizo Aquifer Guadalupe County) ¹		3,226	3,226	3,226	3,226	3,226	3,226			
Total Supply	12,910	16,136	16,136	16,136	16,136	16,136	16,136			
¹ Permitted production as of August 200)4.									

Schertz-Seguin Local Government Corporation (SSLGC) (Continued)

Projected Needs:

	Year (acft)								
	2000	2010	2020	2030	2040	2050	2060		
System Management Supplies / (Needs)	463	3,432	2,708	839	(1,102)	(2,947)	(4,935)		

Springs Hill Water Supply Corporation (SHWSC)

Projected Demands:

	Year (acft)								
Water Purchaser	2000	2010	2020	2030	2040	2050	2060		
Springs Hill WSC	2,076	2,349	2,679	3,056	3,424	3,849	4,330		
La Vernia (via CRWA)	400	400	400	400	400	400	400		
Crystal Clear WSC	250	250	250	250	250	250	250		
East Central WSC (via CRWA)	385	385	385	385	385	385	385		
Total Demand	3,111	3,384	3,714	4,091	4,459	4,884	5,365		

Table 4A-3 (Concluded)

Springs Hill Water Supply Corporation (SHWSC) (cont.)

Supply:

		Year (acft)								
Source	2000	2010	2020	2030	2040	2050	2060			
GBRA (Canyon Reservoir)	2,500	2,500	2,500	2,500	2,500	2,500	2,500			
CRWA (Canyon Reservoir)	1,925	2,025	2,025	2,025	2,025	2,025	2,025			
Carrizo Aquifer (Guadalupe County)	1,050	1,050	1,050	1,050	1,050	1,050	1,050			
Carrizo Aquifer (Gonzales County) (SSLGC)	560	560	560	560	560	560	560			
Total Supply	6,035	6,135	6,135	6,135	6,135	6,135	6,135			

Projected Management Supplies / (Needs):

	Year (acft)						
	2000	2010	2020	2030	2040	2050	2060
System Management Supplies / (Needs)	2,924	2,751	2,421	2,044	1,676	1,251	770

(This page intentionally left blank.)

Section 4B Water Supply Plans [31 TAC §357.7(a)(5-7)

The South Central Texas Regional Water Planning Group (SCTRWPG) has used a planning process (Figure 4B-1) focused on the development of a Regional Water Plan to meet the needs of every water user group in the region for a planning period extending through the year 2060. Given the history of sharp and divisive conflict concerning water planning in this region, the planning process has provided extraordinary opportunities for participation by water user groups in providing input to achieve the goal of a plan that will "provide for the orderly development, management, and conservation of water resources..." 31 TAC §357.5(a). In order to build consensus among the constituencies represented by the members of the SCTRWPG, the planning process has emphasized the coordination and careful integration of technical information with information provided through public participation.

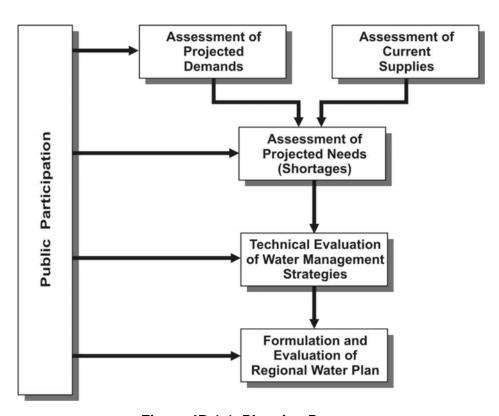


Figure 4B.1-1. Planning Process

Conflict over the past several decades in this region has focused on how to manage the Edwards Aquifer so as to meet the needs of many water user groups. Central to progress in resolving this conflict, and thus in achieving the formulation of a water plan acceptable to all constituencies represented in the SCTRWPG, is the assurance that all of the different, competing strategies for meeting water needs are given consideration. It has thus been central to the viability of the planning process itself that the evaluation of diverse water management strategies as a cohesive regional plan receive extraordinary attention.

To this end, the SCTRWPG adopted a planning process that ensures evaluation of virtually all the water management strategies that have been proposed or discussed in the past, together with new ones that had been subject to only limited technical evaluation. To achieve confidence by all constituencies in the planning process, it was necessary in the development of the 2001 South Central Texas Regional Water Plan to evaluate water management strategies both on a stand-alone basis and in various combinations in the context of five alternative plans. In keeping with logical and acceptable planning methods, the SCTRWPG was able to recommend the best components of these alternative plans and adopt the 2001 South Central Texas Regional Water Plan, which then became a part of the 2002 State Water Plan.

In the development of the 2006 Regional Water Plan, the following process for Identification of Potentially Feasible Water Management Strategies was used:¹

- 1) Developed draft scope of work including necessary updates to recommended water management strategies included in the 2001 Regional Water Plan, with technical evaluation of several specific water management strategies that are potentially feasible for meeting needs in the region. Draft scope of work also included identification and evaluation of unspecified water management strategies to meet needs for new retail utility water user groups previously aggregated in County-Other (Rural Area Residential & Commercial).
- 2) Presented scope of work at a series of public meetings (January 29–31, 2002) and received comments.
- 3) Refined scope of work and obtained TWDB approval in August 2002.

¹ Pursuant to 357.5(e)(4) of the Regional Water Planning Guidelines which states: "Before a regional water planning group begins the process of identifying potentially feasible water management strategies, it shall document the process by which it will list all possible water management strategies and identify the water management strategies that are potentially feasible for meeting a need in the region."

4) Solicited current water planning information, including specific water management strategies of interest, from water user groups.

- 5) Compared water demand projections and available supplies to obtain projections of water needs (shortages) by water user group.
- 6) Prepared a draft list of water management strategies that were potentially feasible to meet projected needs of water user groups subject to changed conditions and of new retail utility water user groups that were aggregated in County-Other in the 2001 Regional Water Plan. Draft list included the recommended water management strategies in the 2001 Regional Water Plan, and specific water management strategies submitted in response to the solicitation for current water planning information.
- 7) Presented draft list of potentially feasible water management strategies during public meetings of the RWPG and received comments.
- 8) Refined list of potentially feasible water management strategies for water user groups subject to changed conditions and new retail utility water user groups for RWPG consideration and approval.
- 9) Performed technical evaluations of water management strategies approved by RWPG.

Development of the 2011 South Central Texas Regional Water Plan has focused on refinement of the 2006 Regional Water Plan. In addition, new estimates of groundwater availability and a refined evaluation of surface water supply has provided the tools for more detailed technical assessment of needs for additional water supplies and the potential effects of implementation of recommended water management strategies. In the development of the 2011 South Central Texas Regional Water Plan (SCTRWP), the process for Identification of Potentially Feasible Water Management Strategies outlined below has been followed:

- 1) The South Central Texas Regional Water Planning Group (SCTRWPG) first recognizes that the 2011 SCTRWP is essentially an update of the 2001 and 2006 SCTRWPs. In the development of the 2001 SCTRWP, virtually all of the water management strategies proposed or discussed previously (along with a variety of new strategies) were technically evaluated on a stand-alone basis and in various combinations in the context of five alternative regional plans. The 2006 SCTRWP is an update of the 2001 SCTRWP including technical evaluations of new or refined water management strategies.
- 2) Developed draft scope of work, including necessary updates to recommended water management strategies included in the adopted 2006 SCTRWP, with technical evaluation of several additional water management strategies that are potentially feasible for meeting needs in the region. Draft scope of work included identification and evaluation of unspecified water management strategies to meet needs for new retail utility water user groups and/or wholesale water providers.
- 3) Presented draft versions of the scope of work at public meetings of the SCTRWPG (February 7, 2008 and May 1, 2008) and received comments.

4) Refined scope of work with due consideration of comments received and obtained TWDB approval on August 25, 2008.

- 5) Current water planning information, including specific water management strategies of interest, was solicited from water user groups in June 2009.
 - a) Solicitation for planning information included a draft list of water management strategies deemed potentially feasible to meet projected needs.
 - b) Draft list generally included the recommended water management strategies in the 2006 SCTRWP, strategies included in the Technical Consultant Scope of Work, and/or other strategies perceived to be of interest to water user groups.
 - c) Water user groups were encouraged to classify each water management strategy on their draft list as recommended, alternative, or rejected.
- 6) Considering information responsive to the solicitation and information from required technical evaluations, draft lists of potentially feasible water management strategies were prepared and comments received during the August 2009 meeting of the SCTRWPG.
- 7) Refined lists of potentially feasible water management strategies recommended to meet water user group needs were compiled for SCTRWPG consideration in November and December 2009 and SCTRWPG approval for publication in the Initially Prepared 2011 SCTRWP in February 2010.

4B.1 Water Management Strategies

4B.1.1 Regional Summary

The South Central Texas Regional Water Plan includes recommended water management strategies that emphasize water conservation; maximize utilization of available resources, water rights, and reservoirs; engage the efficiency of conjunctive use of surface and groundwater, avoid development of large new reservoirs; and limit depletion of storage in aquifers. There are additional strategies that have significant support within the region, yet require further study regarding quantity of dependable water supply made available during severe drought, feasibility, and/or cost of implementation, that are also included in the Plan. Water management strategies recommended to meet projected needs in the South Central Texas Region could produce new supplies in excess of 755,000 acft/yr in 2060 and may be categorized by source as shown in Figure 4B.1-2. The plan does not propose any changes to existing water contracts or option agreements. Further, the plan was created in close cooperation with each Wholesale Water Provider in the region, and no strategy contained in the plan would adversely affect any existing water contracts or option agreements.

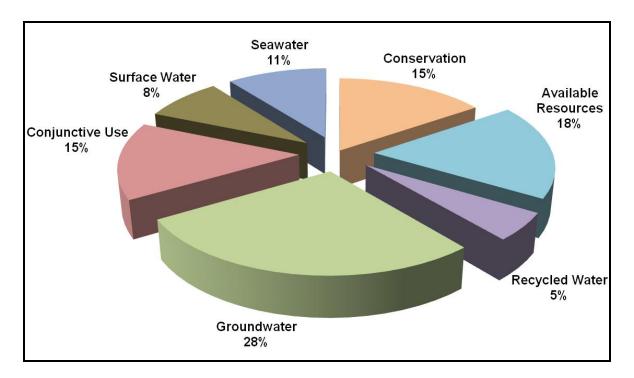


Figure 4B.1-2. Sources of New Supply in 2060

Specific recommended water management strategies in the Plan are summarized by approximate timing of potential implementation in Figure 4B.1-3 and Appendix D, and by geographic location in Figure 4B.1-4. Water management strategies emphasizing conservation comprise about 15.5 percent of recommended new supplies and include:

- Municipal Water Conservation (72,666 acft/yr @ \$648/acft/yr²);
- Irrigation Water Conservation (7,238 acft/yr @ \$143/acft/yr);
- Drought Management (41,240 acft/yr); and
- Mining Water Conservation (2,493 acft/yr).

Water management strategies maximizing use of available resources, water rights, and reservoirs comprise about 18.0 percent of recommended new supplies and include:

- Edwards Transfers (51,875 acft/yr @ \$454/acft/yr);
- GBRA-Exelon Project (49,126 acft/yr @ \$641/acft/yr);
- GBRA Lower Basin Storage (100 acre site) (28,369 acft/yr @ \$104/acft/yr);
- Medina Lake Firm-Up (ASR) (9,933 acft/yr @ \$1,696/acft/yr);

_

² \$648/acft/yr is an average cost of municipal water conservation. Actual unit costs vary from WUG to WUG and from decade to decade.

• Wimberley & Woodcreek Water Supply Project (4,480 acft/yr @ \$2,453/acft/yr);

- Surface Water Rights³; and
- Facilities Expansions.

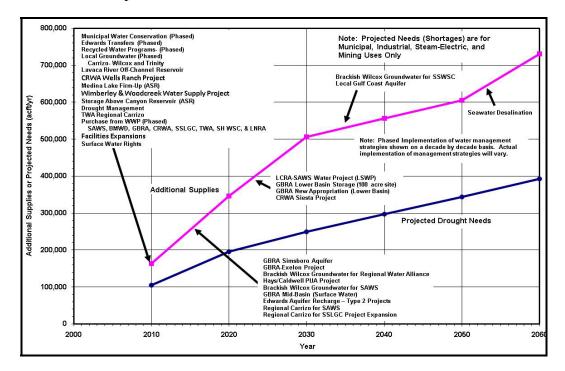


Figure 4B.1-3. Phased Implementation of Water Management Strategies

The Regional Water Plan includes the Recycled Water Programs water management strategy at 41,737 acft/yr which could represent approximately 5.2 percent of the recommended new supplies.

Water management strategies that simultaneously develop groundwater supplies and limit depletion of storage in regional aquifers comprise about 27.9 percent of recommended new supplies and include:

- GBRA Simsboro Project (49,777 acft/yr @ \$982/acft/yr)⁴;
- Local Groundwater Supplies (Carrizo, Gulf Coast, and Trinity) (38,471 acft/yr @ \$687/acft/yr - \$1,823/acft/yr);

_

³ As new supplies and associated costs have not been quantified, this strategy is more explicitly identified as an activity consistent with the 2011 Regional Water Plan.

⁴ The new firm supply associated with this strategy was reduced from 50,000 acft/yr to 49,777 acft/yr to resolve a potential inter-regional conflict with Region G. This small change did not warrant revision of Section 4C.21. A portion of the new firm supply for this strategy to be obtained from the Carrizo-Wilcox Aquifer in Bastrop County is identified as an "overdraft" to resolve a potential inter-regional conflict with Region K. See the response to TWDB Level I Comment No. 52 in Section 10 for additional information.

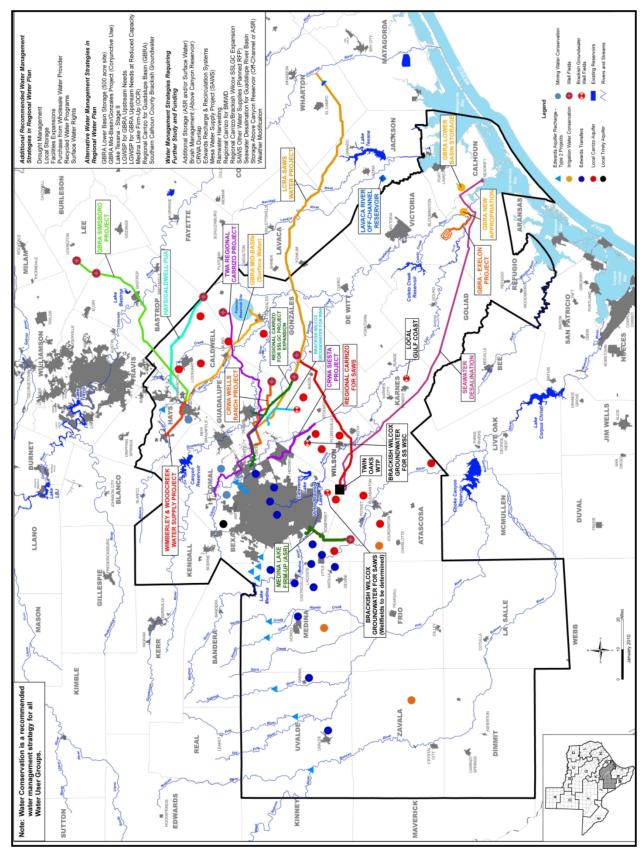


Figure 4B.1-4. Recommended Water Management Strategies

• Hays/Caldwell PUA Project (35,000 acft/yr @ \$1,245/acft/yr);

- TWA Regional Carrizo (27,000 acft/yr @ \$1,523/acft/yr);
- Brackish Wilcox Groundwater for SAWS (26,400 acft/yr @ \$1,245/acft/yr);
- Regional Carrizo for SAWS (11,687 acft/yr @ \$1,343/acft/yr);
- Brackish Wilcox Groundwater for Regional Water Alliance (14,700 acft/yr @ \$1,293/acft/yr);
- CRWA Wells Ranch Project (11,000 acft/yr @ \$725/acft/yr);
- Regional Carrizo for SSLGC Project Expansion (10,364 acft/yr @ \$608/acft/yr); and
- Brackish Wilcox Groundwater for SSWSC (1,120 acft/yr @ \$1,883/acft/yr).

Water management strategies that engage the efficiency of conjunctive use of surface and groundwater as well as maximize the use of available resources and water rights comprise approximately 14.6 percent of recommended new supplies and include:

- LCRA-SAWS Water Project (90,000 acft/yr @ \$2,394/acft/yr);
- Edwards Aquifer Recharge Type 2 Projects (21,577 acft/yr @ \$1,728/acft/yr); and
- CRWA Siesta Project (5,042 acft/yr @ \$1,421/acft/yr).

Water management strategies that involve new surface water appropriations while avoiding development of large mainstem reservoirs comprise approximately 8.2 percent of recommended new supplies and include:

- Lavaca River Off-Channel Reservoir (26,242 acft/yr @ \$701/acft);
- GBRA Mid-Basin Project (Surface Water) (25,000 acft/yr @ \$2,204/acft/yr);
- GBRA New Appropriation (Lower Basin) (11,300 acft/yr @ \$1,953/acft/yr); and
- Storage Above Canyon Reservoir (ASR) (3,140 acft/yr @ \$1,772/acft/yr).

Finally, the Regional Water Plan includes the development of a Seawater Desalination water management strategy at 84,012 acft/yr (75 mgd) (\$2,284/acft/yr) which could represent approximately 10.5 percent of the recommended new supplies.

The South Central Texas Regional Water Planning Group identifies the following as alternative water management strategies that have been technically evaluated in accordance with TWDB rules and may, subject to an appropriate amendment process defined by TWDB rules, replace a recommended water management strategy in the 2011 Regional Water Plan:

- Lower Guadalupe Water Supply Project for Upstream GBRA Needs (60,000 acft/yr @ \$1,506/acft/yr);
- GBRA Lower Basin Storage (500 acre site) (59,569 acft/yr @ \$109/acft/yr);

• Lower Guadalupe Water Supply Project for Upstream GBRA Needs at Reduced Capacity (35,000 acft/yr @ \$2,565/acft/yr);

- GBRA Mid-Basin Project (Conjunctive Use) (25,000 acft/yr @ \$1,779/acft/yr);
- Regional Carrizo for Guadalupe Basin (GBRA) (25,000 acft/yr @ \$1,280/acft/yr);
- Medina Lake Firm-Up (OCR) (9,078 acft/yr @ \$1,197/acft/yr);
- Local Groundwater Supplies (Barton Springs Edwards) (1,358 acft/yr @ \$203/acft/yr);
- Calhoun County Brackish Groundwater Project (1,344 acft/yr @ \$2,679/acft/yr); and
- Local Groundwater Supplies (Carrizo) (Yancey WSC) (1,210 acft/yr @ \$517/acft/yr).

The Regional Water Plan includes several water management strategies that require further study and funding prior to implementation. Several of these strategies rely upon technologies that have been used previously, but further research is necessary to determine the cost of implementation, optimal scale and location, and quantity of dependable water supply that would be available in severe drought. These strategies are:

- Brush Management;
- Weather Modification;
- Rainwater Harvesting;
- Storage Above Canyon Reservoir (Off-Channel);
- Edwards Aquifer Recharge & Recirculation Systems;
- Palmetto Bend Stage II (LNRA);
- Seawater Desalination for Guadalupe River Basin;
- Mesa Water Supply Project (SAWS);
- SAWS Other Water Supplies (Planned RFP);
- Regional Carrizo for BMWD;
- Regional Carrizo for SSLGC Project Expansion Wilson County Option;
- CRWA Dunlap Project; and
- Balancing Storage (ASR and/or Surface)⁵.

Although specific quantities of new, dependable supply during drought have not been determined for these strategies, it is understood that their implementation will contribute positively to storage and system management of many diverse strategies in the Regional Water

_

⁵ As new supplies and associated costs have not been quantified, this strategy is more explicitly identified as an activity consistent with the 2011 Regional Water Plan.

Plan. The SCTRWPG recommends that State funding be made available to cooperatively support the refinement and implementation of these strategies.

The 2011 South Central Texas Regional Water Plan also recognizes Edwards Aquifer Recharge and Recirculation Systems (R&R) as a water management strategy requiring further evaluation. As it did in the 2006 Regional Water Plan, the SCTRWPG recommends State and local funding for research at a level that ensures due consideration of this strategy.

There are significant quantities of projected water supply needs or shortages in the region for municipal, industrial, steam-electric, and mining uses. As indicated in Figure 4B.1-3, implementation of a number of water management strategies on an expedited basis will be necessary to avoid significant hardship, water rationing, and/or cessation of discharge from Comal Springs in the event of severe drought during the next decade. Substantial water supply needs or shortages are also projected for irrigation use in the South Central Texas Region. The Irrigation water Conservation Water Management Strategy is projected to meet approximately 42 percent of projected irrigation needs (shortages) in 2010, and 65 percent in 2060. However, based upon present economic conditions for agriculture and the fact that there are no really low-cost water supplies to be developed, the SCTRWPG has determined that it is not economically feasible to meet all projected irrigation needs in Zavala County at this time, since the net farm income to pay for water is less than the costs of water at the potential sources, to say nothing of the cost delivered to farms where water is needed.

Implementation of the 2011 South Central Texas Regional Water Plan will result in the development of new water supplies that will be reliable in the event of a repeat of the most severe drought on record. However, it is evident in Figure 4B.1-3 that implementation of all recommended water management strategies is not likely to be necessary in order to meet projected needs within the planning period. The SCTRWPG explicitly recognizes the difference between additional supplies and projected needs as System Management Supplies and has recommended the associated water management strategies in the Regional Water Plan for the following reasons:

 To recognize both the long lead times and the uncertainty associated with risk factors that may prevent implementation of water management strategies and necessitate replacement strategies;

• To preserve flexibility for water user groups or wholesale water suppliers to select the most feasible projects among several consistent with the Regional Plan and therefore ensure that such projects are potentially eligible for permitting and funding;

- To serve as additional supplies in the event that rules, regulations, or other restrictions limit use of any planned strategies; and/or
- To ensure adequate supplies in the event of a drought more severe than that which occurred historically.

Costs associated with the implementation and long-term operations and maintenance of water management strategies have been estimated in accordance with TWDB rules and general guidelines and reflect regional water treatment capacity and balancing storage facilities sufficient to meet peak daily and seasonal water demands in the larger urban areas. Total estimated project cost (in 2008 dollars) for the recommended water management strategies for municipal supply that will likely require long-term financing for implementation is about \$7.6 billion. Annual unit costs for recommended water management strategies for municipal supply in the 2011 South Central Texas Regional Water Plan (in 2008 dollars) are estimated to range from a low of about \$104/acft/yr (\$0.32 per 1,000 gallons) for GBRA Lower Basin Storage to a high of about \$2,429/acft/yr (\$7.45 per 1,000 gallons) for the Wimberley/Woodcreek Water Supply Project and average about \$1,209/acft/yr (\$3.71 per 1,000 gallons). No costs have been included for facilities expansions and potentially feasible water management strategies requiring further study.

4B.1.2 Water Management Strategy Descriptions

A brief description of each of the water management strategies included in the 2011 South Central Texas Regional Water Plan is included in the following text. Descriptions include the dependable (firm) water supply during drought and an estimated annual unit cost (in September 2008 dollars) for water at full operating capacity during the debt service period (if applicable).

4B.1.2.1 Municipal Water Conservation

The Municipal Water Conservation water management strategy includes conservation practices and programs to reduce per capita water use in cities by amounts in addition to reductions already incorporated into the TWDB water demand projections. The SCTRWPG established municipal water conservation goals as follows:

• For municipal WUGs with water use of 140 gpcd and greater, the goal is to reduce per capita water use by one percent per year until the level of 140 gpcd is reached, after which, the goal is to reduce per capita water use by one-fourth percent per year for the remainder of the planning period; and

• For municipal WUGs having year 2000 water use of less than 140 gpcd, the goal is to reduce per capita water use by one-fourth percent per year (0.25% per year).

Best Management Practices (BMPs) for water conservation, as identified by the Water Conservation Implementation Task Force⁶, are recommended as means of achieving these municipal water conservation goals. The objective of municipal water conservation programs is to reduce the per capita water use parameter without adversely affecting the quality of life of the people involved. Planned municipal water conservation focuses on the following specific BMPs:

- Use of low flow plumbing fixtures (e.g., toilets, shower heads, and faucets that are designed for low quantities of flow per unit of use);
- The selection and use of more efficient water-using appliances (e.g., clothes washers and dishwashers);
- Modifying and/or installing lawn and landscaping systems to use grass and plants that require less water;
- Repair of plumbing and water-using appliances to reduce leaks; and
- Modification of personal behavior that controls the use of plumbing fixtures, appliances, and lawn watering methods.

The SCTRWPG recognizes that meeting the water conservation goals through implementation of these, or other, BMPs represents the highest practicable level of water conservation pursuant to 31 TAC 357.7(a)(7)(A)(iii). Planned additional municipal water conservation focused on these BMPs could effectively increase supply through demand reduction in the South Central Texas Region by about 72,570 acft/yr in the year 2060 at unit costs ranging from \$525 per acft/yr to \$770 per acft/yr. Volume II, Section 4C.1 includes a detailed discussion of this water management strategy.

4B.1.2.2 Irrigation Water Conservation

The Irrigation Water Conservation strategy achieves water conservation through the installation of Low Energy Precision Application (LEPA) irrigation systems and furrow dikes.

⁶Water Conservation Implementation Task Force, Report to the 79th Legislature, Texas Water Development Board, Special Report, Austin, Texas, November 2004.

Recommended implementation of these conservation measures in Atascosa, Bexar, Medina, and Zavala Counties could effectively increase supply for irrigation through demand reduction by up to 20,709 acft/yr at a unit cost of \$143 per acft/yr. Volume II, Section 4C.1 includes a detailed discussion of this water management strategy.

4B.1.2.3 Industrial Water Conservation

The Industrial Water Conservation strategy can achieve water conservation through the use of BMPs such as water audits, waste reduction submetering, cooling towers, reuse of process water, landscape water conservation, and specific water conservation plans designed for individual manufacturing plants (See Section 4C.1). The SCTRWPG recommends that water conservation be considered by individual industries, as a means to meet a part of the projected water needs.

4B.1.2.4 Steam-Electric Water Conservation

The Steam-Electric Water Conservation strategy achieves water conservation through the use of BMPs such as air-cooling or other cooling systems that can significantly reduce existing and projected water demands for steam-electric power generation. Volume II, Section 4C.1 includes a listing of other potential BMPs. The SCTRWPG recommends that water conservation be considered by individual steam-electric generators, as a means to meet a part of the projected water needs.

4B.1.2.5 Mining Water Conservation

The Mining Water Conservation strategy achieves water conservation through the use of recommended BMPs such as onsite collection and use of precipitation runoff and onsite reuse of process water. Volume II, Section 4C.1 includes a listing of other potential BMPs. The SCTRWPG recommends that water conservation be considered by individual mining operations, as a means to meet a part of the projected water needs.

4B.1.2.6 Drought Management

The SCTRWPG has developed a general methodology for estimating the economic impacts associated with implementation of drought management as a water management

strategy.⁷ Application of this methodology for regional water planning purposes has facilitated comparison of drought management to other potentially feasible water management strategies on a unit cost basis (Section 4C.2). The SCTRWPG has found, and the San Antonio Water System (SAWS) has demonstrated, that water user groups having sufficient flexibility to focus on discretionary outdoor water use first and avoid water use reductions in the commercial and manufacturing use sectors may find some degrees of drought management to be economically viable and cost-competitive with other water management strategies. Recognizing that implementation of appropriate water management strategies is a matter of local choice, the SCTRWPG recommends due consideration of economically viable drought management as an interim strategy to meet near-term needs through demand reduction until such time as economically viable long-term water supplies can be developed. Hence, new demand reductions associated with the 5 percent drought management scenario are shown at year 2010 for each municipal water user group with projected needs for additional water supply at year 20108. Volume II, Section 4C.2 includes a detailed discussion of this recommended management strategy.

4B.1.2.7 Edwards Transfers

The Edwards Transfers water management strategy is based upon the provisions of Senate Bill 1477, as amended, which provides for the creation of the Edwards Aquifer Authority, establishes a withdrawal permit system, and potentially allows a permit holder to sell or lease up to 50 percent of his irrigation rights. In the 2011 Regional Water Plan, irrigation transfers are included to meet projected needs of 17 municipal water user groups with transfers of 45,645 acft/yr in 2010 increasing to 51,875 acft/yr in 2060 (quantities are part of the 320,000 acft/yr of firm yield used in the development of the 2011 plan). Initial Regular Permit (IRP) value of permits needed to obtain these quantities of firm yield increase from 81,590 acft/yr in 2010 to 92,285 acft/yr in 2060. Based on available data for transactions to date, typical unit costs are \$454 per acft/yr for lease of withdrawal rights and \$1,072 per acft/yr for permanent acquisition.

⁷ SCTRWPG, "2011 Regional Water Plan, Study 3, Enhanced Water Conservation, Drought Management, and Land Stewardship," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.
⁸ In accordance with the SAWS 2009 Water Management Plan Update, 37,622 acft/yr is the drought management supply (demand reduction) shown for SAWS in year 2010. This quantity is between the 15 and 20 percent drought management scenarios presented in Section 4C.2.

Volume II, Section 4C.3 includes a detailed discussion of this recommended management strategy.

4B.1.2.8 Edwards Recharge - Type 2 Projects

The Edwards Recharge – Type 2 Projects involves the construction of recharge enhancement structures located atop the Edwards Aquifer recharge zone (Type 2 Projects) on streams that are often dry. These structures impound water only for a few days or weeks following storm events and recharge water very quickly to the aquifer, typically draining at a rate of 2 to 3 feet per day. Planned projects include Indian Creek, Lower Frio, Lower Sabinal, Lower Hondo, Lower Verde, San Geronimo, Northern Bexar / Medina County Projects (Limekiln, Culebra, Government Canyon, Deep Creek, Salado Dam No. 3), Salado Creek FRS, Cibolo Dam No. 1, Dry Comal, and Lower Blanco. Consensus Criteria for Environmental Flow Needs were applied in the technical evaluations of projects comprising this management strategy located on streams which typically flow. Implementation of these projects could enhance spring discharge and increase dependable municipal water supply for Bexar County by about 21,600 acft/yr. It is specifically recognized by the SCTRWPG that alternative projects at these locations that may be larger in size and storage capacity are consistent with the 2011 Regional Water Plan. Volume II, Section 4C.4 includes a detailed discussion of this recommended water management strategy.

4B.1.2.9 Recycled Water Programs

The Recycled Water Programs water management strategy involves direct reuse of reclaimed municipal wastewater for non-potable uses such as irrigation of golf courses, parks, and open spaces of cities, landscape watering of large office and business complexes, cooling of large office and business complexes, steam-electric power plant cooling, process or wash water for mining operations, irrigation of farms that produce livestock feed and forage, irrigation of farms that produce sod, ornamentals, and landscape plants, and for instream uses such as riverwalks and waterways. This strategy is being used within the region by entities including SAWS, SARA, New Braunfels Utilities, the City of Seguin and the City of San Marcos and can be expanded as the quantities of municipal wastewater increase with population growth. An advantage of this strategy is that the water has already been developed and brought to the locations of many of the uses listed above. In regional planning, this strategy is used to meet some of the needs for Bexar County Industrial and Comal County Industrial.

The SCTRWPG recognizes that water suppliers throughout the region, including SAWS, City of Marion, City of San Marcos, City of Floresville, SS WSC, and County Line WSC, may choose to reuse or reclaim the increased treated wastewater volumes associated with increased municipal water use, especially such wastewater volumes that are derived from privately owned groundwater and interbasin transfer of surface water. The SCTRWPG further recognizes that this reuse may be accomplished directly ("flange-to-flange") or indirectly through bed and banks delivery to downstream diversion and/or storage sites subject to applicable law. Such lawful reuse of treated wastewater is consistent with the 2011 South Central Texas Regional Water Plan. Volume II, Section 4C.5 includes a detailed discussion of this recommended water management strategy.

4B.1.2.10 Facilities Expansions

Several Water User Groups (WUGs) are interested in projects to expand major components of their existing infrastructure (facilities) so they can continue to provide a safe and reliable water supply to their customers during the planning period. These facilities expansions are considered to be independent of any potential water management strategies to acquire a new water supply, and instead are intended to address expected future improvements to the water system, such as the installation of new water transmission facilities or additional water treatment Volume II, Section 4C.6 summarizes the expansions associated with this recommended water management strategy.

4B.1.2.11 Brush Management

The Brush Management water management strategy focuses on the selective removal of brush from rangeland in the watershed upstream of Canyon Reservoir, located in the Edwards Plateau Vegetational Area. Brush Management could enhance the firm yield of Canyon Reservoir between 5,590 acft/yr and 12,180 acft/yr with land owner participation rates of 25 percent and 50 percent, respectively, of the suitable lands as identified by Texas A&M University. Associated unit costs for the 25 percent and 50 percent participation when financed for 20 years at 6 percent (including contingencies, treatment, and integration) are \$897/acft/yr and \$799/acft/yr, respectively. Analyses of this water management strategy requiring further study were performed with the assistance of Texas A&M University and are presented in Volume II, Section 4C.7.

4B.1.2.12 Wimberley & Woodcreek Water Supply Project

The Wimberley & Woodcreek Water Supply Project water management strategy involves short-term water supply from Canyon Reservoir and/or San Marcos and long-term supply from the GBRA Mid-Basin Project or the Hays/Caldwell PUA Project. Short-term supplies may be made available through leasing of committed supplies from Canyon Reservoir that are not currently being taken. Once Canyon contract holders grow into their purchased water supplies, Wimberley and Woodcreek will rely on long-term water supplies of 4,480 acft/yr expected to be obtained from one of the projects identified above, each of which includes delivery to the San Marcos Water Treatment Plant (WTP) area located 18 miles from Wimberley. Volume II, Section 4C.8 includes a detailed discussion of this recommended water management strategy.

4B.1.2.13 Storage above Canyon Reservoir

The Storage above Canyon Reservoir water management strategy, which involves diverting streamflows from the Guadalupe River above Canyon Reservoir during wet periods and storing them either in an off-channel reservoir (OCR) or a large-scale Aquifer Storage and Recovery (ASR) system, is a strategy to potentially meet needs for Water User Groups (WUGs) in Kendall and Comal Counties. In the Storage above Canyon Reservoir water management strategy, surface water storage sites and ASR well fields in the watershed upstream of Canyon Reservoir are assessed, and the firm supply is determined using the storage to firm up run-of-river water available under a new appropriation. Only the formulation of this water management strategy relying on ASR is recommended to meet projected needs for additional water supply at this time. Volume II, Section 4C.9 includes a detailed discussion of this strategy.

4B.1.2.14 GBRA-Exelon Project

The GBRA-Exelon Project involves the development of a reliable supply of 49,126 acft/yr of cooling water to the Exelon Generation Company, LLC (Exelon) for the development of nuclear power plant in Victoria County south of Victoria, Texas. Two concepts for supplying raw water to the plant are being considered: the river diversion option, which involves diversion from the Guadalupe River at the GBRA Saltwater Barrier, and the canal diversion option, which involves diversion from the GBRA Calhoun Canal system. Either option could supply up to 75,000 acft/yr from existing GBRA/Dow Lower Basin Water Rights to Exelon's Victoria County

Site. Volume II, Section 4C.10 includes a detailed discussion of this recommended water management strategy.

4B.1.2.15 Lower Guadalupe Water Supply Project (LGWSP) for Upstream GBRA Needs at Reduced Capacity

The Lower Guadalupe Water Supply Project (LGWSP) for Upstream GBRA Needs at Reduced Capacity water management strategy involves the diversion of up to 60,000 acft/yr of presently underutilized surface water rights from the Guadalupe-Blanco River Authority (GBRA) Calhoun Canal System, transmission to an approximately 16,500 acft off-channel reservoir, transmission of 35,000 acft/yr of firm supply to water treatment plants near Luling, San Marcos, New Braunfels, and Canyon Reservoir, and integration into municipal water supply systems. This water management strategy serves to ensure that long-term, reliable, and renewable surface water supplies will be available throughout the GBRA statutory district including Calhoun, Refugio, and Victoria Counties. Volume II, Section 4C.11 includes a detailed discussion of this alternative water management strategy.

4B.1.2.16 Lower Guadalupe Water Supply Project (LGWSP) for Upstream GBRA Needs

The Lower Guadalupe Water Supply Project (LGWSP) for Upstream GBRA Needs at Reduced Capacity water management strategy involves the diversion of up to 75,000 acft/yr of presently underutilized surface water rights from the Guadalupe-Blanco River Authority (GBRA) Calhoun Canal System, transmission to an approximately 19,000 acft off-channel reservoir, transmission of 60,000 acft/yr of firm supply to water treatment plants near Luling, San Marcos, New Braunfels, and Canyon Reservoir, and integration into municipal water supply systems. This water management strategy serves to ensure that long-term, reliable, and renewable surface water supplies will be available throughout the GBRA statutory district including Calhoun, Refugio, and Victoria Counties. Volume II, Section 4C.12 includes a detailed discussion of this alternative water management strategy.¹⁰

⁹ If fresh groundwater from the lower Guadalupe Basin is added to this strategy, then the plan must be amended in order for the modified strategy to be recommended for implementation.

¹⁰ If fresh groundwater from the lower Guadalupe Basin is added to this strategy, then the plan must be amended in order for the modified strategy to be recommended for implementation.

4B.1.2.17 GBRA Lower Basin Storage

The Guadalupe-Blanco River Authority (GBRA) and Dow Chemical Company (Dow), individually and collectively, own surface water rights in the lower Guadalupe – San Antonio River Basin (the GBRA Lower Basin Water Rights) authorizing diversions totaling 175,501 acre-feet per year (acft/yr). Water available for diversion under these rights is governed by the complex interactions of natural, anthropogenic, and legal factors including rainfall, runoff, springflow, evaporation, aquifer recharge, diversions by other water right owners, reservoir operations, off-channel storage, treated effluent from municipal and industrial water users, terms and conditions of the water rights, and the prior appropriation doctrine as enforced by the South Texas Watermaster of the Texas Commission on Environmental Quality (TCEQ). Given that the GBRA Lower Basin Water Rights point of diversion near Tivoli is below the San Antonio River confluence and that they are senior in priority to most upstream water rights, it is recognized that they are quite reliable but not firm. In order to firm up the existing interruptible GBRA/Dow lower basin water rights, a 100 acre or 500 acre off-channel reservoir is considered for implementation. The two proposed OCR sites would be located approximately 3 miles east of Green Lake near the Dow Chemical Company. The off-channel reservoirs would have a maximum water depth of 25-ft and be capable of impounding 2,500 acft and 12,500 acft of water at the 100 acre and 500 acre OCR sites respectively. The recommended 100-acre site could firm-up an additional 28,369 acft/yr, while the alternative 500-acre site could firm-up an additional 59,569 acft/yr. Volume II, Section 4C.13 includes a detailed discussion of this water management strategy.

4B.1.2.18 GBRA New Appropriation (Lower Basin)

The GBRA New Appropriation (Lower Basin) water management strategy involves diversion of up to 189,484 acft/yr under a new appropriation from the Guadalupe River in Calhoun County using existing gravity-flow diversion facilities located immediately upstream of GBRA's Saltwater Barrier and Diversion Dam at a rate of diversion not to exceed 500 cfs (within the existing 622 cfs maximum authorized diversion rate) and authorization to impound up to 200,000 acft in Calhoun County. The diversions and storage will serve municipal and industrial water users in GBRA's ten-county statutory district and are the subject of Application No. 12482 for surface water rights pending before the Texas Commission on Environmental

Quality (TCEQ). The firm supply from this strategy, with a 100,000 acft off-channel reservoir, is 11,300 acft/yr. Implementation of this water management strategy will help to meet projected demands for current and future GBRA customers through the next 50 years and beyond. Volume II, Section 4C.14 includes a detailed discussion of this recommended water management strategy.¹¹

4B.1.2.19 GBRA Mid-Basin (Surface Water)

The Guadalupe-Blanco River Authority (GBRA) is in the planning and permitting stages of a phased Mid-Basin Project to provide supplemental water supplies directly to customers in Hays and Caldwell Counties in the near-term and indirectly to customers in Comal, Guadalupe, and Kendall Counties by replacement or reduction of Canyon Reservoir supplies currently delivered to the San Marcos WTP in the long-term. GBRA is currently considering at least three formulations of the Mid-Basin Project using available surface water and/or groundwater supply sources to ensure unrestricted delivery of a firm yield of approximately 25,000 acft/yr. In all three formulations, 4,000 acft/yr will be delivered to the Luling Water Treatment Plant (WTP) and the remaining balance of approximately 21,000 acft/yr will be delivered to the San Marcos WTP. This water management strategy focuses on the surface water only formulation which would divert run-of-river water from the Guadalupe River below Gonzales backed-up with stored water from an off-channel reservoir in Gonzales County. GBRA has submitted Application No. 12378 for the surface water rights associated with this water management strategy and this application has been declared administratively complete by the TCEQ. Volume II, Section 4C.15 includes a detailed discussion of this recommended water management strategy.¹²

-

¹² Project subject to senior water rights, full application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas Water Code, and the TCEQ permitting process.

¹¹ Project subject to senior water rights, full application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas Water Code, and the TCEQ permitting process. If fresh groundwater from the lower Guadalupe Basin is added to this strategy, then the plan must be amended in order for the modified strategy to be recommended for implementation.

4B.1.2.20 GBRA Mid-Basin (Conjunctive Use)

The Guadalupe-Blanco River Authority (GBRA) is in the planning and permitting stages of a phased Mid-Basin Project to provide supplemental water supplies directly to customers in Hays and Caldwell Counties in the near-term and indirectly to customers in Comal, Guadalupe, and Kendall Counties by replacement or reduction of Canyon Reservoir supplies currently delivered to the San Marcos WTP in the long-term. GBRA is currently considering at least three formulations of the Mid-Basin Project using available surface water and/or groundwater supply sources to ensure unrestricted delivery of a firm yield of approximately 25,000 acft/yr. In all three formulations, 4,000 acft/yr will be delivered to the Luling Water Treatment Plant (WTP) and the remaining balance of approximately 21,000 acft/yr will be delivered to the San Marcos WTP. This water management strategy focuses on the conjunctive use formulation which utilizes the Guadalupe River as the primary supply and groundwater in Gonzales County as a supplemental supply. Volume II, Section 4C.16 includes a detailed discussion of this alternative water management strategy.¹³

4B.1.2.21 Regional Carrizo for Guadalupe Basin

The Guadalupe-Blanco River Authority (GBRA) is in the planning and permitting stages of a phased Mid-Basin Project to provide supplemental water supplies directly to customers in Hays and Caldwell Counties in the near-term and indirectly to customers in Comal, Guadalupe, and Kendall Counties by replacement or reduction of Canyon Reservoir supplies currently delivered to the San Marcos WTP in the long-term. GBRA is currently considering at least three formulations of the Mid-Basin Project using available surface water and/or groundwater supply sources to ensure unrestricted delivery of a firm yield of approximately 25,000 acft/yr. In all three formulations, 4,000 acft/yr will be delivered to the Luling Water Treatment Plant (WTP) and the remaining balance of approximately 21,000 acft/yr will be delivered to the San Marcos WTP. This water management strategy focuses on the groundwater only option to supply the

 13 Project subject to senior water rights, full application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas Water Code, and the TCEQ permitting process.

25,000 acft/yr. Volume II, Section 4C.17 includes a detailed discussion of this alternative water management strategy.¹⁴

4B.1.2.21 Regional Carrizo for SAWS

The Regional Carrizo for SAWS water management strategy involves the development of an 11,687 acft/yr supply from the Carrizo-Wilcox Aquifer from the SAWS Buckhorn well field for municipal and industrial demands in San Antonio. SAWS is attempting to obtain well construction and production and water export permits from the Gonzales County Underground Water Conservation District (GCUWCD). Groundwater production will come from wells in the SAWS Buckhorn well field. A raw water pipeline with two pump stations will convey groundwater across Gonzales and Wilson Counties to SAWS Twin Oaks WTP where the water will be cooled and excessive iron and manganese removed. Water treatment will require an expansion of the Twin Oaks WTP. A treated water pipeline will deliver the water from the WTP either through a new integration pipeline to the west side of San Antonio or an existing pipeline to the east side of San Antonio. Water from the Gonzales-Carrizo well fields will be delivered at a uniform rate of 10.5 MGD. Production is planned to begin in 2016. Volume II, Section 4C.18 includes a detailed discussion of this recommended water management strategy. ¹⁵

-

¹⁵ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

¹⁴ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

4B.1.2.22 Regional Carrizo for Schertz-Seguin Local Government Corporations (SSLGC) Project Expansion

The Regional Carrizo for Schertz-Seguin Local Government Corporation (SSLGC) Project Expansion water management strategy involves the expansion of well fields located in southern Gonzales and Guadalupe Counties by the SSLGC. The SSLGC was created to develop and operate a wholesale water supply system to serve the long-term needs of several communities located in Guadalupe and Bexar Counties. This strategy focuses on the development of additional well fields and associated collection and treatment systems as primary transmission facilities for delivery of water to customers are operating at this time. Planned implementation of this strategy will provide an additional dependable annual supply of approximately 10,364 acft/yr at an estimated unit cost of \$568/acft/yr. Volume II, Section 4C.19 includes a detailed discussion of this recommended water management strategy.¹⁶

4B.1.2.23 Hays/Caldwell PUA Project

The Hays/Caldwell PUA Project involves the development of about 35,000 acft/yr of dependable supply from the Carrizo Aquifer in Caldwell and Gonzales Counties. Planned facilities include well field(s) and transmission and treatment systems for delivery to water users in Caldwell and Hays Counties at an estimated unit cost of \$1,245/acft/yr. Volume II, Section 4C.20 includes a detailed discussion of this recommended water management strategy.¹⁷

_

¹⁶ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

¹⁷ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

4B.1.2.24 GBRA Simsboro Project

The Guadalupe-Blanco River Authority (GBRA) Simsboro Project will provide supplemental water supplies directly to customers in Hays and Caldwell Counties in the near-term and indirectly to customers in Comal, Guadalupe, and Kendall Counties by replacement or reduction of Canyon Reservoir supplies currently delivered to the San Marcos WTP in the long-term. The GBRA Simsboro Project consists of the development of a well field in Bastrop County and another one in Lee County, transporting the water to a water treatment plant near San Marcos, treating the water, and integrating the water into existing water distribution systems. The wells would withdraw water from the Simsboro member of the Wilcox Group, which is part of the Carrizo-Wilcox Aquifer. The GBRA Simsboro Project under consideration is expected to be implemented in two phases, with Phase I delivering 30,000 acft/yr of water from Bastrop County beginning in 2012; and, Phase II delivering 19,777 acft/yr of water from Lee County, possibly also starting in 2012¹⁸. Volume II, Section 4C.21 includes a detailed discussion of this recommended water management strategy.¹⁹

4B.1.2.25 Local Groundwater Supplies (Carrizo)

The local Carrizo water management strategy involves the phased development or expansion of well fields in the Carrizo-Wilcox Aquifer for the purposes of meeting local municipal and steam-electric needs in Atascosa, Bexar²⁰, Caldwell, Gonzales, Guadalupe, Medina, and Wilson Counties. Planned implementation of this strategy provides new dependable supplies totaling about 33,874 acft/yr for the South Central Texas Region in 2060 at estimated

²⁰ The portion of the new firm supply for this strategy to be obtained by Bexar Metropolitan Water District from the Carrizo-Wilcox Aquifer in Bexar County is identified as a "temporary overdraft." See the response to TWDB Level I Comment No. 52 in Section 10 for additional information.

¹⁸ The new firm supply associated with this strategy was reduced from 50,000 acft/yr to 49,777 acft/yr to resolve a potential inter-regional conflict with Region G. This small change did not warrant revision of Section 4C.21. A portion of the new firm supply for this strategy to be obtained from the Carrizo-Wilcox Aquifer in Bastrop County is identified as an "overdraft" to resolve a potential inter-regional conflict with Region K. See the response to TWDB Level I Comment No. 52 in Section 10 for additional information.

¹⁹ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

unit costs ranging from \$309/acft/yr to \$1,427/acft/yr. Volume II, Section 4C.22 includes a detailed discussion of this recommended water management strategy.

4B.1.2.26 Local Groundwater Supplies (Trinity)

The local Trinity water management strategy involves the development of 4,582 acft/yr of water supply from the Trinity Aquifer in northern Bexar and western Caldwell Counties for BMWD and County Line WSC. Estimated unit costs range from \$517/acft/yr to \$870/acft/yr. Volume II, Section 4C.22 includes a detailed discussion of this recommended management strategy.

4B.1.2.27 Local Groundwater Supplies (Gulf Coast)

The local Gulf Coast water management strategy involves development of 161 acft/yr from one new local supply well in the Gulf Coast Aquifer near Kenedy in Karnes County. Estimated unit cost for the new supply is \$1,823/acft/yr. Volume II, Section 4C.22 includes a detailed discussion of this recommended water management strategy.

4B.1.2.28 Brackish Wilcox Groundwater for SAWS

Brackish Wilcox Groundwater for SAWS is a water supply strategy based on the development of brackish groundwater in the Wilcox Aquifer in southern Bexar, southwestern Wilson, and northern Atascosa Counties. Phase I of this strategy is in southern Bexar County and is designed to produce 12,000 acft/yr of potable water. Twelve wells are required and plans are to locate the wells in or near SAWS ASR well field. With allowance for concentrate produced from the desalination process, about 13,500 acft/yr of raw water would have to be pumped from the Wilcox. Water from the Wilcox at this location is expected to have a total dissolved solids concentration of about 1,200-1,500 mg/L. Phases II and III are planned to produce 9,000 and 5,000 acft/yr of potable water, respectively. Phases II and III will require about 10,100 and 5,600 acft/yr of raw water, respectively. The locations these well fields have

not been determined. Volume II, Section 4C.23 includes a detailed discussion of this recommended water management strategy.²¹

4B.1.2.29 Brackish Wilcox Groundwater for Regional Water Alliance

The Brackish Wilcox Groundwater for Regional Water Alliance water management strategy includes developing a brackish groundwater supply from the Wilcox Aquifer in Guadalupe and Wilson Counties for members of the Regional Water Alliance (RWA) with service areas in Bexar, Guadalupe, and Wilson Counties. Utility members of the RWA who are potentially interested in this WMS include: Canyon Regional Water Authority, Bexar Met Water District, East Central Special Utility District, Green Valley Special Utility District, and SS Water Supply Corporation. It is designed to produce an average annual water supply of 10 MGD (11,200 acft/yr) and a peak supply of 13 MGD. The well field is planned for northern Wilson County and southern Guadalupe County and near Hwy 123. The water will be delivered to the Liessner Booster Station for distribution to participating water utilities. Volume II, Section 4C.24 includes a detailed discussion of this recommended water management strategy.²²

4B.1.2.30 Brackish Wilcox Groundwater for SS WSC

The Brackish Wilcox Groundwater for SS Water Supply Corporation (SSWSC) water management strategy includes developing a brackish groundwater supply from the Wilcox Aquifer in Wilson County for the SSWSC. It is designed to produce an average annual water supply of 1.0 MGD (1,120 acft/yr) and a peak demand of 2.0 MGD. The project facilities are

²¹ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

²² Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

planned to be located in the vicinity of the SSWSC Sutherland Springs Road Plant, which is located about 3 miles west-northwest of Sutherland Springs. The facilities include Wilcox Aquifer wells to provide a brackish groundwater supply, water treatment plant for pretreatment and desalination, delivery of treated water to the existing distribution system, and concentrate disposal to deep injection wells. Volume II, Section 4C.25 includes a detailed discussion of this recommended water management strategy.²³

4B.1.2.31 Southern Calhoun County Brackish Groundwater

The Calhoun County Brackish Groundwater Project is a strategy to accommodate projected future demands from potential coastal residential developments in the vicinity of Seadrift and between Seadrift and Port O'Connor. This strategy does not include expansion of the City of Seadrift and the Port O'Connor Municipal Utility District water supplies. The project is planned for an average daily demand of 1.2 MGD (1,344 acft/yr) and a peak day demand of 3.0 MGD. The selected peak demand factor is 2.5, which is greater than a typical peak demand factor of 2.0, because of high influx of seasonal residents and visitors in the summer. Volume II, Section 4C.26 includes a detailed discussion of this alternative water management strategy.

4B.1.2.32 CRWA Wells Ranch Project

Canyon Regional Water Authority (CRWA) is in the planning, permitting, and construction stages of a Carrizo Aquifer well field at Wells Ranch, straddling the border of Guadalupe and Gonzales Counties. The project has two phases. Phase I, which is nearly complete, will supply 5,200 acft/yr of water to CRWA customers and Phase II is envisioned to supply an additional 5,800 acft/yr in the future. To date, CRWA has: (1) conducted test drilling and well performance testing, (2) obtained drilling and production permits for wells from the Gonzales County Underground Water Conservation District (GCUWCD) and Guadalupe County Groundwater Conservation District (GCGCD), and (3) built conveyance infrastructure suitable

-

²³ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

for transmitting the full 11,000 acft/yr of supply to their distribution system. Volume II, Section 4C.27 includes a detailed discussion of this management strategy.²⁴

4B.1.2.33 CRWA Siesta Project

The Canyon Regional Water Authority (CRWA) Siesta Project is envisioned as a conjunctive use project using interruptible diversions from Cibolo Creek in Wilson County along with treated effluent from wastewater treatment facilities operated by San Antonio River Authority (SARA) as raw water sources for treatment and distribution as a new municipal water supply for CRWA members. Should treated effluent from wastewater treatment facilities not be available, the project could include brackish groundwater as an alternate back-up source. The Siesta Project involves the acquisition/lease of additional water rights and amendment of a surface water right presently held by CRWA in order to increase authorized diversions from Cibolo Creek by CRWA from 42 acft/yr to 5,042 acft/yr. Planned implementation of this strategy could provide an additional dependable annual supply of approximately 5,042 acft/yr at an estimated cost of \$1,421/acft/yr. Volume II, Section 4C.28 includes a detailed discussion of this recommended water management strategy.

4B.1.2.34 LCRA-SAWS Water Project

The Lower Colorado River Authority – San Antonio Water System (LCRA-SAWS) Water Project (LSWP) involves the conservation and development of approximately 330,000 acft/yr in the Lower Colorado River Basin Counties of Matagorda, Wharton, and Colorado. Of that 330,000 acft/yr, LCRA could make up to 90,000 acft/yr available to the San Antonio Water System (SAWS), for an 80-year period. In 2002, SAWS signed a Definitive Agreement with LCRA for the purchase and use of this water. The LSWP involves the potential future diversion of water from the Colorado River, development of off-channel storage, and conveyance through a transmission pipeline to a new water treatment plant (WTP) site and

-

²⁴ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

SAWS terminal storage in western Guadalupe County. Water would then be treated and integrated into municipal supply systems in and around the City of San Antonio. Volume II, Section 4C.29 includes a more detailed discussion of this recommended water management strategy.

4B.1.2.35 Medina Lake Firm-Up

The Medina Lake Firm-Up water management strategy involves implementing Aquifer Storage and Recovery (ASR) and/or off-channel reservoir (OCR) storage to firm-up Bexar Metropolitan Water District's (BMWD) existing water rights and contracts with Bexar-Medina-Atascosa Counties Water Improvement District No. 1 (BMA) for Medina Lake stored water. In addition, it is envisioned that BMWD and Benton City Water Supply Corporation (WSC), along with others, could potentially jointly develop the ASR project option. One option for this water management strategy is a 15-well ASR system, considered as a recommended water management strategy to meet needs in the 2011 SCTRWP. In addition, the off-channel reservoir Site 3 option, is listed as an alternative water management strategy in the 2011 SCTRWP. Volume II, Section 4C.30 includes a more detailed discussion of this water management strategy.

4B.1.2.36 Seawater Desalination

The Seawater Desalination water management strategy involves the long-term development of intake and treatment facilities on the north shore of San Antonio Bay near Seadrift and transmission of treated water for integration and use in Bexar County. This water management strategy utilizes a source of water that is essentially unlimited; however, costs of treatment and location for brine discharge (as may affect marine habitat and species) remain concerns. Planned implementation of this strategy will provide a dependable annual supply of approximately 84,000 acft by 2060 at an estimated unit cost of \$2,284/acft/yr. Volume II, Section 4C.31 includes a detailed discussion of this recommended water management strategy.

4B.1.2.37 Surface Water Rights

The Surface Water Rights water management strategy is included to explicitly recognize that use of water supplies made available under existing water rights by lease or purchase agreements between willing buyers and willing sellers is an activity consistent with the 2011 Regional Water Plan. The additions of diversion points or types and places of use for existing

surface water rights are also activities consistent with the 2011 Regional Water Plan if necessary authorizations are obtained pursuant to TCEQ rules and applicable law. Volume II, Section 4C.32 includes a more detailed discussion and specific examples of this recommended water management strategy.

4B.1.2.38 Balancing Storage

The Balancing Storage water management strategy is included to explicitly recognize that storage is needed at several locations within the region in order to firm up supplies from run-of-river diversions or interruptible groundwater sources and to ensure that supplies delivered through long distance conveyance facilities are available during drought and of sufficient quantity to meet daily and seasonal demands. The addition of Balancing Storage on the surface or in an aquifer is an activity consistent with the 2011 Regional Water Plan, if necessary authorizations are obtained pursuant to Texas Commission on Environmental Quality (TCEQ) or groundwater conservation district rules and applicable law. Volume II, Section 4C.33 includes a more detailed discussion and specific examples of this recommended water management strategy

4B.1.2.39 Lavaca River Off-Channel Reservoir

The Lavaca River Off-Channel Reservoir is currently being considered by the Lavaca-Navidad River Authority as a potentially recommended water management strategy in Region P that could meet needs in Regions P, L, and N. The project involves building a 75,000 acft off-channel reservoir (OCR) approximately 10 miles west of Lake Texana. The proposed Lavaca River OCR would be constructed in a manner to allow LNRA to divert high flows from the Lavaca River to the reservoir, and then pump water at a constant rate to end users. This creates a mechanism to firm-up what is an otherwise interruptible water source in order to serve area needs. The Lavaca River OCR water management strategy will provide 26,242 acft/yr of water for LNRA. Volume II, Section 4C.34 includes a more detailed discussion of this recommended water management strategy.

4B.1.2.40 Palmetto Bend - Stage II

The Texas Water Development Board (TWDB) and the Lavaca-Navidad River Authority (LNRA) hold a Certificate of Adjudication, #16-2095B, for the completion of Palmetto Bend – Stage II Dam and Reservoir on the Lavaca River. The Palmetto Bend – Stage II water

management strategy is the development of a reservoir on the Lavaca River about 1.4 miles upstream of the permitted site by the Lavaca-Navidad River Authority as an alternative water management strategy in Region P that could meet needs in Region L. The Lavaca River OCR water management strategy will provide 22,964 acft/yr of water for LNRA. Volume II, Section 4C.35 includes a more detailed discussion of this alternative water management strategy.

4B.1.2.41 TWA Regional Carrizo

The Texas Water Alliance (TWA) is currently securing groundwater leases in Northeastern Gonzales County to deliver up to 27,000 acft/yr of Carrizo Aquifer groundwater to entities in Gonzales, Guadalupe, and Comal Counties. The TWA Regional Carrizo project would produce 27,000 acft/yr of groundwater from a new well field for treatment and delivery to Gonzales County Water Supply Corporation (WSC) (500 acft/yr), Spring Hills WSC (3,000 acft/yr), and Canyon Lake Water Service Company (12,000 acft/yr). The remaining 11,500 acft/yr is available to meet needs of other Water User Groups within proximity of the pipeline route. The well field includes 17-1,200 gpm Carrizo wells and two standby wells. Volume II, Section 4C.36 includes a more detailed discussion of this recommended water management strategy.²⁵

4B.1.2.42 Purchase from Wholesale Water Provider

The Purchase from Wholesale Water Provider water management strategy involves the purchase of water supplies from, or participation in the development of new water supplies with, an identified Wholesale Water Provider. Wholesale water providers include the San Antonio Water System (SAWS), Bexar Metropolitan Water District (BMWD), Guadalupe-Blanco River Authority (GBRA), Canyon Regional Water Authority (CRWA), Schertz-Seguin Local Government Corporation (SSLGC), Springs Hill Water Supply Corporation (SHWSC), the Texas Water Alliance (TWA), and Lavaca-Navidad River Authority (LNRA). Costs for this

_

²⁵ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

management strategy include those for purchase, treatment, transmission, and distribution of water, and are specific to each project or source of water. For example, purchase by a WUG from a Wholesale Water Provider would be at the unit cost of water from the source and would vary from water source to water source.

4B1.2.43 Weather Modification

The Weather Modification water management strategy involves the seeding of clouds with silver iodide by licensed professionals to increase precipitation within the planning region. This management strategy has been studied and was being practiced in year 2005 in 15 counties of the region's 21 county area. Although it is not possible to estimate the quantities of water that this strategy would contribute during drought, the strategy could contribute to increased precipitation on rangeland and cropland, as well as increasing stream flows and aquifer recharge during non-drought periods. Increased precipitation on range and cropland would contribute directly to crop, livestock, and wildlife production, and in the case of irrigated crop production would reduce the need to apply irrigation water. To the extent that such additions to these water resources are stored for use later, the strategy could contribute to supplies available during drought. The water from this strategy would be available for development or recovery by individual water user groups and by water suppliers that serve several different water user groups.

4B.1.2.44 Rainwater Harvesting

The Rainwater Harvesting water management strategy is the catching and storing of rainwater from roofs of homes and other buildings largely for use at or very near the sites from which the water is caught. The strategy is being used in parts of the South Central Texas Planning Region for household water supplies for both potable and non-potable uses. Although this strategy is limited due to rainfall levels, time of rainfall events, and capacities of storage facilities, the strategy can supply a part, or in some cases all, of the water needed by individual households and business establishments in areas that are too distant or too sparsely settled to be served efficiently by public systems. Rainwater harvesting in the Trinity Aquifer area of the region (Northern Bexar, Comal, Hays, Medina, and Uvalde Counties) can supplement supplies

from wells completed in this aquifer, and thereby extend the capabilities of this aquifer to support the demands that are projected to be placed upon it.

4B.1.2.45 Recharge and Recirculation Studies

The Recharge and Recirculation water management strategy involves artificial recharge of the Edwards Aquifer, capture of the resulting increased springflows, and returning these quantities of water to further recharge the aquifer. Artificial recharge could be done using runoff from the Edwards Plateau, water imported from other watersheds, the subsequent increment of springflow resulting from artificial recharge, and/or a combination of these sources. The purpose of this strategy is to maintain springflows at satisfactory levels to protect the habitats of endangered species that exist in the springs and specified reaches of spring fed streams, while at the same time increasing the quantity of water that can be withdrawn from the aquifer to meet the needs of water user groups. The quantities of water that could be withdrawn from the aquifer depend upon the quantities of recharge, the location(s) at which the recharge is made to the aquifer, levels of the aquifer at the time of recharge, residence time of recharged water in the aquifer, and perhaps other factors that are not known or well understood. The major reason for the Recharge and Recirculation strategy is to use the aquifer to store and distribute water to water user groups that have already established themselves in proximity to the aquifer.

4B.1.2.46 Mesa Water Supply Project (SAWS)

This strategy involves the production of groundwater from the Ogallala and Simsboro Aquifers and surface water from the Brazos River and transmission of same via pipelines and the bed and banks of the Brazos River to San Antonio. The SCTRWPG recognizes this as a potential water management strategy requiring further evaluation and study prior to implementation.

4B.1.3 Summary of Key Information

Pursuant to 31 TAC§357.7(a)(7), regional water plan development shall include evaluations of water management strategies providing certain key information pursuant to TWDB criteria. Key information regarding the 2011 South Central Texas Regional Water Plan is summarized by subject area below.

4B.1.3.1 Quantity, Reliability, and Cost

• Plan reflects substantial commitment to Water Conservation throughout the South Central Texas Region, thereby encouraging efficient utilization of existing water supplies and reducing quantities of new supply needed.

- Plan includes reliable new water supplies sufficient to meet projected drought needs for municipal, industrial, steam-electric power, and mining uses through the year 2060.
- Plan recognizes that water management strategies such as brush management, weather modification, rainwater harvesting, and small recharge dams contribute positively to storage and system management of diverse sources of supply.
- Unit costs associated with new supplies delivered to each water user group range from \$104/acft/yr to \$2,429/acft/yr and average about \$1,209/acft/yr or \$3.71 per 1,000 gallons based on September 2008 dollars.

4B.1.3.2 Environmental Factors

• See Section 7.3 for summary of environmental benefits and concerns.

4B.1.3.3 Impact on Water Resources

- Plan implementation results in no unmitigated reductions in water available to existing rights.
- Long-term reductions in water levels in the Carrizo-Wilcox Aquifer.

4B.1.3.4 Impacts on Agricultural and Natural Resources

- Inclusion of water management strategies to meet projected irrigation needs (shortages) in full is estimated to be economically infeasible at this time. Irrigation Water Conservation through the installation of Low Energy Precision Application (LEPA) systems is recommended to offset a portion of projected irrigation needs (shortages) in four counties.
- Plan includes Brush Management and Weather Modification which are expected to contribute positively to storage and system management of diverse water management strategies. Weather Modification assists irrigation and dry-land agriculture (crops and ranching), increases water supply for wildlife habitat, and increases Edwards Aquifer recharge.
- Plan includes about 99 percent of potential maximum of unrestricted voluntary transfer of Edwards Aquifer irrigation permits to municipal use through lease or purchase.

4B.1.3.5 Other Relevant Factors per SCTRWPG

 Potential effects of Plan implementation on Edwards Aquifer springflows has been identified as a relevant factor by the SCTRWPG. As shown in Section 7.1, implementation of Plan is expected to increase long-term average discharges from both Comal Springs and San Marcos Springs.

• Flexibility in the phasing and order of implementation of management strategies comprising the Plan has been identified as a relevant factor or concern by the SCTRWPG. Wholesale Water Provides and water user groups need the ability to expedite or reschedule implementation of any specific management strategy as necessary and appropriate.

4B.1.3.6 Comparison of Strategies to Meet Needs

• Selection of water management strategies comprising the 2011 Regional Water Plan is based upon guiding principles and assumptions approved by the SCTRWPG.

4B.1.3.7 Interbasin Transfer Issues

- Plan includes two potential surface water interbasin transfers from the Lower Colorado River near Bay City to Bexar County and from the Lavaca-Navidad River Basin to the Colorado-Lavaca Coastal Basin (Point Comfort).
- Projected needs (shortages) in basins of origin are met throughout the planning period.

4B.1.3.8 Third-Party Impacts of Voluntary Transfers

- Positive effects for municipal water user groups associated with Edwards Transfers.
- Payment to farmers for voluntary irrigation water transfer provides capital for farmers
 to install higher efficiency irrigation systems. In many cases, this allows irrigation to
 continue at present levels so that the transfer does not adversely affect the regional
 economy.
- Lower water levels in some portions of the Carrizo Aquifer.

4B.1.3.9 Regional Efficiency

- Edwards Transfers require no new facilities. Transferred water would likely be available at or very near locations having projected municipal and industrial water needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Regional water treatment and balancing storage facilities increase efficiency, improve reliability, and reduce unit cost.

4B.1.3.9 Water Quality Considerations

• Assuming that wastewater treatment standards and plant performance continue to improve over time, no significant impacts on water quality are expected to result from implementation of the 2011 South Central Texas Regional Water Plan.

4B.1.3.10 Impacts on Navigation

• None of the recommended water management strategies of the plan have any identifiable effect on navigation.

4B.2 Water User Group Plans by County

The proposed plan to meet the specific needs of municipal, industrial, steam-electric power, and mining water user groups located within the region is to implement water conservation programs to reduce water demands to the extent possible, and develop additional groundwater and surface water supplies located as near as possible to each respective water user to the extent that supplies are available. As local supply development potentials for each respective user group are exhausted, water management strategies located at greater distances from the water users are recommended.

In the case of the irrigation water user group, the South Central Texas Regional Water Planning Group found that, at the present time, it is not economically feasible to meet all of the projected irrigation water need (shortage). However, the proposed plan includes the Irrigation Water Conservation strategy to meet as much as possible of the projected irrigation needs of the region. Therefore, each individual irrigation water user will need to install Low Energy Precision Application (LEPA), or other efficient irrigation systems which will result in irrigation water savings due to lower irrigation water application requirements.

In the case of "Rural Area Residential and Commercial" (individual households and business establishments) water users, the projections have included local surface and groundwater quantities to meet projected needs. However, no specific plans have been formulated to supply the projected quantities of water needed. Instead, it is presumed that those individual households and businesses that are located in rural areas, and rural and investor owned water supply districts, authorities, and companies (those that supplied less than 280 acft or had populations less than 500 in year 2000) that operate public water supply systems to serve rural areas will meet these needs either from locally available supplies, or through arrangements to obtain water from other water utilities. Plans are included for all public water suppliers (cities and water supply districts and authorities) that provided 280 acft or more and/or had populations of 500 or more in year 2000.

Water management strategies recommended for implementation to meet projected needs or shortages in each of the 21 counties within the South Central Texas Region are summarized in a series of figures and tables included as Appendix D. These figures and tables illustrate the phased implementation of water management strategies within each county to meet the needs of WUGs located within the county. Counties are presented in alphabetical order from Atascosa

County to Zavala County. The counties having the greatest combined municipal, industrial, steam-electric, and mining needs and, hence, needing the greatest quantities of new water supply are Bexar, Comal, Hays, and Victoria. Particular attention to the notes in each county table is encouraged. More detailed information regarding allocation of new water supplies to specific cities and other water user groups within each county may be found in the detailed plans for each of the 21 counties of the South Central Texas Planning Region, which are presented in alphabetic order in the following subsections. In each county plan, each water user group of the county is listed, and water conservation has been included in the plan for each municipal water user and the irrigation user group, where appropriate. In addition, if the water user group has a need (shortage) during the planning horizon, one or more water management strategies are recommended to meet the need.

The total unit costs of potable water (surface water treated to regulatory standards for public supply and/or groundwater that meets regulatory standards for public supply), delivered to the water user groups' retail distribution systems were computed as follows. For water user groups whose needs can be met from a single local source by an individual water management strategy that can be scheduled and sized to meet that particular need, such as local groundwater for the City of Floresville, annual and unit costs in September 2008 prices are presented for additional wells to be added at the time of the projected need. Costs were calculated in accordance with TWDB guidance and are presented in Volume II and the following county tables. In this case, and in many cases described herein, water treatment and associated facilities were sized to meet peak day demands, which are approximately twice average day demands. Both debt service and operation and maintenance costs are calculated accordingly.

For water user groups that do not have the potential to implement readily available individual water management strategies using local sources of supply to meet their individual needs at the time these needs are projected to occur, such as utilities of Bexar, Caldwell, Comal, Guadalupe, and Hays Counties, large-scale water management strategies to meet regional needs involving two or more water user groups are recommended by the SCTRWPG in the regional water plan. In the latter cases, total and unit costs (September 2008 prices) are calculated to obtain, convey, treat, and deliver potable water (surface and/or groundwater that meets regulatory standards for public supply) to the respective water user groups' retail distribution systems. As was the case for individual local systems, the costs are computed according to

TWDB guidance and are reported in Volume II and are tabulated in the respective county tables on the following pages.

It was necessary to allocate the costs of large-scale, regional water management strategies among the water user groups they are intended to serve. The allocation procedure was to prorate the total annual costs to each water user group to be supplied from a water management strategy based on the water user group's proportion or share of quantity obtained from that strategy in each decade. In this way, a unit cost representative of the strategy in full operation is shown for all participating water user groups. Water user groups may actually be required to begin paying their pro-rata share of annual debt service at the time the strategy is implemented based on their ultimate share of the new supply whether or not they have begun taking water. The basis for this principle of dividing debt service among water user groups is to facilitate the development of a strategy to its relevant size, and to assure that those user groups who need the water will have invested in and thereby reserved their respective shares so that water will be there when needed. In the case of the South Central Texas Region, many water user groups will need the water as soon as the water management strategy can be implemented. It is important to note that individual water user groups could participate in the development of a water management strategy in the cost sharing manner outlined here, and then lease part or all of their respective shares to others until they have grown enough to fully utilize them. Therefore, few, if any user groups would be paying debt service for idle capacity.

In the case of water to meet the projected needs of the large number of water user groups in Bexar County, it has been assumed that one or more wholesale water providers will implement the large-scale, distantly located water management strategies recommended in the Regional Plan, and since these supplies are needed as soon as possible, the water user groups (customers) will begin paying debt service and operation and maintenance costs on the basis of their pro-rata share of the quantities of water taken. For example, if SAWS implements a strategy, SAWS and its customers will use the water and pay all the costs. If some other supplier implements a strategy, the costs would be prorated among the users on the basis of the proportion of the quantity taken.

(This page intentionally left blank.)

4B.2.1 Atascosa County Water Supply Plan

Table 4B.2.1-1 lists each water user group in Atascosa County and its corresponding management supply or shortage in 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.1-1.
Atascosa County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Benton City WSC	495	-885	Projected shortage (2030 through 2060)
Bexar Metropolitan Water District			See Bexar County
City of Charlotte	296	241	No projected shortage
City of Jourdanton	-112	-338	Projected shortage (2010 through 2060)
City of Lytle	-141	-188	Projected shortage (2010 through 2060)
McCoy WSC	412	-812	Projected shortage (2030 through 2060)
City of Pleasanton	747	499	No projected shortage
City of Poteet	298	280	No projected shortage
Rural Area Residential and Commercial	188	540	No projected shortage
Industrial	0	0	No projected shortage
Steam-Electric Power	-263	-942	Projected shortage (2010, 2050, 2060)
Mining	31	33	No projected shortage
Irrigation	-6,095	249	Projected shortage (2010 through 2050)
Livestock	2	2	No projected shortage

4B.2.1.1 Benton City WSC

Current water supply for Benton City WSC is obtained from the Carrizo Aquifer. Benton City WSC is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Benton City WSC implement the following water supply plan to meet their projected needs (Table 4B.2.1-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 24 acft/yr by 2040, increasing to 153 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) development to be implemented prior to 2030. This strategy can provide an additional 807 acft/yr from 2030 to 2050 and 1,613 acft/yr in 2060. Information received from Benton City WSC indicates that they are currently seeking permits to drill two new wells in the Carrizo Aquifer.

Table 4B.2.1-2.
Recommended Water Supply Plan for Benton City WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	198	454	696	885		
Recommended Plan								
Municipal Water Conservation	_	_	_	24	85	153		
Local Groundwater Supplies (Carrizo)	_	_	807	807	807	1,613		
Total New Supply		_	807	831	892	1,766		

Estimated costs of the recommended plan to meet Benton City WSC's projected needs are shown in Table 4B.2.1-3.

Table 4B.2.1-3.
Recommended Plan Costs by Decade for Benton City WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	\$18,286	\$65,146	\$117,506		
Unit Cost (\$/acft)	_	_	_	\$762	\$766	\$768		
Local Groundwater Supplies (Carrizo)							
Annual Cost (\$/yr)	_	_	\$320,500	\$320,500	\$129,914	\$450,414		
Unit Cost (\$/acft)	_	_	\$397	\$397	\$161	\$279		

In addition, Benton City WSC is a potential participant with BMWD in the Medina Lake Firm-Up (ASR) water management strategy.

4B.2.1.2 City of Charlotte

The City of Charlotte is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Charlotte implement the following water supply plan (Table 4B.2.1-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr by 2010, increasing to 43 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 15 acft/yr by 2010.
- Facilities Expansions (System Interconnects)

An alternative water management strategy identified by City of Charlotte is the Local Groundwater Supplies (Carrizo).

Table 4B.2.1-4.
Recommended Water Supply Plan for the City of Charlotte

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	20	23	25	26	34	43		
Drought Management	15							
Facilities Expansions								
Total New Supply	35	23	25	26	34	43		

Estimated costs of the recommended plan for the City of Charlotte are shown in Table 4B.2.1-5.

Table 4B.2.1-5.
Recommended Plan Costs by Decade for the City of Charlotte

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$15,490	\$17,386	\$17,409	\$16,460	\$20,298	\$24,754			
Unit Cost (\$/acft)	\$775	\$756	\$696	\$633	\$597	\$576			
Drought Management¹									
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
Facilities Expansion									
Annual Cost (\$/yr)	\$3,586,000	\$3,586,000	\$242,000	\$242,000	\$242,000	\$242,000			
Unit Cost (\$/acft)	_	_	_	_	_	_			
¹ Costs not available due to lack of relevant data	¹ Costs not available due to lack of relevant data.								

In addition, City of Charlotte is a potential participant with BMWD in the Medina Lake Firm-Up (ASR) water management strategy.

4B.2.1.3 City of Jourdanton

Current water supply for City of Jourdanton is obtained from the Carrizo Aquifer. The City of Jourdanton is projected to have a shortage in water supplies throughout the planning period, from 2010 through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Jourdanton implement the following water supply plan (Table 4B.2.1-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 60 acft/yr by 2010, increasing to 222 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 40 acft/yr by 2010.
- Local Groundwater Supplies (Carrizo) development to be implemented prior to 2010. This strategy can provide an additional 403 acft/yr from 2010 to 2060.

Table 4B.2.1-6.
Recommended Water Supply Plan for the City of Jourdanton

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	112	172	225	267	306	338		
Recommended Plan								
Municipal Water Conservation	60	123	156	173	195	222		
Drought Management	40	_	_	_	_	_		
Local Groundwater Supplies (Carrizo)	403	403	403	403	403	403		
Total New Supply	503	526	559	576	598	625		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for the City of Jourdanton are shown in Table 4B.2.1-7.

Table 4B.2.1-7.
Recommended Plan Costs by Decade for the City of Jourdanton

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$46,083	\$77,232	\$91,153	\$97,895	\$108,361	\$122,564		
Unit Cost (\$/acft)	\$768	\$628	\$584	\$566	\$556	\$552		
Drought Management								
Annual Cost (\$/yr)	\$65,320	_	_	_	_	_		
Unit Cost (\$/acft)	\$1,633	_		_	_	_		
Local Groundwater Supplies (Carrizo)								
Annual Cost (\$/yr)	\$349,000	\$349,000	\$136,181	\$136,181	\$136,181	\$136,181		
Unit Cost (\$/acft)	\$865	\$865	\$338	\$338	\$338	\$338		

4B.2.1.4 City of Lytle

Current water supply for the City of Lytle is obtained from the Edwards Aquifer. Lytle is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Lytle implement the following water supply plan to meet the projected needs for the city (Table 4B.2.1-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 38 acft/yr by 2010, increasing to 108 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 125 acft/yr by 2010, increasing to 176 acft/yr by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 24 acft/yr by 2010.

Table 4B.2.1-8.
Recommended Water Supply Plan for the City of Lytle

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	141	152	162	169	179	188		
Recommended Plan								
Municipal Water Conservation	38	72	82	86	96	108		
Edwards Transfers	141	152	162	169	179	188		
Drought Management	24							
Total New Supply	203	224	244	255	275	296		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of Lytle's projected needs are shown in Table 4B.2.1-9.

Table 4B.2.1-9.
Recommended Plan Costs by Decade for the City of Lytle

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$26,007	\$43,028	\$46,879	\$47,483	\$52,075	\$58,584			
Unit Cost (\$/acft)	\$684	\$598	\$572	\$552	\$542	\$542			
Edwards Transfers	Edwards Transfers								
Annual Cost (\$/yr)	\$64,014	\$69,008	\$73,548	\$76,726	\$81,266	\$85,352			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$14,520	_	_	_	_	_			
Unit Cost (\$/acft)	\$605	_				_			

In addition, City of Lytle is a potential participant with BMWD in the Medina Lake Firm-Up (ASR) water management strategy.

4B.2.1.5 McCoy WSC

Current water supply for McCoy WSC is obtained from the Carrizo Aquifer. McCoy WSC is projected to need additional water supplies by 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that McCoy WSC implement the following water supply plan to meet their projected needs (Table 4B.2.1-10).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 13 acft/yr by 2040, increasing to 129 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) development to be implemented prior to 2020. This strategy can provide an additional 807 acft/yr by 2020, increasing to 1,613 acft/yr of supply in 2060.

Table 4B.2.1-10.
Recommended Water Supply Plan for McCoy WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	12	208	436	650	812		
Recommended Plan								
Municipal Water Conservation		_	_	13	68	129		
Local Groundwater Supplies (Carrizo)	_	807	807	807	807	1,613		
Total New Supply	1	807	807	820	875	1,742		

Estimated costs of the recommended plan to meet McCoy WSC's projected needs are shown in Table 4B.2.1-11.

Table 4B.2.1-11.
Recommended Plan Costs by Decade for McCoy WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	\$10,182	\$52,244	\$99,091		
Unit Cost (\$/acft)	_	_	_	\$783	\$768	\$768		
Local Groundwater Supplies (Carrizo)							
Annual Cost (\$/yr)	_	\$389,000	\$389,000	\$136,033	\$136,033	\$525,033		
Unit Cost (\$/acft)		\$482	\$482	\$169	\$169	\$325		

4B.2.1.6 City of Pleasanton

The City of Pleasanton is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Pleasanton implement the following water supply plan (Table 4B.2.1-12).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 156 acft/yr by 2010, increasing to 615 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Facilities Expansions (System Upgrades)

Table 4B.2.1-12.
Recommended Water Supply Plan for the City of Pleasanton

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	156	300	448	523	565	615
Total New Supply	156	300	448	523	565	615

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for the City of Pleasanton are shown in Table 4B.2.1-13.

Table 4B.2.1-13.
Recommended Plan Costs by Decade for the City of Pleasanton

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$104,645	\$174,786	\$248,190	\$282,846	\$303,440	\$329,849
Unit Cost (\$/acft)	\$671	\$583	\$554	\$541	\$537	\$536

In addition, the City of Pleasanton is considering the addition of Local Groundwater Supplies (Carrizo) from two new wells and the addition of two elevated storage tanks.

4B.2.1.7 City of Poteet

The City of Poteet is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Poteet implement the following water supply plan (Table 4B.2.1-14).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 60 acft/yr by 2010, increasing to 213 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.1-14.
Recommended Water Supply Plan for the City of Poteet

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	60	116	163	185	198	213
Total New Supply	60	116	163	185	198	213

Estimated costs of the recommended plan for the City of Poteet are shown in Table 4B.2.1-15.

Table 4B.2.1-15.
Recommended Plan Costs by Decade for the City of Poteet

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$45,430	\$72,170	\$93,416	\$102,042	\$107,518	\$115,685
Unit Cost (\$/acft)	\$757	\$622	\$573	\$552	\$543	\$543

4B.2.1.8 Rural Area Residential and Commercial

Rural areas are projected to have adequate water supplies available from the Carrizo and Sparta Aquifers to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.1-16).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2010, decreasing to 0 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.1-16.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	11	17	11	1	_	_
Total New Supply	11	17	11	1		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.1-17.

Table 4B.2.1-17.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$8,554	\$12,806	\$8,532	\$1,061	_	_
Unit Cost (\$/acft)	\$778	\$753	\$776	\$1,061	_	_

4B.2.1.9 Industrial

Industrial is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.1.10 Steam-Electric Power

Current water supply for steam-electric power is obtained from the Carrizo Aquifer. Steam-electric power is projected to need additional water supplies in the year 2010, 2050, and 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual steam-electric power operations implement the following water supply plan to meet the projected needs for steam-electric power (Table 4B.2.1-18).

• Local Groundwater Supplies (Carrizo) to be implemented in 2010. This strategy can provide an additional 807 acft/yr of supply in 2010 increasing to 1,613 acft/yr in 2060.

Table 4B.2.1-18.
Recommended Water Supply Plan for Steam-Electric Power

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	263	0	0	0	604	942
Recommended Plan						
Local Groundwater Supplies (Carrizo)	807	807	807	807	807	1,613
Total New Supply	807	807	807	807	807	1,613

Estimated costs of the recommended plan to meet the steam-electric power projected needs are shown in Table 4B.2.1-19.

Table 4B.2.1-19.
Recommended Plan Costs by Decade for Steam-Electric Power

Plan Element	2010	2020	2030	2040	2050	2060
Local Groundwater Supplies (Carrizo)						
Annual Cost (\$/yr)	\$249,500	\$249,500	\$39,907	\$39,907	\$39,907	\$289,407
Unit Cost (\$/acft)	\$309	\$309	\$49	\$49	\$49	\$179

4B.2.1.11 Mining

Mining is projected to have adequate water supplies available from the Carrizo and Queen City Aquifers to meet the water user group's projected demand during the planning period.

4B.2.1.12 Irrigation

Current water supply for irrigation is obtained from the Edwards, Carrizo, Sparta, and Queen City Aquifers, and run-of-river rights. Irrigation is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual irrigators implement the following water supply plan to meet the projected needs for irrigation (Table 4B.2.1-20).

• Irrigation water conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 1,961 acft/yr of supply.

Table 4B.2.1-20.
Recommended Water Supply Plan for Irrigation

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	6,095	4,734	3,413	2,141	924	291
Recommended Plan						
Irrigation Water Conservation	5,369	4,734	3,413	2,141	924	291
Total New Supply	5,369	4,734	3,413	2,141	924	291

Estimated costs of the recommended plan to meet the irrigation projected needs are shown in Table 4B.2.1-21.

Table 4B.2.1-21.
Recommended Plan Costs by Decade for Irrigation

Plan Element	2010	2020	2030	2040	2050	2060
Irrigation Water Conservation						
Annual Cost (\$/yr)	\$923,468	\$814,248	\$587,036	\$368,252	\$158,928	\$50,052
Unit Cost (\$/acft)	\$172	\$172	\$172	\$172	\$172	\$172

4B.2.1.13 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.2 Bexar County Water Supply Plan

Table 4B.2.2-1 lists each water user group in Bexar County and its corresponding management supply or shortage in 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.2-1.

Bexar County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Alamo Heights	-592	-691	Projected shortage (2010 through 2060)
Atascosa Rural WSC	-546	-1218	Projected shortage (2010 through 2060)
City of Balcones Heights	0	0	No projected shortage
Bexar Metropolitan Water District	-3,944	-7,038	Projected shortage (2010 through 2060)
City of Castle Hills	-96	-47	Projected shortage (2010 through 2060)
City of China Grove	0	0	No projected shortage
City of Converse	688	-969	Projected shortage (2030 through 2060)
East Central SUD	1,428	-942	Projected shortage (2030 through 2060)
City of Elmendorf	0	0	No projected shortage
City of Fair Oaks Ranch	660	571	No projected shortage
Green Valley SUD			See Guadalupe County
City of Helotes	0	0	No projected shortage
City of Hill Country Village	-730	-718	Projected shortage (2010 through 2060)
City of Hollywood Park	-1,969	-2,271	Projected shortage (2010 through 2060)
City of Kirby	-335	-364	Projected shortage (2010 through 2060)
Lackland AFB (CDP)	0	0	No projected shortage
City of Leon Valley	91	126	No projected shortage
City of Live Oak	1,183	1,085	No projected shortage
City of Lytle			See Atascosa County
City of Olmos Park	0	0	No projected shortage
City of San Antonio (SAWS)	-68,476	-169,336	Projected shortage (2010 through 2060)
City of San Antonio (BMWD)	-9,023	-24,476	Projected shortage (2010 through 2060)
City of San Antonio (Others)	-284	-416	Projected shortage (2010 through 2060)

Concluded on next page

Table 4B.2.2-1 (Concluded)

,		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Schertz			See Guadalupe County
City of Selma	189	-749	Projected shortage (2020 through 2060)
City of Shavano Park	-320	-381	Projected shortage (2010 through 2060)
City of Somerset	0	0	No projected shortage
City of St. Hedwig	0	0	No projected shortage
City of Terrell Hills	0	0	No projected shortage
City of Universal City	-113	-606	Projected shortage (2010 through 2060)
Water Service Inc. (Apex)	-911	-2,018	Projected shortage (2010 through 2060)
Windcrest (WC&ID No. 10)	-235	-214	Projected shortage (2010 through 2060)
Rural Area Residential and Commercial	1,212	-620	Projected shortage (2040 through 2060)
Industrial	-1,340	-17,588	Projected shortage (2010 through 2060)
Steam-Electric Power	28,505	9,286	No projected shortage
Mining	0	-1,216	Projected shortage (2030 through 2060)
Irrigation	9,737	11,868	No projected shortage
Livestock	55	50	No projected shortage

4B.2.2.1 City of Alamo Heights

Current water supply for the City of Alamo Heights is obtained from the Edwards Aquifer. Alamo Heights is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Alamo Heights implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 175 acft/yr by 2010, increasing to 865 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional supply of 592 acft/yr by 2010, increasing to 691 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 104 acft/yr by 2010.

Table 4B.2.2-2.
Recommended Water Supply Plan for the City of Alamo Heights

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	592	655	657	653	667	691
Recommended Plan						
Municipal Water Conservation	175	337	488	625	769	865
Edwards Transfers	592	655	657	653	667	691
Drought Management	104	_	_	_	_	_
Total New Supply	871	992	1,145	1,278	1,436	1,556

Estimated costs of the recommended plan to meet the City of Alamo Heights's projected needs are shown in Table 4B.2.2-3.

Table 4B.2.2-3.
Recommended Plan Costs by Decade for the City of Alamo Heights

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation										
Annual Cost (\$/yr)	\$111,776	\$192,169	\$267,391	\$334,980	\$408,685	\$459,018				
Unit Cost (\$/acft)	\$639	\$570	\$548	\$536	\$531	\$531				
Edwards Transfers										
Annual Cost (\$/yr)	\$268,768	\$297,370	\$298,278	\$296,462	\$302,818	\$313,714				
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454				
Drought Management										
Annual Cost (\$/yr)	\$208,369	_	_	_	_	_				
Unit Cost (\$/acft)	\$2,004	_	_	_	_	_				

4B.2.2.2 Atascosa Rural WSC

Current water supply for Atascosa Rural WSC is obtained from the Edwards Aquifer. Atascosa Rural WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Atascosa Rural WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.2-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 22 acft/yr by 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional supply of 546 acft/yr by 2010, increasing to 1,218 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 47 acft/yr by 2010.
- Purchase from Wholesale Water Provider (BMWD) to be implemented prior to 2010. Atascosa Rural WSC is a potential participant with BMWD in the Medina Lake Firm-Up (ASR) water management strategy. This strategy can provide an additional supply of 120 acft/yr by 2010 through 2060.
- Facilities Expansions (System Interconnections)

Table 4B.2.2-4.
Recommended Water Supply Plan for Atascosa Rural WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	546	717	869	996	1,106	1,218			
Recommended Plan									
Municipal Water Conservation	_	_	_	_	_	22			
Edwards Transfers	546	717	869	996	1,106	1,218			
Drought Management	47	_	_	_	_	_			
Purchase from WWP (BMWD)	120	120	120	120	120	120			
Facilities Expansions	_	_							
Total New Supply	713	837	989	1,116	1,226	1,338			

Estimated costs of the recommended plan to meet Atascosa Rural WSC's projected needs are shown in Table 4B.2.2-5.

Table 4B.2.2-5.
Recommended Plan Costs by Decade for Atascosa Rural WSC

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservat	ion								
Annual Cost (\$/yr)	_	_	_	_	_	\$17,081			
Unit Cost (\$/acft)	_	_	_	_	_	\$776			
Edwards Transfers									
Annual Cost (\$/yr)	\$247,884	\$325,518	\$394,526	\$452,184	\$502,124	\$552,972			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$134,140	_	_	_	_	_			
Unit Cost (\$/acft)	\$2,854	_	_	_	_	_			
Purchase from WWP (BMW	(D)								
Annual Cost (\$/yr)	\$126,495	\$125,501	\$69,376	\$55,917	\$46,479	\$46,427			
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387			
Facilities Expansions									
Annual Cost (\$/yr)	\$6,772,000	\$6,772,000	\$457,000	\$457,000	\$457,000	\$457,000			
Unit Cost (\$/acft)			_						

4B.2.2.3 City of Balcones Heights

The City of Balcones Heights is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Balcones Heights implement the following water supply plan (Table 4B.2.2-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 4 acft/yr by 2010, increasing to 37 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-6.
Recommended Water Supply Plan for the City of Balcones Heights

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	4	6	7	9	20	37		
Total New Supply	4	6	7	9	20	37		

Estimated costs of the recommended plan for the City of Balcones Heights are shown in Table 4B.2.2-7.

Table 4B.2.2-7.
Recommended Plan Costs by Decade for the City of Balcones Heights

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$2,481	\$3,821	\$4,975	\$5,990	\$13,578	\$22,492
Unit Cost (\$/acft)	\$620	\$637	\$711	\$666	\$679	\$608

4B.2.2.4 Bexar Metropolitan Water District

Current water supply for the Bexar Metropolitan Water District (BMWD) is obtained from the Edwards, Trinity, and Carrizo Aquifers as well as the Medina Lake System and run-of-river water rights. BMWD is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the BMWD implement the following water supply plan to meet the projected needs for the District (Table 4B.2.2-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 293 acft/yr by 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional supply of 3,944 acft/yr by 2010, increasing to 7,038 acft/yr of supply in 2060. See Section 4B.3.3 for a list of recommended water management strategies.

Table 4B.2.2-8.
Recommended Water Supply Plan for Bexar Metropolitan Water District

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	3,944	4,569	5,357	5,784	6,373	7,038		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	_	293		
Purchase from WWP (BMWD)	3,944	4,569	5,357	5,784	6,373	7,038		
Total New Supply	3,944	4,569	5,357	5,784	6,373	7,331		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet BMWD's projected needs are shown in Table 4B.2.2-9.

Table 4B.2.2-9.
Recommended Plan Costs by Decade for Bexar Metropolitan Water District

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation										
Annual Cost (\$/yr)	_	_	_	_	_	\$225,525				
Unit Cost (\$/acft)	_	_	_	_	_	\$770				
Purchase from WWP (BMWD)										
Annual Cost (\$/yr)	\$4,157,453	\$4,778,462	\$3,097,059	\$2,695,192	\$2,468,400	\$2,722,922				
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387				

4B.2.2.5 City of Castle Hills

Current water supply for the City of Castle Hills is obtained from the Edwards Aquifer through BMWD. Castle Hills is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Castle Hills implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-10).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 61 acft/yr by 2010, increasing to 166 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 41 acft/yr by 2010.
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional 96 acft/yr by 2010, decreasing to 47 acft/yr of additional supply by 2060.

Table 4B.2.2-10.
Recommended Water Supply Plan for the City of Castle Hills

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	96	83	69	56	47	47		
Recommended Plan								
Municipal Water Conservation	61	120	142	144	151	166		
Drought Management	41	_	_	_	_	_		
Purchase from WWP (BMWD)	96	83	69	56	47	47		
Total New Supply	198	203	211	200	198	213		

Estimated costs of the recommended plan to meet the City of Castle Hill's projected needs are shown in Table 4B.2.2-11.

Table 4B.2.2-11.
Recommended Plan Costs by Decade for the City of Castle Hills

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$41,783	\$70,958	\$80,456	\$79,299	\$81,152	\$89,226			
Unit Cost (\$/acft)	\$685	\$591	\$567	\$551	\$537	\$538			
Drought Management									
Annual Cost (\$/yr)	\$71,926	_	_	_	_	_			
Unit Cost (\$/acft)	\$1,754	_	_	_	_	_			
Purchase from WWP (BMWD)									
Annual Cost (\$/yr)	\$101,196	\$86,805	\$39,891	\$26,095	\$18,204	\$18,184			
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387			

4B.2.2.6 City of China Grove

The City of China Grove is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of China Grove implement the following water supply plan (Table 4B.2.2-12).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 28 acft/yr by 2010, increasing to 217 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-12.
Recommended Water Supply Plan for the City of China Grove

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	28	66	116	166	190	217		
Total New Supply	28	66	116	166	190	217		

Estimated costs of the recommended plan for the City of China Grove are shown in Table 4B.2.2-13.

Table 4B.2.2-13.
Recommended Plan Costs by Decade for the City of China Grove

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$18,235	\$37,954	\$63,783	\$89,992	\$102,383	\$116,691
Unit Cost (\$/acft)	\$651	\$575	\$550	\$542	\$539	\$538

4B.2.2.7 City of Converse

Current water supply for the City of Converse is obtained from the Edwards Aquifer. Converse is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Converse implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-14).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 21 acft/yr by 2050, increasing to 110 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (BMWD) to be implemented prior to 2030. This strategy can provide an additional 134 acft/yr of supply by 2030, increasing to 969 by 2060.

Table 4B.2.2-14.
Recommended Water Supply Plan for the City of Converse

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	134	449	716	969		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	21	110		
Purchase from WWP (BMWD)	_	_	134	449	716	969		
Total New Supply	_		134	449	737	1,079		

Estimated costs of the recommended plan to meet the City of Converse's projected needs are shown in Table 4B.2.2-15.

Table 4B.2.2-15.
Recommended Plan Costs by Decade for the City Converse

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation										
Annual Cost (\$/yr)	_	_	_	_	\$14,150	\$74,857				
Unit Cost (\$/acft)	_	_	_	_	\$674	\$681				
Purchase from WWP (BMWD)										
Annual Cost (\$/yr)	_	_	\$77,470	\$209,222	\$277,322	\$374,895				
Unit Cost (\$/acft)	_	_	\$578	\$466	\$387	\$387				

4B.2.2.8 East Central SUD

Current water supply for East Central SUD is obtained from the Edwards and Carrizo Aquifers and Canyon Reservoir. East Central SUD is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that East Central SUD implement the following water supply plan to meet the projected needs for the SUD (Table 4B.2.2-16).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 32 acft/yr by 2050, increasing to 104 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SAWS) to be implemented prior to 2010. This strategy can provide an additional 2,240 acft/yr of supply beginning in 2010 and through 2060.
- Purchase from WWP (CRWA) to be implemented prior to 2030. This strategy can provide an additional 251 acft/yr of supply beginning in 2030, increasing to 942 acft/yr of additional supply in 2060.
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional 200 acft/yr of supply beginning in 2010 and through 2060

Table 4B.2.2-16.
Recommended Water Supply Plan for East Central SUD

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	0	0	251	495	716	942			
Recommended Plan									
Municipal Water Conservation	_	_	_	_	32	104			
Purchase from WWP (SAWS)	2,240	2,240	2,240	2,240	2,240	2,240			
Purchase from WWP (CRWA)			251	495	716	942			
Purchase from WWP (BMWD)	200	200	200	200	200	200			
Total New Supply	2,440	2,440	2,691	2,935	3,188	3,486			

Estimated costs of the recommended to meet East Central SUD's projected needs are shown in Table 4B.2.2-17.

Table 4B.2.2-17.
Recommended Plan Costs by Decade for East Central SUD

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservatio	n								
Annual Cost (\$/yr)	_	_	_	_	\$24,845	\$80,163			
Unit Cost (\$/acft)	_	_	_	_	\$776	\$771			
Purchase from WWP (SAWS)									
Annual Cost (\$/yr)	\$1,222,248	\$1,804,294	\$3,575,516	\$3,119,269	\$1,481,249	\$2,717,313			
Unit Cost (\$/acft)	\$546	\$805	\$1,596	\$1,393	\$661	\$1,213			
Purchase from WWP (CRWA))								
Annual Cost (\$/yr)	_	_	\$268,065	\$353,108	\$320,901	\$407,418			
Unit Cost (\$/acft)	_	_	\$1,068	\$713	\$448	\$433			
Purchase from WWP (BMWD)								
Annual Cost (\$/yr)	\$210,824	\$209,169	\$115,627	\$93,195	\$77,464	\$77,378			
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387			

4B.2.2.9 City of Elmendorf

The City of Elmendorf is projected to have adequate water supplies available from the Edwards Aquifer through the San Antonio Water System (SAWS) to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Elmendorf implement the following water supply plan (Table 4B.2.2-18).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 2 acft/yr by 2050, increasing to 6 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-18.
Recommended Water Supply Plan for the City of Elmendorf

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	2	6		
Total New Supply	_	_	_	_	2	6		

Estimated costs of the recommended plan for the City of Elmendorf are shown in Table 4B.2.2-19.

Table 4B.2.2-19.
Recommended Plan Costs by Decade for the City of Elmendorf

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	_	_	_	\$1,393	\$4,052			
Unit Cost (\$/acft)	_			_	\$697	\$675			

4B.2.2.10 City of Fair Oaks Ranch

The City of Fair Oaks Ranch is projected to have adequate water supplies available from the Trinity Aquifer and Canyon Reservoir to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Fair Oaks Ranch implement the following water supply plan (Table 4B.2.2-20).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 125 acft/yr by 2010, increasing to 509 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-20.
Recommended Water Supply Plan for the City of Fair Oaks Ranch

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	125	246	358	460	481	509		
Total New Supply	125	246	358	460	481	509		

Estimated costs of the recommended plan for the City of Fair Oaks Ranch are shown in Table 4B.2.2-21.

Table 4B.2.2-21.
Recommended Plan Costs by Decade for the City of Fair Oaks Ranch

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$82,638	\$145,582	\$203,141	\$255,541	\$265,435	\$280,497
Unit Cost (\$/acft)	\$661	\$592	\$567	\$556	\$552	\$551

4B.2.2.11 City of Helotes

The City of Helotes is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Helotes implement the following water supply plan (Table 4B.2.2-22).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 115 acft/yr by 2010, increasing to 993 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Facilities Expansions (System Interconnects)

Table 4B.2.2-22.
Recommended Water Supply Plan for the City of Helotes

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	0	0	0	0	0	0			
Recommended Plan									
Municipal Water Conservation	115	345	539	674	832	993			
Facilities Expansions									
Total New Supply	115	345	539	674	832	993			

Estimated costs of the recommended plan for the City of Helotes' are shown in Table 4B.2.2-23.

Table 4B.2.2-23.
Recommended Plan Costs by Decade for the City of Helotes

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$78,092	\$205,524	\$313,824	\$386,697	\$473,570	\$561,561
Unit Cost (\$/acft)	\$679	\$596	\$582	\$574	\$569	\$566
Facilities Expansions						
Annual Cost (\$/yr)	\$269,000	\$269,000	\$20,000	\$20,000	\$20,000	\$20,000
Unit Cost (\$/acft)	_	_	_	_	_	_

4B.2.2.12 City of Hill Country Village

Current water supply for the City of Hill Country Village is obtained from the Edwards Aquifer. Hill Country Village is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Hill Country Village implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-24).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 77 acft/yr by 2010, increasing to 365 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional 730 acft/yr by 2010, decreasing to 718 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 42 acft/yr by 2010.

Table 4B.2.2-24.
Recommended Water Supply Plan for the City of Hill Country Village

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	730	727	723	720	718	718			
Recommended Plan									
Municipal Water Conservation	77	146	209	265	316	365			
Purchase from WWP (BMWD)	730	727	723	720	718	718			
Drought Management	42		_			_			
Total New Supply	849	873	932	985	1,034	1,083			

Estimated costs of the recommended plan to meet the City of Hill Country Village's projected needs are shown in Table 4B.2.2-25.

Table 4B.2.2-25.
Recommended Plan Costs by Decade for the City of Hill Country Village

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation										
Annual Cost (\$/yr)	\$43,077	\$78,866	\$111,009	\$139,853	\$166,499	\$192,015				
Unit Cost (\$/acft)	\$559	\$540	\$531	\$528	\$527	\$526				
Purchase from WWP (BMWD)										
Annual Cost (\$/yr)	\$769,508	\$760,329	\$417,990	\$335,501	\$278,097	\$277,786				
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387				
Drought Management										
Annual Cost (\$/yr)	\$13,312	_	_	_	_	_				
Unit Cost (\$/acft)	\$317	_	_	_	_	_				

4B.2.2.13 City of Hollywood Park

Current water supply for the City of Hollywood Park is obtained from the Edwards Aquifer. Hollywood Park is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Hollywood Park implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-26).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 212 acft/yr by 2010, increasing to 1,154 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional 1,969 acft/yr by 2010, increasing to 2,271 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 116 acft/yr by 2010.

Table 4B.2.2-26.
Recommended Water Supply Plan for the City of Hollywood Park

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)				
Projected Need (Shortage)	1,969	2,044	2,113	2,166	2,220	2,271				
Recommended Plan										
Municipal Water Conservation	212	414	612	798	980	1,154				
Purchase from WWP (BMWD)	1,969	2,044	2,113	2,166	2,220	2,271				
Drought Management	116									
Total New Supply	2,297	2,458	2,725	2,964	3,200	3,425				

Estimated costs of the recommended plan to meet the City of Hollywood Park's projected needs are shown in Table 4B.2.2-27.

Table 4B.2.2-27.
Recommended Plan Costs by Decade for the City of Hollywood Park

Plan Element	2010	2020	2030	2040	2050	2060						
Municipal Water Conservation												
Annual Cost (\$/yr)	\$119,187	\$223,380	\$325,464	\$421,117	\$515,971	\$607,281						
Unit Cost (\$/acft)	\$562	\$540	\$532	\$528	\$527	\$526						
Purchase from WWP (BMWD)												
Annual Cost (\$/yr)	\$2,075,564	\$2,137,706	\$1,221,595	\$1,009,299	\$859,854	\$878,624						
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387						
Drought Management												
Annual Cost (\$/yr)	\$33,055	_	_	_	_	_						
Unit Cost (\$/acft)	\$285	_	_	_	_	_						

4B.2.2.14 City of Kirby

Current water supply for the City of Kirby is obtained from the Edwards Aquifer. Kirby is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Kirby implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-28).

- Municipal Water Conservation
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional supply of 335 acft/yr by 2010, increasing to 364 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional supply of 50 acft/yr by 2010.

Table 4B.2.2-28.
Recommended Water Supply Plan for the City of Kirby

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	335	334	337	331	343	364			
Recommended Plan									
Edwards Transfers	335	334	337	331	343	364			
Drought Management	50	_				_			
Total New Supply	385	334	337	331	343	364			

Estimated costs of the recommended plan to meet the City of Kirby's projected needs are shown in Table 4B.2.2-29.

Table 4B.2.2-29.
Recommended Plan Costs by Decade for the City of Kirby

Plan Element	2010	2020	2030	2040	2050	2060			
Edwards Transfers									
Annual Cost (\$/yr)	\$152,090	\$151,636	\$152,998	\$150,274	\$155,722	\$165,256			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$37,755	_	_	_	_	_			
Unit Cost (\$/acft)	\$755	_	_	_	_	_			

4B.2.2.15 Lackland AFB (CDP)

Current water supply for Lackland AFB is obtained from the Edwards Aquifer. Lackland AFB is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Lackland AFB implement the following water supply plan to meet the projected needs for the AFB (Table 4B.2.2-30).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 268 acft/yr by 2010, increasing to 1,300 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-30.
Recommended Water Supply Plan for Lackland AFB

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	268	515	736	934	1,119	1,300		
Total New Supply	268	515	736	934	1,119	1,300		

Estimated costs of the recommended plan for Lackland AFB are shown in Table 4B.2.2-31.

Table 4B.2.2-31.
Recommended Plan Costs by Decade for Lackland AFB

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$148,874	\$276,599	\$390,737	\$492,589	\$588,115	\$683,167
Unit Cost (\$/acft)	\$556	\$537	\$531	\$527	\$526	\$526

4B.2.2.16 City of Leon Valley

The City of Leon Valley is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Leon Valley implement the following water supply plan (Table 4B.2.2-32).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 12 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-32.
Recommended Water Supply Plan for the City of Leon Valley

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	_	12		
Total New Supply	_	_	_	_	_	12		

Estimated costs of the recommended plan for the City of Leon Valley are shown in Table 4B.2.2-33.

Table 4B.2.2-33.
Recommended Plan Costs by Decade for the City of Leon Valley

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	_	\$7,962
Unit Cost (\$/acft)	_	_	_	_	_	\$664

4B.2.2.17 City of Live Oak

The City of Live Oak is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. However, water demands may be greater than projected due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan. Potentially feasible water management strategies recommended to meet any unprojected needs include:

- Municipal Water Conservation;
- Edwards Transfers; and
- Purchase from WWP (BMWD).

4B.2.2.18 City of Olmos Park

The City of Olmos Park is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Olmos Park implement the following water supply plan (Table 4B.2.2-34).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 9 acft/yr by 2010, increasing to 33 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-34.
Recommended Water Supply Plan for the City of Olmos Park

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	9	11	13	14	21	33		
Total New Supply	9	11	13	14	21	33		

Estimated costs of the recommended plan for the City of Olmos Park are shown in Table 4B.2.2-35.

Table 4B.2.2-35.
Recommended Plan Costs by Decade for the City of Olmos Park

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$6,343	\$7,676	\$8,877	\$9,863	\$13,461	\$19,748
Unit Cost (\$/acft)	\$705	\$698	\$683	\$705	\$641	\$598

4B.2.2.19 City of San Antonio

Current water supply for the City of San Antonio is obtained from the Edwards, Trinity, and Carrizo Aquifers, Canyon Reservoir, run-of-river rights, and direct reuse. San Antonio is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that San Antonio implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-36).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 5,752 acft/yr by 2010, increasing to 23,711 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SAWS) to be implemented prior to 2010. This strategy can provide an additional supply of 68,760 acft/yr by 2010, increasing to 169,752 acft/yr of additional supply by 2060. See Section 4B.3.2 for a list of recommended water management strategies.
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional supply of 12,704 acft/yr by 2010, increasing to 28,157 acft/yr of additional supply by 2060. See Section 4B.3.3 for a list of recommended water management strategies.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 1,233 acft/yr from BMWD and 9,883 acft/yr from SAWS by 2010.

Table 4B.2.2-36.
Recommended Water Supply Plan for the City of San Antonio

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	77,783	109,542	135,796	158,280	176,271	194,228
Recommended Plan						
Municipal Water Conservation	5,752	7,318	8,795	10,490	15,698	23,711
Purchase from WWP (SAWS)	68,477	93,384	116,921	137,353	153,357	169,336
Purchase from WWP (BMWD)	9,023	15,840	18,526	20,556	22,519	24,476
Drought Management (BMWD)	1,233	_	_	_	_	_
Drought Management (SAWS)	37,622	_	_			_
Total New Supply	122,107	116,542	144,242	168,399	191,574	217,523

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of San Antonio's projected needs are shown in Table 4B.2.2-37.

Table 4B.2.2-37.
Recommended Plan Costs by Decade for the City of San Antonio

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conse	rvation									
Annual Cost (\$/yr)	\$3,451,336	\$4,390,988	\$5,276,772	\$6,134,520	\$8,736,963	\$12,965,177				
Unit Cost (\$/acft)	\$600	\$600	\$600	\$585	\$557	\$547				
Purchase from WWP (SAWS)										
Annual Cost (\$/yr)	\$37,388,442	\$75,174,120	\$186,605,916	\$191,332,729	\$101,368,977	\$205,404,568				
Unit Cost (\$/acft)	\$546	\$805	\$1,596	\$1,393	\$661	\$1,213				
Purchase from WWP (BMWD)										
Annual Cost (\$/yr)	\$9,510,242	\$16,568,640	\$10,710,495	\$9,578,557	\$8,722,094	\$9,469,487				
Unit Cost (\$/acft)	\$1,054	\$1,046	\$578	\$466	\$387	\$387				
Drought Management (BMWD)									
Annual Cost (\$/yr)	\$2,272,791	_	_	_	_	_				
Unit Cost (\$/acft)	\$1,844	_	_	_	_	_				
Drought Management (SAWS)									
Annual Cost (\$/yr)	\$21,632,650	_	_	_	_	_				
Unit Cost (\$/acft)	\$575	_	_	_	_	_				

4B.2.2.20 City of Selma

Current water supply for the City of Selma is obtained from the Edwards and Carrizo Aquifers. Selma, with nearly 2,000 acft/yr of water supply from its Edwards Permits and SSLGC Contract. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Selma implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-38).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 135 acft/yr by 2010, increasing to 1,122 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SSLGC) to be implemented prior to 2020. This strategy can provide an additional 316 acft/yr of supply by 2020, increasing to 749 acft/yr by 2060.

An alternative water management strategy for the City of Selma, if groundwater permits from Gonzales County are unable to be obtained, is Purchase from WWP (SSLGC).

Table 4B.2.2-38.
Recommended Water Supply Plan for the City of Selma

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	316	762	757	748	749		
Recommended Plan								
Municipal Water Conservation	135	344	617	801	966	1,122		
Purchase from WWP (SSLGC)	_	316	762	757	748	749		
Total New Supply	135	660	1,379	1,558	1,714	1,871		

Estimated costs of the recommended plan to meet the City of Selma's projected needs are shown in Table 4B.2.2-39.

Table 4B.2.2-39.
Recommended Plan Costs by Decade for the City of Selma

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$81,797	\$191,307	\$334,026	\$429,317	\$514,189	\$596,292		
Unit Cost (\$/acft)	\$606	\$556	\$541	\$536	\$532	\$531		
Purchase from WWP (SSLGC)								
Annual Cost (\$/yr)	_	\$179,488	\$522,180	\$368,366	\$272,392	\$272,756		
Unit Cost (\$/acft)	_	\$568	\$685	\$487	\$364	\$364		

4B.2.2.21 City of Shavano Park

Current water supply for the City of Shavano Park is obtained from the Edwards Aquifer. Shavano Park is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Shavano Park implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-40).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 73 acft/yr by 2010, increasing to 382 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 41 acft/yr by 2010.
- Purchase from WWP (SAWS) to be implemented by 2010. This strategy can provide an additional 320 acft/yr by 2010, increasing to 381 acft/yr of supply in 2060.

Table 4B.2.2-40.
Recommended Water Supply Plan for the City of Shavano Park

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)*	320	336	348	357	369	381			
Recommended Plan									
Municipal Water Conservation	73	142	205	265	324	382			
Drought Management	41	_	_	_	_	_			
Purchase from WWP (SAWS)	320	336	348	357	369	381			
Total New Supply	434	478	553	622	693	763			

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of Shavano Park's projected needs are shown in Table 4B.2.2-41.

Table 4B.2.2-41.
Recommended Plan Costs by Decade for the City of Shavano Park

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$42,938	\$78,273	\$109,901	\$140,332	\$171,283	\$201,359			
Unit Cost (\$/acft)	\$588	\$551	\$536	\$530	\$529	\$527			
Drought Management)									
Annual Cost (\$/yr)	\$15,109	_	_	_	_	_			
Unit Cost (\$/acft)	\$369	_	_	_	_	_			
Purchase from WWP (SAWS)									
Annual Cost (\$/yr)	\$174,607	\$270,644	\$555,482	\$497,134	\$244,009	\$462,186			
Unit Cost (\$/acft)	\$546	\$805	\$1,596	\$1,393	\$661	\$1,213			

4B.2.2.22 City of Somerset

The City of Somerset is projected to have adequate water supplies available from run-of-river rights to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Somerset implement the following water supply plan (Table 4B.2.2-42).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 29 acft/yr by 2010, increasing to 177 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-42.
Recommended Water Supply Plan for the City of Somerset

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	29	70	110	131	152	177		
Total New Supply	29	70	110	131	152	177		

Estimated costs of the recommended plan for the City of Somerset are shown in Table 4B.2.2-43.

Table 4B.2.2-43.
Recommended Plan Costs by Decade for the City of Somerset

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$19,446	\$41,130	\$61,277	\$72,051	\$82,673	\$95,795
Unit Cost (\$/acft)	\$671	\$588	\$557	\$550	\$544	\$541

4B.2.2.23 City of St. Hedwig

The City of St. Hedwig is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of St. Hedwig implement the following water supply plan (Table 4B.2.2-44).

 Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 14 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-44.
Recommended Water Supply Plan for the City of St. Hedwig

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	_	14		
Total New Supply	_	_	_	_	_	14		

Estimated costs of the recommended plan for the City of St. Hedwig are shown in Table 4B.2.2-45.

Table 4B.2.2-45.
Recommended Plan Costs by Decade for the City of St. Hedwig

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	_	_	\$10,763		
Unit Cost (\$/acft)	_	_	_	_	_	\$769		

4B.2.2.24 City of Terrell Hills

The City of Terrell Hills is projected to have adequate water supplies available from the Edwards Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Terrell Hills implement the following water supply plan (Table 4B.2.2-46).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 14 acft/yr by 2010, increasing to 65 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.2-46.
Recommended Water Supply Plan for the City of Terrell Hills

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	14	18	21	24	39	65		
Total New Supply	14	18	21	24	39	65		

Estimated costs of the recommended plan for the City of Terrell Hill are shown in Table 4B.2.2-47.

Table 4B.2.2-47.
Recommended Plan Costs by Decade for the City of Terrell Hills

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$9,495	\$12,125	\$14,510	\$16,484	\$24,216	\$37,910
Unit Cost (\$/acft)	\$678	\$674	\$691	\$687	\$621	\$583

4B.2.2.25 City of Universal City

Current water supply for the City of Universal City is obtained from the Edwards and Carrizo Aquifers. Universal City is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is

recommended that Universal City implement the following water supply plan to meet the projected needs for the city (Table 4B.2.2-48).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 49 acft/yr by 2050, increasing to 148 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional supply of 113 acft/yr by 2010, increasing to 606 acft/yr of additional supply by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 130 acft/yr by 2010.

Table 4B.2.2-48.
Recommended Water Supply Plan for the City of Universal City

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	113	421	680	630	606	606			
Recommended Plan									
Municipal Water Conservation	_	_	_	_	49	148			
Edwards Transfers	113	421	680	630	606	606			
Drought Management	130	_	_	_	_	_			
Total New Supply	243	421	680	630	655	754			

Estimated costs of the recommended plan to meet the City of Universal City's projected needs are shown in Table 4B.2.2-49.

Table 4B.2.2-49.
Recommended Plan Costs by Decade for the City of Universal City

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	_	_	_	\$33,518	\$92,827			
Unit Cost (\$/acft)	_	_	_	_	\$684	\$627			
Edwards Transfers									
Annual Cost (\$/yr)	\$51,302	\$191,134	\$308,720	\$286,020	\$275,124	\$275,124			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$116,789	_	_	_	_	_			
Unit Cost (\$/acft)	\$898	_	_	_	_	_			

4B.2.2.26 Water Service Inc. (Apex)

Current water supply for Water Service Inc. is obtained from the Edwards Aquifer. Water Service Inc. is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Water Service Inc. implement the following water supply plan to meet the projected needs for the entity (Table 4B.2.2-50).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 18 acft/yr by 2040, increasing to 105 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional supply of 587 acft/yr by 2010, increasing to 1,116 acft/yr of additional supply by 2060.
- Purchase from WWP (TWA) to be implemented prior to 2020. This strategy can provide an additional supply of 1,000 acft/yr by 2020, through 2060.
- Purchase from WWP (SSLGC) to be implemented prior to 2010. This strategy can provide an additional supply of 324 acft/yr by 2010, through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 48 acft/yr by 2010.

Alternative water management strategies for the Water Service, Inc, if groundwater permits from Gonzales County are unable to be obtained, is Purchase from WWP (SAWS) and/or additional Edwards Transfers.

Table 4B.2.2-50.
Recommended Water Supply Plan for Water Service Inc.

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	911	1,148	1,384	1,599	1,801	2,018			
Recommended Plan									
Municipal Water Conservation	_	_	_	18	50	105			
Edwards Transfers	587	723	844	945	1,031	1,116			
Purchase from WWP (TWA)	_	1,000	1,000	1,000	1,000	1,000			
Purchase from WWP (SSLGC)	324	324	324	324	324	324			
Drought Management	48	_	_	_	_	_			
Total New Supply	959	2,047	2,168	2,287	2,405	2,545			

Estimated costs of the recommended plan to meet Water Service Inc.'s projected needs are shown in Table 4B.2.2-51.

Table 4B.2.2-51.
Recommended Plan Costs by Decade for Water Service Inc.

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservat	ion								
Annual Cost (\$/yr)			_	\$13,791	\$38,479	\$81,122			
Unit Cost (\$/acft)	_	_	_	\$766	\$770	\$773			
Edwards Transfers									
Annual Cost (\$/yr)	\$266,498	\$328,242	\$383,176	\$429,030	\$468,074	\$506,664			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Purchase from WWP (TWA)									
Annual Cost (\$/yr)	_	\$1,523,000	\$1,523,000	\$512,000	\$512,000	\$512,000			
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512			
Purchase from WWP (SSLC	GC)								
Annual Cost (\$/yr)	\$160,380	\$184,032	\$222,029	\$157,663	\$117,988	\$117,988			
Unit Cost (\$/acft)	\$495	\$568	\$685	\$487	\$364	\$364			
Drought Management									
Annual Cost (\$/yr)	\$21,089	_	_	_	_	_			
Unit Cost (\$/acft)	\$459	_	_	_	_	_			

4B.2.2.27 City of Windcrest

The City of Windcrest obtains its water supply from the Edwards Aquifer and is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Windcrest implement the following water supply plan (Table 4B.2.2-52).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 99 acft/yr by 2010, increasing to 385 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 235 acft/yr by 2010 through 2060.

Table 4B.2.2-52.
Recommended Water Supply Plan for the City of Windcrest

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	235	227	219	209	206	214		
Recommended Plan								
Municipal Water Conservation	99	189	270	343	362	385		
Edwards Transfers	235	235	235	235	235	235		
Total New Supply	334	424	505	578	597	620		

Estimated costs of the recommended plan to meet the City of Windcrest's projected needs are shown in Table 4B.2.2-53.

Table 4B.2.2-53.
Recommended Plan Costs by Decade for the City of Windcrest

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$65,703	\$110,082	\$149,707	\$185,027	\$193,335	\$205,282		
Unit Cost (\$/acft)	\$664	\$582	\$554	\$539	\$534	\$533		
Edwards Transfers								
Annual Cost (\$/yr)	\$106,690	\$106,690	\$106,690	\$106,690	\$106,690	\$106,690		
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454		

4B.2.2.28 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards Aquifer, Trinity Aquifer, and Canyon Reservoir. Rural Areas are projected to need additional water supplies prior to 2040. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.2-54).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 49 acft/yr in 2010, increasing to 505 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

• Purchase from WWP (SAWS) to be implemented prior to 2010. This strategy can provide an additional 127 acft/yr by year 2040, increasing to 655 acft/yr by 2060.

Table 4B.2.2-54.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	127	403	655
Recommended Plan						
Municipal Water Conservation	49	96	140	191	310	505
Purchase from WWP (SAWS)				127	403	655
Total New Supply	49	96	140	318	713	1,160

Estimated costs of the recommended plan to meet the projected needs of rural areas are shown in Table 4B.2.2-55.

Table 4B.2.2-55.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$37,759	\$73,618	\$107,959	\$147,203	\$238,677	\$389,088			
Unit Cost (\$/acft)	\$771	\$767	\$771	\$771	\$770	\$770			
Purchase from WWP (SAWS)									
Annual Cost (\$/yr)	_	_	_	\$176,851	\$266,493	\$794,571			
Unit Cost (\$/acft)	_	_	_	\$1,393	\$661	\$1,213			

4B.2.2.29 Industrial

Current water supply for industrial is obtained from the Edwards Aquifer, Trinity Aquifer, run-of-river rights, and direct reuse. Industrial is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual industrial operations implement the following water supply plan to meet the projected needs for industrial (Table 4B.2.2-56).

• Purchase from WWP (SAWS) to be implemented prior to 2010. This strategy can provide an additional 12,000 acft/yr of supply in 2010, increasing to

- 30,000 acft/yr of additional supply in 2060. See Section 4B.3.2 for an individual project list.
- Recycled Water is to be implemented prior to 2010. This strategy can provide an additional 1,340 acft/yr of supply in 2010, increasing to 17,588 acft/yr of additional supply in 2060, capable of meeting the entire needs.

Table 4B.2.2-56.
Recommended Water Supply Plan for Industrial

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	1,340	4,886	8,240	11,537	14,438	17,588
Recommended Plan						
Purchase from WWP (SAWS)	4,240	8,240	18,000	22,000	30,000	30,000
Recycled Water	1,340	4,886	8,240	11,537	14,438	17,588
Total New Supply	5,580	13,126	26,240	33,537	44,438	47,588

Estimated costs of the recommended plan to meet the Industrial projected needs are shown in Table 4B.2.2-57.

Table 4B.2.2-57.
Recommended Plan Costs by Decade for Industrial

Plan Element	2010	2020	2030	2040	2050	2060		
Purchase from WWP (SAWS)								
Annual Cost (\$/yr)	\$2,315,040	\$6,633,200	\$28,731,827	\$30,635,681	\$19,838,157	\$36,392,585		
Unit Cost (\$/acft)	\$546	\$805	\$1,596	\$1,393	\$661	\$1,213		
Recycled Water								
Annual Cost (\$/yr)	\$777,200	\$2,833,880	\$807,520	\$10,164,097	\$12,719,878	\$3,605,540		
Unit Cost (\$/acft)	\$580	\$580	\$98	\$881	\$881	\$205		

4B.2.2.30 Steam-Electric Power

Steam-electric power is projected to have adequate water supplies available from Victor Braunig Lake and Calaveras Lake to meet the water user group's projected demand during the planning period.

4B.2.2.31 Mining

Current water supply for mining is obtained from the Carrizo Aquifer. Mining is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual mining operations implement the following water supply plan to meet the projected needs for mining (Table 4B.2.2-58).

• Mining Water Conservation to be implemented prior to 2010.

Table 4B.2.2-58.
Recommended Water Supply Plan for Mining

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	921	1,020	1,122	1,216
Recommended Plan						
Mining Water Conservation	_	_	921	1,020	1,122	1,216
Total New Supply	_	_	921	1,020	1,122	1,216

Estimated costs of the recommended plan to meet the Mining projected needs are shown in Table 4B.2.2-59.

Table 4B.2.2-59.
Recommended Plan Costs by Decade for Mining

Plan Element	2010	2020	2030	2040	2050	2060			
Mining Water Conservation									
Annual Cost (\$/yr)	_	_	N/A	N/A	N/A	N/A			
Unit Cost (\$/acft)	_	_	N/A	N/A	N/A	N/A			
*Costs not available due to lack of relevant data.									

4B.2.2.32 Irrigation

Current water supply for irrigation is obtained from the Edwards Aquifer, Carrizo Aquifer, and run-of-river rights. Irrigation is projected to have adequate water supplies available.

4B.2.2.33 Livestock

Current water supply for livestock is obtained from the Edwards, Carrizo, and Trinity Aquifers and local sources. Livestock is projected to have adequate water supplies available.

4B.2.3 Caldwell County Water Supply Plan

Table 4B.2.3-1 lists each water user group in Caldwell County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.3-1.

Caldwell County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Aqua WSC	-49	-362	Projected shortage (2010 through 2060)
County Line WSC			See Hays County
Creedmoor-Maha WSC	-108	-447	Projected shortage (2010 through 2060)
Goforth WSC			See Hays County
Gonzales County WSC			See Gonzales County
City of Lockhart	322	-2,512	Projected shortage (2020 through 2060)
City of Luling	21	-506	Projected shortage (2020 through 2060)
City Martindale	34	1	No projected shortage
Martindale WSC	-42	-182	Projected shortage (2010 through 2060)
Maxwell WSC	384	-689	Projected shortage (2030 through 2060)
City of Mustang Ridge	-19	-213	Projected shortage (2010 through 2060)
City of Niederwald			See Hays County
Polonia WSC	723	-265	Projected shortage (2050 through 2060)
Rural Area Residential and Commercial	500	594	No projected shortage
Industrial	14	0	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	5	1	No projected shortage
Irrigation	0	466	No projected shortage
Livestock	0	0	No projected shortage

4B.2.3.1 Aqua WSC

Current water supply for Aqua WSC is obtained from the Carrizo Aquifer. Aqua WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Aqua WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.3-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 6 acft/yr by 2050, increasing to 19 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2010. This strategy can provide an additional 403 acft/yr by 2010, continuing through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 13 acft/yr by 2010.

Table 4B.2.3-2.
Recommended Water Supply Plan for Aqua WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	49	121	178	240	300	362	
Recommended Plan							
Municipal Water Conservation	_	_	_	_	6	19	
Local Groundwater Supplies (Carrizo)	403	403	403	403	403	403	
Drought Management	13	_	_	_	_	_	
Total New Supply	416	403	403	403	409	422	

Estimated costs of the recommended plan to meet Aqua WSC's projected needs are shown in Table 4B.2.3-3.

Table 4B.2.3-3.

Recommended Plan Costs by Decade for Aqua WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	_	\$4,655	\$14,729		
Unit Cost (\$/acft)	_	_	_	_	\$776	\$775		
Local Groundwater Supplies (Carrizo)								
Annual Cost (\$/yr)	\$303,000	\$303,000	\$303,000	\$130,025	\$130,025	\$130,025		
Unit Cost (\$/acft)	\$751	\$751	\$751	\$322	\$322	\$322		
Drought Management								
Annual Cost (\$/yr)	\$383,813	_	_	_	_	_		
Unit Cost (\$/acft)	\$2,952	_	_	_	_	_		

4B.2.3.2 Creedmoor-Maha WSC

Current water supplies for Creedmoor-Maha WSC are obtained from the Edwards (Barton Springs) Aquifer. Creedmoor-Maha WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Creedmoor-Maha WSC implement the following water supply plan (Table 4B.2.3-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 108 acft/yr by 2010, increasing to 447 acft/yr in 2060.

Table 4B.2.3-4.
Recommended Water Supply Plan for Creedmoor-Maha WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	108	180	246	312	378	447		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	_	11		
Purchase from WWP (GBRA)	108	180	246	312	378	447		
Total New Supply	108	180	246	312	378	458		

Estimated costs of the recommended plan for Creedmoor-Maha WSC are shown in Table 4B.2.3-5.

Table 4B.2.3-5.
Recommended Plan Costs by Decade for Creedmoor-Maha WSC

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	_	\$8,700
Unit Cost (\$/acft)		_	_	_	_	\$791
Purchase from WWP (GBRA)						
Annual Cost (\$/yr)	\$105,592	\$250,020	\$341,694	\$158,808	\$192,402	\$175,224
Unit Cost (\$/acft)	\$978	\$1,389	\$1,389	\$509	\$509	\$392

4B.2.3.3 City of Lockhart

Current water supply for the City of Lockhart is obtained from the Carrizo Aquifer and Guadalupe-Blanco River Authority run-of-river rights. Lockhart is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Lockhart implement the following water supply plan to meet the projected needs for the city (Table 4B.2.3-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 28 acft/yr by 2030, increasing to 333 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2020. This strategy can provide an additional 403 acft/yr by 2020, increasing to 2,823 acft/yr by 2060.
- Purchase from WWP (GBRA) to be implemented prior to 2020. This strategy can provide an additional 1,120 acft/yr from 2020 through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 123 acft/yr by 2010.

Table 4B.2.3-6.
Recommended Water Supply Plan for the City of Lockhart

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	321	856	1,407	1,952	2,512		
Recommended Plan								
Municipal Water Conservation	_	_	28	103	195	333		
Local Groundwater Supplies (Carrizo)	_	403	1,210	1,613	2,016	2,823		
Purchase from WWP (GBRA)	_	1,120	1,120	1,120	1,120	1,120		
Drought Management	123	_	_	_	_	_		
Total New Supply	123	1,523	2,358	2,836	3,331	4,276		

Estimated costs of the recommended plan to meet the City of Lockhart's projected needs are shown in Table 4B.2.3-7.

Table 4B.2.3-7.
Recommended Plan Costs by Decade for the City of Lockhart

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservat	ion								
Annual Cost (\$/yr)	_	_	\$18,838	\$70,011	\$132,630	\$220,164			
Unit Cost (\$/acft)	_	_	\$673	\$680	\$680	\$661			
Local Groundwater Supplies (Carrizo)									
Annual Cost (\$/yr)	_	\$428,429	\$1,285,286	\$1,411,730	\$1,236,191	\$1,791,064			
Unit Cost (\$/acft)	_	\$1,062	\$1,062	\$875	\$613	\$634			
Purchase from WWP (GBR	4)								
Annual Cost (\$/yr)	_	\$1,556,158	\$1,556,158	\$570,065	\$570,065	\$439,563			
Unit Cost (\$/acft)	_	\$1,389	\$1,389	\$509	\$509	\$392			
Drought Management									
Annual Cost (\$/yr)	\$213,481	_	_	_	_	_			
Unit Cost (\$/acft)	\$1,736	_	_	_	_	_			

4B.2.3.4 City of Luling

Current water supply for the City of Luling is obtained from the Carrizo Aquifer and Guadalupe-Blanco River Authority run-of-river rights. Luling is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Luling implement the following water supply plan to meet the projected needs for the city (Table 4B.2.3-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 70 acft/yr by 2010, increasing to 192 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2020. This strategy can provide an additional 403 acft/yr of supply in 2020, increasing to 807 acft/yr of additional supply in 2060.¹
- Purchase from WWP (GBRA) to be implemented prior to 2020. This strategy can provide an additional 1,680 acft/yr from 2020 through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 53 acft/yr by 2010.

Table 4B.2.3-8.
Recommended Water Supply Plan for the City of Luling

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	122	211	296	398	506		
Recommended Plan								
Municipal Water Conservation	70	90	108	117	148	192		
Local Groundwater Supplies (Carrizo)	_	403	403	403	403	807		
Purchase from WWP (GBRA)	_	1,680	1,680	1,680	1,680	1,680		
Drought Management	53							
Total New Supply	123	2,173	2,191	2,200	2,231	2,679		

-

¹ In response to the Infrastructure Financing Survey in 2005, Luling explained that it does not plan to add a well in the Carrizo Aquifer. Review of Luling's existing water supplies indicates that the reliability of existing surface water supplies may be underestimated, thereby eliminating the need for the Local Groundwater Supplies (Carrizo) water management strategy recommended in the plan. However, if the need arises, the strategy is included and available for consideration by the City.

Estimated costs of the recommended plan to meet the City of Luling's projected needs are shown in Table 4B.2.3-9.

Table 4B.2.3-9.
Recommended Plan Costs by Decade for the City of Luling

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$53,961	\$67,257	\$71,761	\$70,867	\$85,077	\$109,043			
Unit Cost (\$/acft)	\$771	\$747	\$664	\$606	\$575	\$568			
Local Groundwater Supplies (Carrizo)									
Annual Cost (\$/yr)	_	\$437,500	\$437,500	\$180,043	\$180,043	\$617,543			
Unit Cost (\$/acft)	_	\$1,085	\$1,085	\$446	\$446	\$766			
Purchase from WWP (GBRA)									
Annual Cost (\$/yr)	_	\$2,334,237	\$2,334,237	\$855,098	\$855,098	\$659,344			
Unit Cost (\$/acft)	_	\$1,389	\$1,389	\$509	\$509	\$392			
Drought Management									
Annual Cost (\$/yr)	\$30,083	_	_	_	_	_			
Unit Cost (\$/acft)	\$568	_	_	_	_	_			

4B.2.3.5 City of Martindale

The City of Martindale is projected to have adequate water supplies available from runof-river rights to meet the city's projected demand during the planning period. The following water supply plan is recommended to meet any shortages for the City of Martindale (Table 4B.2.3-10).

Drought Management to be implemented or enhanced in the immediate future.
 This strategy can provide an additional 6 acft/yr by 2010.

Table 4B.2.3-10.
Recommended Water Supply Plan for the City of Martindale

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Drought Management	6	_	_	_	_	_		
Total New Supply	6	_	_	_	_	_		

Estimated costs of the recommended plan for the City of Martindale are shown in Table 4B.2.3-11.

Table 4B.2.3-11.

Recommended Plan Costs by Decade for the City of Martindale

Plan Element	2010	2020	2030	2040	2050	2060
Drought Management						
Annual Cost (\$/yr)	\$2,825	_	_	_	_	_
Unit Cost (\$/acft)	\$471	_	_	_	_	_

4B.2.3.6 Martindale WSC

Current water supply for Martindale WSC is obtained from Canyon Reservoir and run-of-river rights through Canyon Regional Water Authority (CRWA). Martindale WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Martindale WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.3-12).

- Municipal Water Conservation
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 396 acft/yr by 2010, increasing to 896 acft/yr by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 9 acft/yr by 2010.

Alternative water management strategies identified by Martindale WSC include Local Groundwater Supplies (Trinity), Purchase from San Marcos, Surface Water Rights, Recycled Water Programs, and/or Hays/Caldwell PUA Project.

Table 4B.2.3-12.
Recommended Water Supply Plan for Martindale WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	42	70	95	126	151	182		
Recommended Plan								
Purchase from WWP (CRWA)	396	396	696	896	896	896		
Drought Management	9	_	_	_	_	_		
Total New Supply	405	396	696	896	896	896		

Estimated costs of the recommended plan to meet Martindale WSC's projected needs are shown in Table 4B.2.3-13.

Table 4B.2.3-13.
Recommended Plan Costs by Decade for Martindale WSC

Plan Element	2010	2020	2030	2040	2050	2060			
Purchase from WWP (CRWA)									
Annual Cost (\$/yr)	\$287,100	\$435,475	\$743,318	\$639,162	\$401,574	\$387,522			
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433			
Drought Management									
Annual Cost (\$/yr)	\$9,157	_	_	_	_	_			
Unit Cost (\$/acft)	\$1,017	_	_	_	_	_			

4B.2.3.7 Maxwell WSC

Current water supply for Maxwell WSC is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights through Canyon Regional Water Authority (CRWA). Maxwell WSC is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Maxwell WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.3-14).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2050, increasing to 55 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2020. This strategy can provide an additional 400 acft/yr by 2020, increasing to 2,000 acft/yr by 2060.

Alternative water management strategies identified by Maxwell WSC include Local Groundwater Supplies (Trinity), Purchase from San Marcos, Surface Water Rights, and/or Recycled Water Programs.

Table 4B.2.3-14.
Recommended Water Supply Plan for Maxwell WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	77	246	476	689		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	11	55		
Purchase from WWP (CRWA)	_	400	800	1,200	1,600	2,000		
Total New Supply	_	400	800	1,200	1,611	2,055		

Estimated costs of the recommended plan to meet Maxwell WSC's projected needs are shown in Table 4B.2.3-15.

Table 4B.2.3-15.
Recommended Plan Costs by Decade for Maxwell WSC

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$8,599	\$42,527
Unit Cost (\$/acft)	_	_	_	_	\$782	\$773
Purchase from WWP (CRWA)						
Annual Cost (\$/yr)	_	\$854,389	\$856,020	\$717,097	\$865,005	\$854,389
Unit Cost (\$/acft)	_	\$1,100	\$1,068	\$713	\$448	\$433

4B.2.3.8 City of Mustang Ridge

Current water supply for the City of Mustang Ridge is obtained from the Carrizo Aquifer. Mustang Ridge is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Mustang Ridge implement the following water supply plan to meet the projected needs for the city (Table 4B.2.3-16).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 10 acft/yr by 2010, increasing to 116 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 19 acft/yr by 2010, increasing to 213 acft/yr in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 6 acft/yr by 2010.

Table 4B.2.3-16.
Recommended Water Supply Plan for the City of Mustang Ridge

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	19	62	99	137	175	213		
Recommended Plan								
Municipal Water Conservation	10	26	48	74	98	116		
Purchase from WWP (GBRA)	19	62	99	137	175	213		
Drought Management	6		_		_	_		
Total New Supply	35	88	147	211	273	329		

Estimated costs of the recommended plan to meet the City of Mustang Ridge's projected needs are shown in Table 4B.2.3-17.

Table 4B.2.3-17.
Recommended Plan Costs by Decade for the City of Mustang Ridge

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$7,274	\$15,610	\$26,775	\$40,651	\$53,189	\$62,850		
Unit Cost (\$/acft)	\$727	\$600	\$558	\$549	\$543	\$542		
Purchase from WWP (GBRA)								
Annual Cost (\$/yr)	\$18,576	\$86,118	\$137,511	\$69,733	\$89,075	\$83,496		
Unit Cost (\$/acft)	\$978	\$1,389	\$1,389	\$509	\$509	\$392		
Drought Management*								
Annual Cost (\$/yr)	_	_	_	_	_	_		
Unit Cost (\$/acft)	_	_	_	_	_	_		
* Insufficient data to develop a cost estimate.			•		•			

4B.2.3.9 Polonia WSC

Current water supply for Polonia WSC is obtained from the Carrizo Aquifer. Polonia WSC is projected to need additional water supplies prior to 2050. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Polonia WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.3-18).

- Municipal Water Conservation
- Local Groundwater Supplies (Wilcox) to be implemented prior to 2050. This strategy can provide an additional 161 acft/yr by 2050, increasing to 323 acft/yr in 2060.

Table 4B.2.3-18.
Recommended Water Supply Plan for Polonia WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	66	265
Recommended Plan						
Local Groundwater Supplies (Wilcox)	_	_	_	_	161	323
Total New Supply	_	_	_	_	161	323

Estimated costs of the recommended plan to meet Polonia WSC's projected needs are shown in Table 4B.2.3-19.

Table 4B.2.3-19.
Recommended Plan Costs by Decade for Polonia WSC

Plan Element	2010	2020	2030	2040	2050	2060
Local Wilcox						
Annual Cost (\$/yr)	_	_	_	_	\$142,000	\$284,000
Unit Cost (\$/acft)	_	_	_	_	\$880	\$880

4B.2.3.10 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer, Queen City Aquifer, and run-of-river rights to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.3-20).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 21 acft/yr by 2010, increasing to 29 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Facilities Expansions (System Interconnects)

Table 4B.2.3-20.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	21	37	36	31	28	29
Facilities Expansions	_	_	_	_	_	_
Total New Supply	21	37	36	31	28	29

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.3-21.

Table 4B.2.3-21.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$16,475	\$24,451	\$22,357	\$18,050	\$15,873	\$15,929
Unit Cost (\$/acft)	\$785	\$661	\$621	\$582	\$567	\$549
Facilities Expansions						
Annual Cost (\$/yr)	\$1,644,000	\$1,644,000	\$111,000	\$111,000	\$111,000	\$111,000
Unit Cost (\$/acft)	_					

In addition, the Tri-Community WSC in Rural Caldwell County is considering the addition of Local Groundwater Supplies (Carrizo) from a new well and interconnections with Maxwell WSC and/or City of Luling.

4B.2.3.11 Industrial

Industrial is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demands during the planning period.

4B.2.3.12 Steam-Electric Power

There is no projected steam-electric power water demand in Caldwell County, therefore no water management strategies are recommended for this water user group.

4B.2.3.13 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demands during the planning period.

4B.2.3.14 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Queen City Aquifer, and run-of-river rights to meet the water user group's projected demands during the planning period.

4B.2.3.9 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demands during the planning period.

4B.2.4 Calhoun County Water Supply Plan

Table 4B.2.4-1 lists each water user group in Calhoun County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.4-1.
Calhoun County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Calhoun County WSC	1,064	868	No projected shortage
City of Point Comfort	-46	-489	Projected shortage (2010 through 2060)
City of Port Lavaca	2,711	2,135	No projected shortage
City of Seadrift	476	470	No projected shortage
Rural Area Residential and Commercial	4,222	4,220	No projected shortage
Industrial*	20,469	-1,985	Projected shortage (2060)
Steam-Electric Power	0	0	No projected shortage
Mining	6	0	No projected shortage
Irrigation	0	5,988	No projected shortage
Livestock	0	0	No projected shortage

*These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.4.1 Calhoun County WSC

Calhoun County WSC is projected to have adequate water supplies available from run-of-river rights of the Guadalupe-Blanco River Authority (GBRA) to meet the WSC's projected demands during the planning period.

4B.2.4.2 City of Point Comfort

Current water supply for the City of Point Comfort is obtained from Lake Texana. Point Comfort is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Point Comfort implement the following water supply plan to meet the projected needs for the city (Table 4B.2.4-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 18 acft/yr by 2010, increasing to 98 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (LNRA) to be implemented prior to 2010. This strategy can provide an additional 46 acft/yr by 2010, increasing to 499 acft/yr in 2040, and decreasing to 489 acft/yr in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2010.

Table 4B.2.4-2.
Recommended Water Supply Plan for the City of Point Comfort

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	46	145	322	499	489	489
Recommended Plan						
Municipal Water Conservation	18	34	55	78	84	98
Purchase from WWP (LNRA)	46	145	322	499	489	489
Drought Management	11	_	_	_	_	_
Total New Supply	75	179	377	577	573	587

Estimated costs of the recommended plan to meet the City of Point Comfort's projected needs are shown in Table 4B.2.4-3.

Table 4B.2.4-3.
Recommended Plan Costs by Decade for the City of Point Comfort

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$13,536	\$24,111	\$36,406	\$47,601	\$48,315	\$55,877
Unit Cost (\$/acft)	\$752	\$709	\$662	\$610	\$575	\$570
Purchase from WWP (LNRA) ¹						
Annual Cost (\$/yr)	\$32,246	\$101,645	\$181,286	\$280,937	\$48,900	\$48,900
Unit Cost (\$/acft)	\$701	\$701	\$563	\$563	\$100	\$100
Drought Management						
Annual Cost (\$/yr)	\$104	_	_	_	_	_
Unit Cost (\$/acft)	\$9	_	_	_		_

4B.2.4.3 City of Port Lavaca

The City of Port Lavaca is projected to have adequate water supplies available from runof-river rights of the Guadalupe-Blanco River Authority (GBRA) to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Port Lavaca implement the following water supply plan (Table 4B.2.4-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 30 acft/yr by 2050, increasing to 89 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.4-4.
Recommended Water Supply Plan for the City of Port Lavaca

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	_	30	89
Total New Supply	_	_	_	_	30	89

Estimated costs of the recommended plan for the City of Port Lavaca are shown in Table 4B.2.4-5.

Table 4B.2.4-5.
Recommended Plan Costs by Decade for the City of Port Lavaca

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$22,725	\$68,162
Unit Cost (\$/acft)	_	_	_	_	\$758	\$766

4B.2.4.4 City of Seadrift

The City of Seadrift is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Seadrift implement the following water supply plan (Table 4B.2.4-6).

• Municipal Water Conservation to be implemented or enhanced in the future. This strategy can provide an additional 20 acft/yr by 2010, increasing to 41 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.4-6.
Recommended Water Supply Plan for the City of Seadrift

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	20	29	30	32	36	41
Total New Supply	20	29	30	32	36	41

Estimated costs of the recommended plan for the City of Seadrift are shown in Table 4B.2.4-7.

Table 4B.2.4-7.
Recommended Plan Costs by Decade for the City of Seadrift

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$15,284	\$19,576	\$19,242	\$18,614	\$20,369	\$23,351
Unit Cost (\$/acft)	\$764	\$675	\$641	\$582	\$566	\$570

4B.2.4.5 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights of the Guadalupe-Blanco River Authority (GBRA) to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan for rural areas (Table 4B.2.4-8).

• Municipal Water Conservation to be implemented or enhanced in the future. This strategy can provide an additional 4 acft/yr by 2050, increasing to 11 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

An alternative water management strategy identified by GBRA for Rural Calhoun County is the Calhoun County Brackish Groundwater Project.

Table 4B.2.4-8.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	_	4	11
Total New Supply	_	_	_	_	4	11

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.4-9.

Table 4B.2.4-9.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$3,079	\$8,263
Unit Cost (\$/acft)	_	_	_	_	\$770	\$751

4B.2.4.6 Industrial

Industrial is projected to have adequate water supplies available from the Gulf Coast Aquifer, Lake Texana, and run-of-river rights of the Guadalupe-Blanco River Authority (GBRA) to meet the water user group's projected demands during the planning period. The following water supply plan is recommended for Calhoun County Industrial.

• Purchase from WWP (LNRA) to be implemented by 2010. This strategy can provide an additional 10,000 acft/yr by 2010, continuing through 2060.

Table 4B.2.4-10.
Recommended Water Supply Plan for Industrial

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	2,021
Recommended Plan						
Purchase from WWP (LNRA)*	_	10,000	10,000	10,000	10,000	10,000
Total New Supply	_	10,000	10,000	10,000	10,000	10,000

^{* 10,000} acft/yr is for Formosa Plastics Corporation based on information provided by LNRA during an inter-regional coordination meeting held on April 8, 2009.

Estimated costs of the recommended plan for Industrial are shown in Table 4B.2.4-11.

Table 4B.2.4-11.
Recommended Plan Costs by Decade for Industrial

Plan Element	2010	2020	2030	2040	2050	2060
Purchase from WWP (LNRA	A)					
Annual Cost (\$/yr)	_	\$7,010,000	\$5,630,000	\$5,630,000	\$1,000,000	\$1,000,000
Unit Cost (\$/acft)	_	\$701	\$563	\$563	\$100	\$100

4B.2.4.7 Steam-Electric Power

Steam-electric power is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demands during the planning period.

4B.2.4.8 Mining

Mining is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demands during the planning period.

4B.2.4.9 Irrigation

Irrigation is projected to have adequate water supplies available from run-of-river rights to meet the water user group's projected demands during the planning period.

4B.2.4.10 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demands during the planning period.

(This page intentionally left blank.)

4B.2.5 Comal County Water Supply Plan

Table 4B.2.5-1 lists each water user group in Comal County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.5-1.
Comal County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Bexar Metropolitan Water District			See Bexar County
City of Bulverde	-653	-4,595	Projected shortage (2010 through 2060)
Canyon Lake WSC	3,806	-6,769	Projected shortage (2030 through 2060)
Crystal Clear WSC			See Guadalupe County
Fair Oaks Ranch			See Bexar County
City of Garden Ridge	-257	-1052	Projected shortage (2010 through 2060)
Green Valley SUD			See Guadalupe County
City of New Braunfels	1,797	-13,920	Projected shortage (2020 through 2060)
City of Schertz			See Guadalupe County
City of Selma			See Bexar County
Water Service Inc.			See Bexar County
Rural Area Residential and Commercial*	-1,380	-2,742	Projected shortage (2010 through 2060)
Industrial*	-4,848	-8,672	Projected shortage (2010 through 2060)
Steam-Electric Power	0	0	No projected demand
Mining	-439	-1,173	Projected shortage (2010 through 2060)
Irrigation	807	892	No projected shortage
Livestock	0	0	No projected shortage

^{*}These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.5.1 City of Bulverde

Current water supply for the City of Bulverde is obtained from Canyon Reservoir and Trinity Aquifer through Canyon Lake Water Service Company. City of Bulverde is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Bulverde implement the following water supply plan to meet the projected needs for the city (Table 4B.2.5-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 38 acft/yr by 2030, increasing to 430 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (TWA) through Canyon Lake WSC to be implemented prior to 2020. This strategy can provide an additional 653 acft/yr by 2010, increasing to 4,595 acft/yr in 2060.
- Purchase from WWP (GBRA) to be implemented prior to 2020. This strategy can provide an additional 653 acft/yr by 2010, increasing to 4,595 acft/yr in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 53 acft/yr by 2010.

Table 4B.2.5-2.
Recommended Water Supply Plan for the City of Bulverde

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	653	1,342	2,128	2,910	3,723	4,595
Recommended Plan						
Municipal Water Conservation	_	_	38	130	260	430
Purchase from WWP (TWA)	_	1,342	2,128	2,910	3,723	4,595
Purchase from WWP (GBRA)	653	1,342	2,128	2,910	3,723	4,595
Drought Management	53					
Total New Supply	1,359	2,684	4,294	5,950	7,706	9,620

Estimated costs of the recommended plan to meet the City of Bulverde's projected needs are shown in Table 4B.2.5-3.

Table 4B.2.5-3.
Recommended Plan Costs by Decade for the City of Bulverde

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservat	ion					
Annual Cost (\$/yr)	_	_	\$25,608	\$88,450	\$176,820	\$293,074
Unit Cost (\$/acft)	_	_	\$674	\$680	\$680	\$682
Purchase from WWP (TWA)						
Annual Cost (\$/yr)	_	\$2,043,866	\$3,240,944	\$1,489,920	\$1,906,176	\$2,352,640
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512
Purchase from WWP (GBR	4)					
Annual Cost (\$/yr)	\$638,438	\$1,312,073	\$2,080,546	\$2,845,107	\$4,813,839	\$5,941,335
Unit Cost (\$/acft)	\$978	\$978	\$978	\$978	\$1,293	\$1,293
Drought Management						
Annual Cost (\$/yr)	_	_	_	_	_	_
Unit Cost (\$/acft)	_	_	_	_	_	_

4B.2.5.2 Canyon Lake WSC

Current water supply for Canyon Lake WSC is obtained from Canyon Reservoir and the Trinity Aquifer. Canyon Lake WSC is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Canyon Lake WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.5-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 96 acft/yr by 2020, increasing to 1,414 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 129 acft/yr by 2030, increasing to 6,769 acft/yr in 2060.
- Drought Management to be implemented or enhanced in the immediate future.
- Purchase from WWP (TWA) to be implemented prior to 2030. This strategy can provide an additional 3,000 acft/yr by 2030, increasing to 12,000 acft/yr in 2060.

Table 4B.2.5-4.
Recommended Water Supply Plan for Canyon Lake WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	129	2,198	4,466	6,769	
Recommended Plan							
Municipal Water Conservation	_	96	254	543	929	1,414	
Purchase from WWP (GBRA)	_	_	129	2,198	4,466	6,769	
Drought Management ¹							
Purchase from WWP (TWA)			3,000	6,000	9,000	12,000	
Total New Supply	_	96	3,383	8,741	14,395	20,183	
¹ Historical per capita water use data unavailable or insufficient for calculation of yield.							

Estimated costs of the recommended plan to meet Canyon Lake WSC's projected needs are shown in Table 4B.2.5-5.

Table 4B.2.5-5.
Recommended Plan Costs by Decade for Canyon Lake WSC

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservat	ion								
Annual Cost (\$/yr)	_	\$74,261	\$195,883	\$418,001	\$715,563	\$1,063,887			
Unit Cost (\$/acft)	_	\$774	\$771	\$770	\$770	\$752			
Purchase from WWP (GBRA)									
Annual Cost (\$/yr)	_	_	\$179,236	\$1,118,753	\$2,273,134	\$2,656,607			
Unit Cost (\$/acft)	_	_	\$1,389	\$509	\$509	\$392			
Drought Management ¹									
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
Purchase from WWP (TWA))								
Annual Cost (\$/yr)	_	_	\$4,569,000	\$9,138,000	\$4,608,000	\$6,144,000			
Unit Cost (\$/acft)	_	_	\$1,523	\$1,523	\$512	\$512			
¹ Historical per capita water use o	¹ Historical per capita water use data unavailable or insufficient for calculation of annual cost and unit cost.								

4B.2.5.3 City of Garden Ridge

Current water supply for the City of Garden Ridge is obtained from the Edwards Aquifer. Garden Ridge is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Garden Ridge implement the following water supply plan to meet the projected needs for the city (Table 4B.2.5-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 42 acft/yr by 2010, increasing to 460 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SSLGC) to be implemented prior to 2010. This strategy can provide an additional 257acft/yr by 2010, increasing to 1,052 acft/yr in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 28 acft/yr by 2010.

An alternative water management strategy for the City of Garden Ridge, if groundwater permits from Gonzales County are unable to be obtained, is Purchase from WWP (CRWA).

Table 4B.2.5-6.
Recommended Water Supply Plan for the City of Garden Ridge

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)*	257	395	552	710	873	1,052	
Recommended Plan							
Municipal Water Conservation	42	103	187	294	379	460	
Purchase from WWP (SSLGC)	257	395	552	710	873	1,052	
Drought Management	28						
Total New Supply	327	498	739	1,004	1,252	1,512	

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of Garden Ridge's projected needs are shown in Table 4B.2.5-7.

Table 4B.2.5-7.
Recommended Plan Costs by Decade for the City of Garden Ridge

Plan Element	2010	2020	2030	2040	2050	2060	
Municipal Water Conservation							
Annual Cost (\$/yr)	\$27,442	\$58,811	\$101,682	\$157,724	\$202,378	\$245,216	
Unit Cost (\$/acft)	\$653	\$571	\$544	\$536	\$534	\$533	
Purchase from WWP (SSLGC)							
Annual Cost (\$/yr)	\$127,215	\$224,360	\$378,272	\$345,495	\$317,912	\$383,097	
Unit Cost (\$/acft)	\$495	\$568	\$685	\$487	\$364	\$364	
Drought Management							
Annual Cost (\$/yr)	\$11,631	_	_	_	_	_	
Unit Cost (\$/acft)	\$415	_	_	_	_	_	

4B.2.5.4 City of New Braunfels

Current water supply for the City of New Braunfels is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights. New Braunfels is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that New Braunfels implement the following water supply plan to meet the projected needs for the city (Table 4B.2.5-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 815 acft/yr by 2010, increasing to 8,152 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 525 acft/yr by 2010.
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 907 acft/yr by 2020, increasing to 13,920 acft/yr in 2060.

Table 4B.2.5-8.
Recommended Water Supply Plan for the City of New Braunfels

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	907	4,044	7,151	10,361	13,920		
Recommended Plan								
Municipal Water Conservation	815	1,965	3,632	5,433	6,650	8,152		
Drought Management	525	_	_	_	_	_		
Purchase from WWP (GBRA)	_	907	4,044	7,151	10,361	13,920		
Total New Supply	1,340	2,872	7,676	12,584	17,011	22,072		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of New Braunfels' projected needs are shown in Table 4B.2.5-9.

Table 4B.2.5-9.
Recommended Plan Costs by Decade for the City of New Braunfels

Plan Element	2010	2020	2030	2040	2050	2060	
Municipal Water Conservation							
Annual Cost (\$/yr)	\$542,429	\$1,135,506	\$2,009,283	\$2,957,523	\$3,595,588	\$4,400,341	
Unit Cost (\$/acft)	\$666	\$578	\$553	\$544	\$541	\$540	
Drought Management							
Annual Cost (\$/yr)	\$175,878	_	_	_	_	_	
Unit Cost (\$/acft)	\$335	_	_	_	_	_	
Purchase from WWP (0	BRA)						
Annual Cost (\$/yr)	_	\$1,260,210	\$5,618,841	\$3,639,764	\$5,273,611	\$5,463,136	
Unit Cost (\$/acft)	_	\$1,389	\$1,389	\$509	\$509	\$392	

4B.2.5.5 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards Aquifer, Trinity Aquifer, Canyon Reservoir, and run-of-river rights. Rural Areas are projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.5-10).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 85 acft/yr in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 891acft/yr by 2010, increasing to 1,480 acft/yr in 2060.
- Purchase from NBU (term) to be implemented prior to 2010. This strategy can provide an additional 891acft/yr by 2010.
- Purchase from WWP (TWA) to be implemented prior to 2020. This strategy can provide an additional 986 acft/yr by 2010, increasing to 1,480 acft/yr in 2060.

Table 4B.2.5-10.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	1,782	1,972	2,178	2,362	2,665	2,960
Recommended Plan						
Municipal Water Conservation	_	_	_	_	_	85
Purchase from WWP (GBRA)	891	986	1,089	1,181	1,333	1,480
Purchase water from NBU (term)	891					
Purchase from WWP (TWA)		986	1,089	1,181	1,333	1,480
Total New Supply	1,782	1,972	2,178	2,362	2,666	3,045

Estimated costs of the recommended plan to meet the projected needs of rural areas are shown in Table 4B.2.5-11.

Table 4B.2.5-11.

Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservat	ion					
Annual Cost (\$/yr)	_	_	_	_	_	\$65,700
Unit Cost (\$/acft)	_	_	_	_	_	\$773
Purchase from WWP (GBR	4)					
Annual Cost (\$/yr)	\$871,131	\$964,012	\$1,064,715	\$1,154,664	\$1,723,569	\$1,913,640
Unit Cost (\$/acft)	\$978	\$978	\$978	\$978	\$1,293	\$1,293
Purchase water from NBU ((term)					
Annual Cost (\$/yr)	\$708,345	_	_	_	_	_
Unit Cost (\$/acft)	\$795	_	_	_	_	_
Purchase from WWP (TWA))					
Annual Cost (\$/yr)		\$1,501,678	\$1,658,547	\$604,672	\$682,496	\$757,760
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512

4B.2.5.6 Industrial

Current water supply for industrial is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights. Industrial is projected to need additional water supplies prior to the year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual industrial operations implement the following water supply plan to meet the projected needs for industrial (Table 4B.2.5-12).

- Recycled water is to be implemented prior to 2010. This strategy can provide an additional 5,199 acft/yr of supply in 2010, increasing to 9,022 acft/yr of additional supply in 2060, capable of meeting the entire needs.
- Purchase from WWP (GBRA) is to be implemented prior to 2010. This strategy can provide an additional 5,199 acft/yr of supply in 2010, increasing to 9,022 acft/yr of additional supply in 2060.

Table 4B.2.5-12.
Recommended Water Supply Plan for Industrial

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	5,199	6,033	6,784	7,514	8,141	9,022
Recommended Plan						
Recycled Water	5,199	6,033	6,784	7,514	8,141	9,022
Purchase from WWP (GBRA)	5,199	6,033	6,784	7,514	8,141	9,022
Total New Supply	10,298	12,066	13,568	15,028	16,282	18,044

Estimated costs of the recommended plan to meet the industrial projected needs are shown in Table 4B.2.5-13.

Table 4B.2.5-13.
Recommended Plan Costs by Decade for Industrial

Plan Element	2010	2020	2030	2040	2050	2060
Recycled Water						
Annual Cost (\$/yr)	\$3,015,420	\$3,499,140	\$664,832	\$736,372	\$797,818	\$884,156
Unit Cost (\$/acft)	\$580	\$580	\$98	\$98	\$98	\$98
Purchase from WWP (GBI	RA)					
Annual Cost (\$/yr)	\$5,083,062	\$5,898,464	\$6,632,717	\$7,346,438	\$10,526,313	\$11,665,446
Unit Cost (\$/acft)	\$978	\$978	\$978	\$978	\$1,293	\$1,293

4B.2.5.7 Steam-Electric Power

There is no projected steam-electric power water demand in Comal County, therefore no water management strategies are recommended for this water user group.

4B.2.5.8 Mining

Current water supply for mining is obtained from the Trinity Aquifer. Mining is projected to need additional water supplies in the planning year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual mining operations implement the following water supply plan to meet the projected needs for mining (Table 4B.2.5-14).

• Mining water conservation to be implemented prior to 2010.

Table 4B.2.5-14.
Recommended Water Supply Plan for Mining

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	439	635	753	870	1,068	1,173
Recommended Plan						
Mining Water Conservation	439	635	753	870	1,068	1,173
Total New Supply	439	635	753	870	1,068	1,173

Estimated costs of the recommended plan to meet the mining projected needs are shown in Table 4B.2.5-15.

Table 4B.2.5-15.
Recommended Plan Costs by Decade for Mining

Plan Element	2010	2020	2030	2040	2050	2060
Mining Water Conservation*						
Annual Cost (\$/yr)	N/A	N/A	N/A	N/A	N/A	N/A
Unit Cost (\$/acft)	N/A	N/A	N/A	N/A	N/A	N/A
*Costs not available due to lack of relevant data.						

4B.2.5.9 Irrigation

Irrigation is projected to have adequate water supplies available from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.5.10 Livestock

Current water supply for livestock is obtained from the Trinity Aquifer and local sources. Livestock is projected to have adequate water supplies through 2060.

(This page intentionally left blank.)

4B.2.6 DeWitt County Water Supply Plan

Table 4B.2.6-1 lists each water user group in DeWitt County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.6-1.

DeWitt County Management Supply/Shortage by Water User Group

	_ ~	gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Cuero	3,827	3,899	No projected shortage
Gonzales County WSC			See Gonzales County
City of Yoakum	1,148	1,172	No projected shortage
City of Yorktown	806	831	No projected shortage
Rural Area Residential and Commercial	263	364	No projected shortage
Industrial	76	6	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	7	0	No projected shortage
Irrigation	0	105	No projected shortage
Livestock	0	0	No projected shortage

4B.2.6.1 City of Cuero

The City of Cuero is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Cuero implement the following water supply plan (Table 4B.2.6-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 99 acft/yr by 2010, increasing to 218 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.6-2.
Recommended Water Supply Plan for the City of Cuero

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	99	181	187	190	197	218
Total New Supply	99	181	187	190	197	218

Estimated costs of the recommended plan for the City of Cuero are shown in Table 4B.2.6-3.

Table 4B.2.6-3.
Recommended Plan Costs by Decade for the City of Cuero

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$76,250	\$117,473	\$115,153	\$111,355	\$111,074	\$121,828
Unit Cost (\$/acft)	\$770	\$649	\$616	\$586	\$564	\$559

4B.2.6.2 City of Yoakum

The City of Yoakum is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Yoakum implement the following water supply plan (Table 4B.2.6-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 14 acft/yr by 2010, increasing to 27 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.6-4.
Recommended Water Supply Plan for the City of Yoakum

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	14	16	17	18	20	27
Total New Supply	14	16	17	18	20	27

Estimated costs of the recommended plan for the City of Yoakum are shown in Table 4B.2.6-5.

Table 4B.2.6-5.
Recommended Plan Costs by Decade for the City of Yoakum

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$10,915	\$11,989	\$12,800	\$13,132	\$13,016	\$16,667
Unit Cost (\$/acft)	\$780	\$749	\$753	\$730	\$651	\$617

4B.2.6.3 City of Yorktown

The City of Yorktown is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Yorktown implement the following water supply plan (Table 4B.2.6-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 2 acft/yr by 2020, increasing to 13 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.6-6.
Recommended Water Supply Plan for the City of Yorktown

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	2	2	2	5	13
Total New Supply	_	2	2	2	5	13

Estimated costs of the recommended plan for the City of Yorktown are shown in Table 4B.2.6-7.

Table 4B.2.6-7.
Recommended Plan Costs by Decade for the City of Yorktown

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	\$1,215	\$1,594	\$1,801	\$3,871	\$9,753
Unit Cost (\$/acft)	_	\$608	\$797	\$901	\$774	\$750

4B.2.6.4 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Gulf Coast Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan for rural areas (Table 4B.2.6-8).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 6 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.6-8.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	_	_	6
Total New Supply	_	_	_	_	_	6

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.6-9.

Table 4B.2.6-9.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	_	\$4,961
Unit Cost (\$/acft)	_	_	_	_	_	\$827

4B.2.6.5 Industrial

Industrial is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.6.6 Steam-Electric Power

There is no projected steam-electric power water demand in DeWitt County, therefore no water management strategies are recommended for this water user group.

4B.2.6.7 Mining

Mining is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.6.8 Irrigation

Irrigation is projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.6.9 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.2.7 Dimmit County Water Supply Plan

Table 4B.2.7-1 lists each water user group in Dimmit County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.7-1.

Dimmit County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Asherton	327	334	No projected shortage
City of Big Wells	502	506	No projected shortage
City of Carrizo Springs	368	374	No projected shortage
Rural Area Residential and Commercial	59	80	No projected shortage
Industrial	0	0	No projected demand
Steam-Electric Power	0	0	No projected demand
Mining	92	0	No projected shortage
Irrigation	0	1,624	No projected shortage
Livestock	0	0	No projected shortage

4B.2.7.1 City of Asherton

The City of Asherton is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Asherton implement the following water supply plan (Table 4B.2.7-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr by 2010, increasing to 64 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.7-2.
Recommended Water Supply Plan for the City of Asherton

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	20	43	58	59	62	64
Total New Supply	20	43	58	59	62	64

Estimated costs of the recommended plan for the City of Asherton are shown in Table 4B.2.7-3.

Table 4B.2.7-3.

Recommended Plan Costs by Decade for the City of Asherton

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$15,404	\$26,899	\$33,391	\$32,594	\$33,605	\$34,805
Unit Cost (\$/acft)	\$770	\$626	\$576	\$552	\$542	\$544

4B.2.7.2 City of Big Wells

The City of Big Wells is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Big Wells implement the following water supply plan (Table 4B.2.7-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2010, increasing to 33 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.7-4.
Recommended Water Supply Plan for the City of Big Wells

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	11	23	30	30	32	33
Total New Supply	11	23	30	30	32	33

Estimated costs of the recommended plan for the City of Big Wells are shown in Table 4B.2.7-5.

Table 4B.2.7-5.
Recommended Plan Costs by Decade for the City of Big Wells

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$8,603	\$14,638	\$17,438	\$17,012	\$17,547	\$18,185
Unit Cost (\$/acft)	\$782	\$636	\$581	\$567	\$548	\$551

4B.2.7.3 City of Carrizo Springs

The City of Carrizo Springs is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Carrizo Springs implement the following water supply plan (Table 4B.2.7-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 152 acft/yr by 2010, increasing to 777 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.7-6.
Recommended Water Supply Plan for the City of Carrizo Springs

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	152	312	464	590	700	777
Total New Supply	152	312	464	590	700	777

Estimated costs of the recommended plan for the City of Carrizo Springs are shown in Table 4B.2.7-7.

Table 4B.2.7-7.

Recommended Plan Costs by Decade for the City of Carrizo Springs

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$102,816	\$183,308	\$257,908	\$318,509	\$374,006	\$414,285
Unit Cost (\$/acft)	\$676	\$588	\$556	\$540	\$534	\$533

4B.2.7.4 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer to meet their projected demands during the planning period.

4B.2.7.5 Industrial

There is no projected industrial water demand in Dimmit County, therefore no water management strategies are recommended for this water user group.

4B.2.7.6 Steam-Electric Power

There is no projected steam-electric power water demand in Dimmit County, therefore no water management strategies are recommended for this water user group.

4B.2.7.7 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.7.8 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.7.9 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.8 Frio County Water Supply Plan

Table 4B.2.8-1 lists each water user group in Frio County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.8-1.
Frio County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Benton City WSC			See Atascosa County
City of Dilley	878	282	No projected shortage
City of Pearsall	1,288	1,282	No projected shortage
Rural Area Residential and Commercial	293	13	No projected shortage
Industrial	0	0	No projected demand
Steam-Electric Power	0	198	No projected shortage
Mining	30	43	No projected shortage
Irrigation	35,081	48,506	No projected shortage
Livestock	0	0	No projected shortage

4B.2.8.1 City of Dilley

The City of Dilley is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Dilley implement the following water supply plan (Table 4B.2.8-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 104 acft/yr by 2010, increasing to 772 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.8-2.
Recommended Water Supply Plan for the City of Dilley

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	104	229	362	511	652	772	
Total New Supply	104	229	362	511	652	772	

Estimated costs of the recommended plan for the City of Dilley are shown in Table 4B.2.8-3.

Table 4B.2.8-3.
Recommended Plan Costs by Decade for the City of Dilley

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$72,733	\$136,570	\$203,925	\$281,326	\$354,219	\$417,515
Unit Cost (\$/acft)	\$699	\$596	\$563	\$551	\$543	\$541

4B.2.8.2 City of Pearsall

The City of Pearsall is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Pearsall implement the following water supply plan (Table 4B.2.8-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 116 acft/yr by 2010, increasing to 324 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.8-4.
Recommended Water Supply Plan for the City of Pearsall

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	116	223	272	271	294	324	
Total New Supply	116	223	272	271	294	324	

Estimated costs of the recommended plan for the City of Pearsall are shown in Table 4B.2.8-5.

Table 4B.2.8-5.
Recommended Plan Costs by Decade for the City of Pearsall

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$78,787	\$132,441	\$154,632	\$148,799	\$159,650	\$175,453
Unit Cost (\$/acft)	\$679	\$594	\$569	\$549	\$543	\$542

4B.2.8.3 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan for rural areas (Table 4B.2.8-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 18 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.8-6.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	_	_	_	_	_	18	
Total New Supply	_	_	_	_	_	18	

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.8-7.

Table 4B.2.8-7.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	_	\$13,845
Unit Cost (\$/acft)	_	_	_	_	_	\$769

4B.2.8.4 Industrial

There is no projected industrial water demand in Frio County, therefore no water management strategies are recommended for this water user group.

4B.2.8.5 Steam-Electric Power

Steam-electric power is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.8.6 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.8.7 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Queen City Aquifer, Sparta Aquifer, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.8.8 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.9 Goliad County Water Supply Plan

Table 4B.2.9-1 lists each water user group in Goliad County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.9-1.
Goliad County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Goliad	527	364	No projected shortage
Rural Area Residential and Commercial	368	134	No projected shortage
Industrial	20	0	No projected shortage
Steam-Electric Power	7,676	2,060	No projected shortage
Mining	0	0	No projected shortage
Irrigation	3,985	4,170	No projected shortage
Livestock	-3	0	Projected shortage (2010 through 2020)

4B.2.9.1 City of Goliad

The City of Goliad is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Goliad implement the following water supply plan (Table 4B.2.9-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 30 acft/yr by 2010, increasing to 100 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.9-2.
Recommended Water Supply Plan for the City of Goliad

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	30	59	67	73	85	100	
Total New Supply	30	59	67	73	85	100	

Estimated costs of the recommended plan for the City of Goliad are shown in Table 4B.2.9-3.

Table 4B.2.9-3.
Recommended Plan Costs by Decade for the City of Goliad

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$23,424	\$38,872	\$41,790	\$42,695	\$48,426	\$56,450
Unit Cost (\$/acft)	\$781	\$659	\$624	\$585	\$570	\$565

4B.2.9.2 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Gulf Coast Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan for rural areas (Table 4B.2.9-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 16 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.9-4.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	_	_	16
Total New Supply	_	_	_	_	_	16

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.9-5.

Table 4B.2.9-5.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	_	\$12,663
Unit Cost (\$/acft)	_	_	_	_	_	\$791

4B.2.9.3 Industrial

Industrial is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.9.4 Steam-Electric Power

Current water supply for steam-electric power is obtained from the Gulf Coast Aquifer and Coleto Creek Reservoir. Steam-electric power is projected to have adequate supplies through 2060.

4B.2.9.5 Mining

Mining is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.9.6 Irrigation

Irrigation is projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.9.7 Livestock

Livestock obtains its water supply from local sources. Shortages of 3 acft/yr and 1 acft/yr are projected for years 2010 and 2020, respectively. Livestock Water Conservation is recommended to meet this transient need. However, a cost estimate is not available due to lack of relevant data.

4B.2.10 Gonzales County Water Supply Plan

Table 4B.2.10-1 lists each water user group in Gonzales County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.10-1.
Gonzales County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Gonzales	1,040	826	No projected shortage
Gonzales County WSC	745	133	No projected shortage
City of Nixon	2,282	2,232	No projected shortage
City of Waelder	444	395	No projected shortage
Rural Area Residential and Commercial	179	368	No projected shortage
Industrial	1,135	133	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	6	10	No projected shortage
Irrigation	2,118	2,801	No projected shortage
Livestock	72	72	No projected shortage

4B.2.10.1 City of Gonzales

The City of Gonzales is projected to have adequate water supplies available from the Carrizo Aquifer and run-of-river rights to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Gonzales implement the following water supply plan (Table 4B.2.10-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 116 acft/yr by 2010, increasing to 414 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.10-2.
Recommended Water Supply Plan for the City of Gonzales

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	116	245	325	353	381	414
Total New Supply	116	245	325	353	381	414

Estimated costs of the recommended plan for the City of Gonzales are shown in Table 4B.2.10-3.

Table 4B.2.10-3.
Recommended Plan Costs by Decade for the City of Gonzales

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$89,431	\$154,089	\$190,182	\$200,317	\$212,805	\$229,940
Unit Cost (\$/acft)	\$771	\$629	\$585	\$567	\$559	\$555

4B.2.10.2 Gonzales County WSC

Current water supply for Gonzales County WSC is obtained from the Carrizo Aquifer and Canyon Reservoir. Gonzales County WSC is projected to have adequate water supplies through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Gonzales County WSC implement the following water supply plan (Table 4B.2.10-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 143 acft/yr by 2010, increasing to 1,002 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (TWA) to be implemented by 2020. This strategy can provide an additional 500 acft/yr by 2020 through 2060.
- Facilities Expansions (System Interconnects)

Table 4B.2.10-4.
Recommended Water Supply Plan for Gonzales County WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	143	312	505	693	858	1,002
Purchase from WWP (TWA)	_	500	500	500	500	500
Total New Supply	143	812	1,005	1,193	1,358	1,502

Estimated costs of the recommended plan for Gonzales County WSC are shown in Table 4B.2.10-5.

Table 4B.2.10-5.
Recommended Plan Costs by Decade for Gonzales County WSC

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$97,959	\$182,594	\$281,442	\$376,878	\$461,395	\$536,658
Unit Cost (\$/acft)	\$685	\$585	\$557	\$544	\$538	\$536
Purchase from WWP (TWA)						
Annual Cost (\$/yr)	_	\$761,500	\$761,500	\$256,000	\$256,000	\$256,000
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512

4B.2.10.3 City of Nixon

The City of Nixon is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Nixon implement the following water supply plan (Table 4B.2.10-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 35 acft/yr by 2010, increasing to 93 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.10-6.
Recommended Water Supply Plan for the City of Nixon

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	35	64	72	75	83	93
Total New Supply	35	64	72	75	83	93

Estimated costs of the recommended plan for the City of Nixon are shown in Table 4B.2.10-7.

Table 4B.2.10-7.
Recommended Plan Costs by Decade for the City of Nixon

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$26,707	\$41,079	\$44,133	\$44,084	\$47,526	\$52,622
Unit Cost (\$/acft)	\$763	\$642	\$613	\$588	\$573	\$566

4B.2.10.4 City of Waelder

The City of Waelder is projected to have adequate water supplies available from the Queen City Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Waelder implement the following water supply plan (Table 4B.2.10-8).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 3 acft/yr by 2040, increasing to 11 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.10-8.
Recommended Water Supply Plan for the City of Waelder

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	3	7	11
Total New Supply	_	_	_	3	7	11

Estimated costs of the recommended plan for the City of Waelder are shown in Table 4B.2.10-9.

Table 4B.2.10-9.
Recommended Plan Costs by Decade for the City of Waelder

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	\$2,582	\$5,110	\$8,815
Unit Cost (\$/acft)	_	_	_	\$861	\$730	\$801

4B.2.10.5 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan for rural areas (Table 4B.2.10-10).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 6 acft/yr by 2010, decreasing to 3 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.10-10.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	6	7	5	_	_	3
Total New Supply	6	7	5	_	_	3

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.10-11.

Table 4B.2.10-11.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$4,791	\$5,521	\$3,910	_	_	\$2,398
Unit Cost (\$/acft)	\$799	\$789	\$782	_	_	\$799

4B.2.10.6 Industrial

Industrial is projected to have adequate water supplies available from the Carrizo Aquifer and Sparta Aquifer to meet the water user group's projected demand during the planning period.

4B.2.10.7 Steam-Electric Power

There is no projected steam-electric power water demand in Gonzales County, therefore no water management strategies are recommended for this water user group.

4B.2.10.8 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer, Sparta Aquifer, and Queen City Aquifer to meet the water user group's projected demand during the planning period.

4B.2.10.9 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Sparta Aquifer, Queen City Aquifer, Gulf Coast Aquifer, Canyon Reservoir, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.10.10 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.11 Guadalupe County Water Supply Plan

Table 4B.2.11-1 lists each water user group in Guadalupe County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.11-1.
Guadalupe County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Cibolo	484	120	No projected shortage
Crystal Clear WSC	794	-2,716	Projected shortage (2030 through 2060)
East Central SUD			See Bexar County
Green Valley SUD	750	-547	Projected shortage (2060)
City of Marion	12	-75	Projected shortage (2020 through 2060)
Martindale WSC			See Caldwell County
City of New Berlin	0	0	No projected shortage
City of New Braunfels			See Comal County
Santa Clara	-76	-810	Projected shortage (2010 through 2060)
City of Schertz*	5,488	-2,420	Projected shortage (2050 through 2060)
City of Seguin	4,647	618	No projected shortage
City of Selma			See Bexar County
Springs Hill WSC	2,501	520	No projected shortage
Water Service Inc.			See Bexar County
Rural Area Residential and Commercial	179	436	No projected shortage
Industrial	1,460	1	No projected shortage
Steam-Electric Power	4,292	1,565	No projected shortage
Mining	47	0	No projected shortage
Irrigation	597	962	No projected shortage
Livestock	0	0	No projected shortage

*These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.11.1 City of Cibolo

Current water supply for the City of Cibolo is obtained from Canyon Reservoir through CRWA. Cibolo is projected to have adequate water supply through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Cibolo implement the following water supply plan (Table 4B.2.11-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 65 acft/yr by 2010, increasing to 645 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 700 acft/yr in 2010, increasing to 7,180 acft/yr in 2060.
- Purchase from WWP (BMWD) to be implemented prior to 2010. This strategy can provide an additional 500 acft/yr in 2010 through 2060.

Table 4B.2.11-2.
Recommended Water Supply Plan for the City of Cibolo

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)*	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	65	176	281	374	499	645	
Purchase from WWP (CRWA)	700	980	6,180	6,680	7,180	7,180	
Purchase from WWP (BMWD)	500	500	500	500	500	500	
Total New Supply	1,265	1,656	6,961	7,554	8,179	8,325	

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for the City of Cibolo are shown in Table 4B.2.11-3.

Plan Element 2010 2020 2030 2040 2050 2060 **Municipal Water Conservation** Annual Cost (\$/yr) \$44.008 \$104.545 \$161.586 \$212.045 \$280,697 \$361.068 Unit Cost (\$/acft) \$677 \$594 \$575 \$567 \$563 \$560 Purchase from WWP (CRWA) \$507,500 \$1,077,690 \$6,600,155 \$4,765,178 \$3,217,972 \$3,105,369 Annual Cost (\$/yr) \$713 Unit Cost (\$/acft) \$725 \$1,100 \$1,068 \$448 \$433 Purchase from WWP (BMWD) Annual Cost (\$/yr) \$527,060 \$522,922 \$289,067 \$232,987 \$193,661 \$193,444 Unit Cost (\$/acft) \$1,054 \$1,046 \$578 \$466 \$387 \$387

Table 4B.2.11-3.
Recommended Plan Costs by Decade for the City of Cibolo

4B.2.11.2 Crystal Clear WSC

Current water supply for Crystal Clear WSC is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights. Crystal Clear WSC is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Crystal Clear WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.11-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 41 acft/yr by 2050, increasing to 184 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Wilcox) to be implemented prior to 2030. This strategy can provide an additional 605 acft/yr by 2030, increasing to 2,823 acft/yr of supply by 2060.
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 1,300 acft/yr by 2010, increasing to 5,185 by 2060.
- Purchase from WWP (SSLGC) to be implemented prior to 2020. This strategy can provide an additional 300 acft/yr by 2020, increasing to 900 acft/yr of supply in 2040, continuing through 2060.

Alternative water management strategies identified by Crystal Clear WSC include Local Groundwater Supplies (Trinity), Brackish Edwards, and/or Purchase from WWP (GBRA).

Project Table 4B.2.11-4.
Recommended Water Supply Plan for Crystal Clear WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	509	1,138	1,926	2,716
Recommended Plan						
Municipal Water Conservation	_	_	_	_	41	184
Local Groundwater Supplies (Wilcox)	_		605	1,210	2,016	2,823
Purchase from WWP (CRWA)	1,300	2,595	2,595	2,595	5,185	5,185
Purchase from WWP (SSLGC)	_	300	600	900	900	900
Total New Supply	1,300	2,895	3,800	4,705	8,142	9,092

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet Crystal Clear WSC's projected needs are shown in Table 4B.2.11-5.

Table 4B.2.11-5.
Recommended Plan Costs by Decade for Crystal Clear WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	_	\$31,476	\$141,432		
Unit Cost (\$/acft)	_	_	_	_	\$768	\$769		
Local Groundwater Supplies (Wilcox)								
Annual Cost (\$/yr)	_	_	\$863,357	\$1,726,714	\$2,247,248	\$2,767,782		
Unit Cost (\$/acft)	_	_	\$1,427	\$1,427	\$1,114	\$980		
Purchase from WWP (CRWA)								
Annual Cost (\$/yr)	\$942,500	\$2,853,679	\$2,771,424	\$1,851,143	\$2,323,842	\$2,242,526		
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433		
Purchase from WWP (SSLGC)								
Annual Cost (\$/yr)	_	\$170,400	\$411,166	\$437,952	\$327,745	\$327,745		
Unit Cost (\$/acft)	_	\$568	\$685	\$487	\$364	\$364		

4B.2.11.3 Green Valley SUD

Current water supply for Green Valley SUD is obtained from the Edwards Aquifer and Canyon Reservoir. Green Valley SUD is projected to need additional water supplies prior to 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Green Valley SUD implement the following water supply plan to meet the projected needs for the SUD (Table 4B.2.11-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 700 acft/yr by 2010, increasing to 9,500 acft/yr of supply in 2060.
- Purchase from NBU to be implemented by 2010 and can provide an additional 552 acft/yr through 2060.

Alternative water management strategies identified by Green Valley SUD include Local Groundwater Supplies (Trinity) and/or Purchase from WWP (GBRA).

Table 4B.2.11-6.
Recommended Water Supply Plan for Green Valley SUD

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	0	0	640
Recommended Plan						
Municipal Water Conservation	_	_	_	_	_	20
Purchase from WWP (CRWA)	700	1,800	7,500	8,000	9,000	9,500
Purchase water from NBU	552	552	552	552	552	552
Total New Supply	1,252	2,352	8,052	8,552	9,552	10,072

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet Green Valley SUD's projected need are shown in Table 4B.2.11-7.

Table 4B.2.11-7.
Recommended Plan Costs by Decade for Green Valley SUD

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	_	_	_	_	\$15,704			
Unit Cost (\$/acft)	_	_	_	_	_	\$785			
Purchase from WWP (CRWA)									
Annual Cost (\$/yr)	\$507,500	\$1,979,430	\$8,009,897	\$5,706,800	\$4,033,669	\$4,108,775			
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433			
Purchase from NBU									
Annual Cost (\$/yr)	\$438,840	\$438,840	\$438,840	\$438,840	\$438,840	\$438,840			
Unit Cost (\$/acft)	\$795	\$795	\$795	\$795	\$795	\$795			

4B.2.11.4 City of Marion

Current water supply for the City of Marion is obtained from the Edwards Aquifer and Canyon Reservoir through CRWA. Marion is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Marion implement the following water supply plan to meet the projected needs for the city (Table 4B.2.11-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 3 acft/yr by 2050, increasing to 10 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 100 acft/yr by 2010, increasing to 400 acft/yr of supply in 2060.

An alternative water management strategy identified by City of Marion to potentially meet needs is Recycled Water Programs.

Table 4B.2.11-8.
Recommended Water Supply Plan for the City of Marion

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	3	18	33	53	75		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	3	10		
Purchase from WWP (CRWA)	100	200	400	400	400	400		
Total New Supply	100	200	400	400	403	410		

Estimated costs of the recommended plan to meet the City of Marion's projected needs are shown in Table 4B.2.11-9.

Table 4B.2.11-9.
Recommended Plan Costs by Decade for the City of Marion

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$2,680	\$7,652
Unit Cost (\$/acft)	_	_	_	_	\$893	\$765
Purchase from WWP (CRWA)						
Annual Cost (\$/yr)	\$72,500	\$219,937	\$427,195	\$285,340	\$179,274	\$173,001
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433

4B.2.11.5 City of Santa Clara

Current water supply for the City of Santa Clara is obtained from the Carrizo Aquifer. Santa Clara is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Santa Clara implement the following water supply plan to meet the projected needs for the city (Table 4B.2.11-10).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 10 acft/yr by 2030, increasing to 79 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 100 acft/yr by 2010, increasing to 900 acft/yr of supply in 2060.

• Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr by 2010.

Table 4B.2.11-10.
Recommended Water Supply Plan for the City of Santa Clara

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	76	205	348	485	642	810		
Recommended Plan								
Municipal Water Conservation	_	_	10	23	47	79		
Purchase from WWP (CRWA)	100	300	400	500	700	900		
Drought Management	11	_	_	_	_	_		
Total New Supply	111	300	410	523	747	979		

Estimated costs of the recommended plan to meet the City of Santa Clara's projected needs are shown in Table 4B.2.11-11.

Table 4B.2.11-11.
Recommended Plan Costs by Decade for the City of Santa Clara

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	\$7,877	\$17,462	\$36,225	\$61,080		
Unit Cost (\$/acft)	_	_	\$788	\$759	\$771	\$773		
Purchase from WWP (CRWA)								
Annual Cost (\$/yr)	\$72,500	\$329,905	\$427,195	\$356,675	\$313,730	\$389,252		
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433		
Drought Management*								
Annual Cost (\$/yr)	_	_	_	_	_	_		
Unit Cost (\$/acft)	_	_	_	_	_	_		
* Insufficient data to develop a cost estimate.		•			•			

4B.2.11.6 City of Schertz

Current water supply for the City of Schertz is obtained from the Edwards Aquifer and Carrizo Aquifer. Schertz is projected to need additional water supplies prior to 2050. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Schertz implement the following water supply plan to meet the projected needs for the city (Table 4B.2.11-12).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 22 acft/yr by 2010, increasing to 1,088 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SSLGC) to be implemented prior to 2030. This strategy can provide an additional 939 acft/yr by 2030, increasing to 5,923 acft/yr of supply in 2060.

Alternative water management strategies identified by City of Schertz include Local Groundwater Supplies (Trinity) and/or Purchase from WWP (TWA).

Table 4B.2.11-12.
Recommended Water Supply Plan for the City of Schertz

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	0	647	2,436
Recommended Plan						
Municipal Water Conservation	22	87	182	365	694	1,088
Purchase from WWP (SSLGC)			939	2,424	4,115	5,923
Total New Supply	22	87	1,121	2,789	4,809	7,011

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of Schertz's projected needs are shown in Table 4B.2.11-13.

\$1,498,522

\$364

\$364

Plan Element 2010 2020 2030 2040 2050 2060 **Municipal Water Conservation** Annual Cost (\$/yr) \$15,118 \$59.574 \$123.652 \$248.424 \$460.271 \$684.006 Unit Cost (\$/acft) \$687 \$685 \$679 \$681 \$663 \$629 Purchase from WWP (SSLGC) \$643,474 \$1,179,550 \$2,156,924

\$685

\$487

Table 4B.2.11-13. Recommended Plan Costs by Decade for the City of Schertz

4B.2.11.7 City of Seguin

Annual Cost (\$/yr)

Unit Cost (\$/acft)

The City of Seguin is projected to have adequate water supplies available from the Carrizo Aquifer, Canyon Reservoir, and run-of-river rights to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Seguin implement the following water supply plan (Table 4B.2.11-14).

 Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 377 acft/yr by 2010, increasing to 2,131 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Alternative water management strategies identified by City of Seguin include Purchase from WWP (SSLGC), Purchase from WWP (GBRA), and/or Purchase from WWP (TWA).

Table 4B.2.11-14. Recommended Water Supply Plan for the City of Seguin

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	377	853	1,229	1,448	1,744	2,131
Total New Supply	377	853	1,299	1,448	1,744	2,131

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for the City of Seguin are shown in Table 4B.2.11-15.

Table 4B.2.11-15.
Recommended Plan Costs by Decade for the City of Seguin

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$256,904	\$503,785	\$691,151	\$798,805	\$951,488	\$1,158,748		
Unit Cost (\$/acft)	\$681	\$591	\$562	\$552	\$546	\$544		

4B.2.11.8 Springs Hill WSC

Springs Hill WSC is projected to have adequate water supplies available from the Carrizo Aquifer and Canyon Reservoir to meet the WSC's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Springs Hill WSC implement the following water supply plan (Table 4B.2.11-16).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 174 acft/yr by 2010, increasing to 877 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (SHWSC) to be implemented by 2020. This strategy can provide an additional 1,500 acft/yr by 2020, increasing to 3,000 acft/yr of supply by 2030, continuing through 2060.
- Facilities Expansion (Lake Placid WTP)

Table 4B.2.11-16.
Recommended Water Supply Plan for Springs Hill WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	174	381	477	571	701	877		
Purchase from WWP (SHWSC)	_	1,500	3,000	3,000	3,000	3,000		
Facilities Expansion	_							
Total New Supply	174	1,881	3,477	3,571	3,701	3,877		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for Springs Hill WSC are shown in Table 4B.2.11-17.

Table 4B.2.11-17.
Recommended Plan Costs by Decade for Springs Hill WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Cons	ervation							
Annual Cost (\$/yr)	\$134,027	\$239,728	\$287,191	\$330,685	\$397,267	\$492,788		
Unit Cost (\$/acft)	\$770	\$629	\$602	\$579	\$567	\$562		
Purchase from WWP (SHWSC)								
Annual Cost (\$/yr)	_	\$2,184,000	\$4,435,000	\$1,533,000	\$1,533,000	\$1,464,000		
Unit Cost (\$/acft)	_	\$1,456	\$1,478	\$511	\$511	\$488		
Facilities Expansion								
Annual Cost (\$/yr)	\$722,000	\$722,000	\$524,000	\$524,000	\$524,000	\$524,000		
Unit Cost (\$/acft)	_	_				_		

4B.2.11.9 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards Aquifer, Carrizo Aquifer, Queen City Aquifer, Canyon Reservoir, and run-of-river rights. Rural Areas are projected to have adequate water supplies through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply

districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan (Table 4B.2.11-18).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 2 acft/yr in 2010 (Volume II, Section 4C.1.1).

Table 4B.2.11-18.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	2	_				_
Total New Supply	2	_	_			

Estimated costs of the recommended plan for the rural areas are shown in Table 4B.2.11-19.

Table 4B.2.11-19.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$1,449	_	_	_	_	_
Unit Cost (\$/acft)	\$725			_		

4B.2.11.10 Industrial

Industrial is projected to have adequate water supplies available from the Edwards Aquifer, Carrizo Aquifer, Canyon Reservoir, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.1.11 Steam-Electric Power

Current water supply for steam-electric power is obtained from Canyon Reservoir and reuse water. Steam-electric power is projected to have adequate water supplies through 2060.

4B.2.11.12 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.11.13 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Canyon Reservoir, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.11.14 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.2.12 Hays County Water Supply Plan

Table 4B.2.12-1 lists each water user group in Hays County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.12-1.

Hays County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
County Line WSC	140	-2,386	Projected shortage (2020 through 2060)
Creedmoor-Maha WSC			See Caldwell County
Crystal Clear WSC			See Guadalupe County
Goforth WSC	457	-1,872	Projected shortage (2030 through 2060)
City of Kyle	764	-1,699	Projected shortage (2020 through 2060)
Maxwell WSC			See Caldwell County
City of Mountain City	4	-134	Projected shortage (2020 and 2060)
City of Niederwald	-58	-377	Projected shortage (2010 through 2060)
Plum Creek Water Company	407	-657	Projected shortage (2040 through 2060)
City of San Marcos	5,014	-11,387	Projected shortage (2030 through 2060)
Wimberley WSC	-219	-1,409	Projected shortage (2010 through 2060)
City of Woodcreek	-23	-387	Projected shortage (2010 through 2060)
Woodcreek Utilities, Inc.	-455	-2,580	Projected shortage (2010 through 2060)
Rural Area Residential and Commercial	1,829	689	No projected shortage
Industrial	1,353	1,179	No projected shortage
Steam-Electric Power	5,151	2,533	No projected shortage
Mining	-82	-103	Projected shortage (2010 through 2060)
Irrigation	316	331	No projected shortage
Livestock	0	0	No projected shortage

4B.2.12.1 County Line WSC

Current water supply for County Line WSC is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights. County Line WSC is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that County Line WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.12-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 43 acft/yr by 2010, increasing to 473 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Trinity) to be implemented prior to 2020. This strategy can provide an additional 1,129 acft/yr by 2020, increasing to 2,420 acft/yr of supply in 2060.
- Purchase from WWP (CRWA) to be implemented prior to 2020. This strategy can provide an additional 570 acft/yr by 2020, through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 58 acft/yr by 2010.

Alternative water management strategies identified by County Line WSC include Recycled Water Programs and/or Brackish Barton Springs Edwards.

Project Table 4B.2.12.-2.
Recommended Water Supply Plan for County Line WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	1,049	1,433	1,603	1,921	2,386		
Recommended Plan								
Municipal Water Conservation	43	110	176	227	344	473		
Local Groundwater Supplies (Trinity)	_	1,129	1,452	1,613	1,936	2,420		
Purchase from WWP (CRWA)	_	570	570	570	570	570		
Drought Management	58							
Total New Supply	101	1,809	2,198	2,410	2,850	3,463		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet County Line WSC's projected needs are shown in Table 4B.2.12-3.

Table 4B.2.12-3.
Recommended Plan Costs by Decade for County Line WSC

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$32,760	\$84,518	\$135,342	\$164,888	\$231,092	\$305,884
Unit Cost (\$/acft)	\$762	\$768	\$769	\$726	\$672	\$647
Local Trinity						
Annual Cost (\$/yr)	_	\$982,333	\$1,263,000	\$566,741	\$608,381	\$909,868
Unit Cost (\$/acft)	_	\$870	\$870	\$351	\$314	\$376
Purchase from WWP (CRWA)						
Annual Cost (\$/yr)	_	\$626,820	\$608,752	\$406,610	\$255,466	\$246,527
Unit Cost (\$/acft)		\$1,100	\$1,068	\$713	\$448	\$433
Drought Management						
Annual Cost (\$/yr)	\$9,527	_	_	_	_	_
Unit Cost (\$/acft)	\$164	_				

4B.2.12.2 Goforth WSC

Current water supply for Goforth WSC is obtained from the Edwards (Barton Springs) Aquifer. Goforth WSC is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Goforth WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.12-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 22 acft/yr by 2050, increasing to 111 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Hays/Caldwell PUA Project² to be implemented prior to 2020. This strategy can provide an additional 1,639 acft/yr by 2020, continuing through 2060.

² Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

• Purchase from WWP (GBRA) to be implemented prior to 2030. This strategy can provide an additional 300 acft/yr by 2030, continuing through 2060.

Alternative water management strategies identified by Goforth WSC include Local Groundwater Supplies (Edwards – Barton Springs), Brackish Edwards (Barton Springs), and/or Local Groundwater Supplies (Trinity). An alternative water management strategy for the Goforth WSC, if groundwater permits from Gonzales County are unable to be obtained, is Purchase from WWP (GBRA).

Table 4B.2.12-4.
Recommended Water Supply Plan for Goforth WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	29	433	879	1,427	1,872		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	22	111		
Hays/Caldwell PUA Project	_	1,639	1,639	1,639	1,639	1,639		
Purchase from WWP (GBRA)	_	_	300	300	300	300		
Total New Supply	0	1,639	1,939	1,939	1,961	2,050		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet Goforth WSC's projected needs are shown in Table 4B.2.12-5.

Table 4B.2.12-5.
Recommended Plan Costs by Decade for Goforth WSC

Recommended Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	_	\$17,198	\$85,581		
Unit Cost (\$/acft)	_	_	_	_	\$782	\$771		
Hays/Caldwell PUA Project								
Annual Cost (\$/yr)	_	\$2,040,555	\$2,040,555	\$719,521	\$719,521	\$719,521		
Unit Cost (\$/acft)	_	\$1,245	\$1,245	\$439	\$439	\$439		
Purchase from WWP (GBR)	4)							
Annual Cost (\$/yr)	_	_	\$416,828	\$152,696	\$152,696	\$117,740		
Unit Cost (\$/acft)	_	_	\$1,389	\$509	\$509	\$392		

4B.2.12.3 City of Kyle

Current water supply for the City of Kyle is obtained from the Edwards Aquifer, Edwards (Barton Springs) Aquifer, and Canyon Reservoir. City of Kyle is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Kyle implement the following water supply plan to meet the projected needs for the city (Table 4B.2.12-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 27 acft/yr by 2020, increasing to 443 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Hays/Caldwell PUA Project³ to be implemented prior to 2030. This strategy can provide an additional supply of 464 acft/yr by 2030, increasing to 9,355 acft/yr by 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 137 acft/yr by 2010.

An alternative water management strategy for the City of Kyle, if groundwater permits from Gonzales County are unable to be obtained, is Purchase from WWP (GBRA).

Table 4B.2.12-6.
Recommended Water Supply Plan for the City of Kyle

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	436	713	873	1,370	1,699		
Recommended Plan								
Municipal Water Conservation	_	27	96	167	302	443		
Hays/Caldwell PUA Project		500	1,000	2,416	5,144	9,355		
Drought Management	137	_						
Total New Supply	137	27	560	2,583	5,446	9,798		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

³ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Estimated costs of the recommended plan to meet the City of Kyle's projected needs are shown in Table 4B.2.12-7.

Table 4B.2.12-7.
Recommended Plan Costs by Decade for the City of Kyle

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)		\$18,091	\$65,039	\$113,927	\$205,763	\$301,858			
Unit Cost (\$/acft)	_	\$670	\$677	\$682	\$681	\$681			
Hays/Caldwell PUA Project									
Annual Cost (\$/yr)	_	\$622,500	\$1,245,000	\$1,060,624	\$2,258,216	\$4,106,845			
Unit Cost (\$/acft)	_	\$1,245	\$1,245	\$439	\$439	\$439			
Drought Management									
Annual Cost (\$/yr)	\$161,234	_	_	_	_	_			
Unit Cost (\$/acft)	\$1,177	_	_	_	_	_			

4B.2.12.4 City of Mountain City

Current water supply for the City of Mountain City is obtained from the Edwards (Barton Springs) Aquifer. Mountain City is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Mountain City implement the following water supply plan to meet the projected needs for the city (Table 4B.2.12-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 1 acft/yr by 2010, increasing to 22 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Hays/Caldwell PUA Project⁴ to be implemented by 2020. This strategy can provide an additional 150 acft/yr by 2020, continuing through 2060.

⁴ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.2.12-8.
Recommended Water Supply Plan for the City of Mountain City

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	22	49	75	108	134
Recommended Plan						
Municipal Water Conservation	1	3	6	10	16	22
Hays/Caldwell PUA Project	_	150	150	150	150	150
Total New Supply	1	153	156	160	166	172

Estimated costs of the recommended plan to meet the City of Mountain City's projected needs are shown in Table 4B.2.12-9.

Table 4B.2.12-9.
Recommended Plan Costs by Decade for the City of Mountain City

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$1,109	\$2,321	\$4,477	\$7,140	\$10,794	\$14,626		
Unit Cost (\$/acft)	\$1,109	\$774	\$746	\$714	\$675	\$665		
Hays/Caldwell PUA Project								
Annual Cost (\$/yr)	_	\$186,750	\$186,750	\$65,850	\$65,850	\$65,850		
Unit Cost (\$/acft)	_	\$1,245	\$1,245	\$439	\$439	\$439		

4B.2.12.5 City of Niederwald

Current water supply for the City of Niederwald is obtained from the Edwards (Barton Springs) Aquifer. Niederwald is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Niederwald implement the following water supply plan to meet the projected needs for the city (Table 4B.2.12-10).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 1 acft/yr by 2020, increasing to 42 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 58 acft/yr by 2010, increasing to 377 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 7 acft/yr by 2010.

Table 4B.2.12-10.
Recommended Water Supply Plan for the City of Niederwald

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	58	118	183	244	317	377
Recommended Plan						
Municipal Water Conservation	_	1	8	15	27	42
Purchase from WWP (GBRA)	58	118	183	244	317	377
Drought Management	7	_			_	
Total New Supply	65	119	191	259	344	419

Estimated costs of the recommended plan to meet the City of Niederwald's projected needs are shown in Table 4B.2.12-11.

Table 4B.2.12-11.
Recommended Plan Costs by Decade for the City of Niederwald

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	\$877	\$5,986	\$11,172	\$20,827	\$32,038
Unit Cost (\$/acft)	_	\$877	\$748	\$745	\$771	\$763
Purchase from WWP (GBRA)						
Annual Cost (\$/yr)	\$56,707	\$163,902	\$254,187	\$124,196	\$161,353	\$147,784
Unit Cost (\$/acft)	\$978	\$1,389	\$1,389	\$509	\$509	\$392
Drought Management*						
Annual Cost (\$/yr)	_	_	_	_	_	_
Unit Cost (\$/acft)	_	_	_	_	_	_
* Insufficient data to develop a cost estimate.		•				•

4B.2.12.6 Plum Creek Water Company

Current water supply for Plum Creek Water Company is obtained from the Edwards (Barton Springs) Aquifer. Plum Creek Water Company is projected to need additional water supplies prior to 2040. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Plum Creek Water Company implement the following water supply plan to meet the projected needs for the entity (Table 4B.2.12-12).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 12 acft/yr by 2050, increasing to 54 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented prior to 2010. This strategy can provide an additional 195 acft/yr by 2040, increasing to 657 acft/yr of supply in 2060.

Table 4B.2.12-12.
Recommended Water Supply Plan for Plum Creek Water Company

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	0	195	454	657
Recommended Plan						
Municipal Water Conservation	_	_	_	_	12	54
Purchase from WWP (GBRA)	_	_	_	195	454	657
Total New Supply	_	_		195	466	711

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet Plum Creek Water Company's projected needs are shown in Table 4B.2.12-13.

Table 4B.2.12-13.
Recommended Plan Costs by Decade for Plum Creek Water Company

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$9,431	\$41,541
Unit Cost (\$/acft)	_	_	_	_	\$786	\$769
Purchase from WWP (GBRA)						
Annual Cost (\$/yr)	_	_	_	\$99,252	\$231,080	\$257,851
Unit Cost (\$/acft)	_	_	_	\$509	\$509	\$392

4B.2.12.7 City of San Marcos

Current water supply for the City of San Marcos is obtained from the Edwards Aquifer, Canyon Reservoir, and run-of-river rights. San Marcos is projected to need additional water supplies prior to 2030. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that San Marcos implement the following water supply plan to meet the projected needs for the city (Table 4B.2.12-14).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 417 acft/yr by 2010, increasing to 2,656 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Hays/Caldwell PUA Project⁵ to be implemented prior to 2030. This strategy can provide an additional 1,548 acft/yr by 2030, increasing to 11,910 by 2060.

Alternative water management strategies identified by City of San Marcos include Recycled Water Programs and/or Purchase from WWP (GBRA).

_

⁵ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.2.12-14.
Recommended Water Supply Plan for the City of San Marcos

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	0	1,319	4,772	8,507	11,387
Recommended Plan						
Municipal Water Conservation	417	554	815	1,282	1,875	2,656
Hays/Caldwell PUA Project		1	1,548	4,953	8,675	11,910
Total New Supply	417	554	2,363	6,235	10,550	14,566

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet the City of San Marcos' projected needs are shown in Table 4B.2.12-15.

Table 4B.2.12-15.
Recommended Plan Costs by Decade for the City of San Marcos

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$284,314	\$377,577	\$539,269	\$772,590	\$1,080,431	\$1,503,171			
Unit Cost (\$/acft)	\$682	\$682	\$662	\$603	\$576	\$566			
Hays/Caldwell PUA Project									
Annual Cost (\$/yr)	_	_	\$1,927,260	\$6,166,485	\$3,808,325	\$5,228,490			
Unit Cost (\$/acft)	_	_	\$1,245	\$1,245	\$439	\$439			

4B.2.12.8 Wimberley WSC

Current water supply for Wimberley WSC is obtained from the Trinity Aquifer. Wimberley WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Wimberley implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.12-16).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 19 acft/yr by 2050, increasing to 70 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

- Wimberley and Woodcreek Water Supply Project to be implemented prior to 2010. This strategy can provide an additional 320 acft/yr by 2010, increasing to 1,480 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 39 acft/yr by 2010.

Table 4B.2.12-16.
Recommended Water Supply Plan for Wimberley WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	219	440	667	885	1,179	1,409
Recommended Plan						
Municipal Water Conservation	_	_	_	_	19	70
Wimberley and Woodcreek Water Supply Project	336	1,425	1,425	1,425	1,425	1,425
Drought Management	39	_	_	_	_	_
Total New Supply	375	1,425	1,425	1,425	1,444	1,495

Estimated costs of the recommended plan to meet Wimberley WSC's projected needs are shown in Table 4B.2.12-17.

Table 4B.2.12-17.
Recommended Plan Costs by Decade for Wimberley WSC

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation										
Annual Cost (\$/yr)	_	_	_	_	\$14,676	\$53,642				
Unit Cost (\$/acft)	_	_	_	_	\$772	\$766				
Wimberley and Woodcreek	Water Supply F	Project								
Annual Cost (\$/yr)	\$764,400	\$3,461,325	\$3,461,325	\$2,525,100	\$2,525,100	\$2,525,100				
Unit Cost (\$/acft)	\$2,275	\$2,429	\$2,429	\$1,772	\$1,772	\$1,772				
Drought Management*										
Annual Cost (\$/yr)	_	_	_	_	_	_				
Unit Cost (\$/acft)	_	_	_	_	_	_				
* Insufficient data to develop a c	ost estimate.	1	l							

4B.2.12.9 City of Woodcreek

Current water supply for the City of Woodcreek is obtained from the Trinity Aquifer. Woodcreek is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Woodcreek implement the following water supply plan to meet the projected needs for the city (Table 4B.2.12-18).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 2 acft/yr by 2030, increasing to 37 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Wimberley and Woodcreek Water Supply Project to be implemented prior to 2010.
 This strategy can provide an additional 100 acft/yr by 2010, increasing to 400 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 12 acft/yr by 2010.

Table 4B.2.12-18.
Recommended Water Supply Plan for the City of Woodcreek

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	23	92	162	229	317	387
Recommended Plan						
Municipal Water Conservation	_	_	2	6	20	37
Wimberley and Woodcreek Water Supply Project	112	400	400	400	400	400
Drought Management	12	_	_	_	_	_
Total New Supply	124	400	402	406	420	437

Estimated costs of the recommended plan to meet the City of Woodcreek's projected needs are shown in Table 4B.2.12-19.

Table 4B.2.12-19.
Recommended Plan Costs by Decade for the City of Woodcreek

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	\$1,323	\$4,535	\$15,573	\$28,752		
Unit Cost (\$/acft)	_	_	\$662	\$756	\$779	\$777		
Wimberley and Woodcreek Water Supply Project								
Annual Cost (\$/yr)	\$254,800	\$971,600	\$971,600	\$708,800	\$708,800	\$708,800		
Unit Cost (\$/acft)	\$2,275	\$2,429	\$2,429	\$1,772	\$1,772	\$1,772		
Drought Management								
Annual Cost (\$/yr)	\$12,009	_	_	_	_	_		
Unit Cost (\$/acft)	\$1,001	_	_	_	_	_		

4B.2.12.10 Woodcreek Utilities, Inc.

Current water supply for the Woodcreek Utilities is obtained from the Trinity Aquifer. Woodcreek Utilities is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Woodcreek Utilities implement the following water supply plan to meet the projected needs for the utility (Table 4B.2.12-20).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 56 acft/yr by 2010, increasing to 771 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Wimberley and Woodcreek Water Supply Project to be implemented prior to 2010. This strategy can provide an additional 700 acft/yr by 2010, increasing to 2,600 acft/yr of supply in 2060.

Table 4B.2.12-20.
Recommended Water Supply Plan for Woodcreek Utilities

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	455	852	1,271	1,681	2,184	2,580	
Recommended Plan							
Municipal Water Conservation	56	177	337	455	619	771	
Wimberley and Woodcreek Water Supply Project	672	2,655	2,655	2,655	2,655	2,655	
Total New Supply	728	2,832	2,992	3,110	3,274	3,426	

Estimated costs of the recommended plan to meet Woodcreek Utilities' projected needs are shown in Table 4B.2.12-21.

Table 4B.2.12-21.
Recommended Plan Costs by Decade Woodcreek Utilities

Plan Element	2010	2020	2030	2040	2050	2060	
Municipal Water Conservation							
Annual Cost (\$/yr)	\$38,437	\$104,785	\$193,365	\$257,964	\$348,401	\$431,974	
Unit Cost (\$/acft)	\$686	\$592	\$574	\$567	\$563	\$560	
Wimberley and Woodcreek	Water Supply	Project					
Annual Cost (\$/yr)	\$1,528,800	\$6,448,995	\$6,448,995	\$4,704,660	\$4,704,660	\$4,704,660	
Unit Cost (\$/acft)	\$2,275	\$2,429	\$2,429	\$1,772	\$1,772	\$1,772	

4B.2.12.11 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards Aquifer and Trinity Aquifer. Rural Areas are projected to have adequate water supplies through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan (Table 4B.2.12-22).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 12 acft/yr in 2030, increasing to 184 acft/yr in 2060 (Volume II, Section 4C.1.1).

Alternative water management strategies identified by Rural Hays County include Hays/Caldwell PUA Project, Purchase from WWP (GBRA), and/or Rainwater Harvesting.

Table 4B.2.12-22.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	12	49	112	184
Total New Supply			12	49	112	184

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.12-23.

Table 4B.2.12-23.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservat	ion					
Annual Cost (\$/yr)	_	_	\$9,433	\$37,534	\$86,547	\$141,576
Unit Cost (\$/acft)	_	_	\$786	\$766	\$773	\$769

4B.2.12.12 Industrial

Industrial is projected to have adequate water supplies available from the Edwards Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.12.13 Steam-Electric Power

Current water supply for steam-electric power is obtained from Canyon Reservoir and reclaimed water. Steam-electric power is projected to have adequate water supplies available through 2060.

4B.2.12.14 Mining

Current water supply for mining is obtained from the Trinity Aquifer. Mining is projected to need additional water supplies prior to year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual mining operations implement the following water supply plan to meet the projected needs for mining (Table 4B.2.12-24).

• Mining Water Conservation to be implemented prior to 2010. This strategy can provide an additional 82 acft/yr by 2010, increasing to 103 acft/yr in 2060, meeting the entire needs.

Table 4B.2.12-24.
Recommended Water Supply Plan for Mining

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	82	91	97	101	102	103
Recommended Plan						
Mining Water Conservation	82	91	97	101	102	103
Total New Supply	82	91	97	101	102	103

Estimated costs of the recommended plan to meet the mining projected needs are shown in Table 4B.2.12-25.

Table 4B.2.12-25.
Recommended Plan Costs by Decade for Mining

2010	2020	2030	2040	2050	2060
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A

4B.2.12.15 Irrigation

Irrigation is projected to have adequate water supplies available from the Edwards Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.12.16 Livestock

Current water supply for livestock is obtained from the Trinity Aquifer and local sources. Livestock is projected to have adequate water supplies through 2060.

4B.2.13 Karnes County Water Supply Plan

Table 4B.2.13-1 lists each water user group in Karnes County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.13-1.

Karnes County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
El Oso WSC	241	68	No projected shortage
City of Falls City	58	26	No projected shortage
City of Karnes City	-182	-262	Projected shortage (2010 through 2060)
City of Kenedy	112	-118	Projected shortage (2040 through 2060)
City of Runge	104	52	No projected shortage
Sunko WSC			See Wilson County
Rural Area Residential and Commercial	608	158	No projected shortage
Industrial	21	2	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	7	13	No projected shortage
Irrigation	0	546	No projected shortage
Livestock	0	0	No projected shortage

4B.2.13.1 El Oso WSC

El Oso WSC is projected to have adequate water supplies available from the Carrizo Aquifer to meet the WSC's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that El Oso WSC implement the following water supply plan (Table 4B.2.13-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 41 acft/yr by 2010, increasing to 139 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.13-2.
Recommended Water Supply Plan for El Oso WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	41	83	92	105	120	139
Total New Supply	41	83	92	105	120	139

Estimated costs of the recommended plan for El Oso WSC are shown in Table 4B.2.13-3.

Table 4B.2.13-3.
Recommended Plan Costs by Decade for El Oso WSC

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$31,484	\$53,313	\$56,249	\$61,216	\$68,398	\$78,425
Unit Cost (\$/acft)	\$768	\$642	\$611	\$583	\$570	\$564

4B.2.13.2 City of Falls City

The City of Falls City is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Falls City implement the following water supply plan (Table 4B.2.13-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 8 acft/yr by 2010, increasing to 23 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.13-4.
Recommended Water Supply Plan for the City of Falls City

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	8	13	14	16	19	23
Total New Supply	8	13	14	16	19	23

Estimated costs of the recommended plan for the City of Falls City are shown in Table 4B.2.13-5.

Table 4B.2.13-5.
Recommended Plan Costs by Decade for the City of Falls City

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$5,827	\$8,537	\$8,884	\$9,683	\$10,953	\$12,810
Unit Cost (\$/acft)	\$728	\$657	\$635	\$605	\$576	\$557

4B.2.13.3 City of Karnes City

The City of Karnes City obtains its water supply from the Carrizo Aquifer and is projected to have a shortage prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Karnes City implement the following water supply plan (Table 4B.2.13-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 11 acft/yr in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2010. This strategy can provide an additional 323 acft/yr in 2010, through 2060.

Table 4B.2.13-6.
Recommended Water Supply Plan for the City of Karnes City

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	182	203	224	242	253	262	
Recommended Plan							
Municipal Water Conservation	_	_	_	_	_	11	
Local Groundwater Supplies (Carrizo)	323	323	323	323	323	323	
Total New Supply	182	203	224	242	253	273	

Estimated costs of the recommended plan for the City of Karnes City are shown in Table 4B.2.13-7.

Table 4B.2.13-7.
Recommended Plan Costs by Decade for the City of Karnes City

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	_	_	_	_	\$8,554			
Unit Cost (\$/acft)	_	_	_	_	_	\$778			
Local Groundwater Supplies (Carrizo)	Aquifer								
Annual Cost (\$/yr)	\$404,000	\$404,000	\$104,955	\$104,955	\$104,955	\$104,955			
Unit Cost (\$/acft)	\$1,251	\$1,251	\$325	\$325	\$325	\$325			

4B.2.13.4 City of Kenedy

Current water supply for the City of Kenedy is obtained from the Gulf Coast Aquifer. Kenedy is projected to need additional water supplies prior to 2040. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Kenedy implement the following water supply plan to meet the projected needs for the city (Table 4B.2.13-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 58 acft/yr by 2010, increasing to 268 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Gulf Coast) to be implemented prior to 2040. This strategy can provide an additional 161 acft/yr by 2040, through 2060.

An alternative water management strategy identified by the City of Kenedy is obtaining surface water rights from the San Antonio River.

Table 4B.2.13-8.
Recommended Water Supply Plan for the City of Kenedy

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	37	86	118
Recommended Plan						
Municipal Water Conservation	58	121	189	216	242	268
Local Gulf Coast	_	_	_	161	161	161
Total New Supply	58	121	189	377	403	429

Estimated costs of the recommended plan to meet the City of Kenedy's projected needs are shown in Table 4B.2.13-9.

Table 4B.2.13-9.
Recommended Plan Costs by Decade for the City of Kenedy

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Conservation	Municipal Water Conservation									
Annual Cost (\$/yr)	\$44,446	\$74,521	\$107,130	\$118,102	\$130,600	\$144,501				
Unit Cost (\$/acft)	\$766	\$616	\$567	\$547	\$540	\$539				
Local Gulf Coast										
Annual Cost (\$/yr)	_	_	_	\$294,000	\$294,000	\$102,716				
Unit Cost (\$/acft)	_	_	_	\$1,823	\$1,823	\$637				

4B.2.13.5 City of Runge

The City of Runge is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Runge implement the following water supply plan (Table 4B.2.13-10).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 15 acft/yr by 2010, increasing to 37 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.13-10.
Recommended Water Supply Plan for the City of Runge

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	15	22	24	26	31	37	
Total New Supply	15	22	24	26	31	37	

Estimated costs of the recommended plan for the City of Runge are shown in Table 4B.2.13-11.

Table 4B.2.13-11.

Recommended Plan Costs by Decade for the City of Runge

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$11,749	\$15,103	\$15,406	\$15,405	\$17,787	\$21,291
Unit Cost (\$/acft)	\$783	\$687	\$642	\$593	\$574	\$575

4B.2.13.6 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer and the Gulf Coast Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.13-12).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 68 acft/yr by 2010, increasing to 258 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.13-12.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	0	0	0	0	0	0	
Recommended Plan							
Municipal Water Conservation	68	121	157	193	227	258	
Total New Supply	68	121	157	193	227	258	

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.13-13.

Table 4B.2.13-13.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$52,693	\$85,066	\$105,807	\$124,816	\$143,861	\$160,393
Unit Cost (\$/acft)	\$775	\$703	\$674	\$647	\$634	\$622

4B.2.13.7 Industrial

Industrial is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.13.8 Steam-Electric Power

There is no projected steam-electric power water demand in Karnes County, therefore no water management strategies are recommended for this water user group.

4B.2.13.9 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer and Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.13.10 Irrigation

Irrigation is projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.13.11 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.2.14 Kendall County Water Supply Plan

Table 4B.2.14-1 lists each water user group in Kendall County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.14-1.
Kendall County Management Supply/Shortage by Water User Group

	_	gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Boerne	2,435	-276	Projected shortage (2060)
City of Fair Oaks Ranch			See Bexar County
Water Service Inc.			See Bexar County
Rural Area Residential and Commercial*	1,194	-3,514	Projected shortage (2030 through 2060)
Industrial	0	0	No projected demand
Steam-Electric Power	0	0	No projected demand
Mining	0	0	No projected shortage
Irrigation	28	84	No projected shortage
Livestock	0	9	No projected shortage

*These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.14.1 City of Boerne

Current water supply for the City of Boerne is obtained from the Trinity Aquifer, Canyon Reservoir, and Boerne Lake. Boerne is projected to need additional water supplies prior to 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Boerne implement the following water supply plan to meet the projected needs for the city (Table 4B.2.14-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 98 acft/yr by 2010, increasing to 816 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Western Canyon WTP Expansion to be implemented by 2050. This strategy can provide an additional 276 acft/yr by 2060.

Table 4B.2.14-2.
Recommended Water Supply Plan for the City of Boerne

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	276		
Recommended Plan								
Municipal Water Conservation	98	280	394	502	652	816		
Western Canyon Expansion	_	_	_	_	_	276		
Total New Supply	98	280	394	502	652	1,092		

Estimated costs of the recommended plan to meet the City of Boerne's projected needs are shown in Table 4B.2.14-3.

Table 4B.2.14-3.
Recommended Plan Costs by Decade for the City of Boerne

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$75,359	\$176,767	\$237,434	\$289,858	\$371,749	\$461,545			
Unit Cost (\$/acft)	\$769	\$631	\$603	\$577	\$570	\$566			
Western Canyon Expansion									
Annual Cost (\$/yr)	_	_	_	_	_	\$86,940			
Unit Cost (\$/acft)	_	_	_	_	_	\$315			

4B.2.14.2 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards-Trinity Aquifer, Trinity Aquifer, and Canyon Reservoir. Rural Areas are projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.14-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 73 acft/yr by 2050, increasing to 264 acft/yr in 2060 (Volume II, Section 4C.1.1).
- Western Canyon Expansion to be implemented by 2060. This strategy can provide an additional 374 acft/yr by 2060.

• Purchase from WWP (GBRA) to be implemented prior to 2010. Supply from unused Western Canyon commitments in 2010. The Storage Above Canyon Reservoir (ASR) strategy can provide 3,140 acft/yr by 2020 and through 2060.

Table 4B.2.14-4.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	221	865	1,522	2,073	2,726	3,514
Recommended Plan						
Municipal Water Conservation	_	_	_	_	73	264
Western Canyon Expansion	_	_	_	_	_	374
Purchase from WWP (GBRA)	221	3,140	3,140	3,140	3,140	3,140
Total New Supply	3,140	3,140	3,140	3,140	3,213	3,778

Estimated costs of the recommended plan to meet the projected needs of rural areas are shown in Table 4B.2.14-5.

Table 4B.2.14-5.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	_	_	_	\$56,422	\$203,520			
Unit Cost (\$/acft)	_	_	_	_	\$773	\$771			
Western Canyon Expansion									
Annual Cost (\$/yr)	_	_	_	_	_	\$117,810			
Unit Cost (\$/acft)	_	_	_	_	_	\$315			
Purchase from WWP (GBR.	A) ¹								
Annual Cost (\$/yr)	\$205,309	\$4,361,460	\$4,361,460	\$1,598,260	\$1,598,260	\$1,230,880			
Unit Cost (\$/acft)	\$929	\$1,389	\$1,389	\$509	\$509	\$392			
¹ Unit cost from 2020 through 2060 based on cost estimate in Section 4C.9, plus treatment and integration associated with delivery of 3.140 activery of water.									

4B.2.14.3 Industrial

There is no projected industrial water demand in Kendall County, therefore no water management strategies are recommended for this water user group.

4B.2.14.4 Steam-Electric Power

There is no projected steam-electric power water demand in Kendall County, therefore no water management strategies are recommended for this water user group.

4B.2.14.5 Mining

Mining is projected to have adequate water supplies available from the Trinity Aquifer to meet the water user group's projected demand during the planning period.

4B.2.1.6 Irrigation

Current water supply for irrigation is obtained from the Trinity Aquifer and run-of-river rights. Irrigation is projected to have adequate water supplies through 2060.

4B.2.14.7 Livestock

Current water supply for livestock is obtained from the Trinity Aquifer and local sources. Livestock is projected to have adequate water supply through 2060.

4B.2.15 LaSalle County Water Supply Plan

Table 4B.2.15-1 lists each water user group in LaSalle County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.15-1.

LaSalle County Management Supply/Shortage by Water User Group

		jement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Cotulla	802	466	No projected shortage
City of Encinal	158	161	No projected shortage
Rural Area Residential and Commercial	218	0	No projected shortage
Industrial	0	0	No projected demand
Steam-Electric Power	0	0	No projected demand
Mining	0	0	No projected demand
Irrigation	1,200	1,894	No projected shortage
Livestock	0	0	No projected shortage

4B.2.15.1 City of Cotulla

The City of Cotulla is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Cotulla implement the following water supply plan (Table 4B.2.15-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 118 acft/yr by 2010, increasing to 745 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.15-2.
Recommended Water Supply Plan for the City of Cotulla

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	118	248	369	488	615	745
Total New Supply	118	248	369	488	615	745

Estimated costs of the recommended plan for the City of Cotulla are shown in Table 4B.2.15-3.

Table 4B.2.15-3.
Recommended Plan Costs by Decade for the City of Cotulla

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$77,526	\$143,185	\$203,733	\$262,287	\$327,697	\$396,081
Unit Cost (\$/acft)	\$657	\$577	\$552	\$537	\$533	\$532

4B.2.15.2 City of Encinal

The City of Encinal is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Encinal implement the following water supply plan (Table 4B.2.15-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 9 acft/yr by 2010, increasing to 14 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.15-4.
Recommended Water Supply Plan for the City of Encinal

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	9	9	10	10	11	14
Total New Supply	9	9	10	10	11	14

Estimated costs of the recommended plan for the City of Encinal are shown in Table 4B.2.15-5.

Table 4B.2.15-5.
Recommended Plan Costs by Decade for the City of Encinal

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$6,568	\$7,087	\$7,017	\$5,981	\$6,637	\$7,876
Unit Cost (\$/acft)	\$730	\$787	\$702	\$598	\$603	\$563

4B.2.15.3 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.15-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 3 acft/yr by 2010, increasing to 42 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.15-6.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	3	4	11	17	29	42
Total New Supply	3	4	11	17	29	42

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.15-7.

Table 4B.2.15-7.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$2,160	\$2,958	\$8,526	\$12,845	\$22,694	\$32,667
Unit Cost (\$/acft)	\$720	\$740	\$775	\$756	\$783	\$778

4B.2.15.4 Industrial

There is no projected industrial water demand in LaSalle County, therefore no water management strategies are recommended for this water user group.

4B.2.15.5 Steam-Electric Power

There is no projected steam-electric power water demand in LaSalle County, therefore no water management strategies are recommended for this water user group.

4B.2.15.6 Mining

There is no projected mining water demand in LaSalle County, therefore no water management strategies are recommended for this water user group.

4B.2.15.7 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Sparta Aquifer, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.15.8 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.16 Medina County Water Supply Plan

Table 4B.2.16-1 lists each water user group in Medina County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.16-1.

Medina County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
Benton City WSC			See Atascosa County
Bexar Metropolitan Water District			See Bexar County
City of Castroville	-294	-575	Projected shortage (2010 through 2060)
City of Devine	146	87	No projected shortage
East Medina SUD	13	-491	Projected shortage (2020 through 2060)
City of Hondo	-319	-1,252	Projected shortage (2010 through 2060)
City of La Coste	-92	-168	Projected shortage (2010 through 2060)
City of Lytle			See Atascosa County
City of Natalia	-194	-383	Projected shortage (2010 through 2060)
Yancey WSC	-214	-985	Projected shortage (2010 through 2060)
Rural Area Residential and Commercial*	229	-1,193	Projected shortage (2020 through 2060)
Industrial	1,246	1,210	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	13	0	No projected shortage
Irrigation*	-4,994	5,441	Projected shortage (2010 through 2030)
Livestock	0	0	No projected shortage

*These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.16.1 City of Castroville

Current water supply for the City of Castroville is obtained from the Edwards Aquifer. Castroville is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Castroville implement the following water supply plan to meet the projected needs for the city (Table 4B.2.16-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 53 acft/yr by 2010, increasing to 302 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 294 acft/yr by 2010, increasing to 575 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 34 acft/yr by 2010.
- Facilities Expansions (Systems Interconnect)

Table 4B.2.16-2.
Recommended Water Supply Plan for the City of Castroville

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	294	357	416	468	522	575
Recommended Plan						
Municipal Water Conservation	53	111	176	242	270	302
Edwards Transfers	294	357	416	468	522	575
Drought Management	34	_	_	-	-	1
Facilities Expansions	_	_	_			
Total New Supply	381	468	592	710	792	877

Estimated costs of the recommended plan to meet the City of Castroville's projected needs are shown in Table 4B.2.16-3.

Table 4B.2.16-3.
Recommended Plan Costs by Decade for the City of Castroville

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$39,208	\$67,285	\$99,086	\$132,169	\$146,096	\$163,265			
Unit Cost (\$/acft)	\$740	\$606	\$563	\$546	\$541	\$541			
Edwards Transfers									
Annual Cost (\$/yr)	\$133,476	\$162,078	\$188,864	\$212,472	\$236,988	\$261,050			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$110,122	_	_	_	_	_			
Unit Cost (\$/acft)	\$3,239	_	_	_	_	_			
Facilities Expansions									
Annual Cost (\$/yr)	\$1,033,000	\$1,033,000	\$70,000	\$70,000	\$70,000	\$70,000			
Unit Cost (\$/acft)	_	_	_	_	_	_			

In addition, City of Castroville is a potential participant with BMWD in the Medina Lake Firm-Up (ASR) water management strategy.

4B.2.16.2 City of Devine

The City of Devine is projected to have adequate water supplies available from the Edwards Aquifer and the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Devine implement the following water supply plan (Table 4B.2.16-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 63 acft/yr by 2010, increasing to 196 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.16-4.
Recommended Water Supply Plan for the City of Devine

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	63	127	152	159	175	196		
Total New Supply	63	127	152	159	175	196		

Estimated costs of the recommended plan for the City of Devine are shown in Table 4B.2.16-5.

Table 4B.2.16-5.
Recommended Plan Costs by Decade for the City of Devine

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$48,304	\$79,690	\$88,673	\$88,210	\$95,560	\$106,876
Unit Cost (\$/acft)	\$767	\$627	\$583	\$555	\$546	\$545

4B.2.16.3 East Medina SUD

Current water supply for East Medina SUD is obtained from the Edwards Aquifer. East Medina SUD is projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that East Medina SUD implement the following water supply plan to meet the projected needs for the SUD (Table 4B.2.16-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 19 acft/yr by 2050, increasing to 54 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2020. This strategy can provide an additional 104 acft/yr by 2020, increasing to 491 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 44 acft/yr by 2010.

Table 4B.2.16-6.
Recommended Water Supply Plan for East Medina SUD

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	104	214	303	397	491		
Recommended Plan								
Municipal Water Conservation	_	_	_	_	19	54		
Edwards Transfers		104	214	303	397	491		
Drought Management	44		_		_	_		
Total New Supply	44	104	214	303	416	545		

Estimated costs of the recommended plan to meet East Medina SUD's projected needs are shown in Table 4B.2.16-7.

Table 4B.2.16-7.
Recommended Plan Costs by Decade for East Medina SUD

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	_	\$14,753	\$41,817
Unit Cost (\$/acft)	_	_	_	_	\$776	\$774
Edwards Transfers						
Annual Cost (\$/yr)	_	\$47,216	\$97,156	\$137,562	\$180,238	\$222,914
Unit Cost (\$/acft)	_	\$454	\$454	\$454	\$454	\$454
Drought Management						
Annual Cost (\$/yr)	\$57,986	_	_	_	_	_
Unit Cost (\$/acft)	\$1,318	_	_	_	_	_

4B.2.16.4 City of Hondo

Current water supply for the City of Hondo is obtained from the Edwards Aquifer. Hondo is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Hondo implement the following water supply plan to meet the projected needs for the city (Table 4B.2.16-8).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 125 acft/yr by 2010, increasing to 640 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 319 acft/yr by 2010, increasing to 1,252 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 89 acft/yr by 2010.

Table 4B.2.16-8.
Recommended Water Supply Plan for the City of Hondo

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	319	536	740	910	1,083	1,252		
Recommended Plan								
Municipal Water Conservation	125	289	420	477	551	640		
Edwards Transfers	319	536	740	910	1,083	1,252		
Drought Management	89	_	_	_	_	_		
Total New Supply	533	825	1,160	1,387	1,634	1,892		

Estimated costs of the recommended plan to meet the City of Hondo's projected needs are shown in Table 4B.2.16-9.

Table 4B.2.16-9.
Recommended Plan Costs by Decade for the City of Hondo

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$96,064	\$179,692	\$245,330	\$270,796	\$307,217	\$355,156			
Unit Cost (\$/acft)	\$769	\$622	\$584	\$568	\$558	\$555			
Edwards Transfers									
Annual Cost (\$/yr)	\$144,826	\$243,344	\$335,960	\$413,140	\$491,682	\$568,408			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$185,648	_	_	_	_	_			
Unit Cost (\$/acft)	\$2,086	_	_	_	_	_			

4B.2.16.5 City of La Coste

Current water supply for the City of La Coste is obtained from the Edwards Aquifer. La Coste is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that La Coste implement the following water supply plan to meet the projected needs for the city (Table 4B.2.16-10).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 4 acft/yr by 2050, increasing to 11 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 92 acft/yr by 2010, increasing to 168 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 10 acft/yr by 2010.

Table 4B.2.16-10.
Recommended Water Supply Plan for the City of La Coste

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	92	109	126	138	152	168		
Recommended Plan								
Municipal Water Conservation					4	11		
Edwards Transfers	92	109	126	138	152	168		
Drought Management	10							
Total New Supply	102	109	126	138	156	179		

Estimated costs of the recommended plan to meet the City of La Coste's projected needs are shown in Table 4B.2.16-11.

Table 4B.2.16-11.
Recommended Plan Costs by Decade for the City of La Coste

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	_	\$3,178	\$8,617		
Unit Cost (\$/acft)	_	_	_	_	\$795	\$783		
Edwards Transfers								
Annual Cost (\$/yr)	\$41,768	\$49,486	\$57,204	\$62,652	\$69,008	\$76,272		
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454		
Drought Management	_							
Annual Cost (\$/yr)	\$6,126	_	_	_	_	_		
Unit Cost (\$/acft)	\$613	_	_	_	_	_		

4B.2.16.6 City of Natalia

Current water supply for the City of Natalia is obtained from the Edwards Aquifer. Natalia is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Natalia implement the following water supply plan to meet the projected needs for the city (Table 4B.2.16-12).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 24 acft/yr by 2010, increasing to 73 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 194 acft/yr by 2010, increasing to 383 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 17 acft/yr by 2010.

Table 4B.2.16-12.
Recommended Water Supply Plan for the City of Natalia

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	194	238	279	314	349	383		
Recommended Plan								
Municipal Water Conservation	24	31	38	46	58	73		
Edwards Transfers	194	238	279	314	349	383		
Drought Management	17	_						
Total New Supply	235	269	317	360	407	456		

Estimated costs of the recommended plan to meet the City of Natalia's projected needs are shown in Table 4B.2.16-13.

Table 4B.2.16-13.
Recommended Plan Costs by Decade for the City of Natalia

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$18,238	\$22,828	\$26,368	\$29,512	\$35,132	\$43,549
Unit Cost (\$/acft)	\$760	\$736	\$694	\$642	\$606	\$597
Edwards Transfers						
Annual Cost (\$/yr)	\$88,076	\$108,052	\$126,666	\$142,556	\$158,446	\$173,882
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454
Drought Management						
Annual Cost (\$/yr)	\$30,258	_	_	_	_	_
Unit Cost (\$/acft)	\$1,780	_	_	_	_	_

4B.2.16.7 Yancey WSC

Current water supply for Yancey WSC is obtained from the Edwards Aquifer. Yancey WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Yancey WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.16-14).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 61 acft/yr by 2010, increasing to 316 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 214 acft/yr by 2010, increasing to 985 acft/yr of supply in 2060.
- Facilities Expansions (System Upgrades)

Alternative water management strategies identified by Yancey WSC include Local Groundwater Supplies (Carrizo) to be implemented prior to 2010. This strategy can provide an additional 403 acft/yr by 2010, increasing to 1,210 acft/yr by 2060.

Table 4B.2.16-14.
Recommended Water Supply Plan for Yancey WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	214	395	562	710	851	985		
Recommended Plan								
Municipal Water Conservation	61	136	171	214	259	316		
Edwards Transfers	214	395	562	710	851	985		
Total New Supply	275	531	733	924	1,110	1,301		

Estimated costs of the recommended plan to meet Yancey WSC's projected needs are shown in Table 4B.2.16-15.

Table 4B.2.16-15.
Recommended Plan Costs by Decade for Yancey WSC

Recommended Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$47,146	\$88,373	\$106,268	\$128,622	\$152,055	\$183,043			
Unit Cost (\$/acft)	\$773	\$650	\$621	\$601	\$587	\$579			
Edwards Transfers									
Annual Cost (\$/yr)	\$97,156	\$179,330	\$255,148	\$322,340	\$386,354	\$447,190			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			

4B.2.16.8 Rural Area Residential and Commercial

Current water supply for Rural Areas is obtained from the Edwards Aquifer, Trinity Aquifer, and the Carrizo Aquifer. Rural Areas are projected to need additional water supplies prior to 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.16-16).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr by 2020, increasing to 244 acft/yr in 2060 (Volume II, Section 4C.1.1).

• Edwards Transfers to be implemented prior to 2020. This strategy can provide an additional 236 acft/yr by 2020, increasing to 1,296 acft/yr in 2060.

Table 4B.2.16-16.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	236	528	787	1,055	1,296		
Recommended Plan								
Municipal Water Conservation	_	20	41	86	160	244		
Edwards Transfers		236	528	787	1,055	1,296		
Total New Supply		256	569	873	1,215	1,540		

Estimated costs of the recommended plan to meet the projected needs of rural areas are shown in Table 4B.2.16-17.

Table 4B.2.16-17.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	_	\$15,020	\$31,826	\$66,279	\$123,399	\$187,503			
Unit Cost (\$/acft)	_	\$751	\$776	\$771	\$771	\$768			
Edwards Transfers									
Annual Cost (\$/yr)	_	\$107,144	\$239,712	\$357,298	\$478,970	\$588,384			
Unit Cost (\$/acft)	_	\$454	\$454	\$454	\$454	\$454			

4B.2.16.9 Industrial

Industrial is projected to have adequate water supplies available from the Edwards Aquifer to meet the water user group's projected demand during the planning period.

4B.2.16.10 Steam-Electric Power

There is no projected steam-electric power water demand in Medina County, therefore no water management strategies are recommended for this water user group.

4B.2.16.11 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer and the Trinity Aquifer to meet the water user group's projected demand during the planning period.

4B.2.1.12 Irrigation

Current water supply for irrigation is obtained from the Edwards Aquifer, Carrizo Aquifer, and run-of-river rights. Irrigation is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual irrigators implement the following water supply plan to meet a portion of the projected needs for irrigation (Table 4B.2.16-18).

• Irrigation water conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 7,770 acft/yr of supply.

Table 4B.2.16-18.
Recommended Water Supply Plan for Irrigation

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	7,770	5,878	4,067	2,332	670	0		
Recommended Plan								
Irrigation Water Conservation	7,770	5,878	4,067	2,332	670	_		
Total New Supply	7,770	5,878	4,067	2,332	670	_		

Estimated costs of the recommended plan to meet the irrigation projected needs are shown in Table 4B.2.16-19.

Table 4B.2.16-19.
Recommended Plan Costs by Decade for Irrigation

Plan Element	2010	2020	2030	2040	2050	2060
Irrigation Water Conservation						
Annual Cost (\$/yr)	\$1,072,260	\$811,164	\$561,246	\$321,816	\$92,460	_
Unit Cost (\$/acft)	\$138	\$138	\$138	\$138	\$138	_

4B.2.16.13 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.17 Refugio County Water Supply Plan

Table 4B.2.17-1 lists each water user group in Refugio County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.17-1.
Refugio County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Refugio	792	660	No projected shortage
City of Woodsboro	391	381	No projected shortage
Rural Area Residential and Commercial	132	221	No projected shortage
Industrial	0	0	No projected demand
Steam-Electric Power	0	0	No projected demand
Mining	1	0	No projected shortage
Irrigation	0	0	No projected shortage
Livestock	0	0	No projected shortage

4B.2.17.1 City of Refugio

The City of Refugio is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Refugio implement the following water supply plan (Table 4B.2.17-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 44 acft/yr by 2010, increasing to 144 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.17-2.
Recommended Water Supply Plan for the City of Refugio

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	44	94	100	114	130	144
Total New Supply	44	94	100	114	130	144

Estimated costs of the recommended plan for the City of Refugio are shown in Table 4B.2.17-3.

Table 4B.2.17-3.
Recommended Plan Costs by Decade for the City of Refugio

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$33,794	\$60,341	\$60,375	\$65,588	\$72,966	\$80,476
Unit Cost (\$/acft)	\$768	\$642	\$604	\$575	\$561	\$559

4B.2.17.2 City of Woodsboro

The City of Woodsboro is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Woodsboro implement the following water supply plan (Table 4B.2.17-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 5 acft/yr by 2010, increasing to 20 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

It is noted that groundwater quality and a potential change in the arsenic standard may necessitate additional treatment or alternative supplies, such as Brackish Groundwater Desalination (Gulf Coast) or Purchase from WWP.

Table 4B.2.17-4.
Recommended Water Supply Plan for the City of Woodsboro

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	5	6	7	8	14	20
Total New Supply	5	6	7	8	14	20

Estimated costs of the recommended plan for the City of Woodsboro are shown in Table 4B.2.17-5.

Table 4B.2.17-5.
Recommended Plan Costs by Decade for the City of Woodsboro

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$3,894	\$4,740	\$5,344	\$5,907	\$9,354	\$12,840
Unit Cost (\$/acft)	\$779	\$790	\$763	\$738	\$668	\$642

4B.2.1.3 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Gulf Coast Aquifer to meet their projected demands during the planning period.

4B.2.17.4 Industrial

There is no projected industrial water demand in Refugio County, therefore no water management strategies are recommended for this water user group.

4B.2.17.5 Steam-Electric Power

There is no projected steam-electric power water demand in Refugio County, therefore no water management strategies are recommended for this water user group.

4B.2.17.6 Mining

Mining is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.17.7 Irrigation

Irrigation is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.17.8 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.2.18 Uvalde County Water Supply Plan

Table 4B.2.18-1 lists each water user group in Uvalde County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.18-1.
Uvalde County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Sabinal	-127	-109	Projected shortage (2010 through 2060)
City of Uvalde	-3,172	-3,263	Projected shortage (2010 through 2060)
Rural Area Residential and Commercial	1,277	317	No projected shortage
Industrial	943	837	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	105	0	No projected shortage
Irrigation	14,680	24,768	No projected shortage
Livestock	0	0	No projected shortage

4B.2.18.1 City of Sabinal

Current water supply for the City of Sabinal is obtained from the Edwards Aquifer. Sabinal is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Sabinal implement the following water supply plan to meet the projected needs for the city (Table 4B.2.18-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 34 acft/yr by 2010, increasing to 145 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 127 acft/yr by 2010, decreasing to 109 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr by 2010.

Table 4B.2.18-2.
Recommended Water Supply Plan for the City of Sabinal

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	127	123	118	113	109	109	
Recommended Plan							
Municipal Water Conservation	34	65	92	116	139	145	
Edwards Transfers	127	123	118	113	109	109	
Drought Management	20	_	_	_	_		
Total New Supply	181	188	210	229	248	254	

Estimated costs of the recommended plan to meet the City of Sabinal's projected needs are shown in Table 4B.2.18-3.

Table 4B.2.18-3.
Recommended Plan Costs by Decade for the City of Sabinal

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$24,444	\$39,084	\$51,968	\$63,222	\$74,396	\$77,939
Unit Cost (\$/acft)	\$719	\$601	\$565	\$545	\$535	\$538
Edwards Transfers						
Annual Cost (\$/yr)	\$57,658	\$55,842	\$53,572	\$51,302	\$49,486	\$49,486
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454
Drought Management						
Annual Cost (\$/yr)	\$16,302	_	_	_	_	_
Unit Cost (\$/acft)	\$815				_	_

4B.2.18.2 City of Uvalde

Current water supply for the City of Uvalde is obtained from the Edwards Aquifer. Uvalde is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Uvalde implement the following water supply plan to meet the projected needs for the city (Table 4B.2.18-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 521 acft/yr by 2010, increasing to 2,652 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 3,172 acft/yr by 2010, increasing to 3,263 acft/yr of supply in 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 304 acft/yr by 2010.

Table 4B.2.18-4.
Recommended Water Supply Plan for the City of Uvalde

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)	
Projected Need (Shortage)	3,172	3,209	3,229	3,233	3,235	3,263	
Recommended Plan							
Municipal Water Conservation	521	1,017	1,471	1,882	2,269	2,652	
Edwards Transfers	3,172	3,209	3,229	3,233	3,235	3,263	
Drought Management	304	_			_	_	
Total New Supply	3,997	4,226	4,700	5,115	5,504	5,915	

Estimated costs of the recommended plan to meet the City of Uvalde's projected needs are shown in Table 4B.2.18-5.

Table 4B.2.18-5.
Recommended Plan Costs by Decade for the City of Uvalde

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$331,239	\$579,229	\$804,800	\$1,007,941	\$1,201,842	\$1,402,664			
Unit Cost (\$/acft)	\$636	\$570	\$547	\$536	\$530	\$529			
Edwards Transfers									
Annual Cost (\$/yr)	\$1,440,088	\$1,456,886	\$1,465,966	\$1,467,782	\$1,468,690	\$1,481,402			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Drought Management									
Annual Cost (\$/yr)	\$3,371	_	_	_	_	_			
Unit Cost (\$/acft)	\$11	_	_	_	_	_			

4B.2.18.3 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Edwards Aquifer and Carrizo Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.18-6).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 33 acft/yr by 2040, increasing to 137 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.18-6.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	_	_	_	33	73	137
Total New Supply	_	_	_	33	73	137

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.18-7.

Table 4B.2.18-7.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	\$25,734	\$56,398	\$105,635
Unit Cost (\$/acft)	_	_	_	\$780	\$773	\$771

4B.2.18.4 Industrial

Industrial is projected to have adequate water supplies available from the Edwards Aquifer to meet the water user group's projected demand during the planning period.

4B.2.18.5 Steam-Electric Power

There is no projected steam-electric power water demand in Uvalde County, therefore no water management strategies are recommended for this water user group.

4B.2.18.6 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.18.7 Irrigation

Irrigation is projected to have adequate water supplies available from the Edwards Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.18.8 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

(This page intentionally left blank.)

4B.2.19 Victoria County Water Supply Plan

Table 4B.2.19-1 lists each water user group in Victoria County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.19-1.
Victoria County Management Supply/Shortage by Water User Group

	•	gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Victoria	3,505	551	No projected shortage
Rural Area Residential and Commercial	833	-310	Projected shortage (2050 through 2060)
Industrial	419	-14,441	Projected shortage (2020 through 2060)
Steam-Electric Power	-1,791	-51,076	Projected shortage (2010 through 2060)
Mining	0	0	No projected shortage
Irrigation	0	0	No projected shortage
Livestock	0	0	No projected shortage

4B.2.19.1 City of Victoria

The City of Victoria is projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Victoria implement the following water supply plan (Table 4B.2.19-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 874 acft/yr by 2010, increasing to 2,485 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Surface Water Rights and Balancing Storage have been identified as recommended water management strategies.

Table 4B.2.19-2.
Recommended Water Supply Plan for the City of Victoria

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	874	1,597	1,733	1,844	2,118	2,485
Total New Supply	874	1,597	1,733	1,844	2,118	2,485

Estimated costs of the recommended plan for the City of Victoria are shown in Table 4B.2.19-3.

Table 4B.2.19-3.
Recommended Plan Costs by Decade for the City of Victoria

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conserva	ation					
Annual Cost (\$/yr)	\$595,101	\$974,331	\$1,014,018	\$1,035,513	\$1,167,614	\$1,361,420
Unit Cost (\$/acft)	\$681	\$610	\$585	\$562	\$551	\$548

4B.2.19.2 Rural Area Residential and Commercial

Rural Areas obtain their water supplies from the Gulf Coast Aquifer to meet their projected demands during the planning period. A projected shortage is expected prior to 2040. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.19-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 32 acft/yr in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (GBRA) to be implemented by 2040. This strategy can provide an additional 81 acft/yr in 2040, increasing to 310 acft/yr by 2060.

Table 4B.2.19-4.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	81	193	310
Recommended Plan						
Municipal Water Conservation	_	_	_	_	_	32
Purchase from WWP (GBRA)	_	_	_	81	193	310
Total New Supply	_	_	_	81	193	342

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.19-5.

Table 4B.2.19-5.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_		_	\$24,722		
Unit Cost (\$/acft)	_	_	_	_	_	\$773		
Purchase from WWP (GBRA) 1								
Annual Cost (\$/yr)	_	_	_	\$158,193	\$376,929	\$290,470		
Unit Cost (\$/acft)	_	_	_	\$1,953	\$1,953	\$937		
Unit cost based on cost estimate in Section 4C.14, plus treatment associated with delivery of 500 acft/yr of water.								

4B.2.19.3 Industrial

Current water supply for industrial is obtained from the Gulf Coast Aquifer and run-of-river rights. Industrial is projected to need additional water supplies starting in the planning year 2020. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual industrial operations implement the following water supply plan to meet the projected needs for Industrial (Table 4B.2.19-6).

• Purchase from WWP (GBRA) to be implemented in 2020. This strategy can provide an additional 2,969 acft/yr of supply in 2020 increasing to 14,441 acft/yr in 2060.

Table 4B.2.19-6.
Recommended Water Supply Plan for Industrial

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	_	2,969	5,921	8,860	11,489	14,441
Recommended Plan						
Purchase from WWP (GBRA)	_	2,969	5,921	8,860	11,489	14,441
Total New Supply	_	2,969	5,921	8,860	11,489	14,441

Estimated costs of the recommended plan to meet the industrial projected needs are shown in Table 4B.2.19-7.

Table 4B.2.19-7.
Recommended Plan Costs by Decade for Industrial

Plan Element	2010	2020	2030	2040	2050	2060
Purchase from WWP (GBRA)					
Annual Cost (\$/yr)	_	\$311,745	\$3,931,544	\$5,883,040	\$3,745,414	\$4,707,766
Unit Cost (\$/acft)	_	\$105	\$664	\$664	\$326	\$326

4B.2.19.4 Steam-Electric Power

Steam-electric power obtains water supply from the Gulf Coast Aquifer and run-of-river rights to meet the water user group's projected needs during the entire planning period. The following water supply plan is recommended for Steam-Electric Power for Victoria County.

- Purchase from WWP (GBRA Exelon) to be implemented in 2020. This strategy can provide an additional 49,126 acft/yr starting in 2020 through 2060.
- Purchase from WWP (GBRA) to be implemented in 2010. This strategy can provide an additional 1,791 acft/yr starting in 2010, increasing to 1,950 acft/yr by 2060.

Table 4B.2.19-8.
Recommended Water Supply Plan for Steam-Electric Power

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	1,791	50,962	50,991	51,021	51,053	51,076
Recommended Plan						
Purchase from WWP (GBRA – Exelon)	_	49,126	49,126	49,126	49,126	49,126
Purchase from WWP (GBRA)	1,791	1,836	1,865	1,895	1,927	1,950
Total New Supply	1,791	50,962	50,991	51,021	51,053	51,076

Estimated costs of the recommended plan to meet the Steam-Electric Power projected needs are shown in Table 4B.2.19-9.

Table 4B.2.19-9.
Recommended Plan Costs by Decade for Steam-Electric Power

Plan Element	2010	2020	2030	2040	2050	2060			
Purchase from WWP (GBRA – Exelon)									
Annual Cost (\$/yr)	_	\$31,735,396	\$31,735,396	\$22,990,968	\$22,990,968	\$11,004,224			
Unit Cost (\$/acft)	_	\$646	\$646	\$468	\$468	\$224			
Purchase from WW	P (GBRA)*								
Annual Cost (\$/yr)	\$188,055	\$192,780	\$1,238,360	\$1,258,280	\$628,202	\$635,700			
Unit Cost (\$/acft)	\$105	\$105	\$664	\$664	\$326	\$326			
*Unit cost based on cost estimate in Section 4C.14, plus treatment associated with delivery of 500 acft/yr of water.									

4B.2.19.5 Mining

Mining is projected to have adequate water supplies available from the Gulf Coast Aquifer to meet the water user group's projected demand during the planning period.

4B.2.19.6 Irrigation

Irrigation is projected to have adequate water supplies available from the Gulf Coast Aquifer and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.19.7 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.2.20 Wilson County Water Supply Plan

Table 4B.2.20-1 lists each water user group in Wilson County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.20-1.
Wilson County Management Supply/Shortage by Water User Group

		gement Shortage	
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
East Central SUD			See Bexar County
El Oso WSC			See Karnes County
City of Floresville	762	-433	Projected shortage (2050 and 2060)
City of La Vernia	777	291	No projected shortage
McCoy WSC			See Atascosa County
Oak Hills WSC	1,169	-298	Projected shortage (2060)
City of Poth	955	718	No projected shortage
ss wsc	-223	-3,690	Projected shortage (2010 through 2060)
City of Stockdale	1,412	1,204	No projected shortage
Sunko WSC*	697	-16	Projected shortage (2060)
Rural Area Residential and Commercial	1,364	-33	Projected shortage (2060)
Industrial	0	0	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	0	0	No projected shortage
Irrigation	307	5,273	No projected shortage
Livestock	0	0	No projected shortage

^{*}These values represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages.

4B.2.20.1 City of Floresville

Current water supply for the City of Floresville is obtained from the Carrizo Aquifer. Floresville is projected to need additional water supplies prior to 2050. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Floresville implement the following water supply plan to meet the projected needs for the city (Table 4B.2.20-2).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 136 acft/yr by 2010, increasing to 714 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2050. This strategy can provide an additional 484 acft/yr by 2050, through 2060.

Alternative water management strategies identified by City of Floresville include Recycled Water Programs and/or Brackish Wilcox Groundwater.

Table 4B.2.20-2.
Recommended Water Supply Plan for the City of Floresville

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	159	433
Recommended Plan						
Municipal Water Conservation	136	291	433	504	596	714
Local Groundwater Supplies (Carrizo)	_	_	_	_	484	484
Total New Supply	136	291	433	504	1,080	1,198

Estimated costs of the recommended plan to meet the City of Floresville's projected needs are shown in Table 4B.2.20-3.

Table 4B.2.20-3.
Recommended Plan Costs by Decade for the City of Floresville

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	\$104,780	\$180,789	\$249,346	\$281,909	\$328,209	\$391,478		
Unit Cost (\$/acft)	\$770	\$621	\$576	\$559	\$551	\$548		
Local Groundwater Supplies (Carrizo)							
Annual Cost (\$/yr)	_	_	_	_	\$356,000	\$356,000		
Unit Cost (\$/acft)	_		_	_	\$736	\$736		

4B.2.20.2 City of La Vernia

Current water supply for the City of La Vernia is obtained from the Carrizo Aquifer. La Vernia is projected to have adequate water supplies through 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that La Vernia implement the following water supply plan (Table 4B.2.20-4).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 21 acft/yr by 2010, increasing to 227 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 400 acft/yr from 2010 through 2060.

Table 4B.2.20-4.
Recommended Water Supply Plan for the City of La Vernia

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	0	0	0	0	0	0			
Recommended Plan									
Municipal Water Conservation	21	56	105	146	184	227			
Purchase from WWP (CRWA)	400	400	400	400	400	400			
Total New Supply	421	456	505	546	584	627			

Estimated costs of the recommended plan for the City of La Vernia are shown in Table 4B.2.20-5.

Table 4B.2.20-5.
Recommended Plan Costs by Decade for the City of La Vernia

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$16,157	\$34,445	\$60,222	\$81,476	\$102,604	\$126,114
Unit Cost (\$/acft)	\$769	\$615	\$574	\$558	\$558	\$556
Purchase from WWP (CRWA)						
Annual Cost (\$/yr)	\$290,000	\$439,873	\$427,195	\$285,340	\$179,274	\$173,001
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433

4B.2.20.3 Oak Hills WSC

Current water supply for Oak Hills WSC is obtained from the Carrizo Aquifer. Oak Hills WSC is projected to need additional water supplies prior to 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Oak Hills WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.20-6).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 26 acft/yr by 2040, increasing to 136 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2060. This strategy can provide an additional 323 acft/yr by 2060.

Table 4B.2.20-6.
Recommended Water Supply Plan for Oak Hills WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	298		
Recommended Plan								
Municipal Water Conservation	_	_	_	26	76	136		
Local Groundwater Supplies (Carrizo)	_	_	_	_	_	323		
Total New Supply	_	_	_	26	76	459		

Estimated costs of the recommended plan to meet Oak Hills WSC's projected needs are shown in Table 4B.2.20-7.

Table 4B.2.20-7.
Recommended Plan Costs by Decade for Oak Hills WSC

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conservation								
Annual Cost (\$/yr)	_	_	_	\$20,004	\$58,480	\$100,600		
Unit Cost (\$/acft)	_	_	_	\$769	\$769	\$740		
Local Groundwater Supplies (Carrizo)							
Annual Cost (\$/yr)	_	_	_	_	_	\$260,000		
Unit Cost (\$/acft)		_	_	_	_	\$806		

4B.2.20.4 City of Poth

The City of Poth is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Poth implement the following water supply plan (Table 4B.2.20-8).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 20 acft/yr by 2010, increasing to 64 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

An alternative water management strategy identified by City of Poth is Local Groundwater Supplies (Carrizo).

Table 4B.2.20-8.
Recommended Water Supply Plan for the City of Poth

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)*	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	20	22	25	28	46	64		
Total New Supply	20	22	25	28	46	64		

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan for the City of Poth are shown in Table 4B.2.20-9.

Table 4B.2.20-9.
Recommended Plan Costs by Decade for the City of Poth

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$15,634	\$16,790	\$18,217	\$18,712	\$27,907	\$37,476
Unit Cost (\$/acft)	\$782	\$763	\$729	\$668	\$607	\$586

4B.2.20.5 SS WSC

Current water supply for SS WSC is obtained from the Carrizo Aquifer. SS WSC is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that SS WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.20-10).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 84 acft/yr by 2050, increasing to 221 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2010. This strategy can provide an additional 807 acft/yr by 2010, increasing to 4,033 acft/yr of supply by 2060.
- Purchase from WWP (CRWA) to be implemented prior to 2060. This strategy can provide an additional 690 acft/yr in 2060.
- Brackish Wilcox Groundwater for SS WSC⁶ to be implemented by 2040. This strategy can provide an additional 1,120 acft/yr by 2040, through 2060.
- Drought Management to be implemented or enhanced in the immediate future. This strategy can provide an additional 78 acft/yr by 2010.

An alternative water management strategy identified by SS WSC is Recycled Water Programs.

,

⁶ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.2.20-10.
Recommended Water Supply Plan for SS WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	223	864	1,546	2,214	2,939	3,690
Recommended Plan						
Municipal Water Conservation	_	_	_	_	84	221
Local Groundwater Supplies (Carrizo)	807	1,613	1,613	2,420	3,226	4,033
Purchase from WWP (CRWA)	_	_	_	_	_	690
Brackish Wilcox Groundwater for SS WSC	_	_	_	1,120	1,120	1,120
Drought Management	78	_				_
Total New Supply	885	1,613	1,613	3,540	4,430	6,064

^{*} Additional Water Supply Needs in Drought may be greater than shown in some decades due to locally observed population growth rates greater than approved population projections for the 2011 Region L Water Plan.

Estimated costs of the recommended plan to meet SS WSC's projected needs are shown in Table 4B.2.20-11.

Table 4B.2.20-11.
Recommended Plan Costs by Decade for SS WSC

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Cons	servation								
Annual Cost (\$/yr)	_	_	_		\$64,588	\$169,800			
Unit Cost (\$/acft)	_	_	_	_	\$769	\$768			
Local Groundwater Supplies (Carrizo)									
Annual Cost (\$/yr)	\$926,400	\$1,852,800	\$1,337,763	\$1,749,127	\$2,675,527	\$3,086,890			
Unit Cost (\$/acft)	\$1,149	\$1,149	\$829	\$723	\$829	\$765			
Purchase from WWP (CRWA)									
Annual Cost (\$/yr)	_	_	_	_	_	\$298,427			
Unit Cost (\$/acft)	_	_	_	_	_	\$433			
Brackish Wilcox Grou	ndwater for S	s wsc							
Annual Cost (\$/yr)	_	_	_	\$2,108,960	\$2,108,960	\$856,800			
Unit Cost (\$/acft)	_	_	_	\$1,883	\$1,883	\$765			
Drought Management									
Annual Cost (\$/yr)	\$86,090	_	_	_	_	_			
Unit Cost (\$/acft)	\$1,104	_	_	_	_	_			

4B.2.20.6 City of Stockdale

The City of Stockdale is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Stockdale implement the following water supply plan (Table 4B.2.20-12).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 27 acft/yr by 2010, increasing to 171 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

An alternative water management strategy identified by City of Stockdale is Local Groundwater Supplies (Carrizo).

Table 4B.2.20-12.
Recommended Water Supply Plan for the City of Stockdale

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	0	0	0	0	0	0		
Recommended Plan								
Municipal Water Conservation	27	57	93	128	147	171		
Total New Supply	27	57	93	128	147	171		

Estimated costs of the recommended plan for the City of Stockdale are shown in Table 4B.2.20-13.

Table 4B.2.20-13.
Recommended Plan Costs by Decade for the City of Stockdale

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$20,213	\$34,888	\$52,515	\$70,039	\$79,781	\$92,384
Unit Cost (\$/acft)	\$749	\$612	\$565	\$547	\$543	\$540

4B.2.20.7 Sunko WSC

Current water supply for Sunko WSC is obtained from the Carrizo Aquifer. Sunko WSC is projected to need additional water supplies prior to 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Sunko WSC implement the following water supply plan to meet the projected needs for the WSC (Table 4B.2.20-14).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 3 acft/yr by 2010, increasing to 92 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2060. This strategy can provide an additional 161 acft/yr by 2060.

Table 4B.2.20-14.
Recommended Water Supply Plan for Sunko WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	0	0	0	0	0	70			
Recommended Plan									
Municipal Water Conservation	3	6	10	29	54	92			
Local Groundwater Supplies (Carrizo)	_	_	_	_	_	161			
Total New Supply	3	6	10	29	54	253			

Estimated costs of the recommended plan to meet Sunko WSC's projected needs are shown in Table 4B.2.20-15.

Table 4B.2.20-15.
Recommended Plan Costs by Decade for Sunko WSC

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation									
Annual Cost (\$/yr)	\$2,522	\$4,800	\$7,421	\$22,111	\$39,363	\$60,669			
Unit Cost (\$/acft)	\$841	\$800	\$742	\$762	\$729	\$659			
Local Groundwater Supplies (Carrizo)								
Annual Cost (\$/yr)	_	_	_	_	_	\$161,000			
Unit Cost (\$/acft)	_	_	_	_	_	\$998			

4B.2.20.8 Rural Area Residential and Commercial

Rural Areas obtain their water supplies from the Carrizo Aquifer and run-of-river rights to meet their projected demands during the planning period. A projected shortage is expected in year 2060. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected need for rural areas (Table 4B.2.20-16).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 14 acft/yr by 2040, increasing to 116 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.20-16.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	33
Recommended Plan						
Municipal Water Conservation	_	_	_	14	58	116
Total New Supply	_	_	_	14	58	116

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.20-17.

Table 4B.2.20-17.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	_	_	_	\$10,542	\$44,842	\$89,671
Unit Cost (\$/acft)	_	_	_	\$753	\$773	\$773

4B.2.20.9 Industrial

Industrial is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.20.10 Steam-Electric Power

There is no projected steam-electric power water demand in Wilson County, therefore no water management strategies are recommended for this water user group.

4B.2.20.11 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.20.12 Irrigation

Irrigation is projected to have adequate water supplies available from the Carrizo Aquifer, Sparta Aquifer, Queen City Aquifer, and run-of-river rights to meet the water user group's projected demand during the planning period.

4B.2.20.13 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected needs during the planning period.

(This page intentionally left blank.)

4B.2.21 Zavala County Water Supply Plan

Table 4B.2.21-1 lists each water user group in Zavala County and its corresponding management supply or shortage in years 2010 and 2060. For each water user group with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.2.21-1.

Zavala County Management Supply/Shortage by Water User Group

	Management Supply/Shortage		
Water User Group	2010 (acft/yr)	2060 (acft/yr)	Comment
City of Crystal City	1,277	1,154	No projected shortage
Rural Area Residential and Commercial	524	17	No projected shortage
Industrial	272	0	No projected shortage
Steam-Electric Power	0	0	No projected demand
Mining	8	0	No projected shortage
Irrigation	-54,600	-41,492	Projected shortage (2010 through 2060)
Livestock	0	0	No projected shortage

4B.2.21.1 City of Crystal City

The City of Crystal City is projected to have adequate water supplies available from the Carrizo Aquifer to meet the city's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that the City of Crystal City implement the following water supply plan (Table 4B.2.21-2).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 192 acft/yr by 2010, increasing to 1,002 acft/yr of supply in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.21-2.
Recommended Water Supply Plan for the City of Crystal City

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	192	364	543	695	850	1,002
Total New Supply	192	364	543	695	850	1,002

Estimated costs of the recommended plan for the City of Crystal City are shown in Table 4B.2.21-3.

Table 4B.2.21-3.
Recommended Plan Costs by Decade for the City of Crystal City

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$131,689	\$214,268	\$302,422	\$375,117	\$454,514	\$534,401
Unit Cost (\$/acft)	\$686	\$589	\$557	\$540	\$535	\$533

4B.2.21.2 Rural Area Residential and Commercial

Rural Areas are projected to have adequate water supplies available from the Carrizo Aquifer to meet their projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that rural area water supply districts and authorities and individual households and/or businesses not served by public water supply systems implement the following water supply plan to meet the projected needs for rural areas (Table 4B.2.21-4).

• Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 42 acft/yr by 2010, increasing to 149 acft/yr in 2060 (Volume II, Section 4C.1.1).

Table 4B.2.21-4.
Recommended Water Supply Plan for Rural Areas

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation	42	54	71	89	115	149
Total New Supply	42	54	71	89	115	149

Estimated costs of the recommended plan for rural areas are shown in Table 4B.2.21-5.

Table 4B.2.21-5.
Recommended Plan Costs by Decade for Rural Areas

Plan Element	2010	2020	2030	2040	2050	2060
Municipal Water Conservation						
Annual Cost (\$/yr)	\$32,321	\$41,667	\$54,983	\$62,138	\$74,636	\$92,728
Unit Cost (\$/acft)	\$770	\$772	\$774	\$698	\$649	\$622

4B.2.21.3 Industrial

Industrial is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.21.4 Steam-Electric Power

There is no projected steam-electric water demand in Zavala County, therefore no water management strategies are recommended for this water user group.

4B.2.21.5 Mining

Mining is projected to have adequate water supplies available from the Carrizo Aquifer to meet the water user group's projected demand during the planning period.

4B.2.21.6 Irrigation

Current water supply for irrigation is obtained from the Carrizo Aquifer. Irrigation is projected to need additional water supplies prior to 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that individual irrigators implement the following water supply plan to meet a portion of the projected needs for irrigation (Table 4B.2.21-6).

• Irrigation Water Conservation to be implemented or enhanced in the immediate future. This strategy can provide an additional 6,948 acft/yr of supply. The SCTRWPG has determined that it is not economically feasible for agricultural producers to pay for additional supplies to meet projected needs.

Table 4B.2.21-6.
Recommended Water Supply Plan for Irrigation

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	54,600	51,763	49,038	46,421	43,907	41,492
Recommended Plan						
Irrigation Water Conservation	6,948	6,948	6,948	6,948	6,948	6,948
Total New Supply	6,948	6,948	6,948	6,948	6,948	6,948

Estimated costs of the recommended plan to meet the Irrigation projected needs are shown in Table 4B.2.21-7.

Table 4B.2.21-7.
Recommended Plan Costs by Decade for Irrigation

Plan Element	2010	2020	2030	2040	2050	2060
Irrigation Water Conservation						
Annual Cost (\$/yr)	\$882,396	\$882,396	\$882,396	\$882,396	\$882,396	\$882,396
Unit Cost (\$/acft)	\$127	\$127	\$127	\$127	\$127	\$127

4B.2.21.7 Livestock

Livestock is projected to have adequate water supplies available from local sources to meet the water user group's projected demand during the planning period.

4B.3 Water Supply Plans for Wholesale Water Providers

Table 4B.3-1 lists each Wholesale Water Provider identified by the SCTRWPG and their corresponding management supply or shortage in years 2010 and 2060. For each Wholesale Water Provider with a projected shortage, or need, a water supply plan has been developed and is presented in the following subsections.

Table 4B.3-1.

Wholesale Water Provider Management Supply/Shortage

Management
Supply/Shortage

	Management Supply/Shortage		
Major Water Provider	2010 (acft/yr)	2060 (acft/yr)	Comment
San Antonio Water System (SAWS)	-73,600	-193,264	Projected shortage (2010 through 2060)
Bexar Metropolitan Water District (BMWD)	-16,638	-36,387	Projected shortage (2010 through 2060)
Guadalupe-Blanco River Authority (GBRA)	126,065	-16,708	Projected shortage (2050 through 2060)
Canyon Regional Water Authority (CRWA)	-7,920	-40,400	Projected shortage (2010 through 2060)
Lavaca-Navidad River Authority (LNRA)*	-10,046	-10,489	Projected shortage (2010 through 2060)
Schertz-Seguin Local Government Corporation (SSLGC)	3,432	-4,935	Projected shortage (2040 through 2060)
Springs Hill WSC (SHWSC)	2,751	770	No projected shortage
Texas Water Alliance (TWA)	0	-21,095	Projected shortage (2020 through 2060)

^{*} LNRA, while located outside of Region L, is the WWP for municipal (Point Comfort) and industrial (Formosa Plastics Corporation) users in the portion of Calhoun County east of Lavaca Bay. LNRA is presented in Section 4B.3 only. Management Supply/Shortage for LNRA based on Region L demands only.

4B.3.1 San Antonio Water System (SAWS)

Current water supply for SAWS is obtained from the Edwards Aquifer, Trinity Aquifer, Carrizo Aquifer, Canyon Reservoir, Aquifer Storage and Recovery (ASR) Project, and Direct Reuse. SAWS is projected to need additional water supplies prior to the year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that SAWS implement the following water supply plan to meet the projected needs for SAWS (Table 4B.3.1-1).

 Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual Water User Group (WUG) based on the Municipal Water Conservation water management strategy recommended by the SCTRWPG.

- Drought Management⁷ to be implemented prior to 2010. This strategy can provide an additional 37,622 acft/yr of supply for the year 2010.
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 35,935 acft/yr of supply for the years 2010 through 2060.
- ASR Project and Phased Expansion⁸ to be implemented prior to 2010. This strategy can provide an additional 3,800 acft/yr of supply for the year 2010, increasing to 16,000 acft/yr through 2060.
- Recycled Water Programs⁹ to be implemented prior to 2010. This strategy can provide an additional 15,127 acft/yr of supply by the year 2010 through 2060.
- Facilities Expansions/Integration Pipelines¹⁰
- Regional Carrizo for SAWS¹¹ to be implemented prior to 2020. This strategy can provide an additional 11,687 acft/yr of supply for the years 2020 through 2060.
- Edwards Aquifer Recharge Type 2 Projects to be implemented prior to 2020. This strategy can provide an additional 13,451 acft/yr of supply for the years 2020 through 2050, increasing to 21,577 acft/yr in 2060.
- Brackish Wilcox Groundwater for SAWS¹¹ to be implemented prior to 2020. This strategy can provide an additional 12,000 acft/yr of supply by 2020, increasing to 26,400 acft/yr by 2060.
- LCRA/SAWS Water Project to be implemented prior to 2030. This strategy can provide an additional 90,000 acft/yr of supply for the years 2030 through 2060.
- Seawater Desalination to be implemented prior to 2060. This strategy can provide an additional 84,012 acft/yr of supply for the year 2060.

Water management strategies requiring further study prior to implementation include: Edwards Aquifer Recharge and Recirculation, Mesa Water Supply Project, and the Other Water Supplies (Planned RFP).

⁷ Periodic activation of drought contingency measures resulting in demand reductions considered as a near-term alternative to development of water supplies that are reliable during drought. Amount shown is near-term Permitted Supply Gap from SAWS 2009 Water Management Plan Update.

⁸ Amounts shown are from SAWS 2009 Water Management Plan Update.

⁹ Uncommitted portion of existing 35,000 acft/yr Recycled Water system capacity.

¹⁰ Systems and pipelines have no associated firm yield, but are necessary to deliver new sources of supply to SAWS customers.

¹¹ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.3.1-1.
Recommended Water Supply Plan for SAWS

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	73,600	102,549	128,122	152,713	177,022	193,264
Recommended Plan	_					
Municipal Water Conservation ¹	_	_	_	_	_	_
Drought Management	37,622	_	_	_	_	_
Edwards Transfers	35,935	35,935	35,935	35,935	35,935	35,935
ASR Project and Phased Expansion	3,800	16,000	16,000	16,000	16,000	16,000
Recycled Water Program Expansion	15,127	15,127	15,127	15,127	15,127	15,127
Regional Carrizo for SAWS	_	11,687	11, 687	11, 687	11, 687	11, 687
Edwards Aquifer Recharge – Type 2 Projects	_	13,451	13,451	13,451	13,451	21,577
Brackish Wilcox Groundwater for SAWS	_	12,000	21,000	26,400	26,400	26,400
LCRA/SAWS Water Project	_	_	90,000	90,000	90,000	90,000
Seawater Desalination	_	_	_	_	_	84,012
Total New Supply 92,484 104,200 203,200 208,600 208,600 3					300,738	
¹ Assigned by Water User Group based on Munic	ipal Conserva	tion water ma	nagement str	ategy recomi	mended by S	CTRWPG.

Estimated costs of the recommended plan to meet the SAWS projected needs are shown in Table 4B.3.1-2.

Table 4B.3.1-2.
Recommended Plan Costs by Decade for SAWS

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water C	onservation ¹									
Annual Cost (\$/yr)		_	_	_	_					
Unit Cost (\$/acft)	_	_	_	_	_	_				
Drought Managem	ent									
Annual Cost (\$/yr)	\$21,632,650	_	_	_	_					
Unit Cost (\$/acft)	\$575	_	_	_	_	_				
Edwards Transfers										
Annual Cost (\$/yr)	\$16,314,490	\$16,314,490	\$16,314,490	\$16,314,490	\$16,314,490	\$16,314,490				
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454				
ASR Project and Phased Expansion										
Annual Cost (\$/yr)	NA	NA	NA	NA	NA	NA				
Unit Cost (\$/acft)	NA	NA	NA	NA	NA	NA				
Recycled Water Programs										
Annual Cost (\$/yr)	\$13,565,102	\$14,160,410	\$14,725,443	\$3,913,671	\$4,237,753	\$4,498,681				
Unit Cost (\$/acft)	\$725	\$602	\$525	\$124	\$124	\$124				
Regional Carrizo f	or SAWS									
Annual Cost (\$/yr)	_	\$15,695,641	\$15,695,641	\$3,786,588	\$3,786,588	\$3,786,588				
Unit Cost (\$/acft)	_	\$1,343	\$1,343	\$324	\$324	\$324				
Edwards Aquifer F	Recharge – Typ	e 2 Projects								
Annual Cost (\$/yr)	_	\$11,940,000	\$11,940,000	\$11,117,000	\$11,117,000	\$37,275,000				
Unit Cost (\$/acft)	_	\$888	\$888	\$826	\$826	\$1,728				
Brackish Wilcox G	roundwater for	SAWS								
Annual Cost (\$/yr)	_	\$17,976,000	\$31,458,000	\$19,668,000	\$19,668,000	\$19,668,000				
Unit Cost (\$/acft)	_	\$1,498	\$1,498	\$745	\$745	\$745				
LCRA/SAWS Water	r Project									
Annual Cost (\$/yr)	_		\$215,460,000	\$215,460,000	\$74,610,000	\$74,610,000				
Unit Cost (\$/acft)	_	_	\$2,394	\$2,394	\$829	\$829				
Seawater Desalina	ntion									
Annual Cost (\$/yr)	_	_	_	_	_	\$191,857,000				
Unit Cost (\$/acft)	_	_	_	_	_	\$2,284				
¹ These costs have b	peen assigned to t	he individual Wate	er User Groups.	•						

4B.3.2 Bexar Metropolitan Water District (BMWD)

Current water supply for BMWD is obtained from the Edwards Aquifer, Carrizo Aquifer, Trinity Aquifer, Canyon Reservoir, Medina Lake System, and run-of-river rights. BMWD is projected to need additional water supplies prior to the year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that BMWD implement the following water supply plan to meet the projected needs for BMWD (Table 4B.3.2-1).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual BMWD customer Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG. Quantities shown in Table 4B.3.3-1 are approximate and for general reference only.
- Edwards Transfers to be implemented prior to 2010. This strategy can provide an additional 3,000 acft/yr of supply for the years 2010 through 2060.
- Surface Water Rights¹².
- Local Groundwater Supplies (Trinity) to be implemented prior to 2010. This strategy can provide an additional 2,016 acft/yr of supply for the years 2010 through 2060.
- Local Groundwater Supplies (Carrizo) to be implemented prior to 2010. This strategy can provide an additional 4,030 acft/yr of supply for the years 2010, increasing to 16,129 acft/yr by 2060.
- Medina Lake Firm-Up (ASR) to be implemented prior to 2010. This strategy can provide an additional 9,933 acft/yr of supply for the years 2010 through 2060.
- Purchase from WWP (CRWA) to be implemented prior to 2010. This strategy can provide an additional 2,800 acft/yr of supply in the year 2010, increasing to 8,250 acft/yr of additional supply in 2020, and continuing at 8,250 acft/yr to 2060.
- Facilities Expansions (System Interconnects)¹³

Medina Lake Firm-Up (OCR) is listed as an alternative water management strategy.

¹² Purchase of junior water rights on the Medina River likely to have little, if any firm yield. Such water rights could be used in non-drought years and/or as part of the Medina Lake Firm-Up WMS.

¹³ Systems and pipelines have no associated firm yield, but are necessary to deliver new sources of supply to BMWD customers.

Table 4B.3.2-1.
Recommended Water Supply Plan for BMWD

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	16,638	20,139	27,798	30,607	33,461	36,387		
Recommended Plan								
Municipal Water Conservation ¹	_	_	_	_	_	_		
Edwards Transfers	3,000	3,000	3,000	3,000	3,000	3,000		
Local Groundwater Supplies (Trinity)	2,016	2,016	2,016	2,016	2,016	2,016		
Local Groundwater Supplies (Carrizo)	4,030	6,448	8,060	8,060	12,090	16,129		
Medina Lake Firm-Up (ASR)	9,933	9,933	9,933	9,933	9,933	9,933		
Purchase from WWP (CRWA)	2,800	8,250	8,250	8,250	8,250	8,250		
Total New Supply	21,779	29,647	31,259	31,259	35,289	39,328		
¹ Assigned by Water User Group based on Municipal	l Conservation	water manage	ement strategy	y recommen	ded by SC	ΓRWPG.		

Estimated costs of the recommended plan to meet the BMWD projected needs are shown in Table 4B.3.2-2.

Table 4B.3.2-2.
Recommended Plan Costs by Decade for BMWD

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conserv	/ation ¹								
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
Edwards Transfers									
Annual Cost (\$/yr)	\$1,362,000	\$1,362,000	\$1,362,000	\$1,362,000	\$1,362,000	\$1,362,000			
Unit Cost (\$/acft)	\$454	\$454	\$454	\$454	\$454	\$454			
Local Groundwater Supplies (Trinity)									
Annual Cost (\$/yr)	\$1,043,000	\$1,043,000	\$1,043,000	\$1,043,000	\$1,043,000	\$1,043,000			
Unit Cost (\$/acft)	\$517	\$517	\$517	\$517	\$517	\$517			
Local Groundwater Supp	olies (Carrizo)								
Annual Cost (\$/yr)	\$1,676,750	\$2,682,800	\$2,386,357	\$1,806,071	\$3,095,964	\$4,772,714			
Unit Cost (\$/acft)	\$416	\$416	\$296	\$224	\$256	\$296			
Medina Lake Firm-Up (A	SR)								
Annual Cost (\$/yr)	\$16,846,368	\$16,846,368	\$4,469,850	\$4,469,850	\$4,469,850	\$4,469,850			
Unit Cost (\$/acft)	\$1,696	\$1,696	\$450	\$450	\$450	\$450			
Purchase from WWP (CF	RWA)								
Annual Cost (\$/yr)	\$2,030,000	\$9,072,389	\$8,810,887	\$5,885,138	\$3,697,530	\$3,568,147			
Unit Cost (\$/acft)	\$725	\$1,100	\$1,068	\$713	\$448	\$433			
¹ These costs have been as	signed to the indivi	dual Water User (Groups.						

4B.3.3 Canyon Regional Water Authority (CRWA)

Current water supply for CRWA is obtained from GBRA and various water right leases. CRWA is projected to need additional water supplies prior to the year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that CRWA implement the following water supply plan to meet the projected needs for CRWA (Table 4B.3.3-1).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual member Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG, and quantities are not tabulated in the CRWA tables referenced here.
- CRWA Wells Ranch Project Phase I¹⁴ to be implemented prior to 2010. This strategy can provide an additional 5,200 acft/yr of supply for the years 2010 through 2060.
- CRWA Wells Ranch Project Phase II¹⁴ to be implemented prior to 2010. This strategy can provide an additional 5,800 acft/yr of supply for the years 2010 through 2060.
- Purchase from WWP (GBRA) to be implemented prior to 2020. This strategy can provide an additional 5,000 acft/yr of supply for the years 2020 through 2060.
- Brackish Wilcox Groundwater for RWA¹⁴ to be implemented prior to 2030. This strategy can provide an additional 5,600 acft/yr of supply for the years 2030 and 2040, increasing to 11,200 acft/yr for 2050 through 2060.
- CRWA Siesta Project to be implemented prior to 2030. This strategy can provide an additional 1,000 acft/yr for 2030, increasing to 5,042 acft/yr of supply for the years 2040 through 2060.
- Hays/Caldwell PUA Project¹⁴ to be implemented prior to 2020. This strategy can provide an additional 5,000 acft/yr of supply in the year 2020, increasing to 10,260 acft/yr of additional supply through 2060.

_

¹⁴ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.3.3-1.
Recommended Water Supply Plan for CRWA

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)			
Projected Need (Shortage)	7,920	14,815	30,465	33,215	38,560	40,400			
Recommended Plan									
Municipal Water Conservation ¹	_	_	_	_	_	_			
CRWA Wells Ranch Project Phase I	5,200	5,200	5,200	5,200	5,200	5,200			
CRWA Wells Ranch Project Phase II	5,800	5,800	5,800	5,800	5,800	5,800			
Purchase from WWP (GBRA)	_	5,000	5,000	5,000	5,000	5,000			
Brackish Wilcox Groundwater for RWA	_	_	5,600	5,600	11,200	11,200			
CRWA Siesta Project	_	_	1,000	5,042	5,042	5,042			
Hays/Caldwell PUA Project	_	5,000	10,260	10,260	10,260	10,260			
Total New Supply	11,000	21,000	32,860	36,902	42,502	42,502			

Estimated costs of the recommended plan to meet the CRWA projected needs are shown in Table 4B.3.3-2.

Table 4B.3.3-2.
Recommended Plan Costs by Decade for CRWA

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conserva	ation¹								
Annual Cost (\$/yr)	_	_	_		_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
CRWA Wells Ranch Proje	ct Phase I								
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
CRWA Wells Ranch Project Phase II									
Annual Cost (\$/yr)	\$4,205,000	\$4,205,000	\$1,160,000	\$1,160,000	\$1,160,000	\$1,160,000			
Unit Cost (\$/acft)	\$725	\$725	\$200	\$200	\$200	\$200			
Purchase from WWP (GBRA)									
Annual Cost (\$/yr)	_	\$6,947,133	\$6,947,133	\$2,544,933	\$2,544,933	\$1,962,333			
Unit Cost (\$/acft)	_	\$1,389	\$1,389	\$509	\$509	\$392			
Brackish Wilcox Ground	ater for RWA								
Annual Cost (\$/yr)	_	_	\$7,240,800	\$7,240,800	\$6,003,200	\$6,003,200			
Unit Cost (\$/acft)	_	_	\$1,293	\$1,293	\$536	\$536			
CRWA Siesta Project									
Annual Cost (\$/yr)	_	_	\$1,421,000	\$7,164,682	\$2,505,874	\$2,505,874			
	_	_	\$1,421	\$1,421	\$497	\$497			
Unit Cost (\$/acft)									
Unit Cost (\$/acft) Hays/Caldwell PUA Project	et								
. ,	et	\$6,225,000	\$12,773,700	\$4,504,140	\$4,504,140	\$4,504,140			

4B.3.4 Guadalupe-Blanco River Authority (GBRA)

Current water supply for GBRA is obtained from Canyon Reservoir and run-of-river rights. GBRA is projected to need additional water supplies soon after year 2010 to meet the Wholesale Water Provider's projected demands; however, certain portions of the GBRA system are projected to have a shortage (need) at year 2010. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that GBRA implement the following water supply plan to meet the projected needs for GBRA (Table 4B.3.4-1).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG.
- Wimberley and Woodcreek Water Supply Project to be implemented prior to 2010. This strategy can provide an additional 1,120 acft/yr upon implementation soon after 2010 and an additional 4,480 acft/yr for 2020 through 2060.
- GBRA Simsboro Aquifer^{15,16} to be implemented prior to 2020. This strategy can provide an additional 30,000 acft/yr for 2020, increasing to 49,777 acft/yr of supply for the years 2050 through 2060.
- GBRA Mid-Basin (Surface Water) to be implemented prior to 2020. This strategy can provide an additional 25,000 acft/yr for 2020 through 2060.
- Storage Above Canyon Reservoir (ASR) to be implemented prior to 2020. This strategy can provide an additional 3,140 acft/yr for 2020 through 2060.
- GBRA-Exelon Project to be implemented prior to 2020. This strategy can provide an additional 49,126 acft/yr for 2020 through 2060.
- GBRA Lower Basin Storage (100 acre Site)¹⁷ to be implemented prior to 2030. This strategy can provide an additional 26,452 acft/yr for 2030 through 2060.
- GBRA New Appropriation (Lower Basin) to be implemented prior to 2030. This strategy can provide an additional 11,500 acft/yr for 2030 through 2060.
- Western Canyon WTP Expansion to be implemented prior to 2050. This strategy can provide an additional 5,600 acft/yr for 2050 through 2060.

¹⁵ Source of water is Simsboro Aquifer in Regions K and G with delivery to the San Marcos WTP.

¹⁶ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

¹⁷ Firm yield estimate based on off-channel storage of 2,500 acft.

The following are alternative water management strategies: Lower Guadalupe Water Supply Project (LGWSP) for Upstream GBRA Needs, GBRA Lower Basin Storage (500 acre Site), Regional Carrizo for Guadalupe Basin (GBRA), GBRA Mid-Basin (Conjunctive Use), and Calhoun County Brackish Groundwater.

Table 4B.3.4-1.
Recommended Water Supply Plan for GBRA

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	0	10,226	23,808	36,564	51,163	67,580
Recommended Plan						
Municipal Water Conservation ¹	_	_	_	_	_	_
Wimberley and Woodcreek Water Supply Project	1,120	4,480	4,480	4,480	4,480	4,480
GBRA Simsboro Aquifer	_	30,000	30,000	30,000	49,777	49,777
GBRA Mid-Basin (Surface Water)	_	25,000	25,000	25,000	25,000	25,000
Storage Above Canyon Reservoir (ASR)	_	3,140	3,140	3,140	3,140	3,140
GBRA-Exelon Project	_	49,126	49,126	49,126	49,126	49,126
GBRA Lower Basin Storage	_	_	28,369	28,369	28,369	28,369
GBRA New Appropriation (Lower Basin)	_	_	11,300	11,300	11,300	11,300
Western Canyon WTP Expansion	_	_	_	_	5,600	5,600
Total New Supply	4,480	107,266	146,935	146,935	172,312	172,312

*Projected needs in upper portion of GBRA district are offset by management supplies in the lower portion of the GBRA district.

Assigned by Water User Group based on Municipal Conservation water management strategy recommended by SCTRWPG.

Estimated costs of the recommended plan to meet the GBRA projected needs are shown in Table 4B.3.4-2.

Table 4B.3.4-2.
Recommended Plan Costs by Decade for GBRA

Plan Element	2010	2020	2030	2040	2050	2060				
Municipal Water Co	nservation ¹									
Annual Cost (\$/yr)	_	_	_	_	_	_				
Unit Cost (\$/acft)	_	_	_	_	_	_				
Wimberley and Woo	odcreek Water	Supply Project								
Annual Cost (\$/yr)	\$2,747,360	\$10,989440	\$9,253,000	\$9,253,000	\$9,253,000	\$9,253,000				
Unit Cost (\$/acft)	\$2,453	\$2,453	\$2,065	\$2,065	\$2,065	\$2,065				
GBRA Simsboro Aquifer										
Annual Cost (\$/yr)	_	\$29,460,000	\$29,460,000	\$11,580,000	\$19,300,000	\$19,300,000				
Unit Cost (\$/acft)	_	\$982	\$982	\$386	\$386	\$386				
GBRA Mid-Basin (Surface Water)										
Annual Cost (\$/yr)	_	\$46,975,000	\$46,975,000	\$16,200,000	\$16,200,000	\$9,250,000				
Unit Cost (\$/acft)	_	\$1,879	\$1,879	\$648	\$648	\$370				
Storage Above Canyon Reservoir (ASR)										
Annual Cost (\$/yr)	_	\$5,564,080	\$5,564,080	\$1,843,180	\$1,843,180	\$1,843,180				
Unit Cost (\$/acft)	_	\$1,772	\$1,772	\$587	\$587	\$587				
GBRA-Exelon Proje	ct									
Annual Cost (\$/yr)	_	\$31,735,396	\$31,735,396	\$22,990,968	\$22,990,968	\$11,004,224				
Unit Cost (\$/acft)	_	\$646	\$646	\$468	\$468	\$224				
GBRA Lower Basin	Storage									
Annual Cost (\$/yr)	_	_	\$2,751,008	\$2,751,008	\$1,587,120	\$1,587,120				
Unit Cost (\$/acft)	_	_	\$104	\$104	\$60	\$60				
GBRA New Approp	riation (Lower I	Basin)								
Annual Cost (\$/yr)	_	_	\$21,585,000	\$21,585,000	\$2,521,000	\$2,521,000				
Unit Cost (\$/acft)	_	_	\$1,910	\$1,910	\$223	\$223				
Western Canyon W	TP Expansion									
Annual Cost (\$/yr)	_	_	_	_	\$1,764,000	\$1,764,000				
Unit Cost (\$/acft)	_	_	_	_	\$315	\$315				
¹ These costs have be	en assigned to the	e individual Water	User Groups.		1	ı				

4B.3.5 Lavaca-Navidad River Authority (LNRA)

Lavaca-Navidad River Authority obtains its supply from Lake Texana Stage I and is projected to have shortages throughout the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that LNRA implement the following water supply plan to meet the projected needs for LNRA (Table 4B.3.5-1).

- Lavaca River Off-Channel Reservoir to be implemented prior to 2010. This strategy can provide an additional 26,242 acft/yr of supply, starting in 2020 and continuing through 2060.
- Facilitate temporary reallocation of presently contracted supplies to meet projected needs of Point Comfort until addition firm supplies are developed.

Table 4B.3.5-1.
Recommended and Alternative Water Supply Plan for LNRA

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)*	10,046	10,145	10,322	10,499	10,489	10,489
Recommended Plan						
Lavaca River Off-Channel Reservoir	26,242	26,242	26,242	26,242	26,242	26,242
Total New Supply	26,242	26,242	26,242	26,242	26,242	26,242

Projected needs are reported only for the portion of LNRA service area within Calhoun County in Region L. 10,000 acft/yr of the projected need is for Formosa Plastics Corporation based on information provided by LNRA during an inter-regional coordination meeting held on April 8, 2009. The remainder is for Point Comfort.

Estimated costs of the recommended and alternative plan to meet the LNRA projected needs are shown in Table 4B.3.5-2.

Table 4B.3.5-2.
Recommended and Alternative Plan Costs by Decade for LNRA

Recommended Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation ¹									
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
Lavaca River Off-C	hannel Reserv	oir							
Annual Cost (\$/yr)	\$18,395,642	\$18,395,642	\$14,774,246	\$14,774,246	\$2,624,200	\$2,624,200			
Unit Cost (\$/acft)	\$701	\$701	\$563	\$563	\$100	\$100			
¹ These costs have b	een assigned to t	he individual Wate	er User Groups.						

4B.3.6 Schertz-Seguin Local Government Corporation (SSLGC)

Current water supply for SSLGC is obtained from the Carrizo Aquifer. SSLGC is projected to need additional water supplies prior to the year 2040. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that SSLGC implement the following water supply plan to meet the projected needs for SSLGC (Table 4B.3.6-1).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG.
- Regional Carrizo for SSLGC Project Expansion¹⁸ to be implemented prior to 2020. This strategy can provide an additional 10,364 acft/yr of supply in the year 2020 through 2060.
- Brackish Wilcox Groundwater for RWA¹⁸ to be implemented prior to 2030. This strategy can provide an additional 2,000 acft/yr of supply in the year 2030 through 2060.

An alternative water management strategy is the Regional Carrizo for SSLGC Project Expansion – Wilson County Option.

¹⁸ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Table 4B.3.6-1.
Recommended Water Supply Plan for SSLGC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)		
Projected Need (Shortage)	_	_	_	1,102	2,947	4,935		
Recommended Plan								
Municipal Water Conservation ¹	_	_	_	_	_	_		
Regional Carrizo for SSLGC Project Expansion	_	10,364	10,364	10,364	10,364	10,364		
Brackish Wilcox Groundwater for RWA	_	_	2,000	2,000	2,000	2,000		
Total New Supply		10,364	12,364	12,364	12,364	12,364		
¹ Assigned by Water User Group based on Mur	nicipal Conserva	ation water ma	anagement st	rateav recom	mended by S	CTRWPG.		

Estimated costs of the recommended plan to meet the SSLGC projected needs are shown in Table 4B.3.6-2.

Table 4B.3.6-2.
Recommended Plan Costs by Decade for SSLGC

Plan Element	2010	2020	2030	2040	2050	2060			
Municipal Water Conservation ¹									
Annual Cost (\$/yr)	_	_	_	_	_	_			
Unit Cost (\$/acft)	_	_	_	_	_	_			
Regional Carrizo for SSLGC Project Expansion									
Annual Cost (\$/yr)	_	\$5,885,000	\$5,885,000	\$3,427,000	\$3,427,000	\$3,427,000			
Unit Cost (\$/acft)		\$568	\$568	\$331	\$331	\$331			
Brackish Wilcox Groundwa	ter for RWA								
Annual Cost (\$/yr)	_	_	\$2,586,000	\$2,586,000	\$1,072,000	\$1,072,000			
Unit Cost (\$/acft)	_	_	\$1,293	\$1,293	\$536	\$536			
¹ These costs have been assign	ned to the individ	lual Water User	Groups.						

4B.3.7 Springs Hill WSC (SHWSC)

Springs Hill WSC is projected to have adequate water supplies available from the Carrizo Aquifer and Canyon Reservoir to meet the WSC's projected demands during the planning period. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that Springs Hill WSC implement the following water supply plan (Table 4B.3.7-1).

- Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG.
- TWA Regional Carrizo¹⁹ to be implemented prior to 2020. This strategy can provide an additional 1,500 acft/yr from 2020, increasing to 3,000 in 2030 through 2060.
- Purchase from GBRA to be implemented prior to 2020, providing 1,500 acft/yr of water through 2060.
- Brackish Wilcox Groundwater for RWA¹⁹ to be implemented prior to 2060. This strategy can provide an additional 1,500 in 2060.

Table 4B.3.7-1.

Recommended Water Supply Plan for Springs Hill WSC

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	0	0	0	0	0
Recommended Plan						
Municipal Water Conservation ¹	_	_	_	_	_	_
Purchase from WWP (TWA)	_	1,500	3,000	3,000	3,000	3,000
Purchase from WWP (GBRA)	_	1,500	1,500	1,500	1,500	1,500
Brackish Wilcox Groundwater for RWA	_	_	_	_	_	1,500
Total New Supply	_	3,000	4,500	4,500	4,500	6,000

Assigned by Water User Group (WUG) based on Municipal Conservation water management strategy recommended by SCTRWPG.

¹⁹ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Estimated costs of the recommended plan for Springs Hill WSC are shown in Table 4B.3.7-2.

Table 4B.3.7-2.
Recommended Plan Costs by Decade for Springs Hill WSC

Plan Element	2010	2020	2030	2040	2050	2060	
Municipal Water Conservation ¹							
Annual Cost (\$/yr)	_	_	_	_	_	_	
Unit Cost (\$/acft)	_	_	_	_	_	_	
Purchase from WWP (TWA)							
Annual Cost (\$/yr)	_	\$2,284,500	\$4,569,000	\$1,536,000	\$1,536,000	\$1,536,000	
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512	
Purchase from WWP (GBRA)							
Annual Cost (\$/yr)	_	\$2,083,500	\$2,083,500	\$763,500	\$763,500	\$588,000	
Unit Cost (\$/acft)	_	\$1,389	\$1,389	\$509	\$509	\$392	
Brackish Wilcox Groundwater for RV	/A						
Annual Cost (\$/yr)	_	_	_	_	_	\$804,000	
Unit Cost (\$/acft)	_	_	_	_	_	\$536	
¹ These costs have been assigned to the ind	ividual Wa	ter User Group	S.			L	

4B.3.8 Texas Water Alliance (TWA)

Texas Water Alliance is projected to have shortages during the planning period. There is no current supply for TWA. Working within the planning criteria established by the SCTRWPG and the TWDB, it is recommended that TWA implement the following water supply plan (Table 4B.3.8-1).

 Municipal Water Conservation to be implemented or enhanced in the immediate future. This strategy has been assigned to each individual Water User Group (WUG) based on the Municipal Conservation water management strategy recommended by the SCTRWPG.

• TWA Regional Carrizo²⁰ is to be implemented by 2020. This strategy can provide an additional supply of 27,000 acft/yr, starting in 2020, continuing through 2060.

Table 4B.3.8-1.
Recommended Water Supply Plan for Texas Water Alliance

	2010 (acft/yr)	2020 (acft/yr)	2030 (acft/yr)	2040 (acft/yr)	2050 (acft/yr)	2060 (acft/yr)
Projected Need (Shortage)	0	5,328	10,717	14,591	18,556	22,575
Recommended Plan						
Municipal Water Conservation ¹	_	_	_	_	_	_
TWA Regional Carrizo	_	27,000	27,000	27,000	27,000	27,000
Total New Supply	_	27,000	27,000	27,000	27,000	27,000
Assigned by Water User Group (WUG) based	on Municipal (Conservation	water manage	ement strateg	y recommena	led by

Estimated costs of the recommended plan for Texas Water Alliance are shown in Table 4B.3.8-2.

Table 4B.3.8-2.
Recommended Plan Costs by Decade for Texas Water Alliance

Plan Element	2010	2020	2030	2040	2050	2060		
Municipal Water Conserv	ation ¹							
Annual Cost (\$/yr)	_	_	_	_	_	_		
Unit Cost (\$/acft)	_	_	_	_	_	_		
TWA Regional Carrizo								
Annual Cost (\$/yr)	_	\$41,121,000	\$41,121,000	\$13,824,000	\$13,824,000	\$13,824,000		
Unit Cost (\$/acft)	_	\$1,523	\$1,523	\$512	\$512	\$512		
¹ These costs have been assig	ned to the individ	ual Water User G	Froups.					

²⁰ Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

(This page intentionally left blank.)

Section 5

Impacts of Water Management Strategies on Key Parameters of Water Quality [31 TAC §357.7(a)(12)] and Moving Water from Rural and Agricultural Areas [31 TAC §357.7(a)(8)]

5.1 Impacts of Water Management Strategies on Key Parameters of Water Quality

In accordance with 31 TAC §357.7(a)(12), Regional Water Planning Guidelines, the South Central Texas Regional Planning Group (SCTRWPG) must consider the impacts of water management strategies on key parameters of water quality.

Regional Water Planning Guidelines 357.7(a)(12)

Regional water plan development shall include a description of the major impacts of recommended water management strategies on key parameters of water quality identified by the regional water planning group as important to the use of the water resource and comparing conditions with the recommended water management strategies to current conditions using best available data.

The SCTRWPG has selected the following water quality constituents to be considered in a qualitative analysis:

- Chlorides,
- Sulfates,
- Total Dissolved Solids (TDS),
- Dissolved Oxygen (DO),
- pH Range,
- Indicator Bacteria,
- Temperature, and
- Nitrates.

Table 5-1 contains median values for these eight water quality parameters for each of the water supply sources of the water management strategies recommended in the 2011 Regional Water Plan. Supplemental information from the 2008 Texas 303(d) List issued by the Texas Commission on Environmental Quality (TCEQ) pursuant to the federal Clean Water Act was also considered. In addition, the SCTRWPG has considered the impacts of implementation of the Regional Water Plan on recreation, aquatic life, domestic water supply, and agriculture.

Table 5-1. Median Values of Key Parameters of Water Quality

Water Source	Chlorides (mg/L)	Sulfates (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Dissolved Oxygen (DO) (mg/L)	На	Indicator Bacteria (#/100 ml)	Temperature (Deg C)	Nitrates (mg/L)
Edwards Groundwater	50	18	321	6.2	7.4	0	21	6.0
Gonzales-Carrizo Aquifer	23	39	248	0.0	7.5	0	35	<0.1
Bexar-Carrizo Aquifer	28	27	190	0.0	6.1	0	26	<0.1
Bastrop/Lee-Simsboro Aquifer	23	54	121	0.0	7.3	0	24	<0.1
Bexar-Wilcox Aquifer	145	258	1200	1.0	7.6	0	21	9.0
Trinity Aquifer	23	37	294	1.0	7.5	0	23	1.0
Gulf Coast Aquifer	253	06	877	2.0	7.8	0	59	0.5
San Antonio River	120	110	610	7.9	7.9	194	23	3.9
Cibolo Creek	1.4	47	530	6.2	9.7	91	25	5.4
Guadalupe River	31	36	380	7.6	7.9	100	23	1.1
Lavaca River	40	16	490	7.9	8.1	160	23	0.2
Colorado River	02	44	406	7.0	8.0	43	22	0.2

Potential water quality impacts considered herein are associated with source and receiving water characteristics, treatment requirements, blending compatibility, and treated effluent quality and quantity. For the purposes of this general assessment, it is assumed that wastewater treatment standards and plant performance will continue to improve over time. Other applicable assumptions regarding baseline conditions and conditions with implementation of the recommended water management strategies are consistent with those described in Section 7 regarding consistency of the Regional Water Plan with long-term protection of the State's water, agricultural, and natural resources.

Table 5-2 summarizes a general qualitative assessment of the potential impacts of the implementation of recommended water management strategies on the key parameters of water quality listed above. Each water quality parameter was assigned an impact level associated with the implementation of each recommended water management strategy. A value of '0' is used to indicate that no impacts are expected; a value of '1' indicates minimal impacts are expected; a value of '2' indicates moderate impacts are expected; and a value of '3' indicates severe impacts are expected from the implementation of the water management strategy. As it is understood that any future wastewater discharges, potable water deliveries, and/or recycled water use will be in compliance with TCEQ requirements, water quality impact scores presented herein may be viewed as relative indicators of concern or risk among water quality parameters potentially affecting or affected by a project.

For example, the LCRA/SAWS Water Project scores a '0' (no impact) for the dissolved oxygen, pH, temperature, and nitrates parameters. The LCRA/SAWS Water Project scores a '1' (minimal potential impacts) for the chlorides, sulfates, indicator bacteria, and total dissolved solids (TDS) parameters. These associated concentrations are somewhat higher in the surface water obtained from the Colorado River than the existing supply (Edwards Aquifer) for the City of San Antonio. Therefore, a '1' score was given for these parameters to indicate the minimal, yet possible, impact of the strategy.

In general, the water management strategies recommended for implementation are expected to have little, if any, measurable impacts on water quality. Only two of the recommended water management strategies score as high as a '2' for any water quality parameter. These two strategies are the GBRA-Exelon Project (temperature) and Seawater

Table 5-2.. Impacts of Recommended Water Management Strategies on Key Parameters of Water Quality

			_	Water Quality Parameter	Param	eter			
Water Management Strategy	Chlorides	Sulfates	Total Dissolved Solids (TDS)	Dissolved Oxygen (DO)	На	Indicator Bacteria	Temperature	Nitrates	Total Score
Conservation									
Municipal Water Conservation	0	0	0	0	0	0	0	0	0
Irrigation Water Conservation	0	0	0	0	0	0	0	0	0
Drought Management	0	0	0	0	0	0	0	0	0
Mining Water Conservation	0	0	0	0	0	0	0	0	0
Available Resources, Water Rights, & Reservoirs									
Edwards Transfers	0	0	0	0	0	0	0	0	0
GBRA-Exelon Project	0	0	1	0	0	0	2	0	3
GBRA Lower Basin Storage (100 acre site)	0	0	0	0	0	0	0	0	0
Recycled Water Programs	0	0	0	0	0	0	0	0	0
Medina Lake Firm-Up (ASR)	0	0	0	0	0	0	0	0	0
Wimberley and Woodcreek Water Supply Project	0	0	0	0	0	1	0	0	1
Surface Water Rights	0	0	0	0	0	0	0	0	0
Facilities Expansions	0	0	0	0	0	0	0	0	0
Groundwater									
GBRA Simsboro Project	0	0	0	1	0	0	0	0	1
Hays/Caldwell PUA Project	0	0	0	1	1	0	0	0	2
Local Groundwater Supplies (Carrizo)	0	0	0	1	0	0	0	0	1
TWA Regional Carrizo	0	0	0	1	0	0	1	0	2
Brackish Wilcox Groundwater for SAWS	1	1	1	1	0	0	1	0	5
Regional Carrizo for SAWS	0	0	0	1	0	0	1	0	2
Brackish Wilcox Groundwater for Regional Water Alliance	1	1	1	1	0	0	1	0	5
CRWA Wells Ranch Project	0	0	0	1	-	0	0	0	2
Regional Carrizo for SSLGC Project Expansion	0	0	0	1	1	0	0	0	2
Local Groundwater Supplies (Trinity)	0	0	0	0	0	0	0	0	0
Brackish Wilcox Groundwater for SSWSC	1	1	1	1	0	0	1	0	5
Local Groundwater Supplies (Gulf Coast)	0	0	0	0	0	0	0	0	0
Conjunctive Use									
LCRA-SAWS Water Project	1	1	1	0	0	1	0	0	4
Edwards Aquifer Recharge. Type 2 Projects	0	-	0	0	0	1	0	0	2
CRWA Siesta Project	0	0	0	1	0	1	0	0	2
Surface Water									
Lavaca River Off-Channel Reservoir	0	0	0	0	0	1	0	0	1
GBRA Mid-Basin (Surface Water)	0	0	0	0	0	0	0	0	0
GBRA New Appropriation (Lower Basin)	0	0	0	0	0	1	0	1	2
Storage Above Canyon Reservoir (ASR)	0	0	0	0	0	0	0	0	0
Seawater									
Seawater Desalination	2	1	1	0	0	0	0	0	4
Key for Water Quality Parameter Scores: 0 = No impacts	are expected;	1=	Minimal impacts are expected	2 =	Moderate i	impacts are expected;	3 = Severe imp	impacts are exp	expected

Desalination (chlorides). Only the Brackish Wilcox Groundwater strategies and the LCRA-SAWS Water Project (LSWP) received scores (though none greater than '1') in four or more of the key water quality parameters. Fourteen (44 percent) of the recommended water management strategies received a score of zero (no impacts expected) and twenty-seven (84 percent) received a score greater than zero in two or less of the key water quality parameters.

Nine strategies could potentially impact domestic water use and agricultural water use: Drought Management, Edwards Transfers, Surface Water Rights, GBRA Simsboro Project, Hays/Caldwell PUA Project, TWA Regional Carrizo, Regional Carrizo for SAWS, CRWA Wells Ranch Project, and/or Regional Carrizo for SSLGC Project Expansion. Five other strategies may provide benefits to domestic and/or agricultural water use: Municipal Water Conservation, Irrigation Water Conservation, GBRA Lower Basin Storage, LSWP, and/or Edwards Aquifer Recharge – Type 2 Projects. In addition, the Irrigation Water Conservation strategy could have beneficial effects on water quality through decreased runoff carrying pesticides and fertilizers from cultivated areas to receiving streams. It is anticipated that none of the recommended water management strategies will have associated effects on water quality sufficient to impact recreation or instream aquatic life uses to a significant degree.

5.2 Impacts of Voluntary Redistribution of Water from Rural and Agricultural Areas

Similar to third-party impacts of voluntary redistribution, the Regional Water Plan shall include a quantitative reporting of socioeconomic impacts on agricultural resources including analysis of third-party gross business activity and employment impacts of moving water from rural and agricultural areas. In this case, voluntary redistribution is the acquisition of water by willing buyers from willing sellers, subject to conditions of existing groundwater management plans and rules of Groundwater Conservation Districts, in the case of groundwater supplies, and subject to existing surface water permits and water available from such permits (see Sections 3.1 and 3.2 for descriptions of methods used in determining quantities of groundwater and surface water available to meet projected water demands in the South Central Texas Water Planning Region).

¹ It is important to note that the most likely places from which water can be obtained to meet the needs of municipalities and other water users of the South Central Texas Region are rural areas, many of which are also agricultural areas.

In the development of the South Central Texas Regional Water Plan, the following principles have been followed: (1) water conservation has been the first water management strategy recommended to meet projected needs (shortages) of water user groups (WUGs); and (2) all other recommended water management strategies consider only quantities of water that are surplus to the year 2060 projected needs of local areas and/or water uses of the areas from which such supplies are proposed to be obtained, with the exception of voluntary transfers of Edwards rights from irrigation to municipal and industrial uses, as will be further explained below. The water management strategies of the 2011 South Central Texas Regional Water Plan were carefully selected so as to have minimal impacts upon the supplies of water projected to be needed for use in rural and agricultural areas. In addition, the costing of each water management strategy includes estimated payments to landowners from which groundwater would be obtained and to holders of surface water rights to reflect that implementation of these water management strategies would compensate the owners of the water by the water users who would obtain and use the water (i.e., the willing seller willing buyer condition underlying the voluntary transfer concept).

Recommended water management strategies of the South Central Texas Regional Water Plan that may involve voluntary redistribution of water from rural and agricultural areas within Region L are listed as follows, along with the portion of the firm new supply potentially considered a voluntary redistribution:²

•	Edwards Transfers	51,875 acft/yr
•	Regional Carrizo for SAWS	11,687 acft/yr
•	Regional Carrizo for SSLGC Project Expansion	10,364 acft/yr
•	Hays/Caldwell PUA Project	35,000 acft/yr
•	TWA Regional Carrizo	27,000 acft/yr
•	CRWA Wells Ranch Project	<u>11,000 acft/yr</u>
	Total	146.926 acft/vr

² The LCRA-SAWS Water Project is not included here, since it includes new supplies to meet agricultural needs in Region K as a part of the strategy to make supplies available to Region L. Similarly, Surface Water Rights is not included as supply quantities are not specified. The GBRA Simsboro Project is not included because the groundwater source is not located in Region L.

5.3 Social and Economic Impacts of Not Meeting Projected Water Needs

Section 357.7(4) of the rules for implementing Senate Bill 1 requires that the social and economic impacts of not meeting regional water supply needs be evaluated by the SCTRWPG. TWDB is required to provide technical assistance, upon request, to complete the evaluations. SCTRWPG requested technical assistance of TWDB to perform the required analyses. TWDB conducted the required analysis of the impacts of the identified needs for the South Central Texas Region using the same methodology that was used for all other regions.

The purpose of this element of Senate Bill 1 planning is to provide an estimate of the social and economic importance of meeting projected water needs or, conversely, provide estimates of potential costs of not meeting projected needs of each water user group. The social and economic effects of not meeting a projected water need can be viewed as the potential benefit to be gained from implementing a strategy to meet the particular need. The summation of all the impacts gives a view of the ultimate magnitude of the impacts caused by not meeting all of the projected needs.

The projected total water demands for the South Central Texas Region increase from 981,370 acft/yr in 2010 to 1.146 million acft/yr in 2030, and 1.292 million acft/yr in 2060 (Table 2-10). Under historic drought of record water supply conditions, and with no water management strategies in place, water needs (shortages) were calculated at 177,915 acft/yr in 2010, increasing to 312,123 acft/yr in 2030 and to 440,430 acft/yr by 2060 (Table 4A-1).

The water needs (shortages) of the region amount to about 18 percent of the projected demand in 2010, increasing to 27.2 percent in 2030, and to 34.1 percent in 2060. This means that by 2060 the region would be able to meet only 65.9 percent of the projected water demands unless supply development or other water management strategies are implemented.

The SCTRWPG identified 82 individual WUGs that showed an unmet need (shortage) during drought-of-record supply conditions (Table 4A-1). Of the 21 counties of the South Central Texas Region, 14 have water user groups with projected water needs (shortages). The water user groups having projected water needs, together with the quantities of projected needs (shortages), are listed by county and river basin of location in the region in Table 4A-1. For example, the projected municipal needs for the City of Lytle (Atascosa County) are 141 acft/yr in 2010, 162 acft/yr in 2030, and 188 acft/yr in 2060 (Table 4A-1). The projected needs for irrigation in Atascosa County are 6,095 acft/yr in 2010, 3,413 acft/yr in 2030, and 291 acft/yr in

2060 (Table 4A-1). The total projected need for Atascosa County is 6,611 acft/yr in 2010, 4,207 acft/yr in 2030, and in 2060 is 3,456 acft/yr (Table 4A-1). The projected quantities of water needed (shortages) for each of the other WUGs of each county can be viewed in Table 4A-1.

The detailed results of the social and economic analyses of not meeting the projected water needs (shortages) for the region and river basins of the region are shown in Appendix E, Tables 9 through 15, and in Appendix 2 Tables of Appendix E for counties. In the case of irrigation, livestock, mining, manufacturing, and steam-electric power generation water user groups with a need, the economic impacts are evaluated in terms of effects upon income, taxes, and employment (jobs lost) due to lost production (Appendix E).³ In the case of municipal water user groups with a projected need, the economic impact evaluation is presented in terms of monetary value of domestic shortages, lost income from reduced commercial business activity, lost jobs from reduced commercial business activity, and lost utility revenues. The total regional effects upon business, personal income, tax payments to governments, employment, population and school enrollment are summarized below.

5.3.1 Lost Income from Reduced (Lost) Production

The estimated effect of water shortages projected for the South Central Texas Region upon income from lost production in the manufacturing, commercial business, steam-electric power generation, mining, and irrigation water using sectors is calculated at \$298.84 million annually in year 2010, and is projected at \$5.94 billion annually in 2030, and \$8.94 billion annually in 2060 (Table 5-3). The economic impact of unmet water needs varies depending on the water user group for which the shortage is projected. The largest impacts result from shortages in manufacturing, commercial establishments, and steam-electric power generation, while shortages for mining and irrigation typically result in the smallest impact (Table 5-3).

5.3.2 Tax Effects

The economic effects of unmet water needs in 2010 upon tax payments to units of local and state governments is \$39.26 million annually, \$667.9 million annually in 2030, and \$964.71 million annually in 2060 (Table 5-3). The manufacturing, commercial business, and steam-

³ Norvell, Stuart, and Shaw, S. Doug, "Socioeconomic Impacts of Projected Water Needs for the South Central Texas Regional Water Planning Area (Region L)," Texas Water Development Board, Austin, Texas, June 2010.

Table 5-3.
Socioeconomic Impacts of Unmet Water Needs
South Central Texas Region

			Yea	ars			
Units	2010	2020	2030	2040	2050	2060	
acft	177,915	269,210	312,123	353,742	393,974	440,430	
come Due to R	educed (Lo	st) Producti	on – Annua	l			
\$ million	146.77	324.94	496.18	948.36	1,451.00	1,777.09	
\$ million	42.91	1,417.03	1,909.07	2,547.77	3,197.28	3,621.31	
\$ million	63.17	3,493.56	3,495.55	3,497.61	3,503.90	3,505.77	
\$ million	2.67	3.12	4.64	5.01	6.44	6.81	
\$ million	43.32	40.63	38.04	35.55	33.17	31.13	
\$ million	298.84	5,279.28	5,943.48	7,034.30	8,191.79	8,942.11	
d Local Taxes 1	from Reduc	ed (Lost) Pr	oduction -	Annual			
\$ million	22.22	52.44	81.52	159.05	245.34	301.91	
\$ million	5.67	7.66	82.41	111.92	134.26	157.25	
\$ million	9.07	501.45	501.73	502.03	502.93	503.49	
\$ million	0.14	0.17	0.34	0.37	0.48	0.51	
\$ million	2.16	2.03	1.90	1.77	1.66	1.55	
\$ million	39.26	563.75	667.90	775.14	884.67	964.71	
Jobs Lost – Annual							
Number	8,274	11,956	15,436	23,170	31,553	38,187	
Number	1,067	1,512	17,808	24,229	29,081	34,108	
Number	215	5,938	5,941	5,945	5,963	5,973	
Number	27	31	53	57	72	77	
Number	545	511	478	447	416	391	
Number	10,128	19,948	39,716	53,848	67,085	78,736	
es Upon Water	Utility Reve	nues, Popu	lation, and	School Enro	ollment		
\$ million	715.54	1,479.80	1,331.33	1,805.79	2,426.71	2,823.29	
\$ million	149.36	212.55	276.64	340.64	402.51	468.01	
Number	12,886	43,823	58,402	74,857	86,896	94,874	
Number	3,635	12,433	15,470	13,835	16,049	17,547	
	acft come Due to R \$ million \$ Number Number Number Number \$ Mumber \$ Mumber \$ million \$ million \$ million \$ million	acft 177,915 come Due to Reduced (Local Smillion) 146.77 \$ million 42.91 \$ million 63.17 \$ million 2.67 \$ million 298.84 d Local Taxes from Reduced Smillion 5.67 \$ million 9.07 \$ million 9.07 \$ million 2.16 \$ million 39.26 Jobs Lost – And Number Number 4,067 Number 27 Number 27 Number 10,128 es Upon Water Utility Reversible \$ million 715.54 \$ million 12,886	acft 177,915 269,210 come Due to Reduced (Lost) Producti \$ million 146.77 324.94 \$ million 42.91 1,417.03 \$ million 2.67 3.12 \$ million 2.67 3.12 \$ million 298.84 5,279.28 d Local Taxes from Reduced (Lost) Pr \$ million 22.22 52.44 \$ million 5.67 7.66 \$ million 9.07 501.45 \$ million 9.07 501.45 \$ million 2.16 2.03 \$ million 39.26 563.75 Jobs Lost - Annual Number 8,274 11,956 Number 1,512 Number 1,067 1,512 Number 215 5,938 Number 245 511 Number 19,948 es Upon Water Utility Revenues, Popues \$ million 149.36 212.55 Number 12,886 43,823	Units 2010 2020 2030 acft 177,915 269,210 312,123 come Due to Reduced (Lost) Production – Annual \$ million 146.77 324.94 496.18 \$ million 42.91 1,417.03 1,909.07 \$ million 63.17 3,493.56 3,495.55 \$ million 2.67 3.12 4.64 \$ million 43.32 40.63 38.04 \$ million 298.84 5,279.28 5,943.48 d Local Taxes from Reduced (Lost) Production – \$ million 22.22 52.44 81.52 \$ million 5.67 7.66 82.41 \$ 152 \$ million 9.07 501.45 501.73 \$ million 0.14 0.17 0.34 \$ million 39.26 563.75 667.90 Jobs Lost – Annual Number 1,067 1,512 17,808 Number 215 5,938 5,941 Number 245 511 478	acft 177,915 269,210 312,123 353,742 come Due to Reduced (Lost) Production – Annual \$ million 146.77 324.94 496.18 948.36 \$ million 42.91 1,417.03 1,909.07 2,547.77 \$ million 63.17 3,493.56 3,495.55 3,497.61 \$ million 2.67 3.12 4.64 5.01 \$ million 43.32 40.63 38.04 35.55 \$ million 298.84 5,279.28 5,943.48 7,034.30 d Local Taxes from Reduced (Lost) Production – Annual \$ million 22.22 52.44 81.52 159.05 \$ million 5.67 7.66 82.41 111.92 \$ million 9.07 501.45 501.73 502.03 \$ million 0.14 0.17 0.34 0.37 \$ million 39.26 563.75 667.90 775.14 Jobs Lost – Annual Number 1,067 1,512 17,808 2	Units 2010 2020 2030 2040 2050 acft 177,915 269,210 312,123 353,742 393,974 come Due to Reduced (Lost) Production – Annual \$ million 146.77 324.94 496.18 948.36 1,451.00 \$ million 42.91 1,417.03 1,909.07 2,547.77 3,197.28 \$ million 63.17 3,493.56 3,495.55 3,497.61 3,503.90 \$ million 2.67 3.12 4.64 5.01 6.44 \$ million 43.32 40.63 38.04 35.55 33.17 \$ million 298.84 5,279.28 5,943.48 7,034.30 8,191.79 d Local Taxes from Reduced (Lost) Production – Annual *** *** *** *** 159.05 245.34 \$ million 5.67 7.66 82.41 111.92 134.26 \$ million 9.07 501.45 501.73 502.03 502.93 \$ million 39.26 563.75 667	

See Table 4A-1 for water needs by county by type of water use, and Region L Totals.

Source: "Socioeconomic Impacts of Projected Water Shortages for the South Central Texas Water Planning Area (Region L)," TWDB, June 2010.

Individual Households and Non-water Intensive Commercial Establishments.

Population and associated school enrollment losses due to jobs lost from unmet water needs.

electric power generation sectors are the largest components of these estimated tax impacts of water shortages (Table 5-3).

5.3.3 Employment Effects

Shortages of water for manufacturing, commercial businesses, steam-electric power generation, mining, and irrigation purposes would result in reduced number of jobs in theses economic sectors of the region. The socioeconomic impact analysis shows 10,128 fewer jobs in 2010, 39,716 fewer in 2030, and 78,736 fewer in 2060 due to the employment or unemployment effects of unmet water needs (Table 5-3).

5.3.4 Value of Domestic Water Shortages and Water Utility Revenue Losses

In Region L, there are 71 municipal water user (WUGS) groups with projected needs (shortages) during the planning period. The value of domestic water shortages for these WUGS in 2010 was computed at \$715.54 million annually, and is projected at \$1.33 billion annually in 2030 and \$2.82 billion annually in 2060 (Table 5-3). The value of lost water utility revenues is \$149.36 million annually in 2010, and is projected at \$276.64 million annually in 2030 and \$468.01 million annually in 2060 (Table 5-3).

5.3.5 Population

The projected population growth of the region would be reduced through a reduced rate of job creation if projected water needs are not met. Shortages of water for manufacturing, commercial businesses, steam-electric power generation, mining, and irrigation purposes would result in out-migration of some current population, and reduced in-migration, resulting in reduced future population growth. The region could expect 12,886 fewer people in 2010, 58,402 fewer in 2030, and 94,874 fewer in 2060 due to the employment or unemployment effects of unmet water needs (Table 5-3).

5.3.6 School Enrollment

School enrollment is related to the size of the population of childbearing age, which is dependent upon employment, as mentioned above. Failure to meet the projected water needs of the region, such that employment opportunities are affected, would result in lower population and reduced school enrollment. School enrollment estimates for the region, as a result of

population losses due to unemployment resulting from unmet water needs are 3,635 less in 2010, 15,470 less in 2030, and 17,547 less in 2060 than if the projected water needs

5.4 Discussion Related to Rural and Agricultural Areas

The recommended Edwards Transfers would result in the transfer of irrigation water supply projected to be needed for irrigation use in the amount of 11,973 acft/yr in 2010, declining to 6,200 acft/yr in 2020, 1,362 acft/yr in 2030, and zero thereafter (Section 4C.3). None of the other recommended water management strategies of the South Central Texas Regional Water Plan would transfer water from rural and agricultural areas that is projected to be needed in those areas during the planning period. Thus, the only lost production and third-party economic impacts of transfers are expected from the Edwards Transfers listed above. However, implementation of the recommended water management strategies would result in: (1) drawdown of the water table, increasing local area pump lifts in the aquifer areas from which groundwater would be obtained; and would (2) provide payments to landowners for groundwater and to holders of surface water permits for use of surface water at rates established by the surface water permit holders. In addition, implementation of recommended water management strategies can be expected to result in construction and associated expenditures in local areas where such projects are constructed, but neither the economic benefits of such expenditures, nor the subsequent economic development that might result from such expenditures are estimated due to lack of information pertaining to such activities.

Although it is not possible to estimate total costs of any additional pump lifts or deepening of wells resulting from implementation of recommended water management strategies in the Region L Plan due to lack of information about location and numbers of wells that might be affected, estimates for a single family home range from less than \$2.00 per year where additional lift might be 25 feet to less than \$10.00 per year if lift is increased by 150 feet.

(This page intentionally left blank.)

Section 6

Water Conservation and Drought Management Recommendations [31 TAC § 357.7(a)(11)]

6.1 Water Conservation

The South Central Texas Regional Water Planning Group (SCTRWPG) strongly supports water conservation, and for the 2011 Regional Water Plan has recommended municipal, irrigation, and mining water conservation water management strategies. Water conservation strategies in the industrial and steam-electric power generation use categories are encouraged as well. Each of the water conservation water management strategies is described briefly below.

Municipal Water Conservation: The South Central Texas Regional Water Planning Group established municipal water conservation goals, as follows:

- For municipal water user groups (WUGs) with water use of 140 gpcd and greater, reduction of per capita water use by 1 percent per year until the level of 140 gpcd is reached, after which, the rate of reduction of per capita water use is one-fourth percent (0.25 percent) per year for the remainder of the planning period; and
- For municipal WUGs having year 2000 water use of less than 140 gpcd, reduction of per capita water use by one-fourth percent per year.

The municipal water conservation water management strategy included in the 2006 and 2011 Regional Water Plans is based upon water conservation Best Management Practices (BMPs) for municipal water users, as included in the Water Conservation Implementation Task Force November 2004 Report to the 79th Texas Legislature. The list of Municipal Water Conservation BMPs is as follows:

- 1. System Water Audit and Water Loss;
- 2. Water Conservation Pricing;
- 3. Prohibition on Wasting Water;
- 4. Showerhead, Aerator, and Toilet Flapper Retrofit;
- 5. Residential Ultra-Low Flow Toilet Replacement Programs;
- 6. Residential Clothes Washer Incentive Program;
- 7. School Education;
- 8. Water Survey for Single-Family and Multi-Family Customers;
- 9. Landscape Irrigation Conservation and Incentives;
- 10. Water-Wise Landscape Design and Conversion Programs;
- 11. Athletic Field Conservation;
- 12. Golf Course Conservation;

- 13. Metering of all New Connections and Retrofitting of Existing Connections;
- 14. Wholesale Agency Assistance Programs;
- 15. Conservation Coordinator;
- 16. Reuse of Reclaimed Water;
- 17. Public Information;
- 18. Rainwater Harvesting and Condensate Reuse;
- 19. New Construction Graywater;
- 20. Park Conservation: and
- 21. Conservation Programs for Industrial, Commercial, and Institutional Accounts.

The SCTRWPG acknowledges and supports the creation and activities of the Water Conservation Advisory Council created by House Bill 4 and Senate Bill 3 of the 80th Texas Legislature. In addition, the SCTRWPG acknowledges and supports the implementation of House Bill 2667 of the 81st Texas Legislature relating to performance standards for plumbing fixtures sold in Texas.

The Municipal Water Conservation water management strategy includes retrofit of plumbing fixtures, adoption and use of efficient clothes washers, and significant reduction of lawn and landscape watering. The combined plumbing fixtures, clothes washers, and lawn watering water conservation practices would reduce municipal water demand by 13,231 acft/yr in 2010, 31,616 acft/yr in 2030, and 72,570 acft/yr in 2060 (Section 4C.1). Of these totals, in 2010, 91 percent would be from plumbing fixtures and clothes washers, and 9 percent would be from lawn watering. In 2030, of the 31,616 acft/yr of municipal water conservation, 48 percent would be from plumbing fixture and clothes washer retrofit, and 52 percent would be from lawn irrigation, while in 2060, the 72,570 acft/yr of municipal water conservation would be 26 percent would be from plumbing fixtures and clothes washers, and 74 percent would be from lawn irrigation.

In 2010, total cost for implementation and administration of the municipal water conservation water management strategy to meet the Region L goals, as described in the municipal water conservation water management strategy (Section 4C.1), is \$8.57 million (\$648/acft/yr), increasing to \$18.47 million (\$584/acft/yr) in 2030, and to \$41.05 in 2060 (\$566/acft/yr). As the quantity of water conservation (demand reduction) increases, the unit cost decreases from \$648 per acft in 2010, to \$584 per acft in 2030, and to \$566 per acft in 2060.

Irrigation Water Conservation: The irrigation water conservation water management strategy is based upon water conservation Best Management Practices for agricultural water, as

included in the Water Conservation Implementation Task Force November 2004 Report to the 79th Texas Legislature. The list of Irrigation BMPs is as follows:

- 1. Irrigation Scheduling;
- 2. Volumetric Measurement of Irrigation Water Use;
- 3. Crop Residue Management and Conservation Tillage;
- 4. On-farm Irrigation audit;
- 5. Furrow Dikes;
- 6. Land Leveling;
- 7. Contour Farming;
- 8. Conservation of Supplemental Irrigated Farmland to Dry-Land Farmland;
- 9. Brush Control/Management;
- 10. Lining of On-Farm Irrigation Ditches;
- 11. Replacement of On-/farm Irrigation Ditches with Pipelines;
- 12. Low Pressure Center Pivot Sprinkler Irrigation Systems;
- 13. Drip/Micro-Irrigation System;
- 14. Gated and Flexible Pipe for Field Water Distribution Systems;
- 15. Surge Flow Irrigation for Field Water Distribution Systems;
- 16. Linear Move Sprinkler Irrigation Systems;
- 17. Lining of District Irrigation Canals;
- 18. Replacement of District Irrigation Canals and Lateral Canals with Pipelines;
- 19. Tailwater Recovery and Use System; and
- 20. Nursery Production Systems.

Best Management Practices of Low Energy Precision Application (LEPA) techniques are estimated to reduce water needed per acre by 20 percent of the rates estimated to have been used in Region L in year 2000. Based upon estimates that irrigation water conservation practices of LEPA, with furrow dikes, can be applied to 75 percent of the acreages that were irrigated in year 2000 in the counties of the region for which water needs have been projected, it is estimated that 23,074 acft/yr of irrigation water conservation can be accomplished at an average cost of \$137/acft/yr (Section 4C.1).

Industrial, Steam-Electric Power, and Mining Water Conservation: Best Management Practices for industrial, steam-electric power, and mining water conservation, as included in the Water Conservation Implementation Task Force November 2004 Report to the 79th Texas Legislature are as follows:

- 1. Industrial Water Audit:
- 2. Industrial Water Waste Reduction;
- 3. Industrial Submetering;

- 4. Cooling Towers;
- 5. Cooling Systems Other than Cooling Towers;
- 6. Industrial Alternative Sources and Reuse of Process Water;
- 7. Rinsing/Cleaning;
- 8. Water Treatment;
- 9. Boiler and Steam Systems;
- 10. Refrigeration (including Chilled Water);
- 11. Once-through Cooling;
- 12. Management and Employee Programs;
- 13. Industrial Landscape; and
- 14. Industrial Site Specific Conservation.

BMPs of air cooling, reuse of treated wastewater, and onsite collection and use of precipitation runoff for mining are recommended. Potential quantities and costs, however, could not be estimated due to lack of data (Section 4C.1).

Model Municipal Water Conservation Plan: The model municipal water conservation plan required for the South Central Texas Regional Water Plan is included in Appendix F, and has the following components:

- A. Utility Profile
 - I. Population and Customer Data
 - II. Water Use Data for Service Area
 - III. Water Supply System Data
 - IV. Wastewater System Data
- B. Requirements for Water Conservation Plans for Municipal Water Use by Public Water Suppliers
 - 1. Specific, Quantified 5 and 10 year water conservation targets and goals for municipal water use, in gallons per capita per day
 - 2. Metering Devices Description Required
 - 3 Universal Metering Program Required
 - 4. Unaccounted-For Water Use Measures to Determine and Control
 - 5. Continuing Public Education & Information Program Description Required
 - 6. Non-Promotional Water Rate Structure Required, and included in Water Conservation Plan
 - 7. Reservoir Systems Operation Plan Required, if Applicable
 - 8. Enforcement Procedure & Plan Adoption Means of Implementation and Enforcement Requirements
 - 9. Coordination with the Regional Water Planning Group(s) Documentation of consistency with Regional Water Plans
 - 10. Additional Requirements
 - a. Program for Leak Detection, Repair, and Water Loss Accounting
 - b. Record Management System, and
 - c. Plan Review and Update every 5 years.

Water conservation information and guidance in the development of municipal water conservation plans can be found at the following web site:

www.tceq.state.tx.us/permitting/water_supply/water_rights/conserve.html

Model Irrigation Water Conservation Plan: There is no model irrigation water conservation plan in the South Central Texas Regional Water Plan. A form is provided by TCEQ to assist in conservation plan development for individually operated irrigation systems at the following web site:

• www.tceq.state.tx.us/assets/public/permitting/watersupply/water_rights/10238.pdf

Model Industrial/Mining Water Conservation Plan: There is no model industrial/mining water conservation plan in the South Central Texas Regional Water Plan. A form is provided by TCEQ to assist in conservation plan development for industrial/mining water use at the following web site:

• www.tceq.state.tx.us/assets/public/permitting/forms/10213.pdf

Recommendation: The South Central Texas Regional Water Planning Group strongly recommends the implementation of the Municipal, Industrial, Irrigation, Steam-Electric Power Generation, and Mining Water Conservation, and that each water user develop, implement, and maintain a Water Conservation Plan that meets or exceeds the requirements of applicable law.

6.2 Drought Management

31 TAC §357.7(a)(11) requires that the regional water plan identify: (A) factors specific to each source of water supply to be considered in determining whether to initiate a drought response; and (B) actions to be taken as part of the response. The general recommendations of the SCTRWPG regarding identification and initiation of drought responses for current water supply sources in the South Central Texas Region are listed in Table 6-1. As the SCTRWPG is a planning body only, with no implementation authority, it is emphasized that these drought responses are recommendations only. Local public and private water suppliers and water districts have been required by TCEQ to adopt a Drought Contingency Plan that contains drought triggers and responses unique to each specific entity. Furthermore, these entities have the authority and responsibility to manage their particular water supply within the bounds created by applicable

law. Therefore, the SCTRWPG encourages these entities to implement their respective plans with due consideration of the recommendations summarized in Table 6-1.

The SCTRWPG has developed a general methodology for estimating the economic impacts associated with implementation of drought management as a water management strategy. Application of this methodology for regional water planning purposes has facilitated comparison of drought management to other potentially feasible water management strategies on a unit cost basis (Section 4C.2). The SCTRWPG has found, and the San Antonio Water System (SAWS) has demonstrated, that water user groups having sufficient flexibility to focus on discretionary outdoor water use first and avoid water use reductions in the commercial and manufacturing use sectors may find some degrees of drought management to be economically viable and cost-competitive with other water management strategies. Recognizing that implementation of appropriate water management strategies is a matter of local choice, the SCTRWPG recommends due consideration of economically viable drought management as an interim strategy to meet near-term needs through demand reduction until such time as economically viable long-term water supplies can be developed.

Table 6-1.
Identification and Initiation of Drought Responses

Source of Water Supply	Factors to be Considered in Initiating Drought Response(s)	Potential Drought Responses
Edwards Aquifer	 Local/regional well levels Springflow maintenance Water needs for health & safety Availability of alternative sources 	 Reductions in allowable withdrawals Implementation of Drought Contingency Plans Increase reliance on alternative sources
Carrizo & Other Aquifers	 Local/regional well levels Water stored in formation vs. use Acceptable long-term drawdown Production facility constraints 	Implementation of Drought Contingency Plans Groundwater district rules Increase production facility capacity
Surface Water	 Streamflow/reservoir storage Water right priority and special conditions Dependable supply vs. use Availability of alternative sources 	Implementation of Drought Contingency Plans Coordination with TCEQ Watermaster Increase reliance on alternative sources

HR

¹ SCTRWPG, "2011 Regional Water Plan, Study 3, Enhanced Water Conservation, Drought Management, and Land Stewardship," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

Model Drought Contingency Plan for Retail Public Water Suppliers: The model municipal drought contingency plan required for the South Central Texas Regional Water Plan is included in Appendix G, and has the following components:

<u>Section</u>	Contents
I	Declaration of Policy, Purpose, and Intent
II	Public Involvement
III	Public Education
IV	Coordination with Regional Water Planning Groups
V	Authorization
VI	Application
VII	Definitions
VIII	Criteria for Initiation and Termination of Drought Response Stages
	 Stage 1 Triggers – Mild Water Shortage Condition
	 Stage 2 Triggers – Moderate Water Shortage Conditions
	 Stage 3 Triggers – Severe Water Shortage Conditions
	 Stage 4 Triggers – Critical Water Shortage Conditions
	 Stage 5 Triggers – Emergency Water Shortage Conditions
	Stage 6 Water Allocation
IX	Drought Response Stages
	 Notification
	• Response(s) (See Appendix G for list of potential responses by Stage)

Information and guidance in the development of drought contingency plans can be found at the following web site:

• www.tceq.state.tx.us/permitting/water_supply/water_rights/contingency.html

Recommendation: The South Central Texas Regional Water Planning Group recommends that each municipal water supplier develop, implement, and maintain a Drought Contingency Plan that meets or exceeds the requirements of applicable law.

6.2.1 Groundwater

In the case of the Edwards Aquifer, Senate Bill 3 of the 80th Texas Legislature established a maximum annual amount of permitted withdrawals from the aquifer of 572,000 acft/yr, specific critical period management plan provisions, interim minimum annualized rates for permitted withdrawals in critical period of 320,000 acft/yr, and a Recovery Implementation Program for protection of endangered species. Thus, for purposes of water supply analyses for the 2011 South Central Texas Regional Water Plan, the permitted supply from the Edwards

Aquifer is assumed to be 320,000 acft/yr.² The Edwards Aquifer Authority (EAA) has adopted Demand Management and Critical Period rules that are consistent with Senate Bill 3 and establish trigger conditions for recognition of drought and specify reductions in withdrawals from the Edwards Aquifer when these trigger conditions are met. Subject to permitted withdrawals totaling 572,000 acft/yr, these rules reflect staged reductions in permitted withdrawals ranging from five to 40 percent during periods in which water levels in representative monitoring wells in Bexar and Uvalde Counties or discharges at Comal or San Marcos Springs have fallen below specified trigger levels. Tables 6-2 and 6-3 summarize the factors specific to the Edwards Aquifer in determining whether to initiate a drought response and the reductions in withdrawal expected as part of the response. For comprehensive information supplementing that shown in Tables 6-2 and 6-2, please refer to the rules of the EAA.

It is expected that U.S. Fish & Wildlife Service approval of an Habitat Conservation Plan will form the basis for identification of appropriate springflow levels or other measures for protection of threatened and endangered species. Until these springflow levels and/or other measures are identified and approved, appropriate timing for initiation of drought responses is uncertain. The SCTRWPG encourages the timely implementation of this Regional Water Plan as a preemptive drought response so that alternative sources of supply and/or enhanced supplies from the Edwards Aquifer will be available to satisfy regional water needs, maintain springflow, and protect endangered species to the extent required by State and Federal law.

Water supplies available from the Carrizo Aquifer and other aquifers in Region L are less subject to transient hydrologic drought conditions than the Edwards Aquifer and are more dependent upon water stored in the formation and the acceptability of long-term depletion or drawdown. If depletion of storage in these aquifers is occurring at an unacceptable pace (typically measured over many years, rather than a few months), there is likely to be sufficient time to amend groundwater district rules and/or develop alternative sources of supply. As with any source of water supply, production facility constraints may necessitate expedited increases in production capacity or implementation of drought contingency measures during dry periods when peak water demands are greatest.

_

² For planning purposes, an estimate of 320,000 acft/yr of available supply during a drought of record from the Edwards Aquifer was agreed upon by the SCTRWPG and the staff of the TWDB. This quantity is adopted as a placeholder number until the EAA obtains approval of a Habitat Conservation Plan (HCP) from the U.S. Fish and Wildlife Service.

Table 6-2. Senate Bill 3 Critical Period Withdrawal Reduction Stages for the San Antonio Pool

	Trigge					
		Springt	ows (cfs)		San Antonio Pool	
Reduction Stage	J-17 (ft-msl)	San Marcos	Comal	J-27 (ft-msl)	Withdrawal Reduction	
I	660	96	225	N/A	20 %	
II	650	80	200	N/A	30 %	
III	640	N/A	150	N/A	35 %	
IV	630	N/A	100	N/A	40 %	

Table 6-3.
Senate Bill 3 Critical Period Withdrawal Reduction Stages for the Uvalde Pool

	Trigge							
		Springflows (cfs)		Springflows (cfs)			Uvalde Pool	
Reduction Stage	J-17 (ft-msl)	San Marcos	Comal	J-27 (ft-msl)	Withdrawal Reduction			
I	N/A	N/A	N/A		N/A			
II	N/A	N/A	N/A	850	5 %			
III	N/A	N/A	N/A	845	20 %			
IV	N/A	N/A	N/A	842	35 %			

6.2.2 Surface Water

Supplies from surface water sources such as run-of-river water rights and reservoirs are determined on the basis of minimum month availability and firm yield, respectively. Hence, the current surface water supplies presented herein are, by TWDB definition, dependable during drought. Factors that are typically considered in initiating drought response for surface water sources are low streamflow and/or low reservoir storage, since these factors can be conveniently measured and monitored. In contrast to groundwater sources, water right priority with respect to other rights and special permit conditions regarding minimum instream flows can also be important factors in determining whether to initiate drought responses for surface water sources. In the Guadalupe-San Antonio and Nueces River Basins, coordination with the TCEQ South Texas Watermaster is an essential drought response for all entities dependent upon surface water supply sources.

6.2.2.1 Potential for Emergency Transfers of Surface Water

In accordance with [31 TAC §357.5 (i)], the SCTRWPG is to consider emergency transfers of surface water including a determination of the portion of each right for non-municipal use that may be transferred without causing unreasonable damage to the property of the non-municipal water right holder. The Executive Director of TCEQ, after notice to the Governor, may issue emergency permits or temporarily suspend or amend permit conditions without notice or hearing to address emergency conditions for a limited period of not more than 120 days if an imminent threat to public health and safety exists. A person desiring to obtain an emergency authorization is required to justify the request to TCEQ. If TCEQ determines the request is justified, it may issue an emergency authorization without notice and hearing, or with notice and hearing, if practicable. Applicants for emergency authorizations are required to pay fair market value for the water they are allowed to divert, as well as any damages caused by the transfer. In transferring the quantity of water pursuant to an emergency authorization request, the Executive Director, or the TCEQ, shall allocate the requested quantity among two or more water rights held for purposes other than domestic or municipal purposes.

Surface water availability models have been developed for the streams of the South Central Texas Region (Region L) in which the locations, quantities, and reliabilities of the surface water rights of the region have been quantified as described in Section 3, entitled Water Supply Analyses. The Regional Water Plan incorporates Appendix B as a source of information to water user groups and the TCEQ for use in cases of emergencies that result in a threat to public health and safety. Water user groups located in proximity to one or more existing surface water diversion permits for non-municipal use can readily estimate quantities of water that might be available for emergency use applications. With regard to the determination of amounts "that may be transferred without causing unreasonable damage to the property of the non-municipal water rights holder," the SCTRWPG defers to the judgment of the TCEQ inasmuch as the TCEQ is charged with consideration of sworn applications for emergency transfer authorizations. The SCTRWPG recommends that water user groups of the region develop emergency water supply plans to be activated in the event that public health and safety are threatened.

Section 7

Consistency with Long-Term Protection of the State's Water, Agricultural, and Natural Resources [31 TAC §357.7(a)(13) and §357.14(2)(C)]

The 2011 South Central Texas Regional Water Plan (2011 Plan) is consistent with long-term protection of the state's water resources, agricultural resources, and natural resources and is based on principles outlined in the Texas Administrative Code Chapter 358–State Water Planning Guidelines. The 2011 Plan was formulated and developed with an understanding of the importance of orderly development, management, and conservation of water resources to meet the Region's near and long-term water needs during drought. The plan recognizes and honors all laws and existing permits applicable to water use for the state and regional water planning areas and, in the case of groundwater, recognizes and takes into account the programs and rules of groundwater conservation districts within the South Central Texas Water Planning Region (Section 3).

The 2011 Plan identifies actions and policies necessary to meet the Region's projected municipal, industrial, steam-electric power, mining, livestock, and most of irrigation needs, by developing and recommending water management strategies (WMS) to meet these needs at a reasonable cost (Section 4B). It was not possible, however, to develop economically feasible strategies to meet all of the projected needs of irrigated agriculture. A socioeconomic impact analysis was performed to estimate the economic loss associated with not meeting these needs (Appendix E).

Development of the 2011 Plan included consideration of environmental information resulting from site-specific studies and ongoing water development projects when evaluating water management strategies. A list of endangered and threatened species and species of concern for each county of the region was obtained from the Texas Parks & Wildlife Department (TPWD) and the possible habitats for these species were considered for each water management strategy (Appendix H). In addition, a comprehensive environmental assessment, potential environmental effects analysis, and cumulative effects analyses were performed for the recommended water management strategies of the plan (Sections 7.1 and 7.2). Section 7.3 summarizes the environmental benefits and concerns associated with implementation of the 2011 South Central Texas Regional Water Plan.

The 2011 Plan includes water conservation and drought management water management strategies based upon municipal water conservation best management practices (BMPs), and initiatives to respond to drought conditions by the municipal water user groups, and the use of water conservation BMPs in the irrigation water use group.

Implementation of the water management strategies recommended in the plan is generally scheduled to meet projected needs at the least capital, operating, and environmental costs, and thereby the plan meets the condition of "feasible strategies at reasonable costs," as specified in Texas Water Development Board (TWDB) guidelines for regional water planning. The 2011 Plan is based on the condition of voluntary transfers of water resources to meet projected needs, including the underlying principles that local area projected needs to 2060 are met before any consideration is given to movement of water from rural and agricultural areas to meet projected needs at more distant locations, that compensation will be made to water owners for water to meet projected needs of others, and an evaluation made of the social and economic impacts of voluntary transfers of water from rural and agricultural areas (Section 5.2).

The South Central Texas Regional Water Planning Group (SCTRWPG) conducted quarterly public meetings during the 2011 planning cycle and based its decisions upon the best available information. The SCTRWPG coordinated water planning and management activities with local, regional, state, and federal agencies and cooperated and coordinated with Regions N, P, K, G, and J (Coastal Bend, Lavaca, Lower Colorado, Brazos G, and Plateau, respectively) to identify common needs and cooperative opportunities.

The SCTRWPG has conditionally recommended that five stream segments be designated as having unique ecological value by the Texas Legislature. The SCTRWPG developed policy recommendations for the 2011 Plan including improved water demand and water supply data, continued support for the rule of capture as modified by the rules and regulations of existing groundwater conservation districts, continued funding for regional water planning, and especially that the Legislature provide adequate funding for the implementation of water management strategies of the plan (Section 8).

7.1 Cumulative Effects of Regional Water Plan Implementation

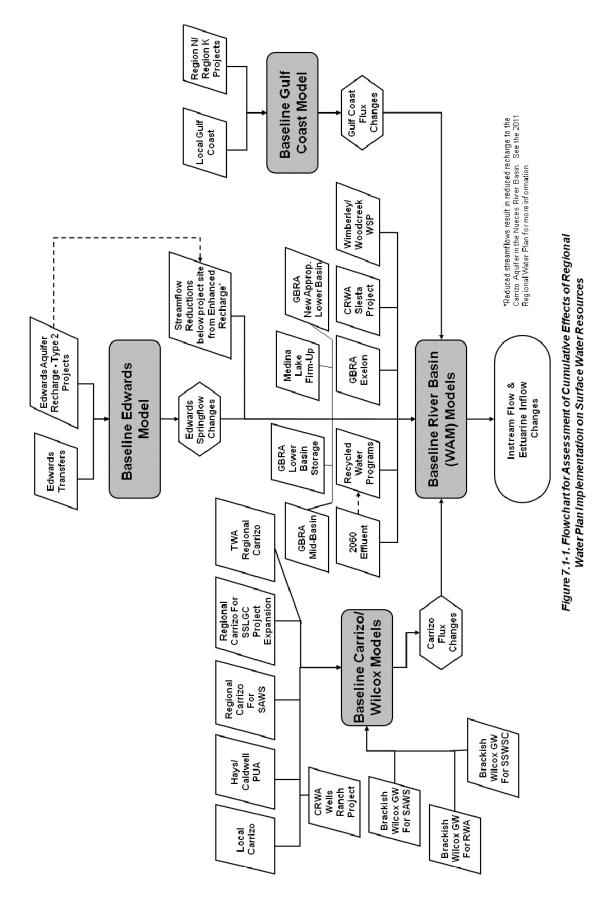
Sophisticated hydrologic models have been employed to quantify the cumulative effects of implementation of the South Central Texas Regional Water Plan through the year 2060. Such models include the GWSIM-IV Edwards Aguifer model (GWSIM-IV), 1,2 Groundwater Availability Models for Carrizo-Wilcox, Queen City, and Sparta Aquifers (Southern Carrizo GAM and Central Carrizo GAM),³ Guadalupe-San Antonio River Basin Water Availability Model (GSAWAM),⁴ Nueces River Basin Water Availability Model (Nueces WAM),⁵ and Lower Nueces River Basin and Estuary Model (NUBAY).⁶

The cumulative effects are quantified through long-term simulation of natural hydrologic processes including precipitation, streamflow, aquifer recharge, springflow, and evaporation as they are affected by human influences such as aquifer pumpage, reservoirs, diversions, and the discharge of treated effluent. Figure 7.1-1 illustrates the connectivity of the various groundwater and surface water models, as well as the water management strategies of the 2011 Regional Water Plan.

7.1.1 Groundwater and Springs

Cumulative effects of plan implementation on the Edwards Aquifer are measured against a baseline representative of full utilization of Initial Regular Permits of a total of 572,000 acft/yr subject to Critical Period Management rules, as outlined in Senate Bill 3 of the 80th Texas Legislature, without any additional recharge enhancement projects. The baseline also includes approximately 20,000 acft/yr of domestic, livestock, and federal use. Edwards Aquifer

¹ Texas Department of Water Resources, "Groundwater Resources and Model Applications for the Edwards (Balcones Fault Zone) Aquifer in the San Antonio Region," Report 239, October 1979.


Texas Water Development Board, "Model Refinement and Applications for the Edwards (Balcones Fault Zone) Aquifer in the San Antonio Region, Texas," Report 340, July 1992.

³ INTERA Incorporated, "Groundwater Availability Models for the Queen City and Sparta Aquifers," Texas Water Development Board, October 2004.

⁴ HDR Engineering, Inc., "Water Availability in the Guadalupe-San Antonio River Basin," Texas Natural Resource Conservation Commission (TNRCC), December 1999.

⁵ HDR Engineering, Inc., "Water Availability in the Nueces River Basin," TNRCC, October 1999.

⁶ HDR Engineering, Inc., "Updates and Enhancements to Lower Nueces River Basin Bay and Estuary Model and Corpus Christi Water Supply Model," City of Corpus Christi, January 2006.

simulations with implementation of the Plan do not reflect the use of available System Management Supplies as may be necessary to offset Edwards Aquifer pumpage reductions to maintain springflow. Cumulative effects of plan implementation on Carrizo and Wilcox Aquifer levels are measured against a baseline of projected local pumpage.

The potential cumulative effects of plan implementation on Comal Springs discharge from the Edwards Aquifer are shown in Figure 7.1-2 for a 56-year historical simulation period. Springflows would increase by a net average of about 11 cfs (5.7 percent) considering the offsetting effects of Edwards Recharge – Type 2 Projects (Figure 7.1-3) and increased pumpage closer to the springs associated with Edwards Transfers. Additional information regarding Edwards Transfers and Recharge – Type 2 Projects can be found in Sections 4C.3 and 4C.4 (Volume II) respectively. As shown in Figures 7.1-4 and 7.1-5, simulated San Marcos Springs and Leona Springs discharges would increase substantially because of the Edwards Recharge – Type 2 Projects, particularly the Lower Blanco Project and the Indian Creek Project, respectively. Overall pumpage from the Edwards Aquifer could increase (Figure 7.1-6) due to potential Edwards Aquifer Authority permits for recharge recovery and decreased frequency of withdrawal restrictions pursuant to development of the Edwards Recharge – Type 2 Projects. Figure 7.1-7 shows simulated water levels at key monitoring wells in Uvalde and Bexar Counties with implementation of the Plan.

The long-term cumulative effects of recommended water management strategies in the 2011 Regional Water Plan on the Carrizo Aquifer have been simulated using the Southern Carrizo GAM and the Central Carrizo GAM. The Southern Carrizo GAM provides suitable coverage over most of the Carrizo Aquifer in Region L, including the western part of Gonzales County; however, the model coverage ends about 6-miles northeast Gonzales County. Therefore, the Central Carrizo GAM was used to evaluate WMS projects in eastern Gonzales County to avoid interference from the general head boundary, which may inaccurately represent drawdown conditions for pumping near the model boundary.

For the purpose of the cumulative effects evaluation, desired project sizes, as requested by the sponsors, by decade were totaled and the predictive pumpage was amended to conform to groundwater availability provided by groundwater conservation districts, where applicable. Therefore, pumpage associated with all of the WMS (except for projects in Caldwell County) was reduced on a pro-rata basis, from the quantities used in the WMS evaluations. For example, in Gonzales County the amount of water remaining for WMS in 2060 after subtracting local

groundwater demands from the groundwater availability provided by GCUWCD is 23,852 acft from the Carrizo Aquifer. However, the total amount requested by specific entities totals 75,790 acft. Therefore, for cumulative effects modeling purposes, the amount of pumpage applied to each entity was proportioned based on their requested amount in order to total 23,852 acft in 2060. Figure 7.1-8 presents the cumulative effects predictive pumpage for Gonzales County by decade.

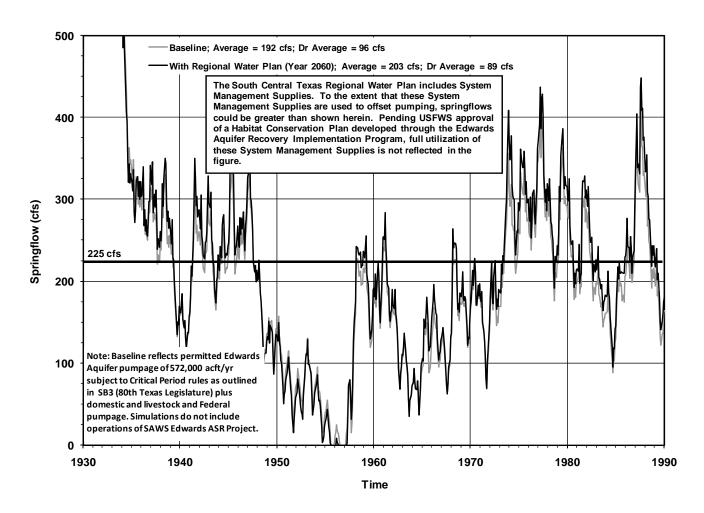


Figure 7.1-2. Simulated Comal Springflow

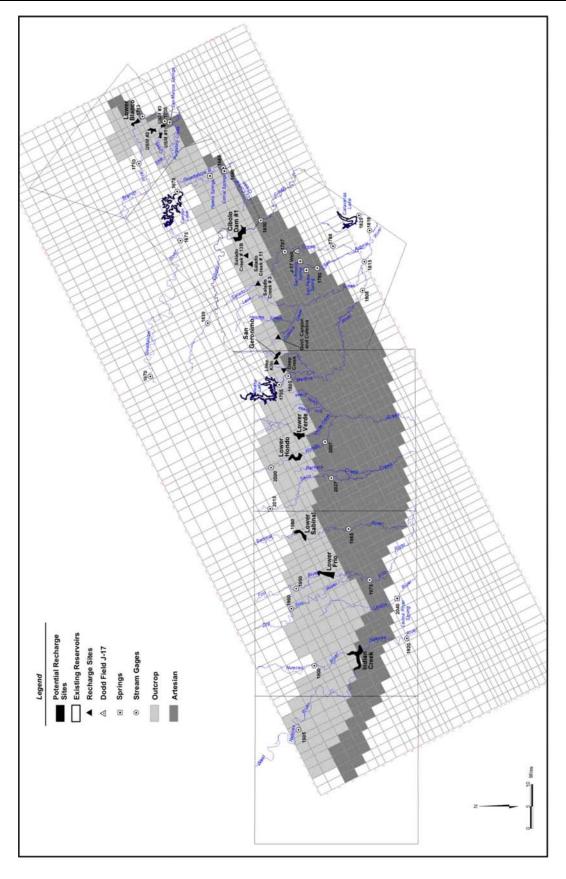


Figure 7.1-3. Edwards Recharge — Type 2 Projects

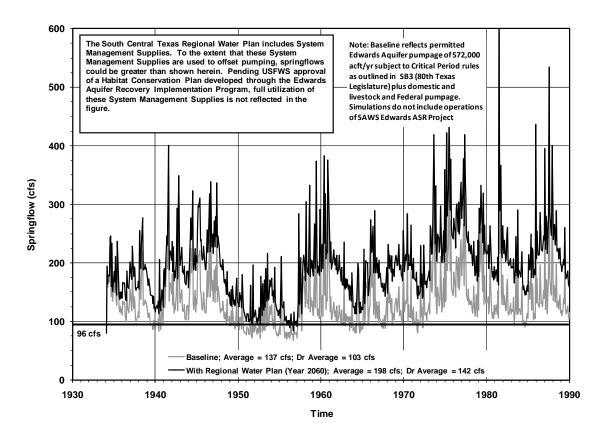


Figure 7.1-4. Simulated San Marcos Springflow

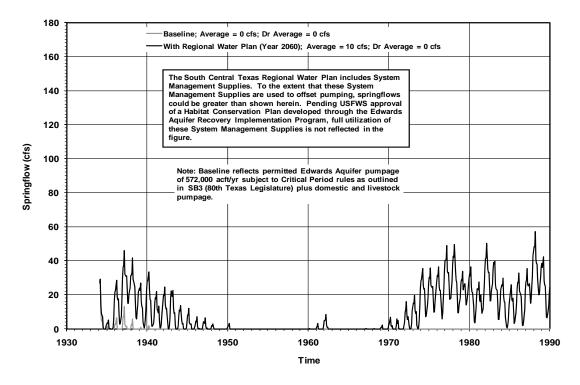


Figure 7.1-5. Simulated Leona Springflow

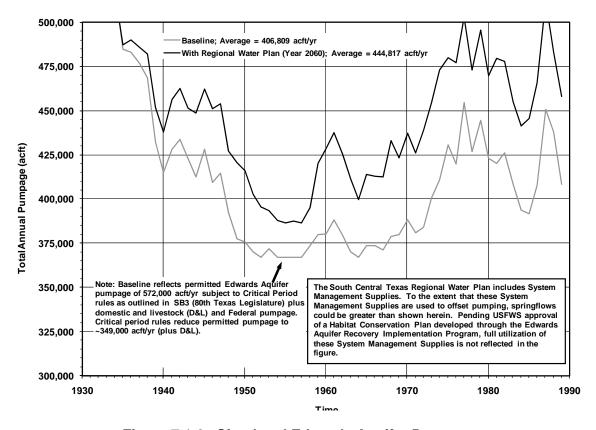


Figure 7.1-6. Simulated Edwards Aquifer Pumpage

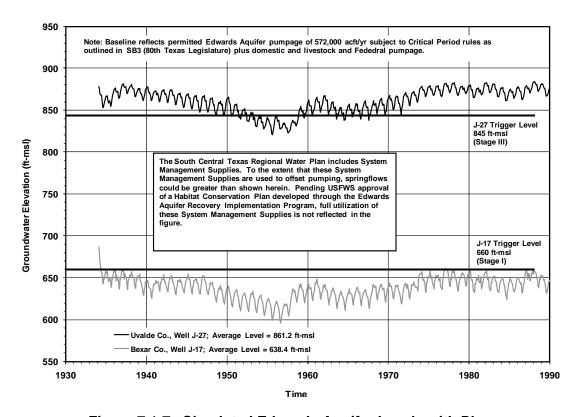


Figure 7.1-7. Simulated Edwards Aquifer Levels with Plan

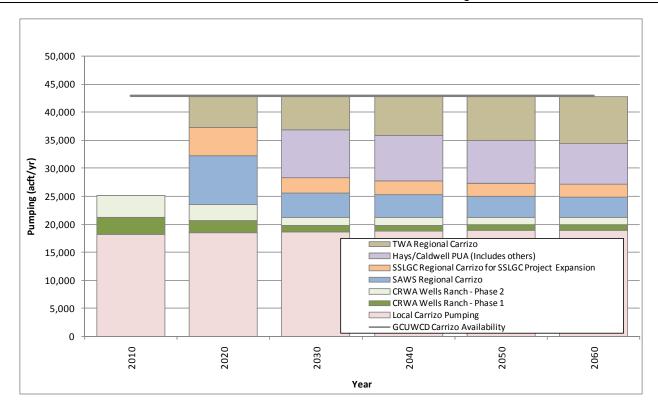


Figure 7.1-8. Cumulative Effects Simulation Predictive Groundwater Pumpage by Decade (Gonzales County Example)

Predictive simulations were performed for the 2002-2060 time period. Local pumpage and groundwater project pumpage resulted in water surface elevations in the Carrizo and Wilcox Aquifers being reduced over the time period of the simulation. The resulting Carrizo and Wilcox Aquifer drawdowns over the 59-year simulation period are presented in Figures 7.1-9 and 7.1-10, respectively, and drawdown hydrographs at WMS pumping centers are presented in Figures 7.1-11 and Figure 7.1-12. Fluctuations in drawdowns over time are a result of pumping adjustments as new WMS come online. For example, in Gonzales County, as new projects come online, the proportion of pumping for each project is reduced, as shown in Figure 7.1-8.

Due to the effect of vertical communication between adjacent geologic formations, pumping in the Carrizo may also cause lesser drawdown in adjacent formations such as the Wilcox, Queen City, and Sparta Aquifers. Drawdown in the outcrop areas of each aquifer, where hydrologic interaction between the aquifers and the stream channels occurs, resulted in a reduction of the modeled flow (flux) that naturally occurs from the aquifers to the stream channel. The cumulative effects of drawdown in all modeled aquifers in the Southern Carrizo

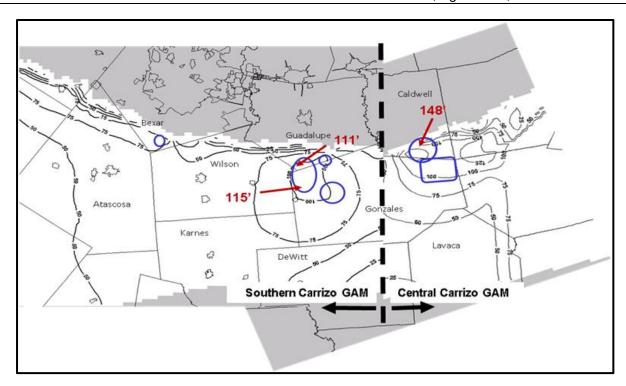


Figure 7.1-9 Southern Carrizo GAM and Central Carrizo GAM Cumulative Effects Simulation 2002 to 2060 Carrizo Drawdown

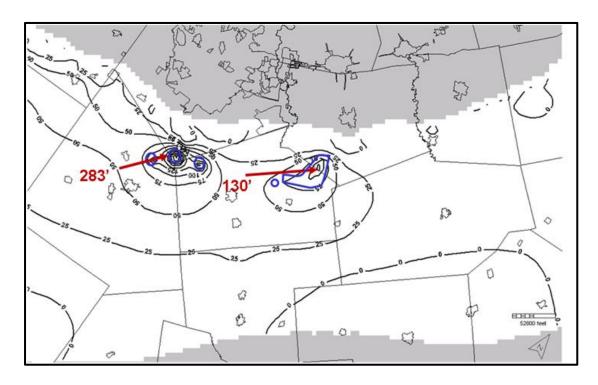


Figure 7.1-10 Southern Carrizo GAM Cumulative Effects Simulation 2002 to 2060 Wilcox Drawdown

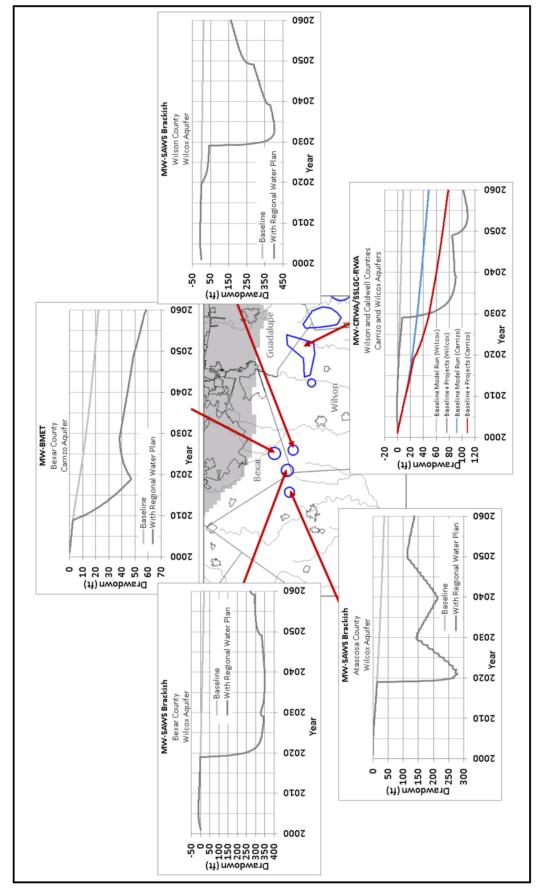


Figure 7.1-11. Drawdown Hydrographs for Projects in Atascosa, Bexar, and Wilson Counties

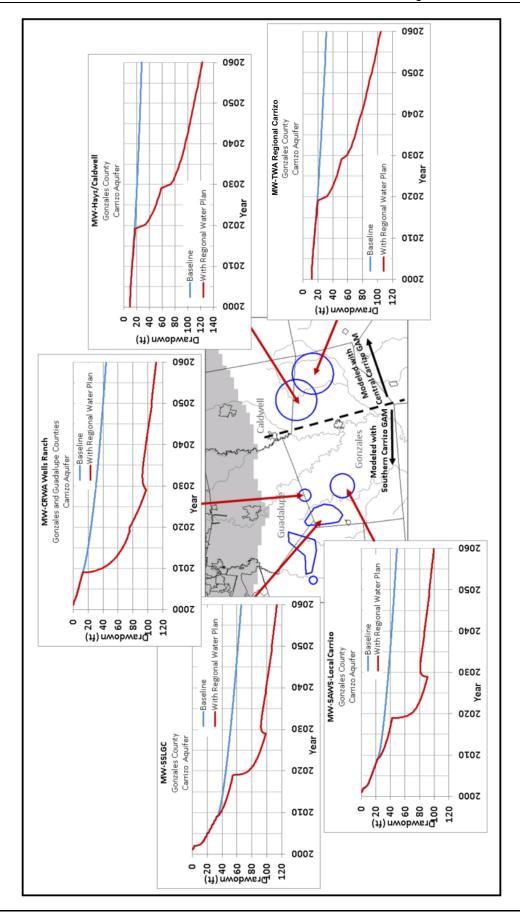


Figure 7.1-12. Drawdown Hydrographs for Projects in Gonzales County

GAM model resulted in a reduction in the amount of discharge from the aquifers to the major stream channels within the model domain. This reduction occurs gradually over time. It is noted that this reduction does not occur at a single point in space or time, but is a cumulative result from diffuse sources along the bed and banks of the modeled streams in the watershed over the entire length of stream channel in the model. Table 7.1-1 summarizes the potential effects of local groundwater production and regional projects recommended in the regional water plan on long-term surface water / groundwater interactions. As indicated in Table 7.1-1, increased use of existing wells and implementation of recommended Local Carrizo strategies are expected to have greater effects on San Antonio River and Cibolo Creek flows than recommended regional projects. The opposite is true of the Guadalupe and San Marcos Rivers. The reductions associated with recommended regional projects have been included in the GSAWAM for simulation of associated effects on instream flows and freshwater inflows to the Guadalupe Estuary.

Table 7.1-1.
Flux From Southern Carrizo GAM Aquifers to Streams (cfs)¹

	San Antonio River (+Tributaries)	Cibolo Creek	Guadalupe River	San Marcos River (+ Tributaries)
Effects of Local Pumpage	-10.1	-4.3	-0.7	-6.7
Effects of Regional Projects	-2.4	-0.8	-1.5	-10.6

¹Numbers represent flux from streams to aquifers. Negative values indicate less water flowing from aquifers to streams. No initial upstream flow is included.

As the only recommended water management strategy relying on the Gulf Coast Aquifer in Region L is for local municipal water needs in the Kenedy area and is relatively small, any effects of this strategy on streamflows would be virtually undetectable. All other uses of the Gulf Coast Aquifer are part of the existing local supplies used to calculate projected water needs. Hence, modeling of Gulf Coast Aquifer is not presented herein. It is noted that the U.S. Geological Survey and the San Antonio River Authority are nearing completion of a multi-year study of interactions between surface water and groundwater in the lower San Antonio River and the underlying aquifers.

7.1.2 Surface Water

Potential cumulative effects of implementation of the 2011 South Central Texas Regional Water Plan on instream flows and freshwater inflows to bays and estuaries have been assessed for the eleven locations in the Guadalupe-San Antonio and Nueces River Basins shown in Figure 7.1-13. The cumulative effects simulation includes growth in effluent due to increased water demands for Bexar County (Table 7.1-2). The baseline for consideration of effects on flows reflects the baseline for the Edwards Aquifer, full utilization of existing water rights, and treated effluent discharge representative of current conditions.

The cumulative effects at these selected locations in the Guadalupe – San Antonio River Basin are summarized in Figures 7.1-14 through 7.1-20. Streamflow comparisons indicate that flows in the San Antonio River at Falls City (Figure 7.1-17) and Goliad (Figure 7.1-18) are expected to increase throughout the flow regime with implementation of the Plan. For the San Marcos River at Luling (Figure 7.1-15), the Guadalupe River at Victoria (Figure 7.1-16), the Guadalupe River at Diversion Dam & Saltwater Barrier near Tivoli (Figure 7.1-19), and the Guadalupe Estuary (Figure 7.1-20), streamflows are expected to increase in the lower portions of the flow regimes and decrease in the higher portions with full implementation of the Plan. Streamflows in the Guadalupe River above Comal River at New Braunfels are not expected to change significantly during the planning period. Projected increases in streamflows and freshwater inflows to the Guadalupe Estuary generally occur below the median and are attributable to increases in treated effluent associated with increased municipal and industrial water use and to Edwards Recharge - Type 2 Projects and the associated increases in Comal and San Marcos springflow. Projected decreases in streamflows and freshwater inflows to the Guadalupe Estuary generally occur above the median and are primarily the result of recommended projects including new surface water diversions.

Potential effects of implementation of the South Central Texas Regional Water Plan on flows in the Nueces River Basin are summarized in Figures 7.1-21 through 7.1-24. Decreased streamflows for the Nueces River below Uvalde (Figure 7.1-21), the Nueces River at Cotulla (Figure 7.1-22), and the Frio River near Derby (Figure 7.1-23) are attributable to enhanced recharge associated with Edwards Recharge – Type 2 Projects. Increased median streamflows for the Frio River near Derby (Figure 7.1-23) in some months may be attributed to increases in

#	Location	USGS Streamgage #	
Gua	dalupe-San Antonio River Basin		
1	Guadalupe River above Comal River @ New Braunfels	08168500	
2	San Marcos River @ Luling	08172000	
3	Guadalupe River @ Victoria	08176500	
4	San Antonio River near Falls City	08183500	
5	San Antonio River @ Goliad	08188500	
6	Guadalupe River @ Diversion Dam & Saltwater Barrier near Tivoli	08188800	
7	Guadalupe Estuary	-	
Nue	ces River Basin	ore	
8	Nueces River below Uvalde	08192000	
9	Nueces River @ Cotulla	08194000	
10	Frio River near Derby	08205500	
11	Nueces Estuary	-	

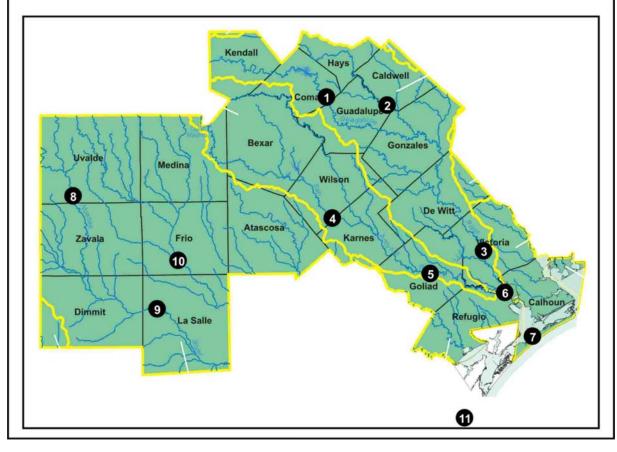


Figure 7.1-13. Flow Assessment Locations

Emacht Addduning						
Description	2010	2020	2030	2040	2050	2060
Total Bexar Co Municipal Demand [+]	262,104	290,072	316,424	336,033	355,246	374,536
Total Bexar Co Municipal Conservation [-]	7,223	10,384	13,379	16,353	22,884	32,800
Total Bexar Co Industrial Demand [+]	25,951	29,497	32,775	36,068	38,965	42,112
Total Bexar Co M & I Demand [=]	280,832	309,185	335,820	355,748	371,327	383,848
Total Bexar Co Effluent (60% of Total M&I Demand)	168,499	185,511	201,492	213,449	222,796	230,309
Current Recycle Program (Consumptive; Capacity = 35,000 Acft/yr)	24,894	35,000	35,000	35,000	35,000	35,000
Bexar Co Effluent After Consumptive Recycle Program*	143,605	150,511	166,492	178,449	187,796	195,309

Table 7.1-2.
Effluent Accounting

Leona Springs discharge due primarily to the Indian Creek Project, which is the largest of the Edwards Recharge – Type 2 Projects. Increased freshwater inflows to the Nueces Estuary (Figure 7.1-24) in the lower three quarters of the flow regime are primarily caused by increased return flows or treated effluent associated with increased municipal and industrial water demands. Decreases in freshwater inflows in the higher quarter of the flow regime are primarily due to implementation of water management strategies recommended in the 2011 Coastal Bend Regional Water Plan. The Edwards Recharge – Type 2 Projects recommended in the 2011 South Central Texas Regional Water Plan have relatively small effects on freshwater inflows to the Nueces Estuary.

The SCTRWPG has recommended legislative designation of five stream segments in Region L as having unique ecological value. These segments and the bases for recommended designation are described in Appendix I. Implementation of the 2011 Regional Water Plan is not

^{*} City Public Service (CPS) has an opportunity to divert effluent as make-up water in accordance with its water rights (CA# 19-2161 & CA# 19-2162). Subject to full authorized consumptive use at the reservoirs, total diversions from the San Antonio River range from about 36,000 acft/yr to about 72,000 acft/yr and average about 56,000 acft/yr.

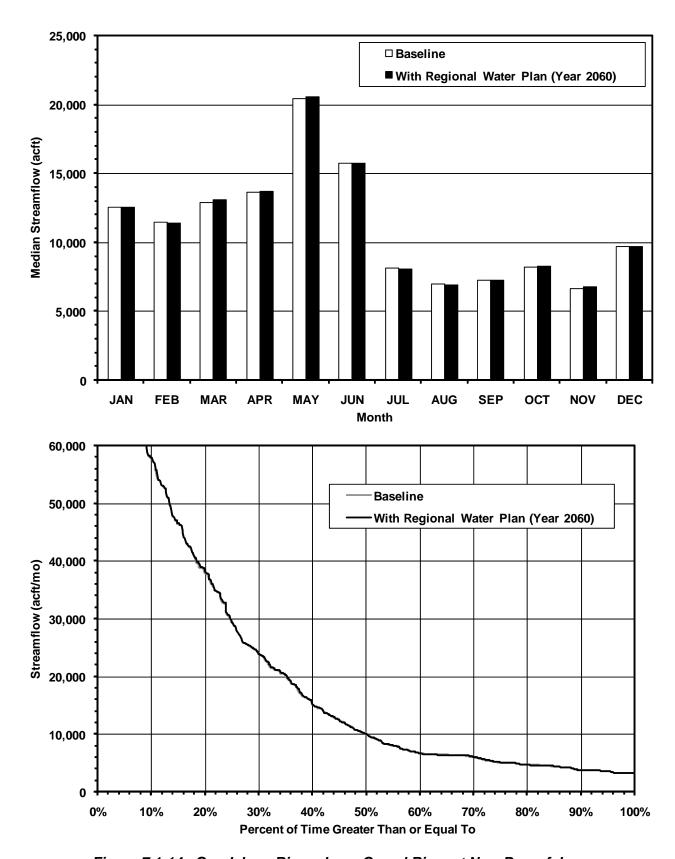


Figure 7.1-14. Guadalupe River above Comal River at New Braunfels

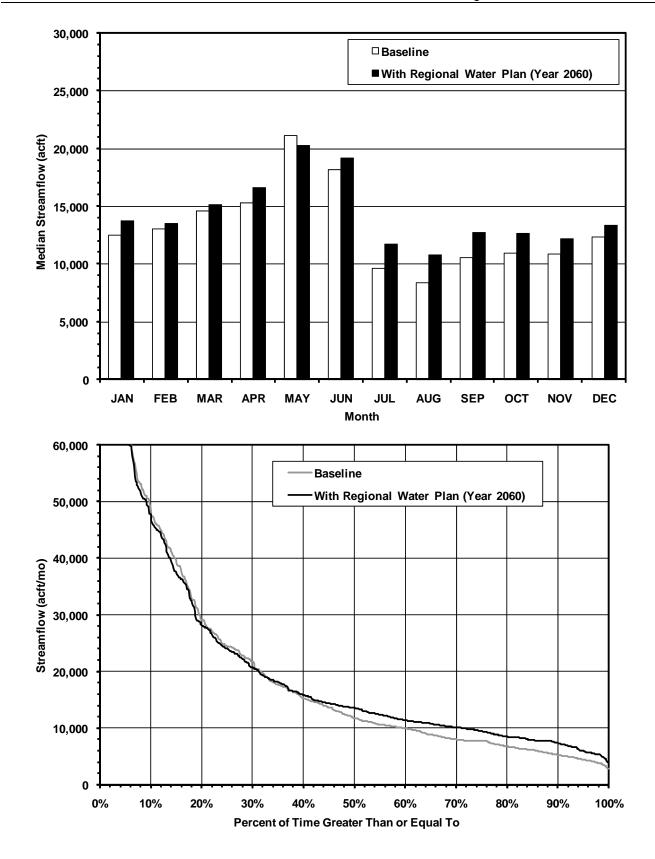


Figure 7.1-15. San Marcos River at Luling

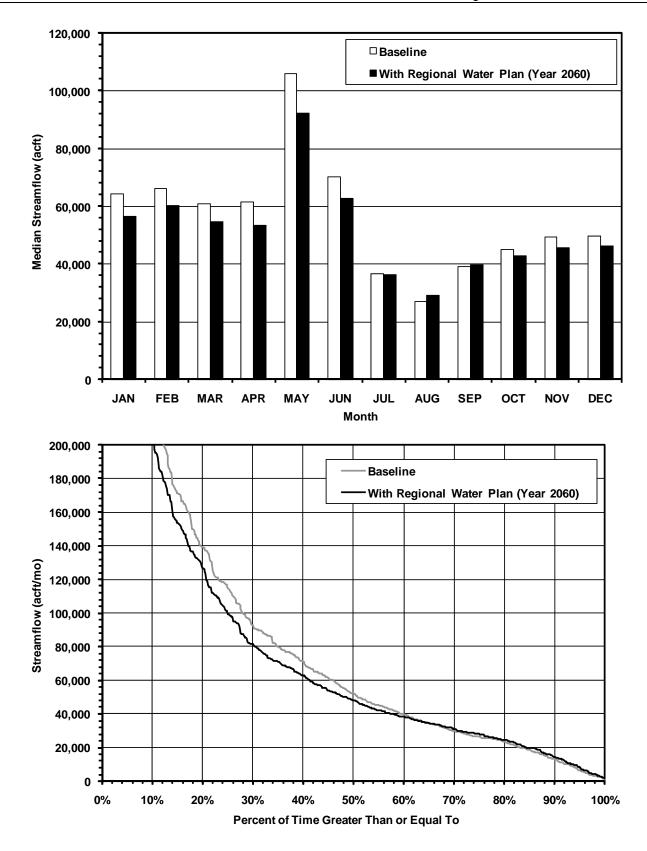


Figure 7.1-16. Guadalupe River at Victoria

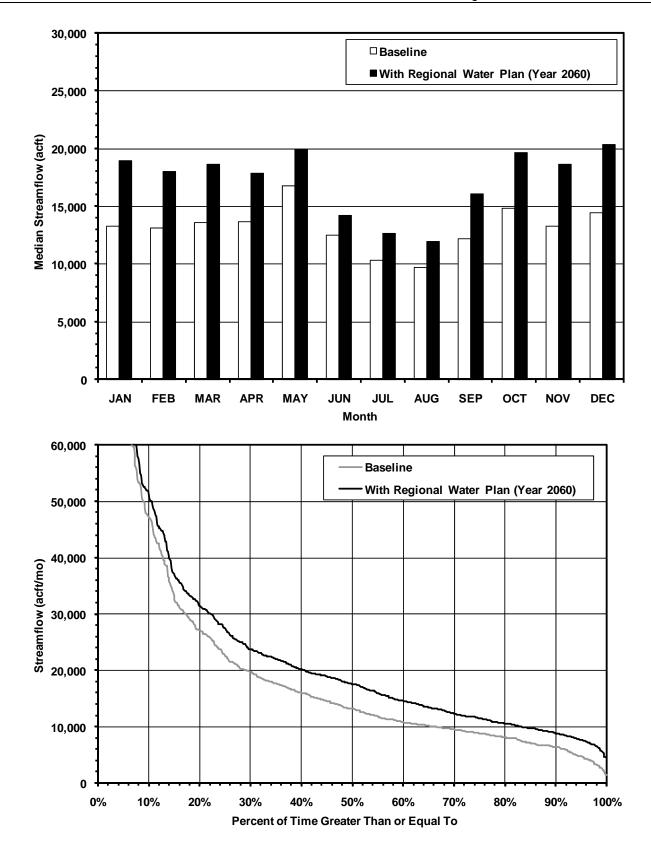


Figure 7.1-17. San Antonio River near Falls City

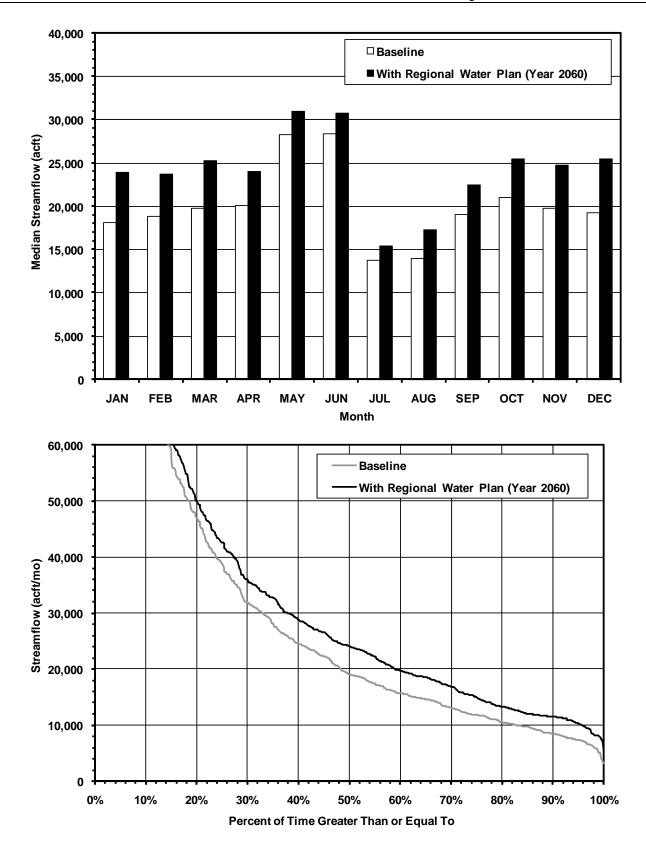


Figure 7.1-18. San Antonio River at Goliad

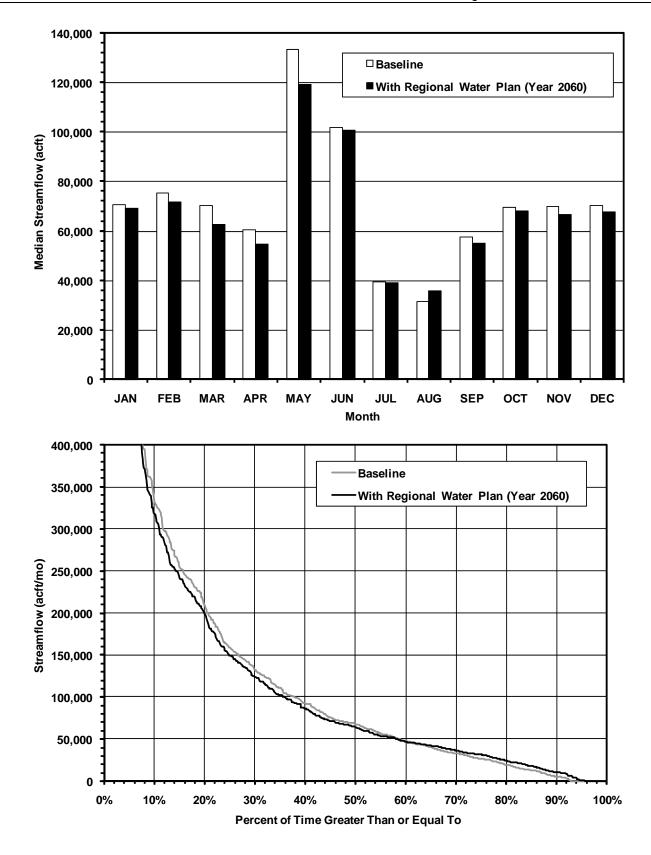


Figure 7.1-19. Guadalupe River at Diversion Dam and Saltwater Barrier near Tivoli

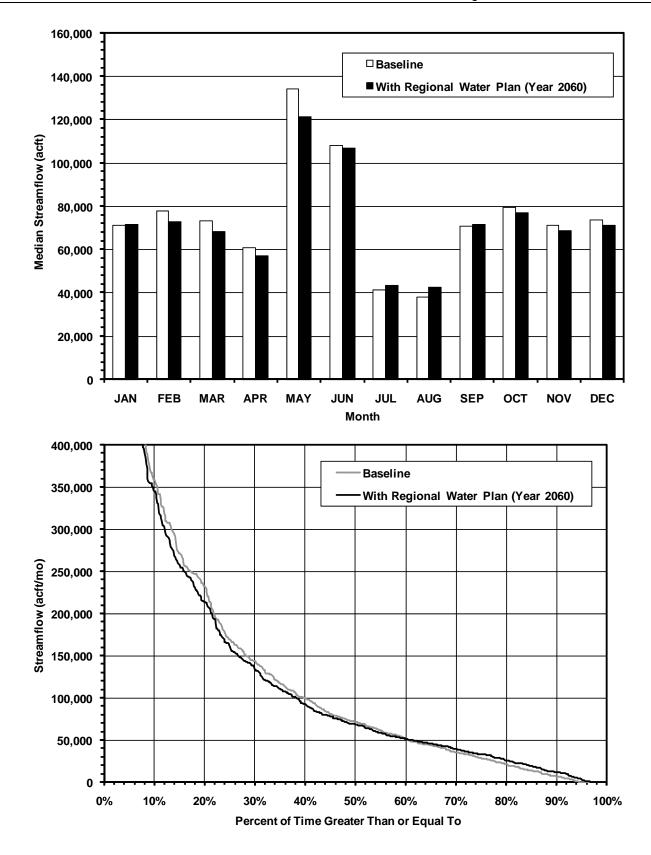


Figure 7.1-20. Guadalupe Estuary

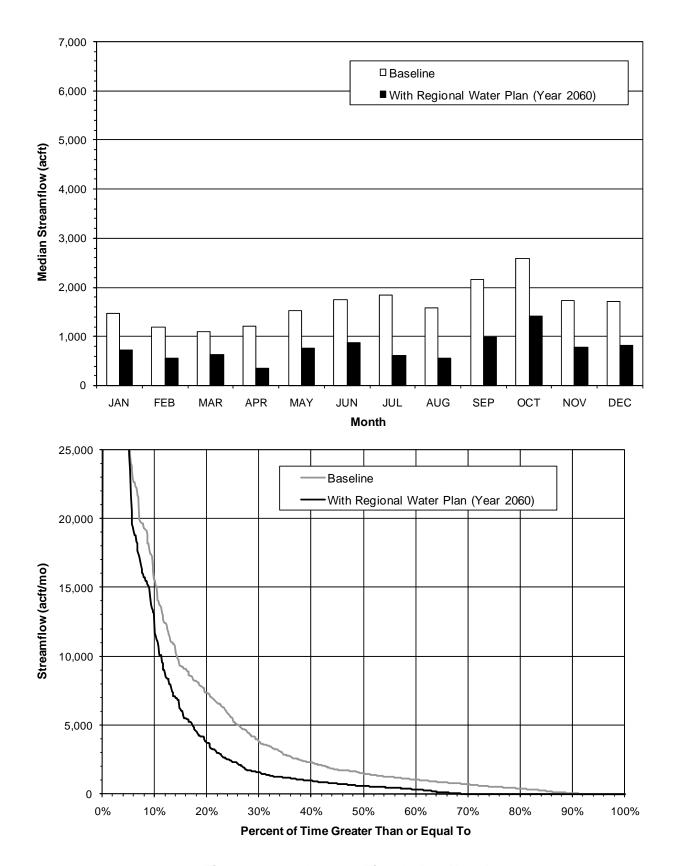


Figure 7.1-21. Nueces River below Uvalde

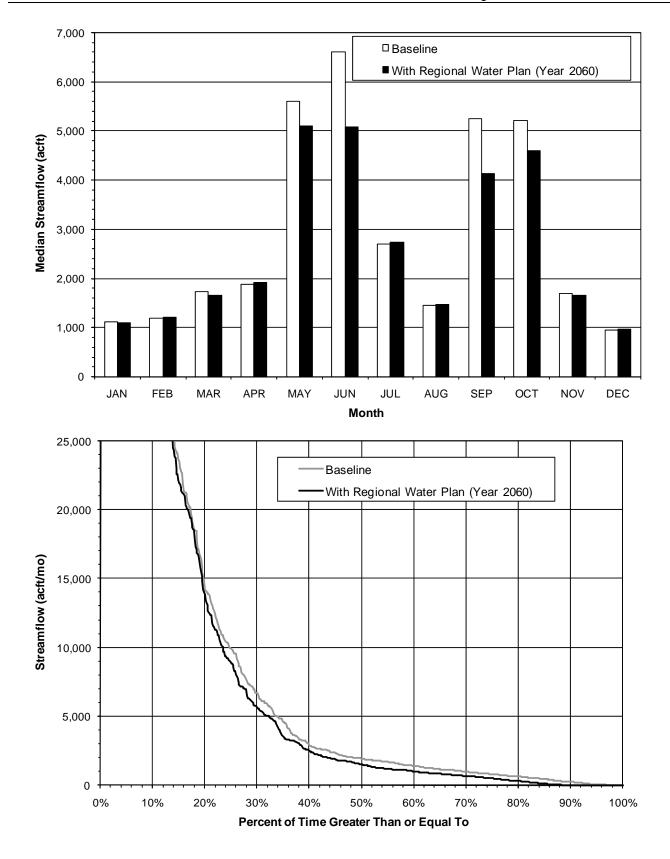


Figure 7.1-22. Nueces River near Cotulla

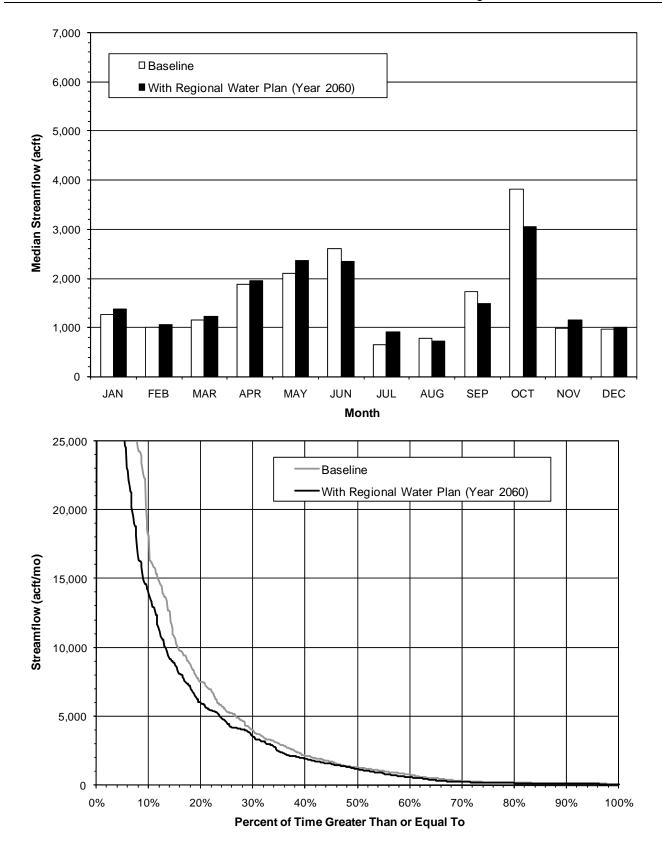


Figure 7.1-23. Frio River near Derby

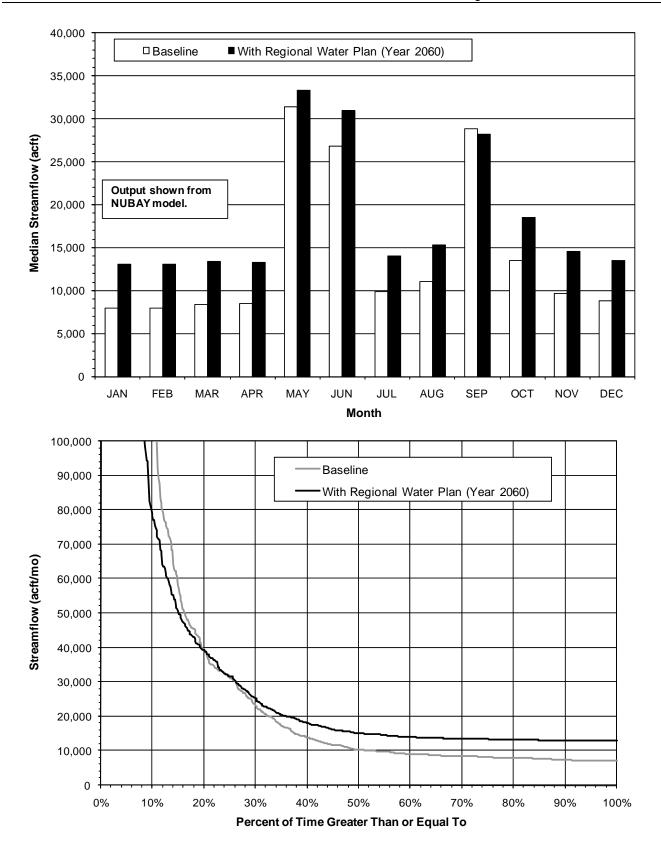


Figure 7.1-24. Nueces Estuary

expected to have any effect on the Nueces, Frio, and Sabinal River segments having unique ecological value as these segments are located upstream of the Edwards Aquifer recharge zone and recommended Edwards Aquifer Recharge - Type 2 Projects on these rivers would be located on the recharge zone. As shown in Figures 7.1-2 and 7.1-4, implementation of the 2011 Regional Water Plan is expected to increase long-term average spring discharges which should serve to preserve or enhance the ecological values of the Comal River and San Marcos River segments recommended for designation⁷.

7.1.3 Supplemental Evaluations of Potential Long-Term Changes in Streamflow and Freshwater Inflows to the Guadalupe Estuary

The National Wildlife Federation (NWF) approached the SCTRWPG in May 2005 with a proposal to supplement the assessment of potential cumulative effects of regional water plan implementation on the Guadalupe Estuary by adding two alternative baselines for comparison and two ecologically-based assessments of inflows, for inclusion in the 2006 SCTRWP. The SCTRWPG has opted to continue this analysis in the 2011 SCTRWP. Additional baselines for comparison include freshwater inflows under "Natural" and "Present" Conditions. The two ecologically-based assessments (described in Section 7.1.3.2.2) rely, in part, upon the freshwater inflow recommendations of the Texas Parks & Wildlife Department (TPWD) and the Texas Water Development Board (TWDB)⁸ and focus on spring / early summer freshwater inflow pulses and drought periods during the months of March through October as used in a recent NWF publication entitled "Bays in Peril, A Forecast for Freshwater Flows to Texas Estuaries."

As one of the first biennium studies for the 2011 SCTRWP, the SCTRWPG applied a similar ecologically-based assessment to the potential changes in streamflows of the Guadalupe River at Victoria and the San Antonio River near Falls City associated with the 2006 SCTRWP.¹⁰ The ecologically-based streamflow assessment examines frequency of streamflow occurrences compared to high, base, and low flow criteria. The SCTRWPG has chosen to

⁷ With USFWS approval of a Habitat Conservation Plan and implementation of strategies identified through the Edwards Aquifer Recovery Implementation Program and potential use of existing and recommended water management strategies to offset Edwards pumping, it is likely that discharges from Comal Springs during drought will be greater than shown in Figure 7.1-2.

⁸ TPWD & TWDB, "Freshwater Inflow Recommendation for the Guadalupe Estuary of Texas," TPWD Coastal Studies Technical Report No. 98-1, December 1998.

⁹ Johns, N.D., Hess, M., Kaderka, S., McCormick, L., & McMahon, J., "Bays in Peril, A Forecast for Freshwater Flows to Texas Estuaries," National Wildlife Federation, October 2004.

¹⁰ South Central Texas Regional Water Planning Group, "2011 Regional Water Plan Environmental Studies, Study 4, Part A," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

include a similar ecologically-based assessment of potential changes in streamflow associated with the 2011 SCTRWP. Supplemental ecologically-based assessments of changes in streamflow and freshwater inflow are summarized in the following sub-sections.

7.1.3.1 Simulation Descriptions

7.1.3.1.1 Natural Conditions

The Natural Condition is an historical set of theoretical streamflows and estuarine inflows in which the effects of mankind on the water resource have been removed. While the effects of historical reservoir operations, diversions, and treated effluent have been accounted for in the naturalized flows of the Guadalupe-San Antonio Water Availability Model (GSAWAM), it is noted that these natural flows reflect historical pumpage and spring discharges from the Edwards Aquifer. Thus, while other effects of mankind on surface water flows have been removed, spring discharges, which have direct bearing on surface water flows, reflect historical pumping levels from the Edwards Aquifer. More conceptually appropriate estimates of natural flows have been estimated using simulated historical springflows with zero Edwards Aquifer pumpage. The GWSIM-IV Edwards Aquifer model was used to simulate historical springflows without pumpage. The GSAWAM was then used to estimate resulting natural streamflows throughout the basin and freshwater inflows to the Guadalupe Estuary.

7.1.3.1.2 Present Conditions

The Present Conditions simulation is intended to be a realistic, but somewhat conservative, portrayal of present conditions with respect to springflows, water rights use, and effluent discharges. The present condition may be derived based on Texas Commission on Environmental Quality (TCEQ) Run 8 analyses with appropriate modifications. With the exception of the major water rights discussed below, the values found in the Run 8 data file are used as the present level of water rights use and wastewater discharges. The modifications below were made to reflect likely usage levels in the near-term (2-5years) if the South Central Texas Region were to experience a severe drought.

1. Canyon Reservoir (CA# 18-2074E) – GBRA has contracts for approximately 90,000 acft/yr, the firm yield of the reservoir. In addition, Canyon has an agreement with Guadalupe River Trout Unlimited (GRTU) that is in effect until the year 2018. Canyon operations are in accordance with CA#18-2074E and the GRTU agreement.

- 2. *GBRA Lower Basin Water Rights (CA# 18-5173 through CA# 18-5178 and CA# 18-3863)* GBRA has water rights totaling 175,501 acft/yr in the lower basin authorized for municipal, industrial, and irrigation use. During the period of 1996 through 2003, the municipal portion of these rights had a maximum annual use of 10,400 acft, the industrial portion had a maximum annual use of 26,600 acft, and the irrigation portion had a maximum annual use of 36,700 acft. Cumulatively, this totals 73,700 acft/yr. For the Present Conditions simulation, 73,700 acft/yr was included for these water rights, allocated by use type as listed has been simulated. Available information indicates that wastewater due to the municipal diversions does not return to the Guadalupe Estuary. Effluent discharges for the industrial portion of the GBRA Lower Basin water rights, which are discharged to the estuary via the Victoria Barge Canal, are not included 11.
- 3. *Invista/DuPont* (*CA#* 18-3861) Information gathered from the South Texas Watermaster indicates that Invista/DuPont diverted 25,254 acft in 1999, their highest in the period of 1998 2003. This amount is included in the Present Conditions simulation for Invista/DuPont. It is important to note that Invista/DuPont has a return factor of 45 percent on diversions, which is derived from the ratio of 27,000 acft/yr (total permitted diversion of 60,000 acft/yr minus permitted consumption of 33,000 acft/yr) over 60,000 acft/yr (total permitted diversion). Thus, the consumptive amount associated with the 25,254 acft/yr is 13,889.7 acft/yr.
- 4. City of Victoria (Permit# 5466) Data from the City of Victoria indicates that their maximum diversion during the period of 1997-2004 was 9,854 acft in 2003. This amount is used in the Present Conditions simulation.
- 5. Braunig & Calaveras Lakes (CA# 19-2161 & CA# 19-2162, respectively) Historical data received from City Public Service (CPS), which operates the steam-electric power generation facilities using these reservoirs, indicates that the maximum water use (from forced evaporation) during the period of 1992-2004 occurred in 1999 for Calaveras (13,365 acft) and in 2000 for Braunig (4,057 acft). These amounts are used in the Present Conditions simulation.

¹¹ These return flows will be included and documentation revised accordingly prior to distribution of the Initially Prepared Plan.

- 6. Coleto Creek Reservoir (CA# 18-5486) Data from the report entitled "Power Generation Water Use for the Years 2000 through 2060 Final Report," prepared for the TWDB in 2003 indicates that the 2000 consumptive use for Coleto Creek Reservoir (from forced evaporation) was 9,027 acft. For the Present Conditions simulation, this consumptive amount is used.
- 7. *Medina Lake System* (*CA#* 19-2130) The Medina Lake System has used its full permitted amount in the recent past. Thus, the current use associated with the Medina Lake System is its authorized use.

In addition, springflows consistent with an Edwards pumpage of 572,000 acft/yr (plus domestic, livestock, and Federal use of about 20,000 acft/yr) subject to Critical Period Rules as outlined in Senate Bill 3 of the 80th Texas Legislature are used to represent present conditions. Except as noted above, effluent discharges, as reported for 2006 and adjusted for SAWS direct recycled water use of about 24,900 acft/yr (based on contracts for consumptive use), are also used in the Present Conditions simulation.

7.1.3.1.3 <u>Baseline (Full Permits)</u>

The Baseline simulation is the product of hydrologic assumptions and operational procedures for the assessment of surface water supply (Section 3.2.3.1) as adopted by the SCTRWPG and approved by the TWDB. These assumptions reflect Edwards Aquifer permitted pumpage of 572,000 acft/yr (plus domestic, livestock, and Federal use of about 20,000 acft/yr) subject to Critical Period Rules as outlined in Senate Bill 3 of the 80th Texas Legislature, full utilization of existing water rights, and treated effluent discharge representative of current conditions (2006 reported discharges adjusted for SAWS direct recycled water program). These are the same assumptions as used to determine surface water supply reliability and perform technical evaluations of surface water management strategies.

7.1.3.1.4 Regional Water Plan

The Regional Water Plan simulation attempts to portray the potential cumulative effects of all recommended water management strategies on streamflow and estuarine inflow. Starting with the baseline simulations, the water management strategies of the Edwards Aquifer are incorporated into the GWSIM-IV groundwater model. Resulting springflows from the Edwards

Aquifer are then integrated into the GSAWAM data files. Streamflow impacts due to water management strategies in the Carrizo-Wilcox Aquifer are estimated using the Southern Carrizo and Central Carrizo GAMs. These streamflow changes are also incorporated into the GSAWAM data files. Finally, the surface water management strategies are added to the GSAWAM to form the Regional Water Plan simulation.

7.1.3.2 Ecologically-Based Assessment Descriptions

7.1.3.2.1 Streamflow Criteria

Similar to the ecologically-based freshwater inflow assessment, the ecologically-based streamflow assessment includes high and low streamflow criteria. In addition, a normal (or base) streamflow criterion is incorporated to more fully assess streamflow changes at the two locations. Scientists from the Texas Water Development Board, Texas Parks and Wildlife Department, National Wildlife Federation, and San Antonio River Authority were consulted in selection of appropriate assessment criteria for low, base, and high streamflow conditions. Each of those consulted is a participant in ongoing efforts by the state to implement the Texas Instream Flows Program (Senate Bill 2 of the 77th Texas Legislature)¹² and establish environmental flow standards (Senate Bill 3 of the 80th Texas Legislature). Ultimate selection of streamflow criteria or standards is part of statewide programs defined by the Texas Legislature. All criteria applied herein may be considered "placeholder" values until such time that the SB2 and SB3 processes are complete.

7.1.3.2.1.1 High Flow Criteria

An important aspect of high streamflows is the ability for the stream to maintain aquatic and riparian habitats, and provide for stream connectivity with the floodplain.¹³ These natural processes are accomplished through high flow pulses and overbanking flows. High flow pulses are short, high flow events following storms that stay within the channel, while overbanking flows are less frequent, high flow flood events in which streamflow rises above the normal channel. Scientists consulted generally suggested that a flood flow approximating a 2-year return period would be typical of an overbanking event and a good measure for the high flow

_

¹² National Research Council of the National Academies, "The Science of Instream Flows, A Review of the Texas Instream Flow Program," The National Academies Press, 2005.

¹³ Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, & Texas Water Development Board, "Texas Instream Flow Studies: Technical Overview," TWDB Report 369, May 2008.

criteria. Therefore, flood flow statistics were analyzed for both the Guadalupe River at Victoria and the San Antonio River near Falls City to determine the 2-year flood event. These flows are shown in Table 7.1-3.

Table 7.1-3. Flow Criteria for Ecologically-Based Streamflow Assessment

Criteria	Month	Guadalupe River at Victoria	San Antonio River near Falls City	
High Flow (cfs)	Any	16,043	4,366	
, , , , , , , , , , , , , , , , , , ,	Jan	565	92	
	Feb	578	93	
	Mar	617	139	
	Apr	710	130	
	May	779	155	
Deep Flow (sfs)	Jun	674	142	
Base Flow (cfs)	Jul	466	93	
	Aug	367	82	
	Sept	363	99	
	Oct	389	70	
	Nov	372	76	
	Dec	602	84	
	Jan	150	76	
	Feb	150	76	
	Mar	200	76	
	Apr	250	76	
	May	200	76	
Low Flow (cfs)	Jun	250	76	
LOW HOW (CIS)	Jul	300	76	
	Aug	300	76	
	Sept	200	76	
	Oct	150	76	
	Nov	150	76	
	Dec	150	76	

7.1.3.2.1.2 Low Flow Criteria

The low (subsistence) streamflow criteria needs to be high enough to maintain aquatic habitat sufficient for endemic species to survive transient low flow periods and to maintain dissolved oxygen (DO) in the stream.¹⁴ These low flows are characterized by seasonal periods of infrequent streamflow well below the normal flow. The minimum accepted DO level, as established by the TCEQ for the stream locations considered herein, is 5 mg/L.¹⁵ A statistic such as 7Q2 (seven day low flow with a return period of 2 years), the state-wide default low flow standard, may not necessarily be an accurate measure of the flow a particular stream needs in order to meet DO standards. Furthermore, in a base flow dominated stream, the 7Q2 may be substantially greater than that necessary to sustain aquatic habitat sufficient for endemic species to survive transient low flow periods. For example, the published 7Q2 values for the Guadalupe River at Victoria and San Antonio near Falls City locations are 607 cfs and 188 cfs, respectively, while site-specific studies, permit conditions, and informal agreements indicate that substantially less flow is necessary to meet environmental needs for short stress periods.

Candidate low flow criteria for the Guadalupe River at Victoria and the San Antonio River near Falls City were examined in Study 4A of the first biennium studies for the 2011 SCTRWP.¹⁶ The selected criterion for each of the streamflow locations is presented in Table 7.1-3.

7.1.3.2.1.3 Base Flow Criteria

Like the high and low streamflow criteria, the base streamflow criteria are yet to be uniformly defined among river basin stakeholders, researchers, and resource agency staff in Texas. Guiding principles in selection of base streamflow criteria are that they should reflect the "normal" flow condition in the stream between storm events and ensure adequate habitat conditions, including variability, to support the natural biologic community.¹⁷

Candidate base streamflow criteria for the Guadalupe River at Victoria and the San Antonio River near Falls City were examined in Study 4A of the first biennium studies for the

_

¹⁴ Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, & Texas Water Development Board, "Texas Instream Flow Studies: Technical Overview," TWDB Report 369, May 2008.

¹⁵ Texas Commission on Environmental Quality, Texas Surface Water Quality Standards - Section 307.7, August 2000.

¹⁶ South Central Texas Regional Water Planning Group, "2011 Regional Water Plan Environmental Studies, Study 4, Part A," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

¹⁷ Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, & Texas Water Development Board, "Texas Instream Flow Studies: Technical Overview," TWDB Report 369, May 2008.

2011 SCTRWP.¹⁸ The selected criterion for each of the streamflow locations is presented in Table 7.1-3.

7.1.3.2.2 <u>Estuary Inflow Criteria</u>

Two ecologically-based assessments are used in comparison of simulated inflows to the Guadalupe Estuary under the four estuarine inflow scenarios described above. The two assessments are the spring / early summer freshwater pulse criteria and the low-flow inflow criteria.

7.1.3.2.2.1 Spring/Early Summer Freshwater Pulse Criteria

The spring/early summer freshwater pulse criteria examines how often adequate seasonal spring-to-early-summer pulses of inflows would occur. When looking at seasonal inflows, the focus is on a cumulative sum of inflow occurring within a multi-month period, rather than on the flows in each individual month within the period. The same total volume of water would be required to satisfy either standard, but with the seasonal approach higher flows in any of the four months apply toward the target cumulative sum of inflows. These spring/early summer "freshwater pulses," sometimes referred to as "freshetes" are generally indicated to support strong levels of reproduction and growth. Thus, the freshwater pulse evaluations represent an assessment of how well the estuaries would be expected to fare under 'Regional Water Plan' conditions during years that spring/early summer rainfall is in the normal to high range. For the analysis here, a seasonal spring/early summer window of 4 consecutive months during which the occurrence of a freshwater pulse would be assessed is identified. The 4 months included are those with the highest consecutive target level inflow criteria in the state's studies of freshwater inflow needs (known as MaxH). This is an attempt to focus on the most critical 4-month spring/early summer period, occurring no later than July. For the Guadalupe Estuary, the highest four consecutive months in this window are April – July. The sum of the MaxH recommendations for these 4 months (about 526,000 acft) is used as the benchmark or criteria for assessment of the spring/early summer freshwater pulse.

_

¹⁸ Op. Cit., South Central Texas Regional Water Planning Group, Study 4A, April 2009.

7.1.3.2.2.2 Low-Flow Inflow Criteria for the Guadalupe Estuary

Because of weather variability in Texas, a second assessment criteria is focused on whether enough freshwater would be available to maintain salinity conditions within reasonable tolerance ranges and enable sufficient populations of organisms such as oysters, shrimp, and crabs to survive drought periods.

In addition to the criteria used in the spring/early summer freshwater pulse analysis, the state's freshwater inflow study results for each bay also include a set of lower inflow criteria known as MinQsal. These inflows reflect the amount needed "...to avoid reproductive failure and loss of biodiversity..." during lower inflow periods. As noted in the state's studies, for inflows between the target and the drought tolerance values "biological productivity and fisheries harvest ... are significantly reduced from average historical levels." Basically, these inflows are calculated to maintain salinity levels in the estuaries within identified salinity bounds. Thus, inflows equaling drought-tolerance values would just maintain salinity levels within tolerance limits for key species at various points in the estuary. Inflows at these low levels would not be expected to maintain substantial fishery production over an extended period.

For this analysis, a period of 6 consecutive months below MinQsal inflow is used because such a period represents a significant portion of the life-cycle of several principal estuarine species. Subject to a half-year-long period of inflows below the MinQsal level, any area of lower salinity would likely be compressed into regions near the mouth of Guadalupe River. Upper estuary marshes could begin to become saltier. Direct effects on populations of fishery species (crabs, shrimp, and some finfish) could be anticipated due to lack of food and habitat, or to unfavorable salinities, especially if occurring in the spring/early fall period. Thus, a six-month consecutive period is considered in this assessment to be indicative of a significant deprivation of freshwater inflows. This analysis is limited to periods of six consecutive months falling only within the March-October window because low flows in the winter and early spring months would be of lesser concern for biological activity within Texas estuaries. ¹⁹

_

¹⁹ A more complete discussion is available in the methodology section of Johns, N.D., Hess, M., Kaderka, S., McCormick, L., & McMahon, J., "Bays in Peril, A Forecast for Freshwater Flows to Texas Estuaries," National Wildlife Federation, October 2004.

7.1.3.3 Results of the Ecologically-Based Assessments

7.1.3.3.1 Streamflow Assessments Results

Streamflows under each of the four scenarios are compared to the three criteria for both the Guadalupe River at Victoria and the San Antonio River near Falls City. For the high flow criteria, the daily modeled streamflow is evaluated to see how many flood events exceeded the criteria flow during the 56-year simulation period (1934 – 1989). When evaluating scenario streamflow against the base flow criteria, the total number of days in which the streamflow is below the base flow criteria is calculated. Likewise, using the low flow criteria, the total number of days in which the streamflow is below the low flow criteria is calculated. In addition, the maximum number of consecutive days per year in which the streamflow is below the low flow criteria is calculated. A summary and discussion of the results is presented below for each location.

7.1.3.3.1.1 Results for Guadalupe River at Victoria

As shown in Table 7.1-4, the Guadalupe River at Victoria has between 40 and 48 high flow events during the simulation period, depending on the scenario. There is no significant difference in the number of events among the three scenarios with the influence of man. Occurrences vary between zero and three events in any given year. The low variation indicates that existing and planned impoundments, diversions, returns, and groundwater withdrawals have had no significant effect on the occurrence of high flow events in the Guadalupe River at Victoria.

Table 7.1-4.

Guadalupe River at Victoria – High Flow Events

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Flood Events	48	40	40	40

Throughout the 56-year simulation period, the Guadalupe River at Victoria would experience between 2,918 days (Natural Conditions) and 6,896 days (Regional Water Plan) below the base flow criteria (Table 7.1-5), depending on simulation scenario. While the percent of time the streamflow is less than or equal to the base flow criteria for the Natural Conditions scenario is considerably less than that for the Regional Water Plan, differences between the

Present Conditions, Baseline (Full Permits), and Regional Water Plan scenarios are very small. Hence, implementation of the strategies recommended in the 2011 SCTRWP would be expected to have very limited effects on base flows in the Guadalupe River at Victoria relative to those under present conditions.

Table 7.1-5.

Guadalupe River at Victoria – Occurrences of
Flows below the Base Criteria

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Total Days Less Than	2,918	6,426	6,842	6,896
Percent of Time Less than or Equal To	14%	31%	33%	34%

There are at least two important measures to consider when comparing simulated streamflows under the specified scenarios to the low flow criteria – the total number of days below the criteria and the maximum number of consecutive days below the criteria in a given year. Table 7.1-6 summarizes the total number of days less than the low flow criteria and Table 7.1-7 summarizes the maximum number of consecutive days below the low flow criteria by year, for each of the four scenario simulations. Review of Tables 7.1-6 and 7.1-7 indicates that implementation of water management strategies in the 2011 SCTRWP would not be expected to cause significant changes in the frequency or duration of low flow periods in the Guadalupe River at Victoria relative to present conditions.

Table 7.1-6.

Guadalupe River at Victoria – Low Flow Occurrences

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Total Days Less Than	456	2,181	2,321	2,144
Percent of Time Less than or Equal To	2%	11%	11%	10%

7.1.3.3.1.2 Results for San Antonio River near Falls City

The San Antonio River near Falls City has between 38 and 74 high flow events during the simulation period (Table 7.1-8), depending on the scenario. The difference in the number of

Table 7.1-7.

Guadalupe River at Victoria – Maximum Consecutive Days below the Low Flow Criteria

Year	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
1934	0	0	0	0
1935	0	0	0	0
1936	0	0	0	0
1937	0	0	0	0
1938	0	0	0	0
1939	0	33	35	35
1940	0	3	8	3
1941	0	0	0	0
1942	0	0	0	0
1943	0	0	2	0
1944	0	0	1	1
1945	0	1	1	0
1946	0	0	0	0
1947	0	0	0	0
1948	0	30	38	38
1949	0	8	12	8
1950	0	54	54	54
1951	7	75	75	75
1952	24	48	48	48
1953	11	49	49	49
1954	25	199	199	198
1955	14	105	188	161
1956	46	152	229	152
1957	1	36	36	36
1958	0	0	0	0
1959	0	0	0	0
1960	0	0	0	0
1961	0	0	0	0
1962	0	31	36	19
1963	3	73	74	71
1964	0	34	34	34
1965	0	0	0	0
1966	0	0	0	0
1967	18	77	78	44
1968	0	0	0	0
1969	0	0	0	0
1970	0	0	0	0
1971	5	31	32	31
1972	0	0	0	0
1973	0	0	0	0

Table 7.1-7 (Concluded)

Year	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
1974	0	0	0	0
1975	0	0	0	0
1976	0	0	0	0
1977	0	0	0	0
1978	0	0	0	0
1979	0	0	0	0
1980	0	3	12	3
1981	0	0	0	0
1982	0	1	3	0
1983	0	0	1	0
1984	9	120	121	75
1985	0	0	0	0
1986	0	0	0	0
1987	0	0	0	0
1988	0	0	0	0
1989	3	99	99	91

high flow events between the Natural and Present Conditions scenarios is primarily attributable to the Medina Lake System. The reduction in the simulated number of high flow events from Present Conditions to Baseline and Plan scenarios is due, in large part, to increased diversions for steam-electric power generation uses at Braunig and Calaveras Reservoirs under existing water rights. High flow occurrences vary between zero and four events in any given year.

Throughout the 56-year simulation period, the San Antonio River near Falls City has between 1,798 days (Regional Water Plan) and 2,231 days (Present Conditions) below the base flow criteria (Table 7.1-9). The effects of San Antonio effluent are apparent in Table 7.1-9, as the Natural Condition simulation has the most days below the base flow criteria. Effects of increased effluent projected in the SCTRWP are evident in the decrease in number of days below the base flow criteria between the Baseline and Regional Water Plan scenarios.

Table 7.1-8.
San Antonio River near Falls City – High Flow Events

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Flood Events	74	42	38	40

Table 7.1-9.
San Antonio River near Falls City – Occurrences of Flows
below the Base Criteria

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Total Days Less Than	3,060	2,231	3,788	1,798
Percent of Time Less than or Equal To	15%	11%	19%	9%

Tables 7.1-10 and 7.1-11 summarize total days and consecutive days within a calendar year below the low flow criteria, respectively, for each of four simulation scenarios. Low flow occurrences are most frequent and typically of greatest duration under Natural Conditions because of the absence of effluent and the influences of historical Edwards Aquifer pumpage on San Antonio and San Pedro Springs. In general, Tables 7.1-10 and 7.1-11 indicate that implementation of the 2011 SCTRWP could be expected to increase the frequency and duration of low flow occurrences relative to Present Conditions, but significantly decrease the frequency and duration of low flow occurrences relative to the Baseline and Natural Conditions scenarios.

Table 7.1-10.
San Antonio River near Falls City – Low Flow Occurrences

	Natural Conditions	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Total Days Less Than	2,296	904	1,834	530
Percent of Time Less than or Equal To	11%	4%	9%	3%

7.1.3.3.2 <u>Estuary Inflow Assessments Results</u>

The GSA WAM simulates a repeat of the weather patterns and resulting streamflows over the 56-year period of 1934-89. Considering both the 'freshwater pulse' and 'low-flow inflow criteria,' how often the simulated inflows under natural conditions fall below the criteria is first tabulated. Then, how often the inflows predicted would fall below the inflow criteria under the Present Conditions, Baseline (Full Permits), and Regional Water Plan scenarios are tabulated for the same time period.

Table 7.1-11.
San Antonio River near Falls City – Maximum Consecutive Days below the Low Flow Criterion

Year	Natural Condition	Present Condition	Baseline (Full Permits)	Regional Water Plan
1934	0	0	19	0
1935	0	0	0	0
1936	0	0	0	0
1937	0	0	0	0
1938	0	0	0	0
1939	0	0	1	0
1940	1	1	10	0
1941	0	0	0	0
1942	0	0	0	0
1943	0	0	0	0
1944	0	0	0	0
1945	0	0	0	0
1946	0	0	0	0
1947	0	0	0	0
1948	28	6	27	6
1949	1	0	2	0
1950	18	3	18	0
1951	16	13	34	4
1952	33	8	61	9
1953	45	45	39	19
1954	26	48	61	3
1955	25	50	40	15
1956	40	37	30	26
1957	19	12	19	19
1958	7	0	16	0
1959	0	0	0	0
1960	18	3	7	4
1961	9	0	0	0
1962	18	16	30	3
1963	35	13	24	10
1964	25	32	19	9
1965	13	2	2	0
1966	7	0	3	0
1967	24	27	42	12
1968	0	0	0	0
1969	25	14	57	9
1970	26	6	26	6
1971	26	22	37	15
1972	2	0	0	0
1973	0	0	0	0

Table 7.1-11 (Concluded)

Year	Natural Condition	Present Condition	Baseline (Full Permits)	Regional Water Plan
1974	2	0	0	0
1975	0	0	0	0
1976	0	0	0	0
1977	0	0	0	0
1978	27	19	29	27
1979	0	0	0	0
1980	15	21	31	6
1981	11	0	0	0
1982	28	7	16	0
1983	3	0	0	0
1984	6	0	0	0
1985	5	0	0	0
1986	2	0	27	0
1987	1	0	0	0
1988	18	11	18	2
1989	21	13	16	9

Tables 7.1-12 and 7.1-13 present the performance results of the freshwater pulse and low-flow inflow criteria, respectively, for the four estuarine inflow scenarios. There is not much effect of Regional Water Plan implementation, compared to present use conditions, as measured by the spring/early summer pulse criteria. The spring/early summer pulse criteria are a measure of fairly substantial inflows which generally can only be affected by a large capture and storage of inflows. The lack of change in meeting these criteria is a reflection of the fact that the regional water plan does not include any water management strategies based on new mainstem reservoirs. The number of years with low 4-month spring/early summer freshwater inflow pulses decreases between the Baseline and the Regional Water Plan due primarily to the increased effluent in the basin. In Table 7.1-13, the number of occurrences of six months or longer periods below drought tolerance for both the Baseline and the Regional Water Plan scenarios is eight. It is important to note that three of these eight years are consecutive (1954-1956) while the other five occurrences are isolated events (1963, 1967, 1982, 1984, & 1988).

Table 7.1-12.

Number of Years with Low 4-Month Spring/Early Summer
Freshwater Inflow Pulses Defined by State Criteria

Estuary	No. of Years	Natural	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Guadalupe Estuary	49	19	20	23	24

Table 7.1-13.

Number of Occurrences of 6 Months or Longer Periods Below

Drought Tolerance Level (MinQsal) within Critical (Mar-Oct) Months

Estuary	No. of Years	Natural	Present Conditions	Baseline (Full Permits)	Regional Water Plan
Guadalupe Estuary	49	3	5	8	8

Monthly median freshwater inflow to the Guadalupe Estuary for each of the four inflow scenarios is shown in Figure 7.1-25. In general, changes in estuarine inflow are greater going from Natural Conditions to Present Conditions than going from Present Conditions to full implementation of the Regional Water Plan. Changes from Present Conditions to the Regional Water Plan are associated in large part with moving from a current level to fully permitted use of existing water rights.

Figure 7.1-26 shows the frequency of the monthly freshwater inflow to the Guadalupe Estuary for the four inflow scenarios, while Figures 7.1-27 and 7.1-28 focus on wet and dry months, respectively. Freshwater inflows under Natural Conditions exceed 100,000 acft/mo 59 percent of the time. Under Present Conditions, this inflow level is reached at least 45 percent of the time. Looking at the Baseline (Full Permits) and the Regional Water Plan scenarios, the 100,000 acft/mo level is achieved about 40 percent and 39 percent of the time, respectively.

A time-series plot of freshwater inflows to the Guadalupe Estuary for the 1950 through 1956 period during the drought of record is shown in Figure 7.1-29. This figure illustrates freshwater inflows to the estuary during the most critical of low-flow times for each of the four inflow scenarios. As shown in Figure 7.1-29, freshwater inflows during drought with implementation of the Regional Water Plan are expected to be less than those under Natural and Present Conditions and greater than those under Baseline conditions.

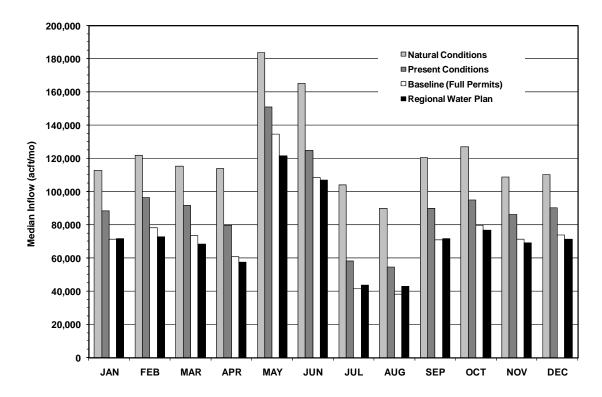


Figure 7.1-25. Monthly Median Guadalupe Estuary Freshwater Inflows

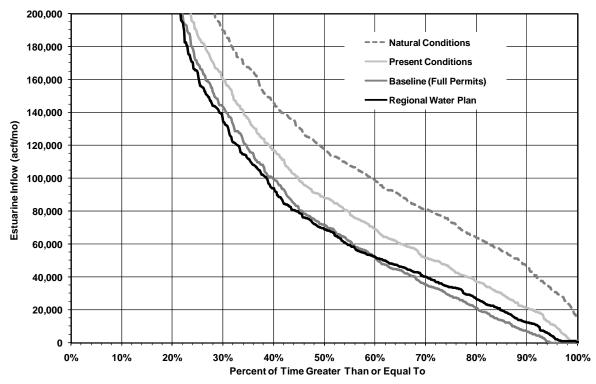


Figure 7.1-26 Frequency of Guadalupe Estuary Freshwater Inflows

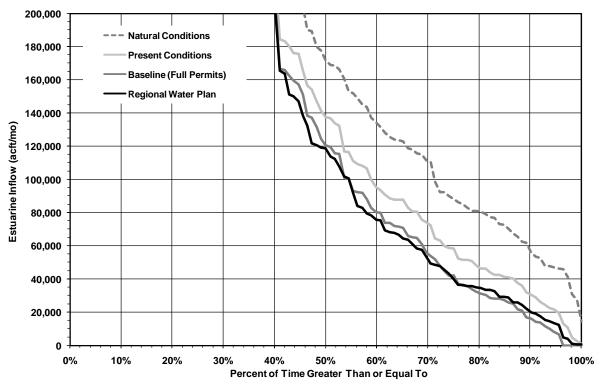


Figure 7.1-27 Frequency of Guadalupe Estuary Freshwater Inflows
During Wet Periods (May and June)

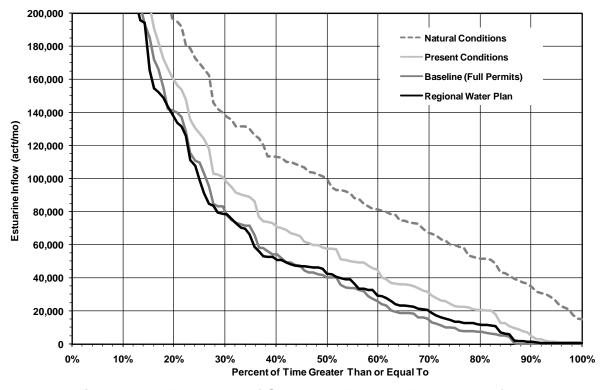


Figure 7.1-28 Frequency of Guadalupe Estuary Freshwater Inflows
During Dry Periods (July and August)

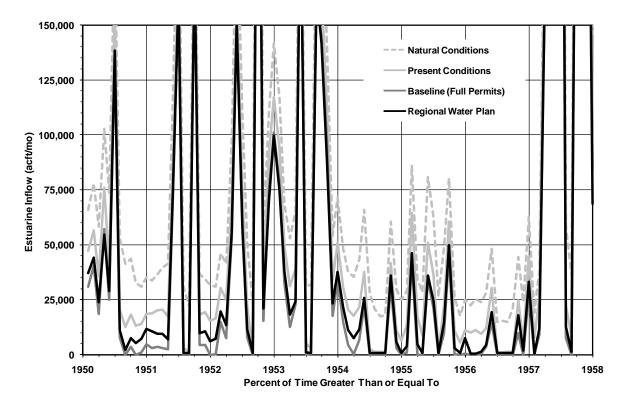


Figure 7.1-29 Guadalupe Estuary Freshwater Inflows during Drought

7.1.3.4 Discussion of Ecologically-Based Assessments

7.1.3.4.1 Discussion of Streamflow Assessment

The results of the ecologically-based streamflow assessments for the Guadalupe River at Victoria show that the regional plan would have very limited effects on streamflow as measured by the ecologically-based criteria selected. For the San Antonio River near Falls City, implementation of the regional water plan would have limited effects in all three flow regimes considered (high, base, and low). Such limited effects could be considered positive with respect to the Baseline as flows increase due to increased San Antonio effluent and the frequency of occurrence and durations of flows below the flow criteria are reduced. The ecological significance of these limited effects is unknown and further complicated by the significant differences between Natural Conditions and the other three scenarios considered. Ongoing instream flow studies on the San Antonio River will likely yield additional information regarding appropriate criteria for ecologically-based streamflow assessments. It is anticipated that, with continued refinement in the assessment criteria and improved knowledge of the instream flow needs, the SCTRWPG will be able to further consider this issue in a future round of planning.

7.1.3.4.2 Discussion of Estuary Inflow Assessment

The results presented in Table 7.1-12 for the spring/early summer pulse inflow criteria are very encouraging and show that the regional plan would have very limited effects on freshwater inflow as measured by the ecologically-based criteria selected. However, the low inflow period assessment (Table 7.1-13) may indicate some issues with regard to cumulative effects of the regional plan on the Guadalupe Estuary, though such effects are associated with increasing use of existing water rights than with regional water plan implementation. These results taken together, also indicate areas of potential focus of attention for future efforts to consider the health of the estuary in the regional water planning process as it moves forward. Ongoing studies of the estuary will yield additional information on inflow and productivity relationships. It is anticipated that, with continued refinement in the assessment criteria and improved knowledge of Guadalupe Estuary inflow needs, the SCTRWPG will be able to further consider this issue in a future round of planning.

7.2 Environmental Assessment

7.2.1 Regional Environment

The South Central Texas Regional Water Planning Area (Region L) spans southern Texas from Hays and Caldwell Counties in the north to the Guadalupe Estuary on the Gulf Coast, to the headwaters of the Nueces River in Uvalde County. The region exhibits a unique biological diversity as a consequence of its location in an area of transition between major vegetational and faunal regions to the north, east and south (respectively, the Balconian, Texan, and Tamulipan)²⁰, and its position astride migration corridors important to numerous bird, bat and insect populations. Locally, the prairie and coastal ecoregions circumscribe sets of habitats, plants and animals distinct from those of the Central Texas Plateau, and the more tropical affinities of the Southern Texas Plains. The major population centers in Region L are located along the eastern and southern margins of the Edwards Plateau, where a series of rugged, wooded canyons are traversed by clear, spring fed streams intimately associated with the cavernous limestone Edwards Aquifer that provides the present major water supply for the region.

²⁰ Blair, W. Frank, "The Biotic Provinces of Texas," Texas Journal of Science 2(1):93-117, 1950.

Omernik²¹ utilized criteria that included topography, climate, vegetation type, and land use characteristics to divide the United States into ecological regions, or ecoregions, that exhibit more or less distinct sets of physical habitats and species. According to updated classification based on Omernik's criteria, Region L includes parts of five Ecoregions: the Edwards Plateau, Southern Texas Plains, Texas Blackland Prairies, East Central Texas Plains, and the Western Gulf Coastal Plains.²² Focusing specifically on Texas, and excluding explicit land use criteria, Gould²³ delineated ten vegetational areas, which generally correspond to the portions of Omernik's Ecoregions that extend into the state. The corresponding names for the vegetational areas found in Region L are the Edwards Plateau, South Texas Plains, Blackland Prairies, Post Oak Savannah, and the Gulf Prairies and Marshes (Figure 7.2-1).

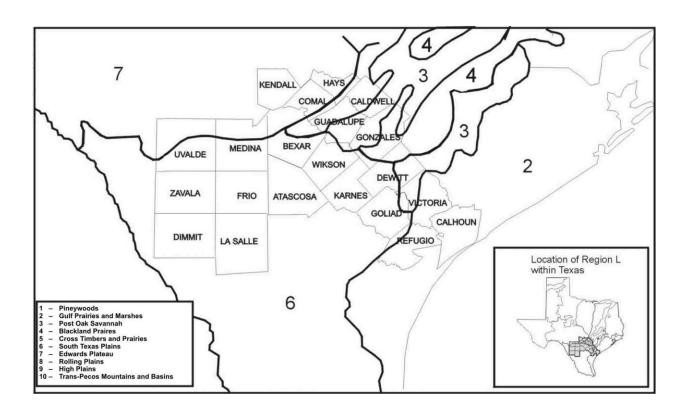


Figure 7.2-1. Gould's Vegetational Areas within Region L

²¹ Omernik, James M., "Ecoregions of the Conterminous United States," Annals of the Association of American Geographers, 77(1) pp. 118-125, 1987.

²² Griffith, G.E., Bryce, S.A., Omernik, J.M., Comstock, J.A., Rogers, A.C., Harrison, B., Hatch, S.L., and Bezanson, D., 2004, Ecoregions of Texas (color poster with map, descriptive text, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:2,3000,000).

²³ Gould, F.W. 1975. <u>The Grasses of Texas</u>. Texas A&M University Press, College Station, Texas.

The Edwards Plateau vegetational area encompasses approximately 24 million acres of tall or mid-grass understory and a brushy, savanna-type overstory complex of live oak (*Quercus virginiana*) and other oaks (*Q. fusiformis, Q. buckleyi, Q sinuata* var. *breviloba*), ashe junipers (*Juniperus ashei*), cedar elm (*Ulmus crassifolia*), mesquite (*Prosopis* sp.), various species of acacia (*Acacia* sp.), and sumacs, including the prairie flame-leaf (*Rhus copallina* var. *lanceolata*). The most important climax grasses include switchgrass (*Panicum virgatum*), several species of bluestem (*Schizachyrium* and *Andropogon* spp.), gramas (*Bouteloua* spp.), Indiangrass (*Sorghastrum nutans*), Canadian wild rye (*Elymus canadensis*), buffalograss (*Buchloe dactyloides*) and curly mesquite (*Hilaria belangeri*).²⁴

Juniper and mesquite brush are generally considered invaders into a presumed climax of largely grassland or savannah, except on the steeper slopes which have continually supported a dense cedar-oak thicket. Bald cypress (*Taxodium distichum*) occurs along perennial streams and rivers, while pecan (*Carya illinoinensis*), Arizona and little walnut (*Juglans major*, *J. microcarpa*), hackberry (*Celtis laevigata*), black and sandbar willow (*Salix nigra, S. interior*), and eastern cottonwood (*Populus deltoides*) are more widely distributed in riparian areas of both perennial and intermittent streams. Cultivated fields are generally in the relatively broad, level stream valleys where deeper soils have accumulated.²⁵ Upland agriculture consists primarily of livestock grazing and harvest of cedar and oak for fence posts and firewood, respectively.

The South Texas Plains vegetational area encompasses approximately 20 million acres of level to rolling topography, with elevations ranging from 1,000 ft-msl to about sea level. Soil types cover a wide range, from clays to sandy loams, creating variations in soil drainage and moisture-holding capacities. Though there are large areas of cultivated land, most of the area is still rangeland. The South Texas Plains region originally supported a grassland or savannah climax vegetation. Long periods of grazing and the reduction of fire has affected these plant communities and led to an increase of brush within the area. Species which have increased in the area include honey mesquite (*Prosopis glandulosa*), post oak, live oak, several acacias (*Acacia* spp.) and members of the cactus family (Cactaceae). Distinct differences in climax plant communities and successional patterns occur on the many range sites that are found in the region.

²⁶ Thomas, G.W, Op. Cit., 1975.

²⁴ Correll, D.S., and M.C. Johnston, "Manual of Vascular Plants of Texas," Texas Research Foundation, Renner, Texas, 1979.

²⁵ Ibid.

Elevations in the Blackland Prairies range from 300 to 800 ft-msl. Uniform, dark-colored calcareous clays, which are interspersed with gray acid sandy loams, constitute the fertile Blackland soils. According to Thomas, most of the region is, or has been under cultivation, although there are some excellent native hay meadows and a few unplowed ranches remaining.²⁷ The characteristic vegetation of the Blackland Prairies, which includes little bluestem (Schizachyrium scoparium) as the climax dominant of the region, is considered true prairie. Big bluestem (Andropogon gerardi), Indiangrass, switchgrass, sideoats grama (Bouteloua curtipendula), hairy grama (Bouteloua hirsuta), tall dropseed (Sporobolus asper), silver bluestem (Bothriochloa saccharoides), and Texas wintergrass (Stipa leucotricha) are other important grasses in the region.²⁸ If heavy grazing is allowed, Texas wintergrass, buffalograss, Texas grama (Bouteloua rigidiseta), smutgrass (Sporobolus indicus), and many annuals may increase or invade the prairies, causing deterioration of the native community.²⁹ Other invasive species include mesquite in the southern portion of the Blackland Prairies, and post oak and blackjack oak in areas of medium to light-textured soils. Grasses that have been used to seed improved pastures within the Blackland Prairies include dallisgrass (*Paspalum dilatatum*), common and coastal bermudagrass (Cynodon dactylon), and some native species.

The Post Oak Savannah vegetational area, which covers approximately 8.5 million acres, consists of gently rolling or hilly country, with elevations ranging from 300 to 800 ft-msl. Upland soils of the region are light-colored acid sandy loams or sands. Bottomland soils are light brown to dark gray and acid, with textures ranging from sandy loams to clays. The area is characterized by pasturelands which include frequent stands of woodland and occasional areas of cropland. The dominant species of the Post Oak Savannah is post oak (*Quercus stellata*), which occurs in open stands with a ground cover of grasses. Other associated species include blackjack oak (*Quercus marilandica*), black hickory (*Carya texana*), cedar elm (*Ulmus crassifolia*), and eastern redcedar (*Juniperus virginiana*). This vegetation type is either considered to be a part of the Eastern Deciduous Forest association or as part of the Prairie

²⁷ Thomas, G.W, "Texas Plants – An Ecological Summary," In: F.W. Gould. 1975. Texas Plants – a Checklist and Ecological Summary. Texas Agricultural Experiment Station, MP-585/Rev., College Station, Texas, 1975.

²⁸ Correll, D.S., and M.C. Johnston, Op. Cit., 1979.

²⁹ Ibid.

³⁰ Ibid.

association.^{31,32,33,34} During the last few decades, many areas of open savannah have been converted into dense woodland stands of post oak and winged elm (*Ulmus alata*). This has occurred as a result of overgrazing, abandonment from cultivation, and removal of fire. Grazing is the major land use of both upland and bottomland sites within this vegetation type. Large acreages of both upland and bottomland forests have been cleared for grazing and most of these are in tame pasture.

The Gulf Prairies and Marshes vegetational region of Texas consists of about 9,500,000 acres. This nearly level, slowly drained plain is less than 150 ft-msl in elevation and is cut by sluggish rivers, creeks, bayous, and sloughs. Habitats include coastal salt marshes, dunes, prairies, river bottoms, and freshwater ponds. Soils are acid sands, sandy loams and clays. The upland prairie soils tend to be heavier textured acid clays or clay loams. Much of the region is fertile farmland or pastureland. The climax vegetation of the region is mostly tall grass prairie or post oak savannah.³⁵ Principal grasses are big bluestem, little bluestem, seacoast bluestem (S. scoparium var. litoralis), Indiangrass, eastern gamma grass (Tripsacum dactyloides), Texas wintergrass, switchgrass, and gulf cordgrass (Spartina spp.). Seashore saltgrass (Distichlis spicata) occurs on moist saline sites within the area. Since the region is heavily used for ranching and agriculture, extensive disturbance has allowed invader species, such as mesquite, huisache (Acacia smallii), prickly pear (Opuntia spp.), Acacia (Acacia spp.), ragweed (Ambrosia psilostachya), broomweed (Xanthocephalum spp.) and others to become well established. 36,37 Heavy grazing and/or abandoned farmland has changed the predominant grasses to species such as broomsedge (Andropogon virginicus), smutgrass, and threeawns (Aristida spp.), and introduced bermudagrass, fescue (Festuca spp.), and dallisgrass.

Large acreages of both upland and bottomland forests have been cleared for grazing and much of this land is planted with domestic grasses. Major creek and river floodplains may retain more or less well-developed hardwood forests, but upland areas are generally cleared for cultivation or pasturage. However, uplands support scattered, dense, shrubby thickets of oak,

³¹ Tharp, B.C., "The Vegetation of Texas," Texas Acad. Sci., Anson Jones Press, Houston, 1939.

³² Braun, E.L., "Deciduous Forests of Eastern North America," Hafner Publishing Co., Inc., New York, 1950.

³³ Weaver, J.E. and F.E. Clements, "Plant Ecology," 2nd Ed. McGraw-Hill Book Co., New York, 1938.

³⁴ Daubenmire, Rexford, "Plant Geography with Special Reference to North America," Academic Press, New York, 1978.

³⁵ Correll, D.S., and M.C. Johnston, Op. Cit., 1979.

³⁶ Johnston, M.C., "The Vascular Plants of Texas, A List Updating the Manual of the Vascular Plants of Texas," Austin, Texas, 1988.

³⁷ Thomas, G.W, Op. Cit., 1975.

huisache, and mesquite and occasional freshwater marshes in relict drainages. Principal tree and shrub species observed in upland areas include live oak, post oak, cedar elm, hackberry, honey mesquite, huisache, and yaupon (*Ilex vomitoria*). 38,39,40

In addition to the physiographic and biological diversity of Region L, it is also the location of a unique, region-wide geologic feature called the Edwards Aquifer. The Edwards Aquifer, together with the karst geology of its recharge zone and the remaining major perennial springs, constitute a unique set of habitats in which a significant concentration of isolated, endemic species has developed. The porous to cavernous limestones and dolomites making up the Edwards Aquifer are also the groundwater source that presently supplies water to the City of San Antonio and numerous other users. The Edwards Aquifer is the only underground aquatic habitat in Texas in which vertebrate species live⁴¹ and it supports a surprisingly diverse ecosystem. The aquifer has three parts: the drainage, or catchment area, the recharge zone, and the reservoir zone. Input to the aquifer comes from rainfall over the watershed as a whole, but recharge occurs primarily in the beds of streams crossing the recharge zone. The recharge zone consists of a band of fractured and cavernous limestone (Karst geology) through which surface water enters the aquifer. In addition to the aquatic fauna of the aquifer, the karst limestones in the upland portions of the recharge and contributing zones also harbor a number of endemic, terrestrial cave species.

Where rivers flowing across the plateau have carved deep canyons and exposed the base of the Edwards Limestone, spring fed streams arise and flow south and eastward over the less permeable older formations to the recharge zone, at the base of which a set of large springs (e.g., Leona, San Antonio, Comal, and San Marcos Springs) emerge that support still more species of limited distribution. In addition to their importance as water supplies, the large springs and their associated rivers are also of regional economic importance as scenic and recreational destinations.

2

³⁸ U.S. Bureau of Reclamation, "Palmetto Bend Project – Texas Final Environmental Impact Statement," Bureau of Reclamation, U.S. Department of the Interior, 1974.

³⁹ Soil Conservation Service, "Soil Survey of Calhoun County, Texas," Soil Conservation Service, Temple, Texas, 1978.

⁴⁰ Texas Department of Water Resources, "Land Use/Land Cover Maps of Texas," Austin, Texas. LP-62, 1977, Reprinted 1978.

⁴¹ Edwards, Robert J., Glen Longley, Randy Moss, John Ward, Ray Mathews, and Bruce Stewart, "A Classification of Texas Aquatic Communities with Special Consideration toward the Conservation of Endangered and Threatened Taxa," Vol. 41, No. 3, The Texas Journal of Science, University of Texas at Austin, Austin, Texas, 1989.

Species listed by the Federal and State governments as Endangered or Threatened, species that are candidates for listing as endangered and threatened, and other species of concern are listed and discussed in terms of the potential impacts of each water management strategy in Volume II, and are summarized by county in Appendix F. Endangered species are not distributed uniformly throughout Region L; they tend to be most densely abundant in the canyons, caves, and springs on the eastern and southern edges of the Edwards Plateau (western Hays and Comal Counties, and northern Bexar County) and in the wetland and brackish environments of Calhoun and Refugio Counties.

Listed species tend to fall into one of two broad categories. There are widespread, but rare species whose populations do not appear to be dependent on specific habitat resources that are (at this time) in limited supply (e.g., foraging and nesting areas). These include many of the birds, such as the eagles and hawks that suffered population declines as a result of persistent pesticide toxicity, and Whooping Cranes that were decimated by market hunting. Other listed species tend to be rare because their habitat requirements are met in only a few locations. This group includes migratory songbirds with specific nesting requirements (i.e., Golden-cheeked Warbler and Black-Capped Vireo), and reaches the extremes of endemism in the spring and cave species found along the edges of the Edwards Plateau in Bexar, Comal, and Hays Counties.

In support of the regional water planning process, the Texas Parks and Wildlife Department (TPWD) screened Texas rivers and streams for reaches or segments that supported significant biological resources or functions, or whose continued flows were deemed critical to the maintenance of a downstream resource or public property. Stream reaches identified by TPWD as Ecologically Significant River and Stream Segments in Region L are listed, along with the listing criteria employed in the identification process, in Table 7.2-1. Segment locations are shown in Figure 7.2-2.

With respect to Cultural Resources, Region L is the location of much of the earliest European activity in Texas, including concentrations of important historical sites on Matagorda Bay, along the Guadalupe and San Antonio Rivers, in Bexar County, and at the perennial springs along the margin of the Edwards Plateau. Prehistoric sites also tend to be concentrated in many of the same areas, and Region L contains some of the oldest Native American habitation sites known in the United States. Large National Historic Districts encompass areas on the lower Guadalupe and San Antonio Rivers that are particularly rich in both historic and prehistoric remains.

Table 7.2-1.
Ecologically Significant River and Stream Segments Nominated by TPWD in and Adjacent to the South Central Texas Regional Water Planning Area

Segment Name			Water Quality Aquatic Life/Uses	Endangered, Threatened, or Species of Concern	
Aransas River	Extensive estuarine wetland habitat				Reddish egret, Piping plover, snowy plover, white-faced ibis, wood stork, and brown pelican
Arenosa Creek				ecoregion stream	
Blanco River		Edwards Aquifer Recharge		overall use	
Carpers Creek				ecoregion stream	
Comal River		Edwards Aquifer Recharge	Landa Park		multiple spring- dependent species
Cypress Creek		Edwards Aquifer Recharge		overall use	
Dry Comal Creek		Edwards Aquifer Recharge			
Frio River	Texas Natural River Systems Nominee	Edwards Aquifer Recharge	Garner State Park	overall use, aesthetic	
Garcitas Creek	Estuarine wetlands			ecoregion stream	diamondback terrapin ¹
Geronimo Creek				ecoregion stream	
Guadalupe River, Upper		Edwards Aquifer Recharge	Guadalupe River Park	overall use #2 scenic river in Texas	
Guadalupe River, Middle					golden orb
Guadalupe River, Lower	Freshwater and marine wetlands		Victoria Municipal Park, Guadalupe Delta WMA	overall use	whooping crane
Honey Creek			Honey Creek Natural Area		

Table 7.2-2 (Concluded)

Table 7.2-2 (Co Segment Name	Biological Function	Hydrologic Function	Riparian Conservation	Water Quality Aquatic Life/Uses	Endangered, Threatened, or Species of Concern
Little Blanco River		Edwards Aquifer Recharge			
Mission River	Freshwater and marine wetlands				
Upper Nueces River	T. Nat R Systems	Edwards Aquifer Recharge		Aesthetic	
Sabinal River	T. Nat R Systems	Edwards Aquifer Recharge		Aesthetic	
Upper San Marcos River			multiple University and City parks	overall use	multiple spring- dependent species
Lower San Marcos River			Palmetto State Park		
San Miguel Creek				ecoregion stream	
West Nueces River		Edwards Aquifer Recharge			
West Verde Creek		Hill Country Natural Area			
West Carancahua Creek				ecoregion stream	
Colorado River- Bastrop				overall use	blue sucker
Tidal Colorado River	Freshwater and marine wetlands				
Onion Creek				ecoregion stream	

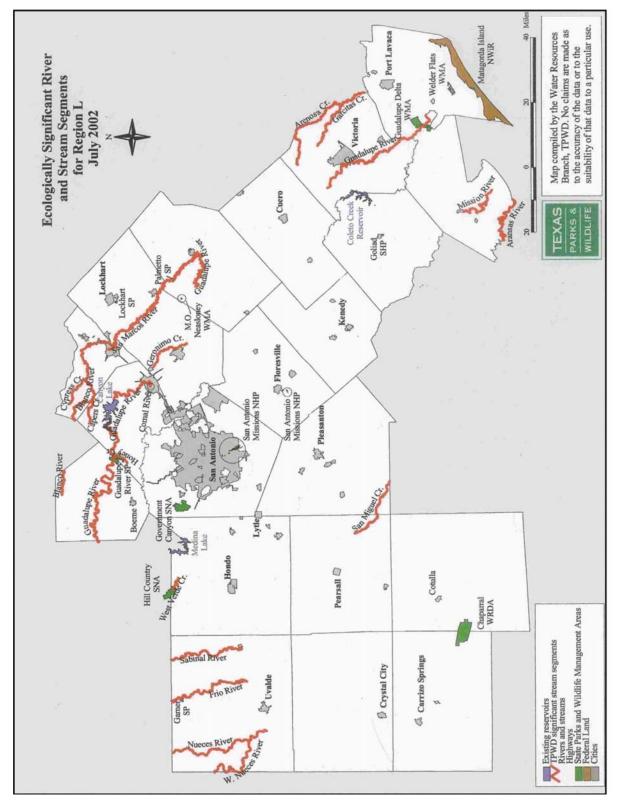


Figure 7.2-2. Ecologically Significant River and Stream Segments for Region L

7.2.2 Environmental Effects

In attempting to evaluate the environmental effects of any activity it is often useful to consider the effects of construction and operations separately, even if only for "bookkeeping" purposes, so as not to miss anything. Construction effects are generally due to disturbances of vegetation and soils, although in specific locations and circumstances, waste disposal, construction in aquatic habitats, noise, or airborne particulates may be important factors. Operations effects may include (for example) impacts to vegetation, habitats, or endangered species through maintenance practices, changes in streamflows or water quality or groundwater availability. The potential environmental effects of each water management strategy were evaluated individually and the results are included with the discussion of that strategy in Volume II. The evaluation in this section focuses on the cumulative impact of all recommended water management strategies in the 2011 South Central Texas Regional Water Plan, and how that compares with the potential impacts of the water management strategies recommended for the South Central Texas Region in past state water plans.

The environmental assessments of individual water management strategies should be regarded as "worst case" and preliminary in the sense that neither environmental nor engineering site-specific studies have been performed to verify the published data employed, finalize facility locations and operational routines, identify locations where risks to environmental resources can be avoided or minimized, and propose compensation for unavoidable impacts. Most of the facilities evaluated here have been designed and located only in a conceptual sense; the actual locations of intakes, pipeline rights-of-way, and other project features will not be finally determined until site-specific field studies and land acquisition programs have been completed. For that reason, many, if not most, of the potential impacts discussed in the respective water management strategies evaluations, can be avoided or significantly mitigated by relocation of project elements. This is particularly the case with respect to facilities such as pipelines and individual well pads and less so for reservoirs, for which there may be a limited set of suitable sites.

Some of the water management strategies considered in this regional water plan are expected to involve little potential impact to environmental or cultural resources, except secondarily with respect to changes in land use practices that may affect wildlife habitats and uses in both rural and urban areas. These would seem to include the Water Conservation, Drought Management, Facilities Expansions, Local Groundwater, and Recycled Water

strategies, and strategies that reallocate previously permitted and developed water among different sets of users (e.g., Edwards Transfers and Surface Water Rights which are generally moving water from irrigation to municipal uses). Hence, these strategies are not included in the assessment of environmental effects.

Potential adverse environmental and cultural resources impacts are minimized in the 2011 Regional Water Plan by the recommendation of strategies that maximize the efficient use of existing surface water resources, or which develop groundwater and seawater supplies. These water management strategies avoid the extensive habitat conversions and streamflow changes that can accompany comparable new surface water development. The estimated new water supplies provided by the water management strategies recommended in the current 2011 Regional Water Plan for Region L and included in the assessment of environmental effects are summarized in Table 7.2-2, along with strategies included in previous State Water Plans. These water management strategies include: a) Eight (8) that involve development of fresh or brackish groundwater from the Carrizo-Wilcox Aquifer; b) Four (4) that rely on surface water diversions from the Guadalupe or Lavaca River and off-channel surface or aquifer storage; c) Four (4) that develop additional firm supplies from available surface water sources; d) Three (3) that would use surface water and groundwater conjunctively; and e) One (1) that involves diversion and desalination of seawater from the Guadalupe Estuary.

Regardless of water source and location, all the water management strategies comprising the Regional Water Plan, except the Edwards Recharge Projects, involve the construction of dispersed facilities that typically have substantial flexibility in terms of alignment or site selection such as water intakes, off-channel storage, pipelines, and well fields. The recommended strategies typically result in relatively only localized disturbances. While a major pipeline may disturb several hundred acres in total, effects are generally minor at the landscape scale because construction and maintenance activities are dispersed among the much larger physiographic and habitat elements in which they are placed. In comparison with storage reservoir projects, the total land area impacted by a well field or river diversion and transmission pipeline is smaller, often by orders of magnitude. Field studies conducted prior to design and easement procurement can substantially reduce the potential to adversely affect unique habitats, endangered species, historic

Table 7.2-2. Estimated Firm Yields of Water Management Strategies in State Water Plans (acft/yr)

	Water Management	State Water Plan								
ID#	Strategy	1984	1990	1997	2002	2007	2012			
G-16C1	Cuero Reservoir	152,606	152,606							
G-17C1	Lindenau (Sandies) Reservoir	80,836	80,836	80,836						
G-40	Cloptin Crossing Reservoir	32,458								
G-21	Lockhart Reservoir	5,627								
S-14D	Applewhite Reservoir	4,032	4,032							
S-16C	Goliad Reservoir	99,687	99,687							
S-15C	Cibolo Reservoir	33,200								
S-15Da	Cibolo Reservoir w/ SA River		69,925	69,925						
LGWSP	Lower Guadalupe Water Supply Project				104,487					
LGWSP	LGWSP for GBRA Needs					63,072				
LSWP	LCRA-SAWS Water Project				150,000	150,000	90,000			
SCTN-3c	Simsboro Aquifer				55,000					
L-18a	Edwards Recharge Projects				21,577	21,577	21,577			
SCTN-17	Seawater Desalination				84,012	84,012	84,012			
CZ-10C	Carrizo Aquifer - Wilson & Gonzales				16,000					
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop				27,500					
G-24	Wimberley and Woodcreek Water Supply Project				4,636	4,636	4,480			
	Canyon Amendment			40,000	40,000					
	Regional Carrizo for SAWS					62,588	11,687			
	SSLGC Carrizo Project Expansion				12,800	12,800				
	Hays/Caldwell PUA					15,000	35,000			

Table 7.2-2 (Concluded)

ID#	Water Management	State Water Plan							
	Strategy	1984	1990	1997	2002	2007	2012		
	Recycled Water Program Expansion		97,000		52,215	36,258			
	Brackish Wilcox Desalination					5,662			
	Wells Ranch Project				9,000	9,000	11,000		
	CRWA Siesta Project				5,042	5,042	5,042		
	GBRA Simsboro Aquifer						50,000		
	GBRA-Exelon ProjectRiver Diversion Option						49,126		
	GBRA New Appropriation (Lower Basin)						11,500		
	GBRA Mid Basin (Surface Water)						25,000		
	GBRA Lower Basin Storage						26,452		
	Regional Carrizo for SSLGC						10,364		
	Brackish Wilcox Groundwater for SAWS						26,400		
	Brackish Wilcox Groundwater for Regional Water Alliance						11,200		
	Brackish Wilcox Groundwater for SSWSC						1,120		
	Medina Lake Firm-Up (ASR)						13,730		
	Lavaca River Off-Channel Reservoir						26,242		
	Storage Above Canyon (ASR)						3,140		
	TWA Regional Carrizo						27,000		
otals	I .	408,446	504,086	190,761	582,269	469,647	544,08		

and prehistoric sites, and other resources that are present only at particular locations. For example, where sensitive resources at stream crossings cannot be adequately protected or avoided, boring or tunneling can be considered as construction options to avoid disturbance to aquatic habitats.

The Edwards Recharge Projects (Section 4C.4, Volume II) involve construction of dams where selected streams cross the Edwards Aquifer recharge zone to increase the amount of water entering the aquifer. Most of the recharge occurs during heavy rains that result in streamflows exceeding the maximum possible recharge rate of the reach over the recharge zone that contribute instead to downstream flow. In addition, most of the time streambeds in the recharge zone (and for substantial distances downstream) are dry, and streamflows entering the recharge zone are usually well below maximum recharge amounts (i.e., streamflows are usually zero and the streambed dry at the downstream edge of the recharge zone). Slowing the flow of water in order to increase the amount of time water remains over the recharge zone will increase recharge to the aquifer without substantially impacting stream habitats and populations, because water is not present in most of the stream reaches recommended at frequencies sufficient to support other than ephemeral aquatic communities in the recharge and downstream reaches. The recharge structures are designed to drain rapidly and to pass minimum flows downstream for water rights holders and environmental flow needs based on default instream flow criteria for regional planning (Consensus Criteria for Environmental Flow Needs). As a result of the low frequency and persistence of inundation, limited changes in the terrestrial environment will occur in the recharge impoundment areas. Inspection of the existing recharge structures on Parkers, Verde, and San Geronimo Creeks shows little or no apparent impact to vegetational cover within and downstream of their impoundments.

Major exceptions include the Nueces and Blanco River sites that do ordinarily exhibit surface water and aquatic communities at the proposed recharge sites. Perennial aquatic habitats are generally limited to pools in the Nueces River between US 90 and its "braided reach." The Frio River and its tributaries between US 90 and Choke Canyon Reservoir also experience intermittent flows. Impacts to the Blanco River are minimized because it joins with the San Marcos River only a few miles below the proposed recharge dam site. Most of the water entering the aquifer from the Blanco River recharge structure is expected to be discharged from the nearby springs in San Marcos and flow down the San Marcos River. Recharge sites proposed for northern Bexar County (e.g., a site in Government Canyon State Park) are near caves in which

reside populations of federally listed endangered invertebrates. Construction of the recharge projects in the Nueces River Basin would result in small decreases in the firm yield of the Choke Canyon Reservoir/Lake Corpus Christi System and inflows to the Nueces Estuary. At the same time, instream flows would increase in the Guadalupe-San Antonio River Basin, as would inflows to the Guadalupe Estuary.

The largest run-of-river diversion water management strategy, the LCRA-SAWS Water Project (LSWP), involves diversion of both appropriated and unappropriated water for which rights will have to be obtained through the state permitting process as well as groundwater development for irrigation uses deemed necessary to make surface water available for municipal and industrial uses. Five other recommended strategies, the GBRA Mid-Basin Project, GBRA New Appropriation (Lower Basin), Lavaca River Off-Channel Reservoir, Storage above Canyon Reservoir (ASR), and Medina Lake Firm-Up (ASR) include off-channel storage facilities which will be used to ensure firm supplies throughout a drought comparable to the most severe on record. The off-channel storage is necessary because the existing water rights and the unappropriated water are either not physically present during low flow periods, or are unavailable due to the demands of senior water rights or environmental flow needs. The bulk of these proposed diversions will occur during higher flow periods—when streamflows exceed the monthly medians (for a given month in the period of record, half the time flows are less than the median, and half the time flows are greater than the median), and low flow regimes may not be affected at all. Recent studies indicate that the firm yield associated with the LCRA-SAWS Water Project that could be allocated to SAWS is now about 90,000 acft/yr rather than the full 150,000 acft/yr assumed in previous regional water plans. Unlike the Edwards Recharge Projects, the LCRA-SAWS Water Project includes long transmission pipelines that traverse multiple ecologically distinct regions, which inflate the potential effects on vegetation and terrestrial habitats, place project facilities adjacent to more protected species, and increase the potential for significant adverse effects. The same might be said of the GBRA Mid-Basin Project, though its transmission pipeline is less than one-third the length.

The water management strategies that include development of large amounts of groundwater all avoid the potential environmental and cultural resources impacts usually attendant to development of similar volumes of surface water. However, local residents of the areas that would be affected have expressed concerns about declining well levels and potential impacts to springs and streamflows. Development of a large amount of groundwater from the

Carrizo-Wilcox Aquifer will likely result in some reductions in streamflow in both the San Antonio and Guadalupe Rivers, and in inflows to the Guadalupe Estuary. However, modeling the net effect on streamflows in the San Antonio and Guadalupe Rivers of complete implementation of all the currently recommended water management strategies has not indicated significant changes in streamflows in either river, particularly with respect to low flows. These groundwater projects do, however, include transmission pipelines from the well fields to the users which may include similar consequent effects as noted for the LCRA-SAWS Water Supply Project and the GBRA Mid-Basin Project.

The seawater and brackish groundwater desalination projects involve little construction disturbance except for the necessary raw water intakes or wells and transmission pipelines. Use of either seawater or brackish bay water sources will entail potential impacts due to impingement and entrainment of aquatic organisms at the intake, and to the need to discharge water 2-3 times as salty as the raw water. Potential impacts from desalination operations can be avoided or significantly minimized by appropriate site selection and design of intake and discharge structures based on the biological and hydrodynamic characteristics of the receiving water. The Seawater Desalination strategy includes a long transmission pipeline for delivery of water from San Antonio Bay to Bexar County.

In order to assess the potential cumulative environmental impacts of all the recommended water management strategies having quantifiable impacts, a method was developed to numerically characterize the environmental effects of each water management strategy in terms such that very different kinds of impacts could be aggregated and the results compared. To evaluate the resulting impact scores of the 2011 Regional Water Plan (which will become a part of the 2012 State Water Plan) relative to the possible universe of water management strategies available to the region, we compare the present set of recommended water management strategies to those proposed for the South Central Texas Region in previous State Water Plans.

The location and extent of potential disturbances to environmental and cultural resources are based on the descriptions and environmental assessments of the water management strategies in Section 4C (Volume II) of the South Central Texas Regional Water Plan and updated information developed by HDR Engineering, Inc. during the current regional water planning effort. Pipeline routes were produced digitally by HDR and pipeline lengths and areas were calculated using ArcMap geographic information system software. A 30-foot permanent easement corridor was assigned to pipelines with pipe diameters less than 36 inches and a 40-

foot corridor for those with diameters greater than 36 inches. A 100-foot temporary construction corridor was assumed for all pipelines. Areas inundated by reservoirs were obtained from the 2001 South Central Texas Regional Water Plan, as well as other estimations of land area disturbed. The total areas for facilities such as water treatment plants, pump stations, storage units, and wells were calculated by subtracting any reservoir areas and permanent pipeline easement areas from the total impact areas.

Recommended water management strategies that involve only reallocation of previously appropriated water using existing infrastructure are not included in this analysis. These strategies, which include conservation, reuse, transfer of water among user groups, and local groundwater development, do not generally require additional reservoirs, pipelines, or other structures that would have significant environmental impacts. For consistency with water planning evaluation protocols used in this report, diversion and use of appropriated water is not considered to result in certain aquatic habitat impacts.

This assessment was completed using a matrix approach to perform a series of parallel evaluations of each water management strategy for its potential to impact:

- (1) Endangered and Threatened Species;
- (2) Vegetation and Wildlife Habitats;
- (3) Water Quality and Aquatic Habitats;
- (4) Cultural Resources; and/or
- (5) Ecologically Significant River and Stream Segments as identified by the Texas Parks & Wildlife Department (TPWD).

The impact values were tabulated, summed for all water management strategies in each of the State Water Plans, and the aggregate scores normalized by dividing them by the total firm yield of the respective State Water Plan strategies (Table 7.2-2), and again by the average score of the six State Water Plans.

7.2.2.1 Endangered and Threatened Species

The potential impacts of the individual water management strategies were first evaluated with respect to state- and federally-listed endangered and threatened species, and species of special concern, using a two-part index system. First, each listed species was assigned a score that reflected its status—1 for species of concern; 2 for threatened; or 3 for endangered. In cases where status varies among state and federal agencies, the higher status was used. The most

current county lists and mapped occurrences of endangered and threatened species within Region L were obtained from the TPWD Natural Diversity Database and used.

Each water management strategy was then evaluated with respect to its potential impact on the species present by assigning a numerical value from zero (0) to three (3) to each instance in which construction or operational disturbances could result in an impact to one of these species according to the following criteria:

- 0 No adverse impact expected, project in historic range only
- 1 Species known to occur within county, but not likely to be impacted
- 2 Species or potential habitat known to occur within the project area, may impact habitats or individuals of widespread species
- 3 Species or habitat present within the corridor, significant reductions in critical habitat or population of endemic species possible.

Each potential impact score was then multiplied by the status score to obtain a final impact assessment for that species and strategy. Status, potential impact and impact assessment scores are shown in the Endangered, Threatened, and Species of Concern tables in the respective water management strategy discussions in Section 4C (Volume II). The summed impact assessment scores are listed, and the overall endangered and threatened species impact values for each of the State Water Plans are presented in Table 7.2-3.

The potential impacts to endangered and threatened species associated with the six State Water Plans are compared in Figure 7.2-3, which indicates a higher potential for impacts to occur in the 2012 State Water Plan. This finding is a direct result of the changing nature of the water management strategies; many small projects requiring long pipelines that cross numerous ecologically distinct areas, and those constructed in regions where many protected species occur will have more project facilities adjacent to sensitive species and habitats, and thus higher impact potential, than larger, more compact projects that are not located in areas of many protected species. In Table 7.2-3, the highest impact scores go to the water management strategies located in areas of relatively high protected species density and the projects requiring the longest pipelines. The high score for the Edwards Recharge Projects is due primarily to the proposed recharge sites located in northern Bexar County, where increased water levels during runoff/recharge events may adversely affect cave communities adjacent to and within the recharge reservoirs that include federally listed endangered invertebrates.

Table 7.2-3.

Potential Impacts to Endangered, Threatened, and Species of Concern from Water Management Strategies in State Water Plans

ID#	Water Management Strategy	State Water Plan							
ID#		1984	1990	1997	2002	2007	2012		
G-16C1	Cuero Reservoir	70	70						
G-17C1	Lindenau (Sandies) Reservoir	74	74	74					
G-40	Cloptin Crossing Reservoir	67							
G-21	Lockhart Reservoir	40							
S-14D	Applewhite Reservoir	66	66						
S-16C	Goliad Reservoir	78	78						
S-15C	Cibolo Reservoir	53							
S-15Da	Cibolo Reservoir w/ SA River		59	59					
LGWSP	Lower Guadalupe Water Supply Project				91				
LGWSP	LGWSP for GBRA Needs					114			
LSWP	LCRA-SAWS Water Project				103	103	85		
SCTN-3c	Simsboro Aquifer				68				
L-18a	Edwards Recharge Projects				84	84	84		
SCTN-17	Seawater Desalination				67	67	67		
CZ-10C	Carrizo Aquifer - Wilson & Gonzales				46				
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop				65				
	Regional Carrizo for SAWS					47	30		
	Hays/Caldwell PUA					19	19		
G-24	Wimberley and Woodcreek Water Supply Project				78	78	35		

Table 7.2-3 (Concluded)

ID#	Water Management Strategy	State Water Plan						
ID#		1984	1990	1997	2002	2007	2012	
	Brackish Wilcox Desalination					44		
	Wells Ranch Project				21	21	21	
	CRWA Siesta Project				23	23	23	
	GBRA Simsboro Aquifer						38	
	GBRA-Exelon ProjectRiver Diversion Option						66	
	GBRA New Appropriation (Lower Basin)						56	
	GBRA Mid Basin (Surface Water)						37	
	GBRA Lower Basin Storage						34	
	Regional Carrizo for SSLGC						30	
	Brackish Wilcox Groundwater for SAWS						28	
	Brackish Wilcox Groundwater for Regional Water Alliance						27	
	Brackish Wilcox Groundwater for SSWSC						28	
	Medina Lake Firm-Up (ASR)						53	
	Lavaca River Off-Channel Reservoir						33	
	Storage above Canyon (ASR)						54	
	TWA Regional Carrizo						42	
	Raw Score	448	347	133	646	600	860	
Factor	Score / Unit Supply	1.097	0.688	0.697	1.109	1.278	1.58	
1,000	Normalized Score / Unit Supply	1.020	0.640	0.649	1.032	1.188	1.470	
	Rank	3	1	2	4	5	6	

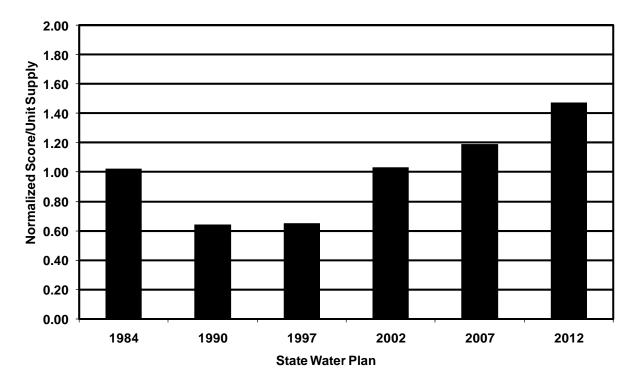


Figure 7.2-3. Cumulative Potential Impact Scores for Endangered, Threatened, and Species of Concern

7.2.2.2 Vegetation and Wildlife Habitats

To evaluate potential impacts on vegetation and wildlife habitats, each of the water management strategies was given a "total adjusted impact value" based on the total area of each habitat type disturbed by construction activities and the level of potential impacts on those resources. For each water management strategy, the total land area potentially disturbed was divided into categories based on types of disturbance. For example, inundation of land due to the construction of a reservoir versus the temporary construction corridor of a pipeline easement. The potential level, or severity, of impacts to vegetation and wildlife was evaluated by assigning an expected impact score:

- 1 Low impacts = temporary habitat disturbance (e.g., a pipeline construction corridor);
- 2 Medium impacts = permanent or continuing habitat disturbance that does not entirely destroy its original ecological functions; or
- 3 High impacts = habitat is permanently removed through inundation or construction.

The area of each type of disturbance was then divided into four categories of habitat type with corresponding scores reflecting their relative values (e.g., forests and wetlands are generally considered more important ecologically than grassland types):

- 1 0-30% canopy cover (grasslands, shrub land and cropland);
- 2 31-70% canopy cover (brush lands, and parkland);
- 3 70-100% canopy cover (woods and forestland); or
- 4 All wetland and wooded riparian areas regardless of canopy cover.

These four categories were based on a clustering of the eight Physiognomic Regions of vegetation provided by the TPWD.⁴² The digital pipeline routes provided were then projected over a map of the vegetation types of Texas from the TPWD to determine the proportions of the four habitat categories potentially affected by each water management strategy.

The product of the level of impact score times the habitat value score times the acreage affected is the adjusted impact value. Adjusted impact values are summed for the habitats potentially affected by each water management strategy and overall vegetation and habitat scores are shown in Table 7.2-4. Figure 7.2-4 presents a graphical comparison of six State Water Plans. These results are clearly the opposite of those obtained above for protected species; the 2011 Regional Water Plan (2012 State Water Plan) exhibits a lesser impact to this environmental resource category than earlier state water plans. In this case, the large areas to be inundated in the storage reservoir projects recommended in the 1984 to 1997 State Water Plans eliminated large areas of terrestrial and flowing aquatic habitat, replacing them with a lake-type environment.

7.2.2.3 Water Quality and Aquatic Habitats

Potential impacts to water quality and aquatic habitats were assessed in a single stage as each water management strategy was evaluated with respect to a list of eight potential impact classes and assigned an appropriate score for each occurrence of the eight evaluation categories:

- (1) Inundation/Conversion of lotic to lentic habitat: 1
- (2) Streamflow reductions: 1, or 0.25 if compliant with Consensus Criteria for Environmental Flow Needs (CCEFN)
- (3) Alteration of flood frequency (below storage reservoirs): 1
- (4) Alteration of physio-chemical characteristics of streamflow: 1, or 0.25 if compliant with CCEFN
- (5) Blocks aquatic migration (any dam on a perennial stream): 1

⁴² McMahan, Roy G. Frye, Kirby L. Brown. 1984. The Vegetation Types of Texas Including Cropland. Texas Parks and Wildlife Department. Austin. Texas.

Table 7.2-4.

Potential Impacts to Vegetation and Wildlife Habitats from Water Management Strategies in State Water Plans

104	Material Management Christian			State Wa	ater Plan		
ID#	Water Management Strategy	1984	1990	1997	2002	2007	2012
G-16C1	Cuero Reservoir	243,933	243,933				
G-17C1	Lindenau (Sandies) Reservoir	242,980	242,980	242,980			
G-40	Cloptin Crossing Reservoir	30,171					
G-21	Lockhart Reservoir	13,639					
S-14D	Applewhite Reservoir	12,712	12,712				
S-16C	Goliad Reservoir	136,422	136,422				
S-15C	Cibolo Reservoir	84,604					
S-15Da	Cibolo Reservoir w/ SA River		84,717	84,717			
LGWSP	Lower Guadalupe Water Supply Project				10,816		
LGWSP	LGWSP for GBRA Needs					12,004	
LSWP	LCRA-SAWS Water Project				26,739	55,798	21,799
SCTN-3c	Simsboro Aquifer				4,422		
L-18a	Edwards Recharge Projects				13,769	13,769	13,769
SCTN- 17	Seawater Desalination				4,343	4,343	4,343
CZ-10C	Carrizo Aquifer - Wilson & Gonzales				3,088		
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop				8,762		
	Regional Carrizo for SAWS					4,797	1,790
	Hays/Caldwell PUA					1,890	1,934

Table 7.2-4 (Concluded)

				State Wa	ater Plan		
ID#	Water Management Strategy	1984	1990	1997	2002	2007	2012
G-24	Wimberley and Woodcreek Water Supply Project				1,128	1,128	674
	Brackish Wilcox Desalination					478	
	Wells Ranch Project				1,307	1,307	1,307
	CRWA Siesta Project				1,149	1,149	1,149
	GBRA Simsboro Aquifer						2,982
	GBRA-Exelon ProjectRiver Diversion Option						15,063
	GBRA New Appropriation (Lower Basin)						12,400
	GBRA Mid Basin (Surface Water)						34,767
	GBRA Lower Basin Storage						1,829
	Brackish Wilcox Groundwater for SAWS						72
	Brackish Wilcox Groundwater for Regional Water Alliance						836
	Brackish Wilcox Groundwater for SSWSC						118
	Medina Lake Firm-Up (ASR)						688
	Lavaca River Off-Channel Reservoir						9,371
	Storage above Canyon (ASR)						453
	TWA Regional Carrizo						4,274
	Raw Score	764,461	720,764	327,697	75,525	96,663	129,618
Factor	Score / Unit Supply	1.872	1.430	1.718	0.130	0.206	0.238
1	Normalized Score / Unit Supply	2.008	1.534	1.843	0.139	0.221	0.256
	Rank	6	4	5	1	2	3

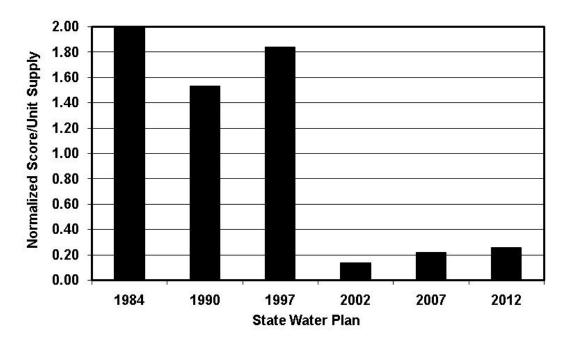


Figure 7.2-4. Cumulative Potential Impact Scores for Vegetation and Wildlife Habitats

- (6) Alteration of annual hydrograph: 1, or 0.25 if compliant with CCEFN
- (7) Construction disturbances: 1 each for four categories; outfalls, intakes, pipeline stream crossings, or dams (maximum value of 4)
- (8) Bay and Estuary inflows: 1, or 0.25 if compliant with CCEFN

Scores were tabulated for each water management strategy and summed for each State Water Plan.

The State Water Plans were also scored on the net flow impacts following implementation of all recommended water management strategies on major streams at four locations: the Guadalupe River at Cuero/Victoria; the Guadalupe River at the Saltwater Barrier near Tivoli; the Nueces Estuary near Corpus Christi; and the Colorado River at Bay City. Net flow impact scores were based on the following scale, with the greatest impact score being associated with the greatest potential change in streamflow or freshwater inflow:

- 0 Flow increase or no change at low (less than 50th percentile), no change or minor decrease at high flows;
- 1 Moderate decrease at low flows (less than 10 percent between 25th and 50th percentiles);

- 2 Moderate decrease at low flows, (greater than 20 percent decrease between 50th and 75th percentiles);
- 3 Greater than 10 percent decrease between 25th and 50th percentiles; or
- 4 Greater than 10 percent decrease between 25th and 50th percentiles, greater than 20 percent decrease between 50th and 75th percentiles.

The summed water quality/habitat and net stream flow scores for each State Water Plan, divided by the plan yields, were added together and normalized. The results are presented in Table 7.2-5, and Figure 7.2-5 is a graphical comparison of the six water plans. The impact score for the 2012 plan is greater than those for the 2002 and 2007 plans because of the additions of several new run-of-river diversion projects with off-channel storage.

7.2.2.4 Cultural Resources

Assessment of potential impacts to historical sites included evaluation of data provided by the Texas Historical Commission which included the locations of National Register Properties, Historical Markers, and cemeteries within the state. Possible impacts to these historical sites were determined according to their proximity to the probable construction areas and the type of site, if known. All historical sites within a mile of the pipeline corridor were entered into the impact matrix along with their distances from the project disturbance area and any other details relevant to determining probable impact. Impact scores were based on the following scale, with the greatest impact score being associated with the permanent inundation of any historical site:

- 0 Historical sites mapped greater than 0.50 mile from the project disturbance;
- 1 Historical sites between 0.25 and 0.50 mile from the project disturbance;
- 2 Historical sites less than 0.25 mile from the project disturbance;
- 3 Permanently inundated historical sites; and
- 1 An additional impact point assigned for any cemetery.

Table 7.2-5.

Potential Impacts to Water Quality and Aquatic Habitats from Water Management Strategies in State Water Plans

ID#			5	State Wate	r Plan		
Юπ	Water Management Strategy	1984	1990	1997	2002	2007	2012
G-16C1	Cuero Reservoir	6.00	6.00				
G-17C1	Lindenau (Sandies) Reservoir	7.00	7.00	7.00			
G-40	Cloptin Crossing Reservoir	5.75					
G-21	Lockhart Reservoir	5.75					
S-14D	Applewhite Reservoir	5.00	5.00				
S-16C	Goliad Reservoir	6.00	6.00				
S-15C	Cibolo Reservoir	6.00					
S-15Da	Cibolo Reservoir w/ SA River		7.00	7.00			
LGWSP	Lower Guadalupe Water Supply Project				4.00		
LGWSP	LGWSP for GBRA Needs					4.00	
LSWP	LCRA-SAWS Water Project				6.00	6.00	6.00
SCTN-3c	Simsboro Aquifer				1.00		
L-18a	Edwards Recharge Projects				3.25	3.25	3.25
SCTN-17	Seawater Desalination				2.00	2.00	2.00
CZ-10C	Carrizo Aquifer - Wilson & Gonzales				1.00		
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop				1.00		
	Regional Carrizo for SAWS					1.00	1.00
	Hays/Caldwell PUA					1.00	1.00
G-24	Wimberley and Woodcreek Water Supply Project				1.00	1.00	1.00
	Brackish Wilcox Desalination					0.00	
	Wells Ranch Project				1.00	1.00	1.00
	CRWA Siesta Project				2.5	2.5	2.5
	GBRA Simsboro Aquifer						1.00

ID#	Water Management Office to an		S	State Wate	r Plan		
ıDır	Water Management Strategy	1984	1990	1997	2002	2007	2012
	GBRA-Exelon ProjectRiver Diversion Option						4.00
	GBRA New Appropriation (Lower Basin)						4.00
	GBRA Mid Basin (Surface Water)						5.00
	GBRA Lower Basin Storage						0
	Regional Carrizo for SSLGC						1.00
	Brackish Wilcox Groundwater for SAWS						1.00
	Brackish Wilcox Groundwater for Regional Water Alliance						1.00
	Brackish Wilcox Groundwater for SSWSC						0
	Medina Lake Firm-Up (ASR)						2.00
	Lavaca River Off-Channel Reservoir						5.00
	Storage above Canyon (ASR)						3.00
	TWA Regional Carrizo						1.00
	Raw Score	42	31	14	23	22	45
	Score / Unit Supply	1.016	0.615	0.734	0.391	0.463	0.822
	Net Str	eamflow Chai	nge				
Gu	adalupe River @ Cuero/Victoria	4	4	4	0	0	1
5	San Antonio River @ Falls City	0	4	4	0	0	0
Gua	dalupe River @ Saltwater Barrier	4	4	4	0	0	1
	Colorado River @ Bay City	0	0	0	4	4	4
	Total	8	12	12	4	4	6
	Score / Unit Supply	0.196	0.238	0.629	0.069	0.085	0.110
	Combined Score / Unit Supply	1.212	0.853	1.363	0.459	0.548	0.933
Norm	alized Combined Score / Unit Supply	1.355	0.953	1.523	0.513	0.613	1.04
	Rank	5	3	6	1	2	4

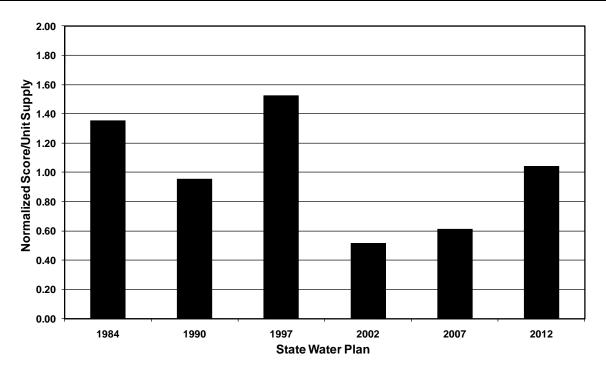


Figure 7.2-5. Cumulative Potential Impact Scores for Water Quality and Aquatic Habitats

Potential impacts to archaeological resources were estimated by compiling the number of proposed disturbances to landforms considered to be of relatively high potential for containing buried archaeological deposits. The high-potential areas were defined to be stream terraces bordering both perennial and intermittent streams. A probable impact index was devised which includes factors reflecting site potential and type of disturbance for each instance of the activity, with the greatest impact score being associated with the permanent inundation of any stream:

For Pipeline Routes the values used are as follows:

- 1.5 Perennial stream crossings;
 - 1 Intermittent stream crossings;
- 2.5 Construction parallel to perennial stream channels; or
 - 2 Construction parallel to intermittent stream channels.

For Reservoir Areas the values used are as follows:

- 4 Intermittent streams inundated;
- 5 Perennial streams inundated.

For each water management strategy, impact values for historical sites were added to the potential archaeological site impact estimates to arrive at the total impact values shown in Table 7.2-6. Figure 7.2-6 presents a graphical comparison of the six State Water Plans.

The high impact scores for water management strategies with long pipelines also reflect the large number of stream terrace transgressions that will occur as pipelines are constructed across the tributaries of the San Antonio, Guadalupe, and Colorado Rivers.

7.2.2.5 Ecologically Significant River and Stream Segments

Potential impacts to stream segments identified as Ecologically Significant River and Stream Segments by TPWD (Table 7.2-1 and Figure 7.2-2) were assessed by tabulating the instances of the following construction and operations items occurring in or affecting a significant segment:

- Recharge dam;
- Channel dam, diversion pool only;
- Reservoir diversion;
- River diversion;
- Tributary impoundment;
- Pipeline crossing;
- Groundwater withdrawals with a significant effect on streamflow; and/or
- Reduced flood peaks from upstream dam operation.

The summed, normalized scores for the six State Water Plans are presented in Table 7.2-7 and Figure 7.2-7. The locations of the water management strategies recommended for the 2001, 2006, and 2011 Regional Water Plans result in more potential conflicts with the ecological functions or features of the identified segments than do those in the three earlier plans which included major mainstem reservoirs.

Table 7.2-6.
Potential Impacts to Cultural Resources
from Water Management Strategies in State Water Plans

ID#				State Wa	ater Plan		
ID#	Water Management Strategy	1984	1990	1997	2002	2007	2012
G-16C1	Cuero Reservoir	184	184				
G-17C1	Lindenau (Sandies) Reservoir	176	176	176			
G-40	Cloptin Crossing Reservoir	22					
G-21	Lockhart Reservoir	22					
S-14D	Applewhite Reservoir	55	55				
S-16C	Goliad Reservoir	144	144				
S-15C	Cibolo Reservoir	44					
S-15Da	Cibolo Reservoir w/ SA River		79	79			
LGWSP	Lower Guadalupe Water Supply Project for GBRA Needs				83	114	
LSWP	LCRA-SAWS Water Project				267	267	267
SCTN-3c	Simsboro Aquifer				89		
L-18a	Edwards Recharge Projects				26	26	26
SCTN-17	Seawater Desalination				151	151	151
CZ-10C	Carrizo Aquifer - Wilson & Gonzales				79		
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop				85		
	Regional Carrizo for SAWS					125	85
	Hays/Caldwell PUA					72	72
G-24	Wimberley/Woodcreek from Canyon				23	23	31
	Brackish Wilcox Desalination					7	
	Wells Ranch Project				54	54	54
	CRWA Siesta Project				47	47	47

Table 7.2-6 (Concluded)

ID#	Water Management Streets and			State W	ater Plan		
IDπ	Water Management Strategy	1984	1990	1997	2002	2007	2012
	GBRA Simsboro Aquifer						172
	GBRA-Exelon ProjectRiver Diversion Option						14
	GBRA New Appropriation (Lower Basin)						0
	GBRA Mid Basin (Surface Water)						178
	GBRA Lower Basin Storage						0
	Brackish Wilcox Groundwater for SAWS						0
	Brackish Wilcox Groundwater for Regional Water Alliance						21
	Brackish Wilcox Groundwater for SSWSC						0
	Medina Lake Firm-Up (ASR)						57
	Lavaca River Off-Channel Reservoir						15
	Storage above Canyon (ASR)						17
	TWA Regional Carrizo						187
	Raw Score	646	637	254	904	886	1,392
Factor	Score / Unit Supply	15.816	12.637	13.315	15.517	18.855	25,584
10,000	Normalized Score / Unit Supply	0.933	0.745	0.785	0.915	1.112	1.509
	Rank	4	1	2	3	5	6

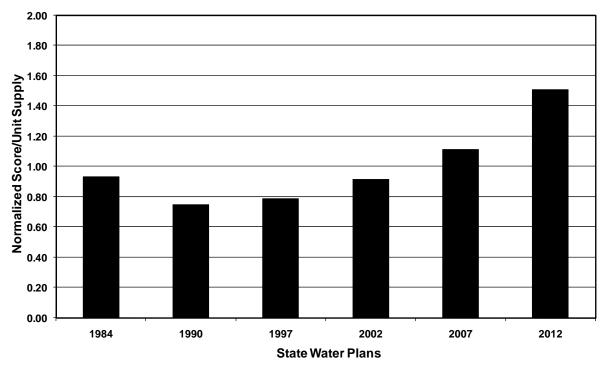


Figure 7.2-6. Cumulative Potential Impacts to Cultural Resources

Table 7.2-7.

Potential Impacts to Ecologically Significant River and Stream Segments from Water Management Strategies in State Water Plans

			Υe	ear		
	1984	1990	1997	2002	2007	2012
Crossings	0	0	0	11	6	6
Unappropriated Div.	1	0	1	4	3	5
Dam	1	0	0	4	4	5
Raw Score	2	0	1	19	13	16
Score / Unit Supply	0.049	0.000	0.052	0.326	0.277	0.294
Normalized Score / Unit Supply	0.294	0.000	0.315	1.961	1.663	1.767
Rank	2	1	3	6	4	5

7.2.2.6 Composite Comparison

Figure 7.2-8 is a composite comparison of the six State Water Plans aggregating the results of the assessments of four of the individual environmental resource categories. The scores associated with Ecologically Significant River and Stream Segments are excluded as the

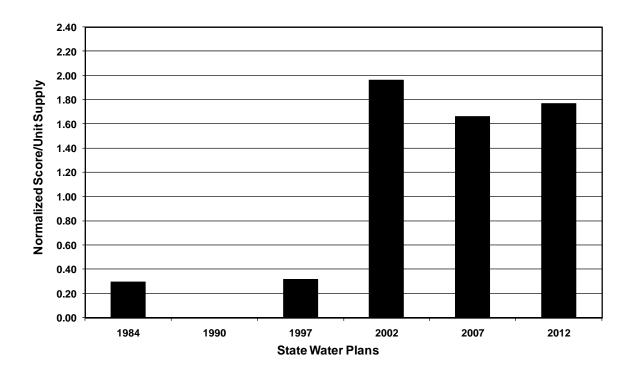


Figure 7.2-7. Cumulative Potential Impacts to Ecologically Significant River and Stream Segments

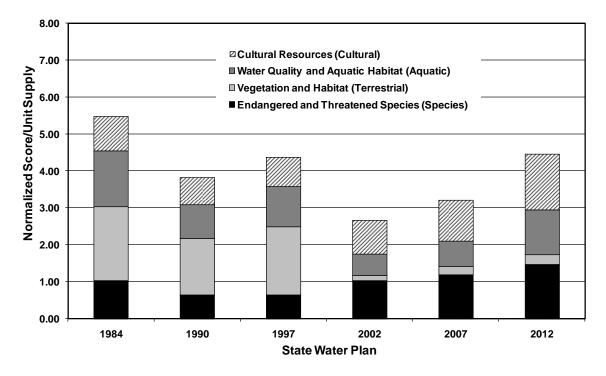


Figure 7.2-8. Cumulative Potential Impact Scores for South Central Texas
Regional Water Planning Area

basis for such ecological significance is typically related to the first four categories for which scoring has been performed (endangered & threatened species, vegetation & wildlife habitats, water quality & aquatic habitats, and/or cultural resources). It is apparent from this comparison that, despite avoidance of the large mainstem reservoirs in the early state water plans, the 2012 plan may actually have a greater overall effect on the environment and cultural resources per unit of new water supply developed. This somewhat unexpected observation is due, in part, to the number and smaller sizes of water management strategies in the 2012 plan for the South Central Texas regional planning area. For example, the environmental assessment of the 2012 plan includes 20 strategies which are deemed necessary to develop essentially the same additional firm water supply as the 1990 plan which included only six strategies. The broad geographic distribution and lengthy pipelines to key demand centers associated with many strategies in the 2012 plan creates more opportunities to encounter important species and cultural resources. Similarly, the effort to minimize concentrated terrestrial impacts in Region L in recent plans has resulted in the recommendation of projects with diffuse aquatic habitat perturbations throughout Region L and adjacent regions as well. Because the nature of many of the projects in the 2012 plan is such that actual impacts can be identified and avoided or mitigated based on information from field studies required by permitting agencies, realized impacts are expected to be significantly less than the potential impacts discussed herein. This would not be expected to be the case with respect to the reservoir projects, which offer little opportunity for impact avoidance due to inflexibility in size and location, and whose primary impacts (permanent disturbance, inundation of lotic and terrestrial habitats, and concentrated streamflow perturbations) may not be amenable to minimization or compensation.

7.3 Environmental Benefits and Concerns

The South Central Texas Regional Water Planning Group has identified the following environmental benefits and concerns associated with the implementation of the 2011 Regional Water Plan.

7.3.1 Environmental Benefits

Substantial commitment to water conservation through adoption of an aggressive water conservation water management strategy effectively reduces projected water shortages thereby delaying or eliminating the need for implementation of other water management strategies having greater associated environmental

- impacts. Implementation of economically appropriate drought management strategies, as determined at the water user group level, may provide similar benefits while projects delivering reliable water supplies to meet projected needs are permitted and constructed.
- Development of new water supply sources for Bexar, Comal, and Hays Counties reduces reliance on the Edwards Aquifer during drought thereby contributing to maintenance of springflow and protection of endangered species. The Regional Water Plan recognizes the on-going efforts of the participants in the Edwards Aquifer Recovery Implementation Program (EARIP) to develop a Habitat Conservation Plan which will help to define the requirements for maintenance of springflow and protection of endangered species and meet with approval from the U.S. Fish & Wildlife Service.
- Implementation of the 2011 Regional Water Plan is likely to result in increased instream flows in the San Antonio River. These increases in flow are attributable to increases in treated effluent from all wastewater discharges (most notably associated with projected growth in Bexar County) and increases in springflow (associated with Edwards Aquifer Recharge Type 2 Projects).
- Edwards Aquifer Recharge Enhancement through the construction of Type 2
 recharge dams contributes not only to municipal water supply, but also to
 maintenance of springflow, protection of endangered species in and below the
 springs, increased instream flows, and increased freshwater inflows to the
 Guadalupe Estuary.
- The 2011 Regional Water Plan emphasizes beneficial use of existing surface water rights thereby minimizing the development of new water supply sources and associated environmental impacts. Examples include reliance on presently under-utilized water rights held by the Guadalupe-Blanco River Authority (GBRA) and Dow Chemical Company (Dow) below the confluence of the Guadalupe and San Antonio Rivers and by the Lower Colorado River Authority (LCRA) on the Lower Colorado River. Enhanced use of existing surface water rights accounts for approximately one-quarter of the total new water supplies for municipal, industrial, steam-electric, and mining uses by 2060.
- The Regional Water Plan avoids large-scale development of new mainstem reservoirs having associated terrestrial and aquatic habitat and cultural resources impacts and focuses on smaller, off-channel reservoirs.
- Inclusion of Edwards Aquifer transfers from irrigation use to municipal use through lease/purchase of pumpage rights and development of conserved water through installation of LEPA irrigation systems results in substantial increases in municipal water supply without construction of additional transmission and storage facilities having associated environmental effects.
- Inclusion of groundwater development has limited associated environmental effects as compared to those typically associated with development of new surface water supply reservoirs.

• Inclusion of Seawater Desalination is perceived to have fewer associated environmental effects, as compared to those typically associated with development of new (fresh) surface water supplies.

7.3.2 Environmental Concerns

- Potential reductions in freshwater inflows to bays and estuaries, including associated effects on wetland and marsh habitats and marine species, are identified as matters of concern. Primary concerns focus upon the potential effects of the LCRA-SAWS Water Project on freshwater inflows to Matagorda Bay and the GBRA New Appropriation (Lower Basin) on freshwater inflows to the Guadalupe Estuary. It is important to note, however, that as part of the studies directed through the LCRA-SAWS Definitive Agreement, the Matagorda Bay inflow criteria and the Aquatic Habitat Instream Flow studies were studied thoroughly and shown to meet the legislative directives of protecting Bay Health and the Lower Colorado River aquatic systems. Concerns have also been expressed that increased uses of existing water rights may reduce freshwater inflows to bays and estuaries.
- Concentration of Edwards Aquifer pumpage closer to Comal Springs as a result of implementation of Edwards Transfers tends to reduce discharge from Comal Springs.
- Potential conflicts with stream segments identified by TPWD as ecologically significant are associated with the LCRA-SAWS Water Project, Edwards Recharge Type 2 Projects, GBRA New Appropriation (Lower Basin), Lavaca River Off-Channel Reservoir, and Storage Above Canyon (ASR).
- Potential effects on small springs and instream flows below these springs may be associated with the development of groundwater supplies.
- Intake siting, brine discharge location(s), and potential effects on marine habitat and species, as well as large demands for electrical power, are environmental concerns associated with Seawater Desalination.

Section 8 Policies and Recommendations [31 TAC §357.7(a)(10); 31 TAC §357.8; and 31 TAC §357.9]

8.1 Agricultural Water

Feasibility of Meeting Irrigation Water Needs: The SCTRWPG finds that, under current conditions, it is not economically feasible for agricultural producers to pay for additional water supplies to meet all of the projected irrigation water shortages. See Section 4C.1.2 for an analysis of economic feasibility underlying this finding of the Regional Water Planning Group.

The SCTRWPG recommends that the TWDB undertake economic studies of water management strategies that may meet irrigation needs in Texas.

Agricultural Water Conservation Programs: The SCTRWPG recommends restoring funding to the Agricultural Water Conservation programs provided by the TWDB.

Water Use Information: The SCTRWPG recommends that TWDB improve the water use information for irrigation and livestock watering categories.

8.2 Rural Water

Given the increasing number of proposals to export large amounts of water, the legislature should review Section 36.122 of the Texas Water Code. Any necessary changes should allow for sufficient revenue to support high quality technical studies and should be made to ensure that districts are fully equipped to analyze and respond to such proposals, to fully consider their effect on local communities, the rural environment and economy.

8.3 Groundwater

Groundwater Management: The SCTRWPG respects the rules and regulations of groundwater districts, just as it does those of all other state subdivisions and agencies. The SCTRWPG believes that all rules should be adopted pursuant to accepted administrative procedures based on the standards of rationality, equity, and scientific evidence. Furthermore, the SCTRWPG supports the determinations of Managed Available Groundwater (MAG) based on Desired Future Conditions (DFC) established by Groundwater Management Area (GMA) pursuant to House Bill 1763 of the 79th Texas Legislature.

Recognizing the management challenges facing groundwater conservation districts with multiple recommended water management strategies potentially seeking permits to withdraw groundwater supplies in excess of amounts determined to be available, the SCTRWPG approved the following note to be included at appropriate locations in the 2011 Regional Water Plan.

Part or all of the water needed by this Water Management Strategy (WMS) is anticipated to be supplied from locations within the jurisdiction of a groundwater conservation district (District) and may exceed the amount of available water identified in the District's approved management plan, or may for other reasons not be permitted by the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, cannot be implemented as part of this WMS unless and until all necessary permits are received from the District. The amount of water needed by this WMS that exceeds the available water in the District's management plan, or for other reasons is not permitted by the District, introduces an added element of uncertainty to reliance upon this WMS and, therefore, additional management supplies may be needed for this WMS.

Groundwater Sustainability: The SCTRWPG has adopted the goal of groundwater sustainability and recommends management strategies needed to accomplish this goal. This recommendation is intended to help protect all users of those aquifers that are subject to increased withdrawals, to help preserve the long-term integrity of those aquifers, and to build awareness of the effects of pumping on those aquifers and of their recovery capabilities. The SCTRWPG recommends that any person implementing any groundwater option or strategy identified as part of this Regional Plan consider and incorporate groundwater monitoring of both quantity and quality, recharge protection and enhancement, conservation methods and related practices, as determined to be appropriate by local groundwater districts. Where no district exists, the developer should monitor impacts and, when appropriate, take corrective action consistent with the goal of groundwater sustainability.

Shared Groundwater Resources among Planning Regions: In the event a Water User Group relies on a groundwater management strategy to meet the Water User Group's demand during the planning period and the strategy would have a significant impact on a groundwater resource shared among planning region(s), notice should be provided to the region(s) of the proposed date of implementation and anticipated acre-feet per year demand on the shared groundwater resource. The SCTRWPG provided such notice to the Lower Colorado (K) and

_

¹ Relevant policy regarding management supplies is found in Section 8.10.

Brazos G planning regions with regard to the GBRA Simsboro Project recommended to meet projected needs in the 2011 South Central Texas Regional Water Plan.

Equity in Groundwater and Surface Water Law: The SCTRWPG recognizes a need for equity in groundwater and surface water law to facilitate the proper balance of the use of those resources. The SCTRWPG recommends that the state provide incentives to develop conjunctive use projects that more efficiently utilize groundwater and surface water.

Land Stewardship: The SCTRWPG encourages State support of implementing or enhancing land stewardship management practices that are shown to augment the quality and quantity of the state's surface water and groundwater resources.

Development and Use of Groundwater: The SCTRWPG encourages legislation that promotes public or private entities planning to develop groundwater projects to provide an economic analysis of the impact to communities, instream flows, and bay and estuary systems incurred by movement of the groundwater.

Funding of Groundwater Conservation Districts: Given the increasing number of proposals to export large amounts of water, the Legislature should review Section 36.122 of the Texas Water Code. Any necessary changes should allow for sufficient revenue to support high quality technical studies and should be made to ensure that Groundwater Conservation Districts are fully equipped to analyze and respond to such proposals, and to fully consider their effect on local communities, the rural environment and the economy.

Region L's Matrix Approach: The SCTRWPG encourages the Texas Water Development Board to fund development, in general accordance with the SCTRWPG proposal to TWDB submitted in June 2004, of a generic "Analytical Tool" that will provide a standard method for regional water planning groups, groundwater conservation districts, groundwater developers, and others to use to evaluate local hydrologic, environmental, social, and economic impacts on specific groundwater exportation/marketing proposals.

8.4 Surface Water

Surface Water Rights Monitoring and Administration: The TCEQ should be adequately staffed and funded to ensure the legal and appropriate use of permitted surface water rights through comprehensive monitoring and administrative programs, such as the Watermaster program.

Equity in Groundwater and Surface Water Law: The SCTRWPG recognizes a need for equity in groundwater and surface water law to facilitate the proper balance of the use of those resources. The SCTRWPG recommends that the state provide incentives to develop conjunctive use projects that more efficiently utilize groundwater and surface water.

Surface Water Rights and Interbasin Transfer: The SCTRWPG considered the positive and negative impacts of certain provisions added to Chapter 11.085 of the Texas Water Code regarding Interbasin Transfers pursuant to Senate Bill 1 of the 75th Legislature. Among the negative impacts cited by some members are these:

- It imposes limitations on surface water rights permits that have previously been issued, possibly diminishing the value of some permits to the owners.
- It forces greater use of groundwater supplies, and potentially, encourages the mining of aquifers.
- It can result in construction of new reservoirs that would not be needed if seniority of rights and existing environmental flow requirements were preserved in interbasin transfers because of the need to provide reliable water supplies in the plans.

Other members of the SCTRWPG cite the following positive effects of these provisions added by Senate Bill 1.

- The junior water rights provision protects municipalities and other water users, especially in cases where the interbasin transfer of senior water rights would put junior rights at risk.
- Bays and estuaries and instream flows have added protection from the impact of water exportation.
- Establishing the seniority of basin-of-origin water rights over those used for export preserves the economic value of the resource for the future development of the basin-of-origin.

The SCTRWPG makes no specific recommendation at this time for legislative changes to Chapter 11.085 of the Texas Water Code.

8.5 Conservation

Conservation Planning Guidelines: Because of the central role of conservation in achieving the water supply objectives of the South Central Texas Regional Water Plan, the SCTRWPG has previously adopted the Water Conservation Implementation Task Force recommendations to establish GPCD Targets and Goals related to average annual reductions in residential indoor use. The SCTRWPG recognizes that the creation of conservation programs

and the selection of specific conservation technologies is a matter of local choice and recommends that the water user groups reference the Water Conservation Best Management Practices Guide, TWDB Report 362, as an educational tool that can facilitate understanding of the importance of conservation efforts and the wide range of methods available for use.

Region L has addressed, defined, and adopted the most reasonably practical level of conservation to be:

- (1) For Water Use Groups (WUGS) with per capita water use of 140 gpcd and greater in year 2000, reduce gpcd by 1 percent per year until reaching 140 gpcd, and reduce gpcd by 0.25 percent per year thereafter.
- (2) For WUGS with per capita water use less than 140 gpcd in year 2000, reduce gpcd by 0.25 percent per year.

Implementation of Water Conservation Advisory Committee Recommendations:

SCTRWPG recognizes and supports recent legislative focus on successfully passing legislation which promotes implementation of broad-based conservation measures throughout the state. The SCTRWPG supports legislation and funding to implement the HB 4 (2007) Water Conservation Advisory Committee's recommendations, particularly the statewide public education programs such as Water IQ, further definition of gpcd definitions, and the development of regional conservation data that can be used by the SCTRWPG members to optimize future conservation efforts. The SCTRWPG also supports further efforts by the Legislature and state agencies that aggressively promote practical and successful water conservation measures as an important component to future water plans.

Irrigation Technology Center: The State should provide additional funding for the Irrigation Technology Center, as instituted by the Texas A&M University System, in order to provide hands-on access to state-of-the-art water conservation technologies tailored to the specific urban and agricultural conservation needs of this region.

8.6 Innovative Strategies

Assistance for Alternative Water Supply Strategies: The State should increase funding to assist water planning regions and local water entities in developing demonstration projects for alternative water supply strategies and technologies, such as, but not limited to, desalination. With this assistance, water planning regions could avoid short-term projects that may be less costly, but also less desirable, because of environmental and socio-economic impacts. By funding demonstration projects for alternative technologies that may not yet be cost-effective,

the State can help local water management entities avoid adverse impacts to the environment, to property rights, and to local socio-economic conditions. In this way, the State can play a crucial role in guiding regions to water supply solutions that meet needs while also resolving conflict. Funding to demonstrate the value of innovative long-term strategies thus can help achieve cost-saving, efficient regional water management solutions.

Desalination: The SCTRWPG supports the funding of a state and/or federal program for research and potential incentives to make desalination more affordable. This includes both brackish groundwater and seawater desalination. Should such incentives, technical advances, and/or other factors make a seawater desalination strategy similar to that described in Section 4C.31 sufficiently attractive to a water user group or WWP that implementation prior to year 2060 is desired, it is explicitly recognized by the SCTRWPG that such rescheduled implementation is consistent with the 2011 South Central Texas Regional Water Plan.

Rangeland Management (Brush Management): The SCTRWPG encourages the Legislature to increase funding to the Texas State Soil and Water Conservation Board for the purpose of increasing brush control programs integrated with proven rangeland management practices.

Rainwater Harvesting and Other Systems: The SCTRWPG encourages the use of rainwater harvesting systems in both commercial and residential new development. The SCTRWPG recommends the TWDB develop programs to educate the public and building industry on the benefits of rainwater harvesting, water re-use and gray water systems. The educational programs should include distribution of materials to the building industry to encourage use of these systems.

Weather Modification: The SCTRWPG urges the state to continue to support the existing Weather Modification Program.

Drought Management: The SCTRWPG has developed a general methodology for estimating the economic impacts associated with implementation of drought management as a water management strategy.² Application of this methodology for regional water planning purposes has facilitated comparison of drought management to other potentially feasible water management strategies on a unit cost basis (Section 4C.2). The SCTRWPG has found, and the San Antonio Water System (SAWS) has demonstrated, that water user groups having sufficient

-

² SCTRWPG, "2011 Regional Water Plan, Study 3, Enhanced Water Conservation, Drought Management, and Land Stewardship," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

flexibility to focus on discretionary outdoor water use first and avoid water use reductions in the commercial and manufacturing use sectors may find some degrees of drought management to be economically viable and cost-competitive with other water management strategies. Recognizing that implementation of appropriate water management strategies is a matter of local choice, the SCTRWPG recommends due consideration of economically viable drought management as an interim strategy to meet near-term needs through demand reduction until such time as economically viable long-term water supplies can be developed.

8.7 Environmental

Protection of Edwards Aquifer Springflow and Downstream Water Rights: While the plan assumes annual withdrawals of 320,000 acft from the Edwards Aquifer under drought of record conditions pursuant to Senate Bill 3 (SB3) of the 80th Texas Legislature, it is projected that this level of pumpage will not protect springflows in all drought conditions unless additional measures are in place and operational. A Recovery Implementation Program created by SB3 is presently underway with a goal of producing a Habitat Conservation Plan for approval by the United States Fish and Wildlife Service (USFWS). If the USFWS or other government authorities mandate reductions in pumpage from the Edwards Aquifer below 320,000 acre-feet, annually, or other strategies to provide further protection for the associated endangered species, water options and management strategies in addition to those identified in this plan will be needed to meet the projected demands of Water User Groups.

Ecosystem Health, Quality of Life, and Growth Management for Texas: The rapid growth occurring in South Central Texas has the potential to negatively impact quality of life. Human demands for water and infrastructure development may outstrip the ability of all of the region's resources to respond and to be sustainable. Texas should focus on these issues and evaluate land use and the health of its ecosystem in order to prepare for the future and support a sustainable quality of life for all Texans.

Ecologically Unique Stream Segments and Unique Reservoir Sites: The Legislature has clarified that the designation of a stream segment as having unique ecological value "solely means that a state agency or political subdivision of the state may not finance the actual construction of a reservoir in a specific river or stream segment designated by the legislature." The SCTRWPG conditionally recommends to the Texas Legislature that, in accordance with

Subsection 16.051 of the Texas Water Code, it designate the following five stream segments in Region L as having unique ecological value:

- The Nueces River from the northern boundary of Region L downstream to United States Geological Survey (USGS) gauge # 08190000 at Laguna;
- The Frio River from the northern boundary of Region L downstream to USGS gauge #08195000 at Concan;
- The Sabinal River from the northern boundary of Region L downstream to the State Highway 187 crossing located approximately 2.7 miles upstream of USGS gauge #08198000 near Sabinal;
- The San Marcos River extending from IH 35 up to a point 0.4 miles upstream of Loop 82 in San Marcos; and
- The Comal River extending from the confluence with the Guadalupe River upstream to Klingemann Street in New Braunfels.

The South Central Texas Regional Water Planning Group further notes that the recommendation of these stream segments for designation as having unique ecological value is not intended to affect the repair, rehabilitation, or replacement of existing dams and reservoirs. Because the consequences of such designations by the Legislature are not well understood, these recommendations are conditioned upon legislation providing for these designations containing the following clarifying provisions or substantially similar provisions approved by Region L:

- 1. A provision affirming that the only constraint that may result from these ecologically unique stream segment designations is that constraint described in Subsection 16.051(f) Water Code which prohibits a state agency or political subdivision of the state from financing the construction of a reservoir in a designated stream segment.
- 2. A provision stating that the constraint described in Subsection 16.051(f) Water Code does not apply to the construction, operation, maintenance, or replacement of any new or existing weir, diversion, flood control, drainage, water supply, or recreation facility located within the city limits of San Marcos or New Braunfels.
- 3. A provision stating that the constraint described in Subsection 16.051(f) Water Code does not apply to a weir, diversion, flood control, drainage, water supply, or recreation facility currently owned by a political subdivision.
- 4. A provision stating that these designations will not constrain the permitting, financing, construction, operation, maintenance, or replacement of any water management strategy recommended, or designated as an alternative, to meet projected needs for additional water supply in the 2011 Regional Water Plan for Region L.

- 5. A provision affirming that these designations are not related to the "wild and scenic" federal program or to any similar initiative that could result in "buffer zones," inadvertent takings, or overreaching regulation.
- 6. A provision stating that all affected landowners shall retain all existing legal private property rights.
- 7. A provision recognizing that the unique ecological value of the designated segments is due, in part, to the conscientious, voluntary stewardship of many landowners on the adjoining properties.

The SCTRWPG Recommendation of Stream Segments Having Unique Ecological Value for Legislative Designation is included as Appendix I, along with a letter from Texas Parks & Wildlife Department summarizing their review of the recommendation package.

Instream Flows and Bays and Estuaries: The SCTRWPG is appreciative of legislative action in the form of Senate Bill 3 (SB3, 80th Texas Legislature) that established and funded an environmental flows process integrating best-available science and diverse regional stakeholder input into the process for selection of appropriate instream flow and freshwater inflow goals on a stream-by-stream and estuary-by-estuary basis. The appropriate balance of environmental and human needs during severe drought has very significant effects on the firm yield and associated cost of potential water supply projects.

The SCTRWPG encourages completion of the Texas Instream Flow Studies Program and improvement of the State's bays and estuaries freshwater inflow studies, with special attention paid to the report of the Science Advisory Committee of the Study Commission on Water for Environmental Flows.

Pursuant to discussions during three meetings of a Guadalupe Basin Water Needs Workgroup, November 5, 2009 action of the SCTRWPG, and agreement of the Guadalupe-Blanco River Authority, two recommended water management strategies identified as GBRA New Appropriation (Lower Basin) and GBRA Mid-Basin Project (Surface Water) are subject to senior water rights, full application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas Water Code, and the Texas Commission on Environmental Quality permitting process.

Environmental Studies: The SCTRWPG recognizes that significant needs exist in Bexar and the surrounding counties and that new supplies need to be developed in the Guadalupe River and San Antonio River watersheds. There are issues related to environmental impacts that need further study to determine feasibility of a range of recommended surface water, groundwater, reuse, and conjunctive use water management strategies. Therefore, the

SCTRWPG recommends that additional environmental studies be undertaken to be able to evaluate the effects of such projects on the ecosystems that rely on inflow to San Antonio Bay and flows of the Guadalupe River and San Antonio River watersheds.

8.8 Providing and Financing Water and Wastewater Systems

Plan Implementation: Given the unprecedented level of time and money expended in the development of Regional Water Plans across the state, the SCTRWPG urges the Legislature to act promptly to help ensure full implementation of these plans.

Funding: The SCTRWPG believes that State funding should be provided as a key incentive for partnership in funding from local, regional and federal governmental agencies.

The SCTRWPG encourages a more active State support in solicitation of Federal funding for development of new water supply sources, especially when the need for which is based in part upon Federal requirements, such as the Endangered Species Act.

State Water Plan Implementation: State support is fundamental for the successful implementation of the water resources projects in the State Water Plan resulting from the SB1 Regional Planning Process. Specifically, new legislation to create State support for implementation of the State Plan should include the following:

- A statewide funding mechanism for projects included in the State Water Plan.
- Sufficient funding for TWDB and TCEQ to administer their programs and activities associated with planning, financing, and permitting of the projects in the State Plan.

Continuation of Regional Water Planning: The SB1 Planning Process is an important program, and funding should be continued to sustain the work of the Regional Water Planning Groups.

State Position in Federal Permitting: In the context of the federal permitting processes pertaining to water resources, all state agencies should present a single position consistent with the State's position as articulated in the State Water Plan.

The SCTRWPG supports the concept that a state agency (TWDB) be responsible for implementation of and advocacy for projects in the State Water Plan with regard to funding and permitting at the state and federal levels.

8.9 Data

Water Data Collection: The Legislature should fully fund the cooperative, federal-state-local program of basic water data collection, including: (a) Stream gages-quantity and quality; (b) Groundwater monitoring-water levels and quality; (c) Hydrographic surveys and sediment accumulation in reservoirs; (d) Water surface evaporation rates; (e) Water use data for all water user groups; and (f) Population projections.

Access to State Water Data: There should be adequate funding for the critical roles of TWDB and TCEQ in facilitating access to water data essential for local and regional planning and plan implementation purposes.

Population and Water Demand Projections: The SCTRWPG recognizes that the TWDB bases its water demand projections on patterns of population and economic growth while also permitting revisions of state data to incorporate additional information developed by the planning regions. Nevertheless, some groups believe that the methodology puts an unfair limitation on access to water for future growth, particularly in areas that may experience more rapid change than they have in the past. The Legislature should modify the Regional Water Planning process to allow for greater flexibility and for earlier and more active involvement of the Regional Water Planning Groups in developing growth and water demand projection methodologies consistent with water availability strategies. Water demand projections used in developing the Regional Water Plan should be consensus figures arrived at by using TWDB data along with local input from the cities, counties, and groundwater districts.

Coastal Basins: Coastal basins adjacent to major river basins are considered part of the major basins. The SCTRWPG recommends eliminating the requirement to tabulate data for these areas by county and basin boundary since the result is a set of essentially empty tables.

8.10 Other Issues

Planning for System Management Water Supplies: System management water supplies, i.e. supplies over and above those apparently needed to meet projected demands, may be included in the plan for the following reasons: 1) to recognize both the long lead times and the uncertainty associated with risk factors that may prevent implementation of water management strategies and necessitate replacement strategies; 2) to preserve flexibility for water user groups or wholesale water suppliers to select the most feasible projects among several consistent with

the Regional Plan and therefore potentially eligible for permitting and funding; 3) to serve as additional supplies in the event rules, regulations, or other restrictions limit use of any planned strategies; and 4) to ensure adequate supplies in the event of a drought more severe than that which occurred historically. The plan should specify those factors affecting reliability of the recommended options and strategies and indicate what alternatives are available as possible replacements.

The amount of the management supply should be limited by consideration of the following factors: 1) potential disruptive impacts of planning for projects that have low probability of implementation; and 2) citing of specific reasons for management supplies that exceed the projected needs of the region.

Public Education on Water: The State should fund a state-wide program to educate the general public about water in coordination with the Agricultural Extension Service offices. The program should produce water-related materials with special components adapted for each water planning region and should also include a component comparable to the "Major Rivers" program that would be available to the public schools through the Regional Education Service Centers and by other means.

SCTRWPG supports legislation for funding to implement the Water Conservation Task Force recommendations, particularly the statewide public education programs, such as Water IQ.

County Authority: Counties should have additional authority for land use planning and for regulating development based on availability and protection of water resources.

Planning Requirements: There should be no changes in the planning process or additional planning requirements except through the formal rule-making procedure. Contract requirements should be established and in place prior to submission of grant proposals.

Regional Boundaries Should Foster Collaboration: The SCTRWPG recommends that the Legislature make it very clear to all Texans that the boundaries of the regional water planning regions were drawn only to define water planning regions and that the boundaries are not intended to be barriers to prevent water transport from one region to another – nor to pit one region against another for any reason.

Condemnation and Eminent Domain: The SCTRWPG is of the opinion that it is not appropriate for a regional water planning group to tell a governmental entity to abandon its eminent domain powers if it wants its project to be approved as a recommended water management strategy. The SCTRWPG is further of the opinion that it is not within the planning

group's jurisdiction to judge the merits of eminent domain. It is, however, the understanding of the SCTRWPG that all land needed for implementation of water management strategies will be obtained using a process of willing seller and willing buyer and that limited condemnation will be used as a last resort.

(This page intentionally left blank.)

Section 9 Water Infrastructure Funding Recommendations [31 TAC §357.7(a)(14)]

9.1 Introduction

Senate Bill 2 (77th Texas Legislature) requires that an Infrastructure Financing Report (IFR) be incorporated into the regional water planning process. In order to meet this requirement, each Regional Water Planning Group (RWPG) is required to examine the funding needed to implement the water management strategies and projects identified and recommended in the region's 2011 Regional Water Plan.

9.2 Objectives of the Infrastructure Financing Report

The primary objective of the Infrastructure Financing Report is to determine the financing options proposed by political subdivisions to meet future water infrastructure needs (including the identification of any State funding sources considered).

9.3 Methods and Procedures

For the South Central Texas Regional Water Planning Area, all municipal water user groups and wholesale water providers having water needs and recommended water management strategies in the Regional Water Plan with an associated capital cost were surveyed using the questionnaire provided by the TWDB. Individual municipalities and wholesale water providers were emailed a link to complete the survey online through the TWDB's website. They were also mailed a hardcopy of the survey so they could complete it by hand, if desired.

For each project with an identified capital cost, the survey respondents were asked to enter only the amounts that they wish to receive from one or more of the TWDB programs listed below:

- Planning, Design, and Permitting: Costs were entered into this category if the entity wants to participate in the WIF-Deferred Program. The WIF-Deferred Program offers subsidized interest and deferral of principal and interest for up to 10 years for planning, design, and permitting costs.
- Acquisition and Construction: Costs were entered into this category if the entity wants to participate in the WIF-Construction Program. The WIF-Construction Program offers subsidized interest for all construction costs, including planning, acquisition, design, and construction.

- Excess Capacity: Costs were entered into this category if the entity wants to participate in the State Participation Program. State Participating funding offers partial interest and principal deferral for the incremental cost of project elements which are designed and built to serve needs beyond 10 years.
- Rural: Costs were entered into this category if the entity wants to participate in the Rural Areas Funding Program. Rural Areas funding offers grants and 0% interest loans for service areas which are not in a Metropolitan Statistical Area (MSA) and in which the population does not exceed 5,000. The service area must also meet Economically Distressed Areas Program (EDAP) eligibility criteria.
- Disadvantaged: Costs were entered into this category if the entity wants to participate in the EDAP. EDAP offers funding through grants and loans for service areas within a project which meet the EDAP eligibility criteria. Eligibility for the TWDB's EDAP requires that the median household income of the area to be served by the proposed project be less than 75% of the Texas median household income (\$39,927), as shown in the 2000 Census. EDAP eligibility also requires adoption of Model Subdivision rules by the appropriate planning entities.

9.4 Survey Responses

The South Central Texas RWPG sent links to 24 municipal water user groups and wholesale water providers and received 10 responses, a 42 percent response rate. As shown in Table 9-1, the 10 responses represent about 99 percent of the estimated capital costs of water management strategies included in the Regional Water Plan. Of those responding, for which the total capital cost for facilities is \$6,727,772,325¹, the survey shows that approximately \$509.3 million (7.6 percent of the total capital costs) would be sought through the WIF-Deferred Program, approximately \$2.4 billion (35.0 percent of the total capital costs) would be sought through the WIF-Construction Program, and approximately \$653.3 million (9.7 percent of the total capital costs) would be sought through the State Participation Program. No responses indicated pursuit of funding through either the Rural Areas Funding Program or the EDAP Program. It is unclear how the remaining 47.7 percent of capital costs for survey respondents would be paid, but those costs could possibly be covered through local cash reserves, bonds, or private funding. Furthermore, it is unclear how the remaining one percent of the capital costs for those entities not responding to the survey would be financed. In summary, about 67 percent of

_

¹ As some recommended water management strategies and associated costs were modified in response to public comment on the Initially Prepared Plan and such modifications occurred after responses to the infrastructure financing survey were received, a small discrepancy exists in the total capital cost of facilities. On a percentage basis, this discrepancy is insignificant.

Table 9-1. Summary of Responses to the Infrastructure Financing Survey

Name of Political Subdivision	Recommended Project/Strategy	Capital Cost (to be Paid by Political Subdivision)	Planning, Design, and Permitting	Acquisition and Construction	Excess Capacity	Rural	Disadvantaged
Bexar Met Water District	Local Groundwater (Carrizo)	\$44,372,000	\$3,106,040	\$41,265,960	0\$	\$0	\$0
Bexar Met Water District	Local Groundwater (Trinity)	\$ 9,662,000	\$676,340	\$8,985,660	0\$	\$0	\$0
Bexar Met Water District	Medina Lake Firm-Up (ASR)	\$146,237,000	\$10,236,590	\$136,000,410	0\$	\$0	\$0
Canyon Regional Water Authority	Brackish Groundwater Desalination (Wilcox)	\$77,702,500	\$7,702,500	\$70,000,000	0\$	0\$	\$0
Canyon Regional Water Authority	CRWA Siesta Project	\$53,481,000	\$3,481,000	\$50,000,000	0\$	\$0	\$0
Canyon Regional Water Authority	CRWA Wells Ranch Project Phase II	\$12,375,000	0\$	\$12,375,000	0\$	\$0	\$0
Canyon Regional Water Authority	Hays/Caldwell PUA Project	\$94,771,913	\$4,500,000	\$30,000,000	0\$	0\$	\$0
Crystal Clear WSC	Local Groundwater (Carrizo)	\$33,754,000	\$4,500,000	\$29,254,000	0\$	0\$	\$0
Guadalupe-Blanco River Authority	GBRA Exelon Project	\$280,598,000	0\$	0\$	0\$	0\$	\$0
Guadalupe-Blanco River Authority	GBRA Lower Basin Storage	\$33,800,000	\$3,000,000	\$15,400,000	\$15,400,000	\$0	\$0
Guadalupe-Blanco River Authority	GBRA Mid-Basin (Surface Water)	\$546,941,000	\$4,000,000	\$271,470,500	\$271,470,500	0\$	\$0
Guadalupe-Blanco River Authority	GBRA New Appropriation (Lower Basin)	\$246,849,000	\$6,000,000	\$120,424,500	\$120,424,500	0\$	\$0
Guadalupe-Blanco River Authority	GBRA Simbsboro Project	\$330,782,000	\$4,000,000	\$163,391,000	\$163,391,000	\$0	\$0
Guadalupe-Blanco River Authority	Storage Above Canyon Reservoir (ASR)	\$37,326,000	\$3,000,000	\$17,163,000	\$17,163,000	\$0	\$0
Kyle	Hays/Caldwell PUA Project	\$86,412,402	\$7,300,000	\$79,100,000	\$0	\$0	\$0
San Antonio Water System	Brackish Groundwater Desalination (Wilcox)	\$236,220,000	\$56,059,000	\$158,734,000	0\$	\$0	\$0
San Antonio Water System	Edwards Aquifer Recharge - Type 2 Projects	\$527,643,000	\$46,303,000	\$97,852,000	0\$	0\$	\$0
San Antonio Water System	LCRA/SAWS Water Project	\$1,986,684,000	\$0	\$0	\$0	\$0	\$0
San Antonio Water System	Regional Carrizo for SAWS	\$136,550,000	\$32,575,000	\$98,723,000	0\$	\$0	\$0
San Antonio Water System	Seawater Desalination	\$1,293,827,000	\$295,678,000	\$880,528,000	0\$	\$0	\$0
San Marcos	Hays/Caldwell PUA Project	\$110,013,010	\$11,900,000	\$32,500,000	\$65,500,000	0\$	\$0
Schertz-Seguin LGC	Brackish Groundwater Desalination (Wilcox)	\$15,540,500	0\$	\$0	\$0	\$0	\$0
Schertz-Seguin LGC	Regional Carrizo for SSLGC Project Expansion	\$28,189,000	0\$	\$0	0\$	0\$	\$0
SS WSC	Brackish Groundwater Desalination (Wilcox)	\$14,357,000	\$1,579,270	\$12,777,730	\$0	\$0	\$0
SS WSC	Local Groundwater (Carrizo)	\$29,537,000	\$3,658,330	\$25,787,670	0\$	\$0	\$0
Texas Water Alliance	TWA Regional Carrizo	\$314,148,000	\$0	\$0	\$0	\$0	\$0
	Totals	\$6,727,772,325	\$509,255,070	\$2,351,732,430	\$653,349,000	\$0	\$0

Table 9-1. Summary of Responses to the Infrastructure Financing Survey (Concluded)

Name of	Door month of Designation	Capital Cost (to be Paid by Political	Planning, Design,	Acquisition and	Excess	Jesti d	Contraction
rolliteal Subdivision	veconiniended riojecusuategy	Subdivision)	and remitting	Collettaction	capacity	varai	Disauvantayeu
Benton City WSC*	Local Groundwater (Carrizo)	\$13,116,000					
County Line WSC*	Local Groundwater (Trinity)	\$20,562,000					
Floresville*	Local Groundwater (Carrizo)	\$2,344,000					
Goforth WSC*	Hays/Caldwell PUA Project	\$30,278,980					
Jourdanton*	Local Groundwater (Carrizo)	\$2,441,000					
Karnes City*	Local Groundwater (Carrizo)	\$3,430,000					
Kenedy*	Local Groundwater (Gulf Coast)	\$2,194,000					
Lockhart*	Local Groundwater (Carrizo)	\$24,246,000					
Luling*	Local Groundwater (Carrizo)	\$5,906,000					
McCoy WSC*	Local Groundwater (Carrizo)	\$11,606,000					
Mountain City*	Hays/Caldwell PUA Project	\$1,385,554					
Oak Hills WSC*	Local Groundwater (Carrizo)	\$ 259,000					
Polonia WSC*	Local Groundwater (Carrizo)	\$4,174,000					
Sunko WSC*	Local Groundwater (Carrizo)	\$1,375,000					
	Totals	\$123,317,534					
* Did not respond							

the funds likely to be requested by respondents will be from the WIF Construction Program, with the remaining 19 percent and 14 percent from the State Participation and the WIF Deferred Programs, respectively.

(This page intentionally left blank.)

Section 10 Regional Water Plan Adoption [31 TAC §357.11-12]

10.0 Overview

Facilitation and Public Participation played an integral part in the development of the 2001 and 2006 Regional Water Plans. The contributions of facilitation and public participation in were also evident in the timely, consensus adoption of the 2011 Regional Water Plan. The facilitation process is presented in Section 10.1 and the public participation process is presented in Section 10.2, with responses to comments received on the Initially Prepared Plan (IPP) presented in Section 10.2.3.

10.1 Facilitation

From the outset of the planning process, the South Central Texas Regional Water Planning Group (SCTRWPG) decided to emphasize a consensus approach to decision-making. That process has been facilitated first by the members' awareness of the need for cooperative and open attitudes when dealing with controversial issues. This process has also drawn extensively on the public involvement effort that has kept the SCTRWPG members informed at critical times of the full range of ideas, values, and concerns of constituencies throughout the region. This is an on-going process that will continue through approval of the Regional Water Plan. The following is a brief summary of the facilitation efforts undertaken in developing the 2011 South Central Texas Regional Water Plan, by both the Chair and the facilitation consultant, to aid Members of the SCTRWPG in the process of developing the Initially Prepared Plan. In addition, the Technical Consultant supported the process of building consensus by providing the necessary tools and technical means for testing alternative approaches.

10.1.1 Facilitation Process for the 2011 Regional Water Plan

The SCTRWPG contracted with Ximenes and Associates (Ximenes) as the facilitation consultant for the 2011 Regional Water Plan. During the course of the planning cycle, the facilitation team worked with the Chairman to improve interpersonal communication among the planning group members, initiating a pre-meeting social time to encourage members to get to

know one another and discuss upcoming issues informally. The facilitation consultants provided support at public meetings and hearings.

Beginning in October 2007, Ximenes interviewed the Members of the Regional Water Planning Group by telephone regarding their interests in regional water planning, their background and experience, their assessments of the planning process and its effectiveness, their needs for additional preparation (orientation, terminology, technical issues), and their impressions of stumbling blocks to effective planning. Each interview was summarized in a detailed report to the planning group.

An Environmental Assessment Committee to consider potential improvements to the environmental assessments to be incorporated into the Region L plan was formed in December 2007. This committee was comprised of selected SCTRWPG members and representatives from interested organizations and agencies. HDR provided a summary of the environmental assessments completed in development of the 2006 Regional Water Plan, and Ximenes provided a summary of comments regarding environmental issues in the 2006 Regional Water Plan for background documentation. The group reviewed the 2006 Regional Water Plan environmental assessments and the cumulative effects analysis, then brainstormed possible improvements to the process, different approaches, effectiveness of previous assessments, etc. Recommendations of the Environmental Assessment Committee are summarized in a report¹ and implementation of these recommendations is reflected in the technical evaluations of water management strategies (Section 4C, Volume II) and assessments of cumulative effects (Section 7, Volume I) in the 2011 Regional Water Plan.

In August 2008, Ximenes contacted planning group members to schedule telephone interviews to discuss the Lower Guadalupe Water Supply Project for GBRA needs. A summary report was provided to the SCTRWPG.

Upon identifying two contentious sets of issues affecting the development of the IPP, Chairman Con Mims created the Guadalupe Basin Water Needs Workgroup (Guadalupe Workgroup) and the Gonzales County Groundwater Projects Workgroup (Gonzales Workgroup) involving selected SCTRWPG members and representatives from interested parties. Objectives for the Guadalupe Workgroup were identified as: 1) Develop a set of recommended projects and

_

¹ South Central Texas Regional Water Planning Group, "2011 Regional Water Plan, Study 5, Environmental Evaluations of Water Management Strategies," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., Ximenes & Associates, April 2009.

alternative projects, if needed, to meet the water needs of the Guadalupe Basin; 2) Ensure there is no "double dipping" of projects using the same water source; and 3) Describe how the San Antonio Bay and estuaries will be protected. The objective for the Gonzales Workgroup was to recommend how to account for the allocation of available Carrizo Aquifer groundwater from Gonzales County among proposed water projects, while preserving the Gonzales County Underground Water Conservation District's (GCUWCD) responsibility to issue permits and the project developers' ability to apply for permits.

Beginning in August 2009 and concluding in October 2009, the Guadalupe Workgroup held a series of three workshops resulting in a set of recommendations adopted by the SCTRWPG on November 5, 2009 and refined by the SCTRWPG on December 3, 2009. Similarly, the Gonzales Workgroup met in September 2009 and developed a recommendation adopted by the SCTRWPG on November 5, 2009. The activities of each workgroup were led by Chairman Mims, technically supported by HDR, and documented by Ximenes. Recommendations developed by these workgroups are reflected throughout the 2011 Regional Water Plan and facilitated its adoption by consensus.

10.2 Public Participation

Laura Raun Public Relations (LRPR) was contracted by the SCTRWPG to provide Public Participation professional services. The approach used by LRPR continued the two-way communications model used in the previous two planning cycles. The objective was to enable the SCTRWPG to provide information about its activities to the public and receive feedback about those activities in a systematic way. Public participation for the 2011 Regional Water Plan was conducted in three phases:

- 1. Phase I was improvement of the Region L website.
- 2. Phase II was public involvement in the technical studies conducted for the Regional Water Plan.
- 3. Phase III was public comment on the 2011 Initially Prepared Regional Water Plan.

10.2.1 Phase I: Website Improvement

The SCTRWPG website, http://www.regionltexas.org, plays a key role in the public participation process. Information about planning group meetings, members, technical studies,

and the 2011 Initially Prepared Regional Water Plan has been made available for public review in a timely manner and feedback has been invited.

In 2007, the website was redesigned with oversight by a Region L Communications Committee, comprised of four SCTRWPG members. The website improvements were intended to:

- Make it easier to find key information, such as meeting details;
- Improve site navigation; and
- Create a more intuitive look and feel.

Text was condensed, photos updated, hyperlinks added, and the 2006 Regional Water Plan posted. Information was added on past and future meetings, SCTRWPG members, and involvement opportunities in the 2007-2011 water planning cycle. Finally, the website was moved to a new host and given a more intuitive URL.

The goal was to provide a high-level overview that would increase the website's appeal and relevance to a wider range of audiences, whether newcomers to the site or stakeholders wanting to stay abreast of the planning process. The redesigned website allowed visitors to dig down to a more detailed level if additional information was required.

The website was updated in about one month. This accelerated schedule was used to make the site available to members prior to the group's quarterly meeting. A logo was created for Region L and added to the website.

10.2.2 Phase II: Public Involvement in Technical Studies

Public input was gathered at each SCTRWPG meeting and through direct communications from the public, about the technical studies and general topics. Comments were informally categorized for the purposes of identifying trends and relaying information to the Planning Group.

The comment categories were essentially those used in the 2006 Regional Water Plan, with minor refinements. A total of 105 public comments on all topics were received by the Planning Group prior to issuance of the Initially Prepared Plan. Of those comments, 15 related to the five technical studies were posted on the Region L website.

10.2.3 Phase III: Comment on Initially Prepared Plan

The Initially Prepared 2011 South Central Texas Regional Water Plan (IPP) was posted for review and comment on the Region L website on March 1, 2010. The comment period ended on June 16, 2010. Three public hearings were held to receive comments on the IPP: Victoria (April 12, 2010), San Marcos (April 13, 2010), and San Antonio (April 15, 2010). Over 100 people attended the sessions. Informal notes of public comments at the hearings were taken by the public participation consultant and the technical consultant. Audio recordings of each public hearing were posted on the website, along with the sign-in sheets and comment cards.

During the comment period on the 2011 IPP, a total of 105 comments were received by the Public Participation consultant, directly or indirectly, for categorizing. Those received indirectly were forwarded by the San Antonio River Authority, HDR Engineering, the Texas Water Development Board, and/or other entities. Written comments received before the June 16 deadline were posted on the SCTRWPG website. An additional 217 comments were received after the June 16 deadline. In addition to public comments on the IPP, TWDB staff and Texas Parks and Wildlife Department staff provided comments.

Comments on the Initially Prepared 2011 South Central Texas Regional Water Plan and South Central Texas Regional Water Planning Group responses are provided herein. Responses to TWDB comments, as required, are addressed in Section 10.2.3.1. Comments from Texas Parks and Wildlife Department are presented and addressed in Section 10.2.3.2. Finally, public comment is categorically addressed in Section 10.2.3.3, which also includes a section dedicated to comments received from the Lone Star Chapter of the Sierra Club.

10.2.3.1 TWDB Comments on Initially Prepared 2011 South Central Texas Regional Water Plan and SCTRWPG Responses

TWDB Staff Comments, Letter of June 28, 2010: Attachment -- South Central Texas Regional Water Plan – Region L

LEVEL 1. Comments and questions must be satisfactorily addressed in order to meet statutory, agency rule, and/or contract requirements.

General Comment

1. Population, demand, and water availability figures in various tables and text are slightly different than the amounts in the online planning database (DB12). These differences may be

due to rounding or reallocation between river basins. Please revise or coordinate with TWDB staff to ensure that the data in the plan is consistent with DB12. (e.g. Page ES-4, last paragraph, total municipal water demand should be 637,235 acft/yr not 637,236 acft/yr; Page ES-9, total Carrizo Aquifer groundwater availability differs by 2 acft/yr from the online planning database data in each planning decade.) [Title 31 Texas Administrative Code (TAC) §357.7(d)(1)&(2) and §357.5(a)(3)]

Response: Revisions have been made to the plan and DB12 to ensure consistency.

Chapter 1

2. Page 1-9, 3rd paragraph: The Yegua-Jackson is an official minor aquifer and covers parts of La Salle, Atascosa, Wilson, Karnes, and Gonzales counties within Region L. Please mention the Yegua-Jackson as a minor aquifer that underlies the region. [31 TAC $\S357.7(a)(1)(D)$]

Response: Reference to the Yegua-Jackson Aquifer has been included.

3. Page 1-31, 1st paragraph: Frio and Zavala counties should to be added to the list of counties overlying the Edwards Aquifer. [31 TAC $\S357.7(a)(1)(D)$]

Response: Reference to Frio and Zavala counties has been included.

Chapter 3

4. Comal, Hays, and Kendall counties in Region L are located in the Hill Country Priority Groundwater Management Area and have water availability requirements adopted by county commissioner's courts. Guadalupe and Medina counties also have water availability requirements adopted by county commissioner's courts. Please provide a statement regarding any water availability requirements promulgated by a county commissioners court pursuant to TWC $\S35.019$. [31 TAC $\S357.5(k)(1)(H)$]

Response: A statement regarding water availability requirements promulgated by a county commissioners court has been added to Chapter 3.

5. Page 3-3, 4th paragraph: Please include a discussion of how groundwater availability models were used to calculate groundwater availability, for example, describe whether the

groundwater availability values used from district management plans were developed using groundwater availability models.

Response: A discussion of how groundwater availability models (GAMs) were used to calculate groundwater availability has been added to Chapter 3.

6. Page 3-5, Table 3-1: Total volumes for the Gulf Coast Aquifer 2010 supplies in Table 3-1 (100,640 acft/yr) do not match the total Gulf Coast Aquifer 2010 supplies in Table 3-2 (102,723 acft/yr). Please revise as appropriate throughout plan.

Response: A line indicating the estimated 2010 groundwater supply of 2,083 acft/yr from the Gulf Coast Aquifer in Gonzales County has been added to Table 3-1, thereby increasing the total 2010 Gulf Coast Aquifer supplies shown in Table 3-1 to 102,723 acft/yr and matching Table 3-2.

7. Page 3-5, Table 3-1: Values for the Gulf Coast Aquifer 2010 supplies in Table 3-1 do not include Gulf Coast Aquifer supply values for Gonzales County. Please revise as appropriate throughout plan. [Contract Exhibit "C", Section 3]

Response: See response to Comment #6.

8. Page 3-5, Table 3-1: Values for the Carrizo Aquifer 2010 supply in Table 3-1 (437,841 acft/yr) do not match the Carrizo Aquifer 2010 supplies in Table 3-2 (438,539 acft/yr). Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: A line indicating the estimated 2010 groundwater supply of 699 acft/yr from the Carrizo Aquifer in Karnes County has been added to Table 3-1, thereby increasing the total 2010 Carrizo Aquifer supplies shown in Table 3-1 to 438,539 acft/yr and matching Table 3-2.

9. Page 3-5, Table 3-1: Table 3-1 does not include Carrizo Aquifer values for Karnes and Zavala counties. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: See response to Comment #8 with regard to Karnes County. Table 3-1 does include Carrizo Aquifer values for Zavala County.

10. Page 3-14 Recycled water supply is not summarized in Chapter 3. Please present recycled water supplies in plan. [Contract Exhibit "C", Section 3]

Response: Existing supplies from reuse or recycled water are summarized in Chapter 3 and included in the computation of needs for additional supply summarized in Appendix C.

Chapter 4

11. Please describe how publicly available plans of major agricultural, municipal, manufacturing and commercial water users were considered. [31 TAC §357.5(k)(1)(E)]

Response: Planning information from water user groups was generally obtained and considered as part of the process for identification of potentially feasible water management strategies for the 2011 plan as outlined beginning on page 4B.1-3.

12. Page 4A-4: Calhoun County Manufacturing ('Industrial') water need of 245 acft/yr in 2060 does not match the Calhoun County Manufacturing water need volume of 209 acft/yr presented in Table 4B.2.4-1 (page 4B2-71) or 4B.2.4-11 (page 4B.2-76). Please revise as appropriate throughout plan.

Response: The revised need for Calhoun County Manufacturing ('Industrial') is 2,021 acft/yr in 2060. The plan has been revised accordingly.

13. Page 4A-4: Comal County-Other water need of 2,960 acft/yr in 2060 does not match the Comal County-Other ('Rural Area Residential and Commercial') water need volume of 2,742 acft/yr presented in Table 4B.2.5-1 (page 4B.2-79). Please revise as appropriate throughout plan. **Response:** Values in Table 4B.2.5-1 represent the sum of the Surplus/Shortage values

for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.5-1.

14. Page 4A-4: Comal County Manufacturing ('Industrial') water need of 9,022 acft/yr in 2060 does not match the Comal County Manufacturing water need volume of 8,672 acft/yr presented in Table 4B.2.4-1 (page 4B.2-79). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.4-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.4-1.

15. Page 4A-6: Schertz water need of 2,436 acft/yr in 2060 does not match the Schertz water need volume of 2,420 acft/yr presented in Table 4B.2.11-1 (page 4B.2-121). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.11-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.11-1.

16. Page 4A-7: Kendall County-Other water needs of 211 acft/yr in 2010 does not match the Kendall County-Other ('Rural Area Residential and Commercial') water need volume (zero) presented in Table 4B.2.14-1 (page 4B.2-171). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.14-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.14-1.

17. Page 4A-8: Medina County-Other water needs do not match the Medina County-Other ('Rural Area Residential and Commercial') water need volumes presented in Table 4B.2.16-1 (page 4B.2-171). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.16-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.16-1.

18. Page 4A-8: Medina Irrigation water needs do not match the Medina Irrigation water need volumes presented in Table 4B.2.16-1 (page 4B.2-171). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.16-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.16-1.

19. Page 4A-9: Sunko Water Supply Corporation water needs of 70 acft/yr in 2060 do not match the Sunko water need volume of 16 acft/yr presented in Table 4B.2.20-1 (page 4B.2-201). Please revise as appropriate throughout plan.

Response: Values in Table 4B.2.20-1 represent the sum of the Surplus/Shortage values for each river basin and/or across the entire county. These values may differ from the Need value reported in other tables because the Need represents only the sum of the shortages. A footnote has been added to Table 4B.2.20-1.

20. Page 4A-19, second and third sections of Table 4A-3: Regional water plans are required to be based on drought of record conditions including firm supplies available during a drought of record. 'Interruptible' water supplies should not be included in total Guadalupe-Blanco River Authority supplies on 4A-18 and 19. Please revise plan to present water supplies available on a firm yield basis as available in a drought of record. [31 TAC §357.7(a)(3)(B)]

Response: Under hydrologic assumptions approved by the TWDB for Region L planning, firm supplies under the GBRA/Dow water rights in the lower Guadalupe – San Antonio River Basin are estimated to be 89,501 acft/yr on a monthly computation basis (as is consistent with TWDB guidance). Appendix B, page B-3 includes a breakdown of the 89,501 acft/yr firm supply associated with the GBRA/Dow water rights in Calhoun County. Although all of these supplies are not shown in Appendix C for Calhoun County, sufficient supplies are shown to meet all projected demands for water to be supplied by GBRA under drought of record conditions. No revisions to the plan pursuant to Comment #20 are perceived to be necessary as the plan does present water supplies available on a firm yield basis in a drought of record.

Firm supplies available from the GBRA/Dow water rights in the lower Guadalupe – San Antonio River Basin are estimated to be 41,548 acft/yr on a daily computation basis as shown in Table 4A-3 on page 4A-19. This information is presented in Table 4A-3 only for consistency between state, regional, and GBRA water supply planning. Similarly, the

appearance of interruptible water supplies in Table 4A-3 simply reflects the actual agreements that GBRA has with irrigators and the Exelon Generation Company under which GBRA has not contracted for delivery of firm supplies. For example, Exelon has contracted for 75,000 acft/yr of interruptible water supply (Table 4A-3) and has a projected drought demand of 49,126 acft/yr (Victoria County, Table 2-6) which can be met on a firm basis with interruptible supplies from GBRA and storage available through cooling reservoir operations, as described in Section 4C.10. GBRA contracts for irrigation supply in Calhoun County are "year-to-year" and need not be sustained through a drought of record. In other words, irrigation demands in Calhoun County exist, but GBRA is not required to meet them in prolonged drought. Hence, GBRA's periodic commitments of existing supplies to irrigation in Calhoun County are, in fact, interruptible.

21. Page 4A-19, Table 4A-3, third section: Basis for calculation of Guadalupe-Blanco River Authority's total identified water needs is not clear. Please present the method used for determining Guadalupe-Blanco River Authority water needs. [31 TAC §357.7(a)(4)(A)]

Response: GBRA water needs presented in Table 4A-3 are consistent with current and planned uses of existing supply sources which include Canyon Reservoir, run-of-river ("mid-basin") water rights on the San Marcos River, and the GBRA/Dow lower basin water rights (which include both firm and interruptible components). Projected needs for GBRA's customers presently associated with Canyon Reservoir are calculated by subtraction of the Canyon Reservoir Total demands near the middle of page 4A-18 from the Canyon Reservoir supplies on page 4A-19. Mid-basin run-of-river customer needs are calculated by subtraction of the Mid-Basin Municipal Run-of-River Total demands near the middle of page 4A-18 from the Mid-Basin Rights supply on page 4A-19. Lower basin interruptible customer needs are calculated by subtraction of Lower Basin (Run-of-River, Interruptible) Total demands near the bottom of page 4A-18 from Lower Basin Rights (Interruptible, Daily Basis) supplies on page 4A-19. Finally, Lower basin firm customer needs are calculated by subtraction of Lower Basin (Run-of-River, Firm) Total demands near the bottom of page 4A-18 from Lower Basin Rights (Firm, Daily Basis) supplies on page 4A-19. Explanatory footnotes have been added to Table 4A-3.

22. Page 4B.1-14, Section 4B.1.2.7: 'Edwards Transfers' volume of 51,628 acft/yr does not match the volume presented on page ES-15 or in Appendix D, Table 2 of 51,875 acft/yr. Please revise as appropriate throughout plan.

Response: The value of 51,875 acft/yr is correct. The plan has been revised throughout.

23. Page 4B.1-22 footnote 10: In accordance with the standard footnote (e.g. footnote10) regarding inclusion of additional 'management supplies' (e.g. additional water management strategies) for entities that have recommended water management strategies relying on Gonzales County groundwater but which may not be able to obtain a groundwater permit, please identify the alternative sources of water that are associated with these additional water management strategies that would be used to meet needs of all associated entities (e.g. Garden Ridge, Goforth Water Supply Corporation, Kyle, San Marcos, Selma, Water Services Inc).

Response: Conservation is a recommended strategy to meet a component of the projected needs of all water user groups seeking groundwater supplies from Gonzales County. Similarly, the SCTRWPG recommends due consideration of economically viable Drought Management as an interim strategy to meet near-term needs through demand reduction until such time as economically viable long-term water supplies can be developed. Following is a summary of observations and/or alternative water management strategies identified for the water user groups list in Comment #23. The recommended Conservation strategy appears to provide sufficient demand reductions to meet projected needs for Selma in the absence of additional groundwater from Gonzales County. Purchase from WWP (GBRA) is identified as an alternative source for San Marcos, Kyle, and Goforth WSC as each of these water users has an existing contract with GBRA. Purchase from WWP (CRWA), possibly through Green Valley SUD, is identified as an alternative source for Garden Ridge based on proximity and potential difficulties in obtaining additional supplies from the Trinity Aquifer. Finally, Purchase from WWP (SAWS) and/or Edwards Transfers are identified as alternative sources for Water Services, Inc. based on proximity. Section 4B-2 (text) and Appendix D have been modified to reflect alternative sources for the referenced water users.

24. Page 4B.1-22, Section 4B.1.2.22: 'Regional Carrizo for SSLGC' unit cost of \$568/acft/yr does not match the unit cost on page ES-16 or in Appendix D, Table 2 of \$608/acft/yr. Please revise as appropriate throughout plan.

Response: The unit cost for Regional Carrizo for SSLGC is \$568/acft/yr. The plan has been revised accordingly.

25. Page 4B.1-24, Section 4B.1.2.25: 'Local Groundwater Supplies (Carrizo)' volume of 29,933 acft/yr does not match the volume in Appendix D, Table 2 of 33,874 acft/yr. Please revise as appropriate throughout plan.

Response: The value of 33,874 acft/yr is correct. The plan has been revised accordingly.

26. Page 4B.3-1, Table 4B.3-1: Wholesale water provider Lavaca-Navidad River Authority and Texas Water Alliance water supplies and water needs are presented in Table 4B.3-1 but not referred to in the wholesale water provider Table 4A-3 on page 4A-15. Please revise to ensure consistent references to wholesale water providers throughout the plan.

Response: Texas Water Alliance is shown as a WWP in Table 4A-3 on page 4A-15. LNRA is not shown in Table 4A-3 because they are not a WWP physically located or relying on water sources in the South Central Texas Planning Region. LNRA is referenced in Section 4B.3 because it is the WWP for municipal (Point Comfort) and industrial (Formosa Plastics Corporation) uses in the portion of Calhoun County east of Lavaca Bay. Clarifying language has been added to Section 4B.3.

27. Page 4B.3-3: The 2010 San Antonio Water System drought management supply of 37,622 acft/yr does not match the 2010 San Antonio Water System drought management supply amount of 19,767 acft/yr on page D-8, Appendix D, Table 3 and is greater than the total 2010 region-wide drought management supply of 13,627 presented in Appendix D, Table 2 and on page ES-15. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: A 2010 drought management supply of 37,622 acft/yr has been included for SAWS in Appendix D Tables 1, 2, and 3, in Table ES-4, and in DB12.

28. Page 4B.3-3: The 2060 'Regional Carrizo for SAWS' supply of 11,687 acft/yr does not match the 2060 'Regional Carrizo for SAWS' supply amount of 11,700 acft/yr on page D-8, Appendix D, Table 3. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: Table ES-4 and Appendix D, Table 3 have been revised to show 11,687 acft/yr.

29. Page 4B.3-6, Table 4B.3.2-1: Totals shown at the bottom of the table appear incorrect based on the data contained within the table. Please revise as appropriate throughout plan.

Response: Totals have been revised.

30. Page 4B.3-12: The 2010 'GBRA Lower Basin Storage' supply of 28,369 acft/yr does not match the 2010 'GBRA Lower Basin Storage' supply amount of 26,452 acft/yr on page D-8, Appendix D, Table 3. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The value of 28,369 acft/yr is correct. The plan has been revised accordingly.

31. Page 4B.3-12: The 2010 and 2060 'Wimberley and Woodcreek Water Supply Project' supplies of 4,480 af/yr and 0 af/yr, respectively, do not match the associated 2010 and 2060 'Wimberley and Woodcreek Water Supply Project' supply amounts of 1,120 acft/yr and 4,480 acft/yr presented on Appendix D, page D-2, Table 2. Please revise as appropriate throughout plan (e.g. page 4B.3-11) and, if necessary, in the online planning database.

Response: Table 4B.3.4-1 on page 4B.3-12 and relevant text on page 4B.3-11 have been revised for consistency with Appendix D.

- 32. Page 4B.3-20: The 2010 'TWA Regional Carrizo' supply of 0 acft/yr does not match the 2010 'TWA Regional Carrizo' supply amount of 27,000 acft/yr on page D-8, Appendix D, Table
- 3. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The TWA Regional Carrizo Project is to come online by 2020. Appendix D has been revised accordingly.

Appendix C

33. It appears that total County Surplus/Shortage and Total Basin Surplus/Shortage volumes were calculated incorrectly throughout Appendix C Tables by subtracting 'Total [county-wide] Demand' from 'Total [county-wide] Supply'. Please revise to reflect total county water needs as the sum of the individual needs of each water user group in the county; needs that are calculated based on each water user group's own demands and supplies.

Response: County water needs based on the sum of the individual needs of each water user group in the county are presented elsewhere in the Appendix C tables and in Table 4A-1. Referenced headings have been modified to "County Balance" and "Total Basin Balance" to clarify that these county or basin estimates of "shortage" and not necessarily equivalent to "needs."

Appendix D

34. Table 1: Please clarify, for example by including a footnote, whether the list of water management strategies included in Appendix D, Table 1 comprises the complete list of potentially feasible water management strategies referred to within bullet number 7 on page 4B.1-4. [Contract Exhibit "C" Section 11.1]

Response: A footnote has been added to Appendix D Table 1 to clarify that it is intended to be a complete list recommended water management strategies.

35. Table 2: Various unit costs of water in Appendix D, Table 2 do not appear to match unit costs based on the total annual costs and total supplies in the planning database (DB12). Although some of these differences may be due to multiple users of strategies and the underlying weighting of associated volumes and costs, for single-sponsor projects these numbers should align. Please revise unit costs as appropriate or coordinate with TWDB staff to ensure that the annual cost data in the plan is consistent with the online planning database (e.g. Appendix D, Table 2: Guadalupe Blanco River Authority (GBRA) Exelon Project; GBRA Lower Basin Storage; GBRA Mid Basin Project; CRWA Siesta Project; LCRA-SAWS Water Project; TWA Regional Carrizo). [31 TAC §357.7(a)(8)(A)(1); Contract Exhibits "C" and "D"]

Response: Unit costs have been revised as appropriate to ensure that the plan is consistent with the online planning database (DB12).

36. Table 2: Storage Above Canyon Reservoir (ASR) First Decade Unit cost of \$1,772/acft/yr does not match the unit costs presented on first summary page in Volume II, Section 4C.9 of \$1,599/acft/yr or in Volume II, Table 4C.9-9 of \$1,598/acft/yr. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The unit cost for Storage Above Canyon Reservoir is \$1,598/acft/yr. However, in implementing this project, it is likely that the water will be delivered via the Guadalupe River and/or Canyon Reservoir. Thus, secondary treatment and integration costs have been added to the project, making the unit cost in the plan \$1,772/acft/yr.

37. Table 2: GBRA-Exelon Project (River Diversion) First Decade Unit cost of \$641/acft/yr is less than both unit costs presented in Volume II, Section 4C.10 summary page (e.g \$646/acft/yr). Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The unit cost for GBRA-Exelon Project (River Diversion) is \$646/acft/yr. The plan has been revised accordingly.

38. Table 2: Supply of 27,000 af/yr for TWA Regional Carrizo project in year 2010 does not match page 4B.3-20, Table 4B.3.8-1 which shows zero acft/yr of supply in 2010. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The TWA Regional Carrizo Project is to come online by 2020. Appendix D has been revised accordingly.

39. Table 2: GBRA New Appropriation (Lower Basin) First Decade Unit cost of \$1,953/acft/yr does not match unit cost presented in Volume II, Section 4C.9 summary page of \$1,910/acft/yr or in Volume II, Table 4C.9-9 of \$1,598/acft/yr. Please revise as appropriate throughout plan and, if necessary, in DB12.

Response: The unit cost for GBRA New Appropriation (Lower Basin) is \$1910/acft/yr. The plan has been revised accordingly.

40. Table 2: Regional Carrizo for SSLGC First Decade Unit cost of \$608/acft/yr is less than both unit costs presented in Volume II, Section 4C.19 summary page of \$568/acft/yr. Please

revise as appropriate throughout plan (e.g. page 4B.3-11) and, if necessary, in the online planning database.

Response: The unit cost for Regional Carrizo for SSLGC is \$568/acft/yr. The plan has been revised accordingly.

41. Table 2: 'Recommended' water management strategies 'Facilities Expansions' and 'Surface Water Rights' do not have quantified water amounts and costs associated with them. Please revise Appendix Table 2 to include only recommended water management strategies that have been evaluated for supply, impacts, and cost. [31 TAC §357.7(a)(8)(A)(1); Contract Exhibits "C" and "D"]

Response: Appendix D Table 2 has been modified to include technical information relevant to Facilities Expansions to be considered recommended water management strategies. This table and additional references throughout the plan have been modified to identify the Surface Water Rights water management strategy as an activity consistent with the 2011 regional water plan.

42. Table 2: Table does not include 'Balancing Storage' as a recommended water management strategy although it is described as "recommended" on page 4B.1-29. This recommended water management strategy also does not appear in the online planning database and has no water volume or cost associated with it. Please revise plan as necessary regarding Balancing Storage strategy in Section 4B, Appendix D, Table 2 and the online planning database to include only recommended water management strategies that have been evaluated for supply, impacts, and cost. [31 TAC §357.7(a)(8)(A)(1); Contract Exhibit "C"]

Response: Appendix D Table 2 and additional references throughout the plan have been modified to identify the Balancing Storage water management strategy as an activity consistent with the 2011 regional water plan.

43. Table 2: Table does not include 'Purchase from Wholesale Water Provider' as a recommended water management strategy although it appears to be a 'recommended' water management strategy on page 4B.1-30 and in DB12. Please revise the plan and the online planning database as necessary to present 'Purchase from Wholesale Provider' as a

recommended strategy in Appendix D, Table 2, including the associated water volumes. [31 TAC $\S357.7(a)(8)(A)(1)$; Contract Exhibit "C"]

Response: Purchase from Wholesale Water Provider has been added to Appendix D Table 2 as a recommended water management strategy.

VOLUME II

44. Section 4C.2: The determination of specific volumes, by decade, of drought management water supply for each entity using this strategy is not presented. Please present a table, for example equivalent to Table 4C.1-10 for conservation, showing how water amounts provided by drought management by entity were derived for each water user group. [31 TAC $\S357.7(a)(8)(A)(1)$]

Response: The SCTRWPG has indicated that drought management is an interim strategy to meet near-term needs through demand reduction until such time as economically viable long-term water supplies can be developed. Hence, projections of potential demand reductions associated with Drought Management into future decades, as shown for Conservation in Table 4C.1-10, were not developed. Table 4C.2-4 shows potential demand reductions associated with various degrees of drought management based on 2010 demands. Text has been added to the plan to clarify that, with the exception of SAWS, only the 5 percent demand reduction scenario is recommended.

45. Page 4C.8-3, Section 4C.8: Potential water supply sources listed include Canyon Reservoir and groundwater. Please clarify the water supply for the recommended Wimberley and Woodcreek Water Supply Project water management strategy. Canyon Reservoir is indicated as the supply in the online planning database.

Response: As described in Section 4C.8, presently committed, but unused, supplies from Canyon Reservoir are the initial source and the GBRA Mid-Basin Project (Surface Water) and/or Hays/Caldwell PUA project will be the long-term source(s). Each of the potential long-term sources produces treated water at or very near the San Marcos Water Treatment Plant from which the recommended transmission facilities to the Wimberley area originate. The SCTRWPG has not expressed a preference among the potential long-term sources, recognizing that either is potentially feasible.

46. Section 4C.20 does not explain how capital costs of the Hays/Caldwell PUA Project were allocated among wholesale water suppliers and water user groups. Please show how capital costs are allocated among project participants. [31 TAC §357.7(a)(8)(A)(1); Contract Exhibit "C"]

Response: A table showing an example allocation of capital costs among participants has been added to Section 4C.20.

47. Section 4C.22, Table 4C.22-1: Please clarify in plan whether costs for local groundwater supply strategies include associated land acquisition, environmental permitting and mitigation costs. [Contract Exhibit "C"]

Response: Text has been added to Section 4C.22 to clarify that cost for local groundwater supply strategies include land acquisition, environmental permitting, and mitigation.

48. Section 4C.22, Table 4C.22-1: 'Total Project Cost' for Oak Hills WSC appears to be incorrect at \$269,000 which is less than the 'Capital Cost' of \$1,207,000. Please revise as appropriate throughout plan and, if necessary, in the online planning database.

Response: The 'Total Project Cost' for Oak Hills WSC should be \$1,721,000. Table 4C.22-1 has been corrected.

49. Section 4C.24: Section does not explain how capital costs of the Brackish Wilcox Groundwater for Regional Water Alliance project were allocated among wholesale water providers and water user groups. Please show the allocation of capital costs among participants. [31 TAC §357.7(a)(8)(A)(1); Contract Exhibit "C"]

Response: A table showing an example allocation of capital costs among participants has been added to Section 4C.24.

50. Page 4C.31-20, Table 4C.31-7: 'Distribution' system improvement costs should not be included in the regional water plan. Costs should be limited to the infrastructure costs associated with developing and conveying increased water supplies from water supply sources and to treat the water for end water user group requirements. Please extract costs of project elements that do not enhance water supply volumes delivered to water user groups (e.g. \$86,825,000 in

distribution costs associated with the 75 MGD capacity plant). [31 TAC §357.7(a)(5); Contract Exhibit "C"]

Response: "Distribution" has been replaced with "Integration" which is intended to represent connection of the water treatment plant to one or more major delivery points within a water system.

51. (Attachment B) Comments on the online planning database (i.e. DB12) are herein being provided in spreadsheet format. These Level 1 comments are based on a direct comparison of the online planning database against the Initially Prepared Regional Water Plan document as submitted. The table only includes numbers that do not reconcile between the plan (left side of spreadsheet) and online database (right side of spreadsheet). An electronic version of this spreadsheet will be provided upon request.

Response: Appropriate revisions to DB12 for consistency between the plan and DB12 have been completed.

52. (Attachment C) Based on the information provided to date by the regional water planning groups, TWDB has also attached a summary, in spreadsheet format, of potential interregional conflicts, apparent water source over allocations, and apparent unmet water needs that were identified during the review of the online planning database and Initially Prepared Regional Water Plan. [Additional TWDB comments regarding the general conformance of the online planning database (DB12) format and content to the Guidelines for Regional Water Planning Data Deliverables (Contract Exhibit D) are being provided by TWDB staff under separate cover as 'Exception Reports']

Response: The TWDB has identified two potential interregional conflicts associated with the GBRA Simsboro Project. The potential conflict with Region G has been resolved by reduction of the maximum planned Lee County withdrawals associated with the GBRA Simsboro Project from 20,000 acft/yr to 19,777 acft/yr. Region L initially sought to resolve the potential conflict with Region K in a manner similar to that used by Region L to address potential source over allocations in Gonzales County. More specifically, Region L recognizes the regulatory authority of the Lost Pines Groundwater Conservation District (LPGCD) to issue (or not issue) permits in accordance with its rules and state law. As permits for the GBRA Simsboro Project and/or for the Expansion of Carrizo-Wilcox

Aquifer strategy in the Region K plan have yet to be granted, Region L has included additional recommended and/or alternative water management strategies to ensure that projected needs can be met in the event that such permits are not granted. It was the expectation of the SCTRWPG that Region K would do the same recognizing that applications or permits associated with the GBRA Simsboro Project are pending before LPGCD. Region K, however, did not choose to identify one or more alternative water management strategies in the event that permits for the Expansion of Carrizo-Wilcox Aquifer strategy in Bastrop County are not issued by the LPGCD. Furthermore, Region K chose not to identify Expansion of Carrizo-Wilcox Aquifer as an overdraft despite the facts that the LPGCD has issued permits totaling 43,486 acft/yr when estimated total availability from the Carrizo-Wilcox Aquifer in Bastrop County is only 28,000 acft/yr and new supply associated with this strategy (up to 14,166 acft/yr) exceeds the difference between total availability and existing supplies pumped in 2009 (20,198 acft/yr)². The SCTRWPG has decided to resolve this potential conflict by including "overdraft" notation and explanatory language to documentation of the GBRA Simsboro Project in the 2011 Regional Water Plan.

In the absence of a groundwater conservation district (GCD) regulating the Carrizo Aquifer in Bexar County, water users groups (WUGs) or wholesale water providers (WWPs) therein may be able to produce groundwater well in excess of the availability estimates in the regional water plan which actually date to the 1997 state water plan. This potential over allocation has been resolved by "temporary overdraft" notation and/or identification of alternative water management strategies to meet projected needs in the event that WUGs or WWPs are unable to develop planned new supplies from the Carrizo Aquifer.

A discussion of unmet irrigation needs is found on page 4B.1-10.

-

² Information provided by LPGCD during an August 2, 2010 coordination meeting involving representatives of Region L and Region K interests.

LEVEL 2. Comments and suggestions that might be considered to clarify or enhance the plan.

Executive Summary

1. Page ES-14, Figure ES-7 and page 4B.1-5, Figure 4B.1-2: Drought management is a distinct water management strategy and not a subcategory of conservation. Please consider presenting drought management as a separate category of water supply in Figure 4B.1-2 and throughout plan.

Response: Due to the reliance of both the Water Conservation and Drought Management strategies on significant reductions in residential landscape irrigation use, Drought Management is not identified as a separate category of water supply in the referenced summary figures in the 2011 regional water plan. Potential separation of these water management strategies in summary graphics will be considered for the 2016 plan.

Chapter 1

2. Page 1-1, 1st paragraph: Section 1.7 states there are five major aquifers, however the Edwards-Trinity (Plateau) is missing from the first sentence in Section 1.1. Please consider including the Edwards-Trinity (Plateau) as a major aquifer.

Response: The Edwards-Trinity (Plateau) has been added as a major aquifer.

3. Page 1-3, Table 1-1: Please consider clarifying in Table 1-1 whether Edwards Aquifer Area means the area covered by the Edwards Aquifer or the Edwards Aquifer Authority. If the region is referring to the Edwards Aquifer, it should include an 'X' next to Frio and Zavala counties.

Response: A footnote has been added to Table 1-1 to clarify that the Edwards Aquifer Area means the area within the Edwards Aquifer Authority statutory boundaries.

Chapter 3

4. Page 3-5, Table 3-1: Text on page 3-3 and 3-4 states that Table 3-1 shows availability for all major aquifers except the Edwards Aquifer. Please consider including the Edwards-Trinity (Plateau) Aquifer in Table 3-1 or revising the text on page 3-3.

Response: Text on page 3-3 has been revised to indicate that availability for the Edwards-Trinity (Plateau) Aquifer is not shown in Table 3-1.

Chapter 4

5. Consider presenting the capital costs of water management strategies associated with Water User Groups' water supply plans, within Chapter 4 for ease of locating associated project costs.

Response: Capital costs associated with water management strategies are presented in Section 9 (Volume I), Appendix D (Volume I), and Section 4C (Volume II). The SCTRWPG will consider adding capital cost to the project descriptions in Section 4B.2 for the 2016 Regional Water Plan.

6. Page ES-14, Figure ES-7 and page 4B.1-5, Figure 4B.1-2: Drought management is a distinct water management strategy and not a subcategory of conservation. Please consider presenting drought management as a separate category of water supply in Figure 4B.1-2 and throughout plan.

Response: See response to Level 2 Comment #1.

7. Page ES-14, Figure ES-7 and page 4B.1-5, Figure 4B.1-2: While recycled water is a recommended water management strategy it is not presented in Figure 4B.1-2. Please consider presenting recycled water as a separate category of water supply in Figure 4B.1-2.

Response: Figures ES-7 and 4B.1-2 and relevant text have been revised to show Recycled Water as a category of new water supplies separate from Available Resources.

Chapter 5

8. Chapter 5: Consider presenting quantitative reporting of and impacts of voluntarily redistributing water in Chapter 5, instead of Chapter 4 in accordance with TWDB Guidance.

Response: Presentation of quantitative reporting and impacts of voluntarily redistributing water has been moved to Chapter 5.

Appendix C

9. Page C-33 and C-78: Pages contain tables that do not present any data and that occur

between connected tables. Please consider deleting these empty table/pages.

Response: Empty table segments and pages have been deleted.

VOLUME II

10. Section 4C.18, 4C.18-4, 1st paragraph: Please consider updating the statement indicating

that desired future conditions have not been established for Groundwater Management Area 13.

Groundwater Management Area 13 has since adopted desired future conditions on April 9, 2010.

Response: Text has been revised to reflect that GMA13 adopted Desired Future

Conditions on April 9, 2010.

10.2.3.2 TPWD Comments on the Initially Prepared 2011 South Central Texas

Regional Water Plan and SCTRWPG Responses

TPWD Letter of June 15, 2010 – South Central Texas Region L Initially Prepared Plan

Thank you for the opportunity to review and comment on the 2010 Initially Prepared Regional Water Plan (IPP) for South Central Texas Region L. Texas Parks and Wildlife (TPW) acknowledges the time, money and effort required to produce the regional water plan as mandated by Senate Bill 1 of the 75th Legislature. A number of positive steps have been taken since the first planning cycle to advance the issue of environmental protection. For example, the regional water planning groups are required by TAC §357.7(a)(8)(A), to perform a "quantitative reporting of environmental factors including effects on environmental water needs, wildlife habitat, cultural resources, and effect of upstream development on bays, estuaries, and arms of the Gulf of Mexico" when evaluating water management strategies (WMS). Quantification of environmental impacts is a critical step in planning for our state's future water needs while also protecting environmental resources.

TPW staff has reviewed the IPP with a focus on the following questions:

• Does the plan include a quantitative reporting of environmental factors including the effects on environmental water needs, and habitat?

• Does the plan include a description of natural resources and threats to natural resources due to water quantity or quality problems?

- Does the plan discuss how these threats will be addressed?
- Does the plan describe how it is consistent with long-term protection of natural resources?
- Does the plan include water conservation as a water management strategy? Reuse?
- Does the plan recommend any stream segments be nominated as ecologically unique?
- If the plan includes strategies identified in the 2006 regional water plan, does it address concerns raised by TPW at that time?

The South Central Texas Region L IPP includes a brief description of natural resources including fish and wildlife resources. A detailed table listing threatened and endangered species by county with notations concerning their habitat preferences and protected status is presented in Appendix H of the IPP. Major springs are also described and potential threats to natural resources were evaluated.

The Region L IPP includes a detailed quantitative reporting of environmental factors. Volume II of the IPP discusses technical evaluations of strategies and presents water management strategy summary sheets that include acreages impacted by each strategy. Where applicable, changes in environmental flows are predicted using Water Availability Models.

Environmental assessments are presented for proposed water management strategies included in the 2010 IPP as well as for the 1984, 1990, 1997, 2002 and 2007 Water Plans. While necessarily broad in scope, this quantitative analysis comparing each water plan highlights some interesting trends. For example, the 2010 IPP is projected to have more impact (per unit of supply) than any plan listed when considering endangered, threatened, and species of concern due to the number of projects and pipelines traversing sensitive areas. The 2010 IPP is also projected to have a greater environmental impact (per unit of supply) on vegetation and wildlife habitat than either the 2007 or 2002 plans and fewer impacts (per unit of supply) to wildlife habitat than the 1984, 1990, or 1997 plans, largely due to the absence of large main-stem reservoirs included in earlier plans. Finally, the 2010 IPP appears to project moderate water quality and aquatic habitat impacts, although this is difficult to evaluate because the numbers in Table 7.2-5 do not match the values shown in Figure 7.2-5. Please double-check the calculations and presentation of the

results. Overall, the 2010 IPP appears to have the highest cumulative impacts (per unit of supply) compared to earlier plans except for the 1984 plan.

While specific conclusions cannot be made at this point, TPW staff tends to agree with the

statement that the predicted impacts associated with the smaller (but more numerous) strategies

in the 2010 IPP may be more easily avoided and/or mitigated than the large scale impacts

associated with reservoirs in earlier water plans.

The Region L IPP recommends water conservation for all water user groups. Region L is to be

commended for including advanced water conservation as a water management strategy.

According to the IPP, per capita water use in Region L is projected to decline over the planning

period from 148 gallons per person per day in 2000 to 132 gallons per person per day in 2060.

The IPP also recommends the expansion of water recycling, or use of reclaimed wastewater, for

non-potable purposes such as parkland irrigation and instream flow augmentation.

Region L is also to be commended for considering and recommending reasonable drought

management strategies to reduce water demands during droughts. While TPW understands the

need for planning to provide needed water supplies, municipalities and other water user groups

have successfully promoted sensible restrictions during droughts. It is important that the success

of these programs be reflected in regional water planning.

TPW staff is encouraged that Region L has recommended five segments for nomination as

ecologically unique. TPW staff believes that the "clarifying provisions" provided by Region L

are consistent with existing statutes.

The 2010 Region L IPP is a well organized report. Recognition is deserved for proposed

designation of five ecologically unique stream segments, advanced conservation, drought

management as a water management strategy, seawater desalination, use of off-channel

reservoirs, recommended use of recycled water for non-potable uses for several WUGs, aquifer

recharge, aquifer storage and recovery, brush management, and an ecological analysis of the

impact of the 2010 plan. No major on-channel reservoirs are proposed within the region at this

time.

HR

While TPW is pleased to see that many of our earlier comments have been addressed, and appreciated being included in discussions with the Environmental Committee, concerns remain regarding potential impacts associated with several strategies. Increased reliance on groundwater from the Carrizo-Wilcox aquifer, particularly in Wilson, Gonzales, and Caldwell counties, is projected to cause substantial local drawdowns which could impact seeps, small springs, instream flows, and the biota dependent on these habitats. Recommended placement of four Type II recharge structures in stream segments identified by TPW as ecologically significant stream segments could result in environmental impacts to those segments. With this IPP in place, Comal Springs is projected to stop flowing if a repeat of the drought of record occurs, imperiling endangered species. The proposed interbasin transfer from the lower Colorado River could also potentially negatively impact the Matagorda Bay ecosystem. New appropriations from the Guadalupe River and/or increased use of previously unused water rights from the Guadalupe River will impact instream flows and freshwater inflows to San Antonio Bay that will likely reduce long-term inflows and increase bay salinities. This will invoke a host of complex estuarine community changes. Both seawater and brackish groundwater desalination can be ecologically advantageous strategies, as long as issues such as impingement and entrainment at intake locations and brine disposal options are carefully considered. Continued consultation with TPW staff will help to ensure that fish and wildlife impacts can be avoided or minimized.

Section 7.1.3.3 illustrates model simulations comparing "natural", "present", "baseline" and "RWP" scenarios. In our opinion, the "present" simulation results in an overly conservative demand scenario since stacking the ten-year maximum diversion of each water right into a single year has not been observed. In part because of this assumption, the "present" conditions simulation results are fairly close to the "baseline" and "RWP" results, all of which show substantial deviations from the "natural" condition. TPW suggests that a comparison also be made with the average or median of the last 10 years for each water right and associated return flows. This scenario is significantly different from the "baseline" and "present" scenarios and will allow a useful representation of current, on-the-ground, conditions. Please let us know if we can help in this endeavor.

Thank you for your consideration of these comments. TPW looks forward to continuing to work with the planning group to develop water supply strategies that not only meet the future water supply needs of the region but also preserve the ecological health of the region's aquatic resources. Please contact Cindy Loeffler at (512) 389-8715 if you have any questions or comments.

General Response: The SCTRWPG appreciates the thoughtful and constructive comments provided by the Texas Parks & Wildlife Department (TPWD) on the Initially Prepared 2011 South Central Texas Regional Water Plan. In addition, the SCTRWPG gratefully acknowledges the valuable technical support provided by TPWD staff throughout the development of the 2011 Regional Water Plan. Such technical support is exemplified by staff participation in the Environmental Assessment Committee, sharing of resource information relevant to the recommendation of five stream segments for legislative designation as having unique ecological value, and valuable contributions to SCTRWPG and workgroup meetings.

Following are SCTRWPG responses to specific comments:

A. Water Quality and Aquatic Habitat

The 2010 IPP appears to project moderate water quality and aquatic habitat impacts, although this is difficult to evaluate because the numbers in Table 7.2-5 do not match the values shown in Figure 7.2-5. Please double check the calculations and presentation of results.

Response: Table 7.2-5 is correct. Figure 7.2-5 has been revised to portray the correct values.

B. Present Conditions Simulations in the Cumulative Effects (Section 7)

TPW suggests that a comparison also be made with the average or median of the last 10 years for each water right and associated return flows.

Response: The South Central Texas Regional Planning Group will consider performing such an analysis for the 2016 Plan.

10.2.3.3 Public Comments on the Initially Prepared 2011 South Central Texas Regional Water Plan and SCTRWPG Responses

Public Comments

A. Freshwater Inflows

Several commentors expressed concern about freshwater inflows into the Guadalupe Estuary. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

A.1. There are concerns that SB3 won't be enough to protect freshwater inflows.

Response: The environmental flows process established by SB3 is just underway for the Guadalupe - San Antonio River Basin and the Guadalupe Estuary. Among other things, both the Bay and Basin Stakeholder Committee and the Bay and Basin Expert Science Team will be considering the freshwater inflows necessary to maintain a sound ecological environment. Pursuant to TWDB guidance for regional water planning, Consensus Criteria for Environmental Flow Needs (CCEFN) have been applied in the technical evaluation of potentially feasible water management strategies.

A.2. Increased uses of existing water rights will reduce freshwater inflows during dry periods. Response: Full utilization of existing water rights is authorized by Texas water law and recognized in the fundamental hydrologic assumptions adopted by the SCTRWPG and approved by the TWDB for regional water planning. Changes in freshwater inflows to the Guadalupe Estuary are illustrated in Figures 7.1-25 through 7.1-29 and are deemed acceptable by the SCTRWPG. Due to natural hydrologic conditions and the doctrine of prior appropriation, it is unlikely that every existing water right will be able to divert its full authorization during a repeat of the drought of record.

A.3. Environmental needs are not considered in plan.

Response: The 2006 South Central Texas Regional Water Plan offered the most comprehensive environmental analyses of any regional water plan in the State of Texas. As the 2011 plan includes the same, and additional, environmental analyses, it is expected that

Region L will again compare quite favorably with other planning regions. Water needs of

the environment are considered in the application of Consensus Criteria for Environmental

Flow Needs (CCEFN) as part the technical evaluation of each water management strategy

including a new appropriation of surface water.

A.4. Fisheries are impacted by low flows.

Response: Freshwater inflows are but one factor affecting the fisheries. Low freshwater

inflows, caused by both natural and anthropogenic means, along with many other factors

(e.g., hurricanes, harvest effort, red tide, sediment deposition, nutrient loadings, pollution,

etc.) can affect the Guadalupe Estuary and associated fisheries.

A.5. March-October low-flows can adversely affect species and the plan affects these flows.

Response: Compared to the Baseline, the Plan does not increase the number of

occurrences of 6 month or longer periods below an assumed Drought Tolerance Level

(MinOsal) within critical months of March through October (Table 7.1-13).

A.6. Groundwater pumpage affects surface water.

Response: The decline in water levels in aquifers due to increased groundwater use can

affect surface water. The effects of increased groundwater pumpage are accounted for in

the cumulative effects assessment found in Section 7 of the South Central Texas Regional

Water Plan.

A.7. SB3 Process will help define environmental needs.

Response: See A.1.

A.8. If planned supplies from the Colorado River (LCRA-SAWS Project) do not develop,

freshwater inflows could be less.

Response: Should the LCRA-SAWS Water Project not come to fruition, SAWS would

likely develop alternative sources of supply to replace it. If these alternative sources are

non-Edwards groundwater or originate outside of the Guadalupe - San Antonio River

Basin (e.g., Seawater Desalination), then freshwater inflows with plan implementation

would be similar to those presented in Section 7 of the 2011 plan.

HR

Reduced water flows during sparse rainfall conditions raised salinity levels in San A.9.

Antonio Bay to 60-year record highs during the 2008/2009 period, directly affecting

game fish and other aquatic life in the system.

Response: Noted.

A.10. Ecological integrity is essential to the economic vitality of Aransas County.

Response: Noted.

В. Whooping Cranes

Several commentors expressed concern about the Whooping Crane population that winters in or

near the Aransas National Refuge, adjacent to the Guadalupe Estuary. Below are the specific

comments and the South Central Texas Regional Water Planning Group responses.

B.1. Crane mortality in 2008-2009 is a significant concern.

Response: There is uncertainty in the estimation of crane mortality for 2008-2009,

however, loss of this endangered species is clearly a matter of concern.

B.2. Use of existing water rights contributes to the deaths of cranes.

Response: Linkage, if any, between the mortality of whooping cranes and freshwater

inflows, much less changes in freshwater inflows due to uses of surface water rights, has yet

to be accurately defined. The SCTRWPG is monitoring scientific studies to better define

this potential linkage, including the San Antonio Guadalupe Estuarine System research

conducted by Texas A&M University.

B.3. If we can save snail darters and the spotted owl, surely we can spare a couple 100,000

acft of water for cranes and redfish.

Response: Noted.

B.4. The Region L Plan does not adequately address the needs of the Whooping Cranes.

Response: The 2011 South Central Texas Regional Water Plan has been prepared in accordance with TWDB rules and guidance and the actual needs of Whooping Cranes are

not known in sufficient specificity.

C. Opposition to GBRA-Exelon Project

Several commentors expressed opposition to the GBRA-Exelon Project. Below are the specific

comments and the South Central Texas Regional Water Planning Group responses.

C.1. This (water management strategy) should not be a recommended project and should be

moved to the "needs further study" category, so it can be studied in the next cycle of

planning.

Response: Noted.

C.2. The GBRA Exelon Project will not be needed in the 2010-2020 decade.

Response: The timing of the GBRA Exelon Project is uncertain. Exelon has, however, filed

an Early Site Permit application with the Nuclear Regulatory Commission and could file a

Combined Operation License Application at any point in time. Exelon holds a reservation

contract with GBRA for up to 75,000 acft/yr of water from GBRA's existing water rights.

C.3. The project is uncertain: permits are not in place.

Response: Exelon is and will be pursuing permits in a timely manner, as they deem

necessary.

C.4. No serious analysis of its impact on the environment and the endangered whooping crane

is included.

Response: Environmental Impact Studies would be part of the permitting process and a

subject of future feasibility studies.

D. Support for the GBRA-Exelon Project

Several commentors expressed support for the GBRA-Exelon Project. Below are the specific

comments and the South Central Texas Regional Water Planning Group responses.

D.1. The project offers potential benefits to the local and regional economies.

Response: Noted.

D.2. The project is a responsible use of existing water rights.

Response: Noted.

E. GBRA Mid-Basin Projects

Several commentors provided comments on the GBRA Mid-Basin Projects. Below are the

specific comments and the South Central Texas Regional Water Planning Group responses.

E.1. Support for the projects and recommendation that one of them should deliver water to the

Lake Placid WTP.

Response: Noted.

E.2. There have been insufficient environmental studies. The plan does not take into account

flow rates among other factors and the impact on the ecology of the rivers and wetlands.

Response: The GBRA Mid-Basin Project has been evaluated in accordance with TWDB

guidance for regional planning. Detailed environmental studies would be part of the

permitting process and future feasibility studies.

E.3. Project will modify the existing flow regime below the Gonzales diversion.

Response: Noted.

E.4. It is in the early formulation stage and would be appropriate to postpone until the next

water plan when more info is available.

Response: There is a pending surface water right application at TCEQ for this water

management strategy. One of the requirements for the permit is consistency with a

regional water plan. By placing the GBRA Mid-Basin Project (Surface Water) in the Plan,

the South Central Texas Regional Planning Group does not impede GBRA's pursuit of

such permits.

F. GBRA Simsboro Project

The Lost Pines Groundwater Conservation District expressed concern about the GBRA

Simsboro Project. Below are the specific comments and the South Central Texas Regional

Water Planning Group responses.

F.1. The GBRA Simsboro Project was not represented in the GMA 12 simulations.

Response: Noted.

F.2. There is enough water from other projects (GBRA Mid-Basin Projects) that the GBRA

Simsboro Project is not necessary.

Response: Noted.

F.3. The project creates an inter-regional conflict with Regions G and Regions K.

Response: The GBRA Simsboro Project has been revised to avoid an inter-regional conflict with Region G. The amount of water exported from Lee County (Region G) has been reduced from 20,000 acft/yr to 19,777 acft/yr in order to avoid the source overallocation in Lee County. As a result, the size of the project has been reduced from 50,000 acft/yr to 49,777 acft/yr.

The SCTRWPG has decided to resolve this potential conflict by including "overdraft" notation and explanatory language to documentation of the GBRA Simsboro Project in the 2011 Regional Water Plan. Additional information is available in the SCTRWPG response to Level I Comment No. 52 provided by the TWDB.

G. Opposition to GBRA New Appropriation (Lower Basin)

Several commentors expressed opposition to two water management strategies sponsored by GBRA – the GBRA-Exelon Project and the GBRA New Appropriation (Lower Basin). Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

G.1. This (water management strategy) should not be a recommended strategy and should be moved to the "needs further study" category, so it can be studied in the next cycle of planning.

Response: There are pressing water demands within the GBRA district and a pending application at TCEQ for this water management strategy. One of the requirements for the permit is consistency with a regional water plan. By placing the GBRA New Appropriation (Lower Basin) in the Plan, the South Central Texas Regional Planning Group does not impede GBRA in pursuing such permits.

G.2. Recommends project wait until the next water plan 2016-2017.

Response: See response to G.1.

H. Opposition to the Lower Guadalupe Water Supply Project for Upstream Needs (60,000 acft/yr) and the Lower Guadalupe Water Supply Project for Upstream Needs at Reduced Capacity (35,000 acft/yr)

One commentor expressed opposition to two alternative water management strategies sponsored by GBRA – the Lower Guadalupe Water Supply Project for Upstream Needs (60,000 acft/yr) and the Lower Guadalupe Water Supply Project for Upstream Needs at Reduced Capacity (35,000 acft/yr). Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

H.1. It is unclear as to whether this project would involve adding fresh groundwater to the strategy.

Response: Neither alternative water management strategy includes fresh groundwater, nor are there plans to add fresh groundwater to either strategy.

H.2. It is unclear about the relationship of these two strategies with regards to the GBRA Exelon strategy and other planned GBRA projects.

Response: Both the Lower Guadalupe Water Supply Project for Upstream Needs (60,000 acft/yr) and the Lower Guadalupe Water Supply Project for Upstream Needs at Reduced Capacity (35,000 acft/yr) are alternative strategies. At this time GBRA is not pursuing either project. Should one or more of GBRA's other recommended water management strategies become infeasible (GBRA Simsboro Project, GBRA Mid-Basin Project, GBRA New Appropriation (Lower Basin), etc), GBRA may ask the South Central Texas Regional Planning Group to elevate one of these alternative strategies to recommended status. Which of the two water management strategies GBRA would pursue depends on the status of the GBRA Exelon Project. As noted, if the GBRA Exelon Project is still active and being sought, then the Lower Guadalupe Water Supply Project for Upstream Needs at Reduced Capacity (35,000 acft/yr) would be the only viable option. However, if the GBRA Exelon Project is no longer active, then GBRA could choose either alternative water management strategy to elevate to recommended status.

I. Off-Channel Reservoirs / Private Property Rights

Several commentors expressed concern about private property rights, especially where condemnation could be required for siting of off-channel reservoirs. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

I.1. Off-channel reservoirs should be located closer to the point(s) of use.

Response: The locations and physical characteristics of off-channel reservoirs are subject to feasibility studies and permitting.

I.2. Property condemnation for an off-channel reservoir should be avoided.

Response: The South Central Texas Regional Planning Group specifically adopted a policy pertaining to condemnation. In Section 8 of the Plan, it states "The SCTRWPG is of the opinion that it is not appropriate for a regional water planning group to tell a governmental entity to abandon its eminent domain powers if it wants its project to be approved as a recommended water management strategy. The SCTRWPG is further of the opinion that it is not within the planning group's jurisdiction to judge the merits of eminent domain. It is, however, the understanding of the SCTRWPG that all land needed for implementation of water management strategies will be obtained using a process of willing seller and willing buyer and that limited condemnation will be used as a last resort."

I.3. Reservoir sites are selected as examples only.

Response: As with all water management strategies in the South Central Texas Regional Water Plan, the locations and facilities are planning level approximations, subject to revision during permitting, design, and/or construction. Furthermore, some water management strategies, such as the Storage above Canyon Reservoir strategy, are illustrative to show the potential of a similar project. Detailed siting feasibility studies could be necessary before some projects move forward.

I.4. Surveys and documentation will be required before this process moves forward.

Response: As with all water projects, surveys and documentation are necessary for permitting, design, and construction.

I.5. Eminent domain should only be used to acquire pipeline easements as a last resort.

Response: See response to I.2.

J. Storage above Canyon Reservoir

One commentor had comments pertaining to the Storage above Canyon Reservoir water management strategy. Below are the specific comments and the South Central Texas Regional

Water Planning Group responses.

J.1. While the shallow soils of the Hill Country are relatively "poor" in comparison to the

deep soils of the Blackland Prairies, they do not render the land as useless or valueless as

this seems to imply. Furthermore, the comments regarding recreation are totally

inaccurate. Texans consider the Hill Country their big backyard and are utilized for a

wide range of recreation, including mountain biking, hunting, hiking, fishing, bird-

watching, and nature photography.

Response: The Storage above Canyon Reservoir description has been revised to correct

the implication that the soils are useless. In addition, the statement about recreation has

been revised to accurately depict the wide range of recreational activities in this area.

J.2. Eminent domain should only be used to acquire pipeline easements, as it relates to the

ASR options of the water management strategy, as a last resort. It should be the goal of

Region L to enlist voluntary cooperators.

Response: See response to I.2.

K. **Groundwater Rights**

One commentor expressed concern about private property rights regarding groundwater. Below

are the specific comments and the South Central Texas Regional Water Planning Group

responses.

Projects should not infringe upon groundwater or private property rights.

Response: Noted.

L. Groundwater Availability/Supply Definitions

One commentor had a comment regarding confusion about the definitions of groundwater availability, existing groundwater supplies, and drought of record.

L.1. It is suggested that there be a glossary of terms included in the Plan.

Response: The terminology used in the Plan is defined in TWDB's guidance for regional planning, which is available on the TWDB website.

M. Gonzales County Groundwater Strategies

Several commentors expressed concerns about large groundwater export projects from Gonzales County. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

M.1. All the pumpage for exports from Gonzales County could adversely affect the local pumpers by shifting the brackish groundwater line.

Response: The possibility of such a shift would most likely be evaluated in the permitting process before the Gonzales County Underground Water Conservation District.

M.2. Impacts to the springs and rivers due to the increased pumpage are of concern.

Response: Potential declines in water levels in aquifers due to increased groundwater pumpage can affect surface water. The estimated effects of increased groundwater pumpage are accounted for in the cumulative effects assessment (Section 7) of the South Central Texas Regional Water Plan.

M.3. The transfer of large amounts of water from one aquifer region to another is not part of a natural process and is damaging to the environment.

Response: While such transfers are certainly not a natural process, additional data is needed to determine whether these transfers are damaging to the environment.

M.4. There are insufficient water allocations given to agricultural (food-producing) areas.
Water resources in the areas of food production are already over-allocated. Areas that have water may welcome economic development.

Response: Noted.

N. CRWA Wells Ranch Project

Several commentors, including entities that would receive water from the project, indicated that the description and cost estimate of the CRWA Wells Ranch Project did not include pipeline segments that need to be built to fully deliver the water from the Wells Ranch well field.

N.1 Please show costs for the pipeline segments of the CRWA Wells Ranch Project that are not currently constructed.

Response: After some discussion, CRWA and their engineer clarified the project status and gave direction of the missing pipeline segments. The CRWA Wells Ranch Project description and cost estimate has been revised to account for the pipeline segments.

O. TWA Carrizo Project

Representatives from Springs Hill WSC, Gonzales County WSC, and Canyon Lake WSC suggested minor revisions to the TWA Carrizo Project, including pipeline realignment.

O.1 Please revise the TWA Regional Carrizo Project pipeline to go east and south of the City of Gonzales.

Response: The TWA Carrizo Project has been revised to show the desired pipeline route. The documentation, including the cost estimate, has been updated as well.

P. Combined Pipeline from Gonzales County through Guadalupe County

Several commentors, including sponsoring entities of many of the Gonzales County Projects, expressed interest in a combined pipeline delivering supplies associated with two or more projects through Guadalupe County. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

P.1. The plan should consider a combined pipeline through Guadalupe County, capable of carrying SSLGC, CRWA, and SAWS Water.

Response: Due to time and budget constraints, combined pipelines were not evaluated in the 2011 Plan. However, several pipeline routes have been realigned so that they share

common transportation corridors. It is the understanding of the South Central Texas

Regional Water Planning Group that the TWDB will accept applications for a combined

pipeline if two or more projects have pipelines in the general vicinity and it can be shown

that a combined pipeline is more economical than separate pipelines.

P.2. The combined pipeline should be over-sized to accommodate TWA and Simsboro water

as well.

Response: See response to P.1.

P.3. Consider expanding the pipeline network to include the area from Guadalupe County to

Bexar and Comal counties.

Response: Noted.

O. Water Use Data and Demand Projections

Several commentors expressed concern that the water use estimates and demand projections for

several WUGs are too low. Below are the specific comments and the South Central Texas

Regional Water Planning Group responses.

O.1. Water use and demand projections shown in Region L do not match that used in at least

one Groundwater Conservation District Management Plan. Region L should use data

provided by the groundwater conservation districts.

Response: Water demand projections are prepared and provided by the Texas Water

Development Board and are based on a number of factors.

Q.2. Region L water demand projections for irrigation and mining (oil and gas) are

underestimated.

Response: Water demand projections are prepared and provided by the Texas Water

Development Board and are based on a number of factors.

Q.3. Region L is showing a decrease in irrigation demand in Gonzales and DeWitt Counties.

With the falling value of the US Dollar, the profitability and demand for products should

be increasing.

Response: Noted.

Q.4. Mining water uses in Karnes, DeWitt, and Goliad Counties for the fracturing of shale to release natural gas should be included.

Response: Water demand projections are prepared and provided by the Texas Water Development Board and are based on a number of factors. The SCTRWPG encourages the TWDB to carefully consider such mining water uses in the development of water demand projections for use in the 2016 Regional Water Plan.

Q.5. Steam-Electric demand projections in Victoria County are too low.

Response: Steam-electric water demand projections for the region, including Victoria County, were revised based on information from the steam-electric power generators within the region. TWDB approved these revisions.

R. Lavaca Off-Channel Reservoir

Several commentors expressed a desire to remove the Lavaca Off-Channel Reservoir from the Plan. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

R.1. LNRA, sponsor of the Lavaca Off-Channel Reservoir, has requested that the water management strategy be removed from the South Central Texas Regional Water Plan as a recommended strategy and designated as a water management strategy needing further funding or study.

Response: The Plan has not been modified as the Lavaca Off-Channel Reservoir is needed to meet needs in Calhoun County (Point Comfort and Calhoun County Industrial).

Palmetto Bend - Stage II S.

Over 100 commentors expressed a desire to remove the Palmetto Bend – Stage II from the Plan.

Below are the specific comments and the South Central Texas Regional Water Planning Group

responses.

S.1. Lake Texana did not deliver the economic benefits as promised.

Response: Additional data is necessary to support or reject this statement.

S.2. The Leave Our Lavaca River Alone (LOLA) organization will not sit back and let Region

L take their water.

Response: The SCTRWPG appreciates the active engagement of LOLA in the planning

process.

S.3. Other storage technologies exist.

Response: Noted.

S.4. Palmetto Bend – Stage II will increase taxes in Jackson County.

Response: Additional data is necessary to support or reject this statement.

S.5. The project would be in Jackson County, but would be delivered to Calhoun County,

taking jobs with it.

Response: Additional data is necessary to support or reject this statement.

S.6. Damming the last remaining free river in Texas is simply the wrong thing to do when

there are other options.

Response: Noted. The Lavaca River is not the last remaining free-flowing river in Texas.

S.7. If the Lavaca River is dammed, eminent domain will be used.

Response: See response to I.2.

S.8. The estuaries are already in danger, especially since the BP oil spill. Cutting off

freshwater inflow just doesn't make sense.

Response: Noted.

S.9. LNRA, sponsor of Palmetto Bend – Stage II, has requested that the water management

strategy be removed from the South Central Texas Regional Water Plan as an alternative

strategy and designated as a water management strategy needing further funding or study.

Response: The Plan has been modified to designate Palmetto Bend – Stage II a water

management strategy needing further funding or study prior to implementation.

T. Drought Management as a Water Management Strategy

One commentor provided a few comments regarding Drought Management as a Water

Management Strategy. Below are the specific comments and the South Central Texas Regional

Water Planning Group responses.

T.1. Praise for Region L recognizing Drought Management – not meeting non-essential water

demands makes sense.

Response: Thank you.

T.2. It should be more than an interim strategy.

Response: The South Central Texas Regional Water Planning Group chose to recommend

that water user groups consider implementing Drought Management as a means to reduce

demands and meet near-term needs until other water management strategies are

implemented. Potential recommendation of Drought Management as a long-term water

management strategy may be considered in the development of the 2016 regional water

plan.

T.3. The economic analyses should be re-evaluated. Based on SAWS experience, unit costs

could be less than shown.

Response: The economic analyses of Drought Management water management strategy

were developed using data from the TWDB.

U. Blanco Recharge Dam

Two commentors had varying opinions on the Blanco Recharge Dam (one of the Edwards

Recharge - Type II projects). Below are the specific comments and the South Central Texas

Regional Water Planning Group responses.

U.1. It's a large dam on one of the last free flowing rivers in the state.

Response: Noted.

U.2. There will be sediment (gravel) issues due to the movement of the river during flooding.

Response: Noted.

U.3. The Blanco River dries up during drought, thus no water is available for springflow

protection when it's needed.

Response: As a recharge enhancement project, the Blanco Recharge dam would take

advantage of limited transient storage within the Edwards Aquifer and incrementally

enhance spring discharges at San Marcos and Barton Springs.

U.4. There would be a great loss of water due to evaporation within the reservoir.

Response: Compared to conventional reservoirs, the Blanco Recharge Dam would lose less

water to evaporation as a result of direct percolation into the Edwards Aquifer and

diversions to the Edwards Aquifer recharge zone.

U.5. The Blanco Recharge Dam will help alleviate the flooding situation on the Blanco River.

Response: Noted.

V. Recommended & Alternative Water Management Strategies

Several commentors had general comments about the length of the list of recommended and

alternative water management strategies, especially those that are planned to be implemented in

the distant future. Below are the specific comments and the South Central Texas Regional Water

Planning Group responses.

MR

V.1. Strategies that aren't likely to be implemented in the next 5 years should be reclassified

as alternative Water Management Strategies.

Response: Per TWDB guidance and rules for regional planning, recommended water

management strategies must be identified to meet projected needs throughout the entire

multi-decade planning period.

V.2. The plan should include recommended strategies that just meet the projected demands

only and other projects should be listed as alternatives

Response: Water management strategies that will provide management supplies in excess

of projected demands are recommended for a variety of reasons. These reasons include

planning in the event of a drought worse than the drought of record, uncertainty in the

firm supply of existing supply sources (e.g., the Edwards Aquifer), flexibility for entities to

pursue permits and studies to determine the best strategy for them, and opportunities to

refine water management strategies in response to public concerns regarding potential

environmental impacts. The SCTRWPG may consider criteria for integration of

management supplies in the development of the 2016 Regional Water Plan.

W. Population Growth

One commentor was concerned about the large population growth in the region as it relates to the

ability of the region to support it and the environment. Below are the specific comments and the

South Central Texas Regional Water Planning Group responses.

W.1. Growth can't continue beyond the capacity of the land to sustain the ecosystem.

Response: Noted.

X. Water Management

One commentor was concerned that water is becoming a commodity. Below are the specific

comments and the South Central Texas Regional Water Planning Group responses.

X.1. Water is a community resource rather than a resource commodity.

Response: Noted.

Y. Springs Hill WSC: Wholesale Water Provider (WWP) Table

Springs Hill WSC requested changes to their WWP Table. Revisions should show purchase from GBRA (WWP) at 1,500 acft/yr for 2010 through 2060, and the Brackish Wilcox Groundwater for RWA should be limited to 1,500 acft/yr in 2060 only.

Response: The requested revisions have been made.

Z. Brush Management

One commentor had concern about the analysis performed in the Brush Management water management strategy. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

Z.1. Much of the recent research by Bradford Wilcox and Yun Huang disputes the claim that removal of Ashe Juniper increases river flows.

Response: Texas A&M University staff, including Bradford Wilcox, were technical consultants for the evaluation of the Brush Management water management strategy and worked with HDR Engineering in evaluating the strategy.

Z.2. Recommendation that Appendix D (in Volume II, which pertains to Brush Management) be revised and any part of the plan that relies on the clearing of brush be revised.

Response: Brush Management is not a recommended or alternative water management strategy in the Plan. At this time, no water user groups rely on the clearing of brush to meet projected needs.

AA. Rural Water Needs

One commentor had concern about how rural water needs are met. Below are the specific comments and the South Central Texas Regional Water Planning Group responses.

AA.1. The Plan makes no apparent provision for any anticipated future water needs of families residing in rural subdivisions with no access to municipal water supply systems.

Response: TWDB aggregates residences, including those in rural subdivisions, that lie

outside of a designated Water User Group (WUG) into the County Rural WUG. TWDB

guidance for water planning defines a WUG as a city serving more than 500 people or a

water supplier supplying more than 280 acft/yr. Furthermore, TWDB is funding a

separate ongoing study in Hays County to address this issue the regional planning process.

AA.2. The Regional Water Plan is to meet the needs of every Water User Group in the region.

Response: See AA.1.

AA.3. It may make sense to consider an inter-basin transfer from the Colorado Basin to meet the

needs of rural Hays County.

Response: Noted.

BB. Support of the Region L Plan and the Regional Water Planning Process

Several commentors supported and praised the Plan and the regional planning process. Below

are the specific comments and the South Central Texas Regional Water Planning Group

responses.

BB.1. The Region L Plan is a well-organized, readable plan.

Response: Thank you.

BB.2. Compliments on the fact that Region L exceeds the state's requirements when it comes to

environmental assessment and is the best plan in the state.

Response: Thank you.

BB.3. The planning process provides the public an opportunity to participate.

Response: Noted.

BB.4. Plan supports development of desalination projects.

Response: Noted.

BB.5. Plan supports development of regional pipelines.

Response: Noted.

Comments received from Sierra Club with SCTRWPG Responses

Sierra Club Letter, dated June 16, 2010, with Responses

Dear Mr. Mims and Planning Group Members:

The Lone Star Chapter of the Sierra Club appreciates the opportunity to review and comment on the Initially Prepared 2010 South Central Texas Regional Water Plan (Region L). The planning group, along with their consultants, has prepared a well-organized document that provides an understanding of the plan components and documents potential impacts.

The Sierra Club acknowledges the positive steps taken in the development and preparation of the plan, including the incorporation of drought management strategies, brush management/land stewardship efforts and the designation of unique stream segments. We also greatly appreciate the more thorough quantitative assessment of the environmental impacts of the plan as it relates to freshwater inflows to bays and estuaries. This assessment provides a more accurate depiction of the potential impact the South Central Texas Regional Water Plan may have on freshwater inflows to San Antonio Bay. It also highlights our overarching concern regarding the Plan.

In 2004, the National Wildlife Federation (NWF) released a report called *Bays in Peril:* A Forecast for Freshwater Inflows to Texas Estuaries. The report used a standard TCEQ water availability model (WAM) run for the Guadalupe and San Antonio Rivers to forecast inflows to the estuary if all the existing water permits were fully used and if reuse of wastewater were increased to 50%. The report then evaluated the predicted inflows against each of two ecologically significant criteria: a drought criterion and a freshwater pulse (or higher flows) productivity criterion based on the results of the state's freshwater inflows studies. In the report, San Antonio Bay received a ranking of Danger because of the potential impacts to the bay resulting from increased reliance on existing water rights.

The quantitative analysis prepared by the Region L consultants is based on the NWF analysis. It compares the number of occurrences of six months or longer periods below drought tolerance levels during critical months (March-October). Under Natural Conditions, there were three times during the period of analysis (1934-1989) when inflows to the estuary fell below drought tolerance levels. Under Current Usage, the model predicts the number of times these flow conditions would have occurred would have increased to five; and with implementation of the regional water plan and the full use of existing water rights, the number of times the bay doesn't get enough water during drought increases to eight.

The 2010 Initially Prepared South Central Texas Regional Water Plan, with its reliance on increased groundwater pumping that reduces baseflows in rivers and stream in the San Antonio and Guadalupe Basin, its reliance on the full utilization of existing water rights, and its reliance on additional surface water withdrawals from the Guadalupe River, is likely to have significant impacts to San Antonio Bay, if implemented.

The environmental flows process created by Senate Bill 3 is now beginning for the Guadalupe and San Antonio River basins. This new process will help to more precisely define needed freshwater inflows and to identify mechanisms for achieving those inflows. It will be imperative that the next water plan uses this information to better address the issue of insufficient freshwater inflows to our bays and estuaries.

Response: The SCTRWPG appreciates the thoughtful and constructive comments provided by the Lone Star Chapter of the Sierra Club on the Initially Prepared 2011 South Central Texas Regional Water Plan. Following are responses to specific comments.

Finally, we note at least two places in the document (Pages 4B.1-15 and 4B.1-32) where the 2006 Regional Water Plan is referenced. We believe the reference should be to the 2011 Regional Water Plan.

Response: Inappropriate references to the 2006 Regional Water Plan have been eliminated from the 2011 Regional Water Plan.

Page Specific Comments

Executive Summary

[1] (Page ES-20, first bullet): *Implementation of the 2011 Regional Water Plan is likely to result in increased instream flows in the San Antonio River*. It may be helpful to the reader to explain the reason for increased flows; it is not readily intuitive.

Response: Text has been added to explain that expected increases in San Antonio River flows are attributable to increases in treated effluent from all wastewater discharges (most notably associated with projected growth in Bexar County) and increases in springflow (associated with Edwards Aquifer Recharge Type 2 Projects).

[2] (Page ES-20, third bullet): Emphasizing the beneficial use of existing surface water rights does minimize the development of new water supplies and associated environmental impacts. However, if existing rights were issued without environmental flow protections, the use of existing rights may have significant adverse effects.

Response: Potential effects of increased use of existing surface water rights on instream flows and freshwater inflows to the Guadalupe Estuary are reported in Chapter 7. More data is being compiled and evaluated as part of the Texas Environmental Flows Program (pursuant to SB2 and SB3) to better understand the magnitude and significance of these effects with respect to habitat and species of interest.

[3] (Page ES-20, fourth bullet): *Plan avoids large-scale development of new mainstem reservoir*. The inclusion of Palmetto Bend II as an alternate strategy makes this statement invalid.

Response: The decisions of the SCTRWPG to include the Lavaca Off-Channel Reservoir as a recommended water management strategy and Palmetto Bend Stage II as an alternative water management strategy are the basis for this environmental benefit. These decisions were made despite the facts that Palmetto Bend Stage II has an existing water rights permit and has been designated a site of unique value for construction of a reservoir by the Texas Legislature.

[4] (Page ES-20, eighth bullet): Potential reductions in freshwater inflows to bays and estuaries also result from the implementation of existing GBRA appropriations.

Response: Text has been added to note concerns that increased uses of existing water rights may reduce freshwater inflows to bays and estuaries.

[5] (Page ES-21, second bullet): Large demands for electrical power should be acknowledged as

additional environmental "concerns" for seawater desalination.

Response: Text has been added to note that there are concerns with electrical power

demands associated with seawater desalination.

Section 4B.1.2 Water Management Strategy Descriptions

4B.1.2.6 Drought Management

[6] (Page 4B.1-14): The carryover paragraph from the previous page notes "Drought

management is an interim strategy to meet near-term needs through demand reduction until such

time as economically viable long-term water supplies can be developed."

We feel that such an approach does not accurately depict the role drought management plays as a

water management strategy. Drought management in and of itself is an economically viable

long-term water strategy that allows a water supplier to forego the development and maintenance

of new sources by reducing non-essential water uses during times of drought.

As publicly noted by the San Antonio Water System, drought management efforts in 2009

resulted in a savings of between 24,000 and 30,000 acre-feet at a unit cost of \$25 per acre-foot.

We cannot imagine a more economically viable long-term strategy.

Response: The SCTRWPG may consider whether to recommend Drought Management

as a long-term, rather than an interim, water management strategy in the development of

the 2016 Regional Water Plan.

4B.1.2.11 Brush Management

[7] (Page 4B.1-16): We appreciate the efforts of the planning group to further inclusion of brush

management (land stewardship) as a water management strategy.

Response: Thank you.

4B.1.2.13 Storage above Canyon Reservoir

[8] (Page 4B.1-17): We appreciate the consideration of this strategy as an Aquifer Storage and

Recovery system rather than one relying on off-channel reservoirs.

Response: Thank you.

4B.1.2.14 GBRA-Exelon Project

[9] (Page 4B.1-17) We have grave concerns regarding the potential implementation of this water

management strategy. As noted in the first paragraphs of these comments, the full utilization of

existing water rights on the Guadalupe River is predicted to have significant impact to species

that rely on sufficient freshwater inflows to San Antonio Bay.

Response:

See Response to Comment #2.

4B.1.2.24 GBRA Simsboro Project

[10] (Page 4B.1-23): According to a letter from Region K Chairman, John Burke to Chairman

Con Mims, dated February 10, 2010, the Simsboro Project creates a potential conflict between

Region L and Region K.

Response: Regional water planning boundaries are not a factor in the consideration of

applications for groundwater production permits by a groundwater conservation district.

As permit applications for this project have been pending with the responsible

groundwater conservation district for some time, it is anticipated that any potential

conflicts in regional water planning will be resolved.

4B.1.2.39 Lavaca River Off-Channel Reservoir

[11] (Page 4B.1-29): According to Appendix D, water demands in Calhoun County for industrial

use in 2060 are predicted to be 209 ac-ft (Note: Table 4A-1 in Section 4A shows this demand as

245 ac-ft). According to our records, until the January 2010 meeting of the Region L planning

group, this small amount was to be met by means of purchase from the Lavaca-Navidad River

Authority.

At the January 2010 meeting of the Region L planning group, this strategy (supplying 10,000

acre-ft to meet a 209 ac-ft need) was presented as a possible recommended strategy. While the

Lone Star Chapter of the Sierra Club understands that there may have been circumstances

beyond the control of consultant and the planning group, we are surprised that such a strategy

was presented to the planning group on the same day it was to vote to approve the plan.

During this round of planning, the consultants and leadership of the South Texas Regional Water

Planning Group have provided ample opportunity for planning group members and the public to

understand and comment on various proposed water management strategies. We are

disappointed that little opportunity was provided for fully vetting this controversial project.

Response: Representatives of the SCTRWPG were made aware of a request by

Formosa Plastics Corporation (Formosa) for an additional 10,000 acft/yr for industrial use

in eastern Calhoun County during an April 2009 inter-regional coordination meeting

among Regions L, N, and P. During this meeting, representatives of the Lavaca-Navidad

River Authority (LNRA), which currently supplies Formosa about 30,000 acft/yr, advised

that it intended to continue as the future wholesale water provider for Formosa and Point

Comfort and would need to develop new sources in order to do so. As the SCTRWPG

decided not to voluntarily pursue formal demand projections revisions (except those

required by the TWDB for steam-electric power), the new demands of Formosa were

addressed informally in a manner similar to that for a number of other water users in

Region L that are growing faster than approved demand projections show. In the course of

further coordination, LNRA provided relevant data and technical evaluation

documentation for the Lavaca Off-Channel Reservoir. Unfortunately, however, this

information was received late in the planning cycle providing limited time for consideration

by the SCTRWPG.

4B.1.2.40 Palmetto Bend – Stage II

[12] See comments for 4B.1.2.39 Lavaca River Off-Channel Reservoir

Response:

See Response to Comment #11.

4B.1.2.44 Rainwater Harvesting

[13] (Page 4B.1-31): We appreciate the comment noting rainwater harvesting's ability to

supplement supplies from wells completed in the Trinity Aquifer. This is an important

component of this strategy.

Response:

Acknowledged.

Section 4C Technical Evaluations of Water Management Strategies

Section 4C.2 Drought Management

[14] There were several changes to the discussion of Drought Management in the April 2009

Study 3: Enhanced Water Conservation, Drought Management, and Land Stewardship. These

changes do not appear to have been transferred to Section 4C.2, including the discussion of the refined methodology for SAWS.

Response: The refined methodology for SAWS described in Study 3 was used for technical evaluation of the Drought Management strategy for all water user groups with projected needs in 2010 in development of the 2011 Regional Water Plan.

[15] (Page 4C.2-3): ...the WUG is planning to manage water shortages through drought contingency plan activation or water rationing if needed. We feel the inclusion of the term "water rationing" presents a distorted picture of drought management as a water management strategy. First, we are not aware of any municipal water suppliers in the planning region that actually utilize water rationing as part of their drought contingency plan. Second, drought management, as used as a water management strategy in the plan only calls for a five percent reduction in use; this is very unlikely to result in the need for water rationing whereby water users are allocated only a certain amount of water for a given period of time.

Response: References to "water rationing" in association with the Drought Management strategy have been eliminated, although it is recognized that enforcement is a necessary component of most drought contingency plans and many water conservation plans.

[16] (Page 4C.2-5): The first paragraph discusses the methodology used to determine risk factors. As we have noted in two comment letters to the consultant and members of the regional planning group (February 5, 2008 and November 4, 2008), we have concerns with the method used to develop the Risk Factor. The Risk Factor is determined from a Risk Curve that is calculated using variations in annual per capita water use from 1964-2005.

We feel that utilizing such historical per capita water use may unnecessarily bias the Risk Curve. In more recent years, the variances in per capita water use have declined with the increased awareness and implementation of water conservation activities. Such decreases in variance should lessen the slope of the Risk Curve, and consequently, diminish the Risk Factor.

Response: The general methodology used to perform a technical evaluation of the Drought Management strategy clearly involves simplifying assumptions commensurate with funding allocated to this effort. It is noted that variances in per capita water use have

also declined as a result of the implementation of drought restrictions on Edwards Aquifer

users since 1996.

[17] Our second concern relates to the determination of the Impact Factor. While we have made

this comment previously, we feel it warrants repeating. The Impact Factor is obtained from the

Texas Water Development Board and is used by the Board for calculating the economic impacts

of not meeting water needs. The use of this Factor is inappropriate to determining the costs

related Drought Management.

Drought Management efforts focus on directing available supplies from nonessential uses to

more critical uses during times of shortage. The calculations used by the Board include factors

such as lost sales for manufacturing. It is not reasonable to assume that the economic impacts of

having water unavailable temporarily to fill a fountain, keep a lawn green, or wash a car are the

same as having water unavailable to run a manufacturing line. In fact, most drought

management plans do not reduce water available for manufacturing.

Response: Coordination with TWDB staff regarding applicability of Impact Factors in

the technical evaluation of the Drought Management strategy indicates that such factors

have been appropriately used in estimating the costs associated with this strategy for the

2011 Regional Water Plan. As described on page 4C.2-5, reductions in the manufacturing

sector are not assumed to occur until reductions in residential use exceed 25 percent.

Section 4C.10 GBRA-Exelon Project

[18] (Page 4C.10-16): After a review of the habitat requirements for each listed species, it is not

anticipated that this project will have any permanent adverse effect on any federally listed

threatened or endangered species, its habitat, or designated habitat, nor would it adversely

affect any state listed species. Given current litigation, we do not believe this to be a prudent

statement.

Response: Noted.

Section 4C.14 GBRA New Appropriation (Lower Basin)

[19] (Page 4C.14-2): The first paragraph notes that the appropriation is subject the full

application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas

 $\overline{\mathbb{HR}}$

Water Code. For clarification, and by agreement of the Guadalupe Basin Water Needs

Workgroup, Section A(2) of the Recommendations (October 12, 2009) should be added to this

section.

Response: Section A(2) of the Guadalupe Basin Water Needs Workgroup

Recommendations has been added to Section 4C.14.

[20] (Page 4C.14-14): After a review of the habitat requirements for each listed species, it is not

anticipated that this project will have any permanent adverse effect on any federally listed

threatened or endangered species, its habitat, or designated habitat, nor would it adversely

affect any state listed species. Given current litigation, we do not believe this to be a prudent

statement.

Response:

Noted.

Section 4C.15 GBRA Mid-Basin (Surface Water)

[21] (Page 4C.15-2): The first paragraph notes that the appropriation is subject to the full

application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas

Water Code. For clarification, and by agreement of the Guadalupe Basin Water Needs

Workgroup, Section A(2) of the Recommendations (October 12, 2009) should be added to this

section.

Response: Section A(2) of the Guadalupe Basin Water Needs Workgroup

Recommendations has been added to Section 4C.15.

Section 4C.16 GBRA Mid-Basin (Conjunctive Use)

[22] (Page 4C.15-2): The first paragraph notes that the appropriation is subject the full

application of environmental flow standards adopted pursuant to Section 11.1471 of the Texas

Water Code. For clarification, and by agreement of the Guadalupe Basin Water Needs

Workgroup, Section A(2) of the Recommendations (October 12, 2009) should be added to this

section.

Response: Section A(2) of the Guadalupe Basin Water Needs Workgroup

Recommendations has been added to Section 4C.16.

Section 7. Consistency with Long-Term Protection of the State's Water, Agricultural, and

Natural Resources

[23] We appreciate the commitment by the consultants and the planning group to this section. It

is well researched, organized, and informative.

Response:

Thank you.

[24] (Page 7-85): Emphasizing the beneficial use of existing surface water rights is cited as an

environmental benefit. Yet, Section 7.1.3.4.2 <u>Discussion of Estuary Inflow Assessment</u>

highlights how increasing the use of existing water rights in the regional water plan results in

increased low-inflow periods in San Antonio Bay. We do not see this as a benefit, only a trade-

off.

Response:

Noted.

Thank you for the consideration of these comments. Please feel free to contact us if you have

any questions.

10.4 Coordination with Other Regions

Members of the SCTRWPG (Region L) have maintained contact with neighboring

RWPGs for purposes of communicating content, status, and progress of planning work of the

respective RWPGs. Meetings were held involving representatives of Regions L, N, and P, to

discuss water management strategies of mutual interest, particularly the Lavaca Off-Channel

Reservoir and Palmetto Bend - Stage II Project. Likewise, meetings were held involving

representatives from Region L and Regions G and K, separately, to resolve potential conflicts

associated with the GBRA Simsboro Project and various recommended water management

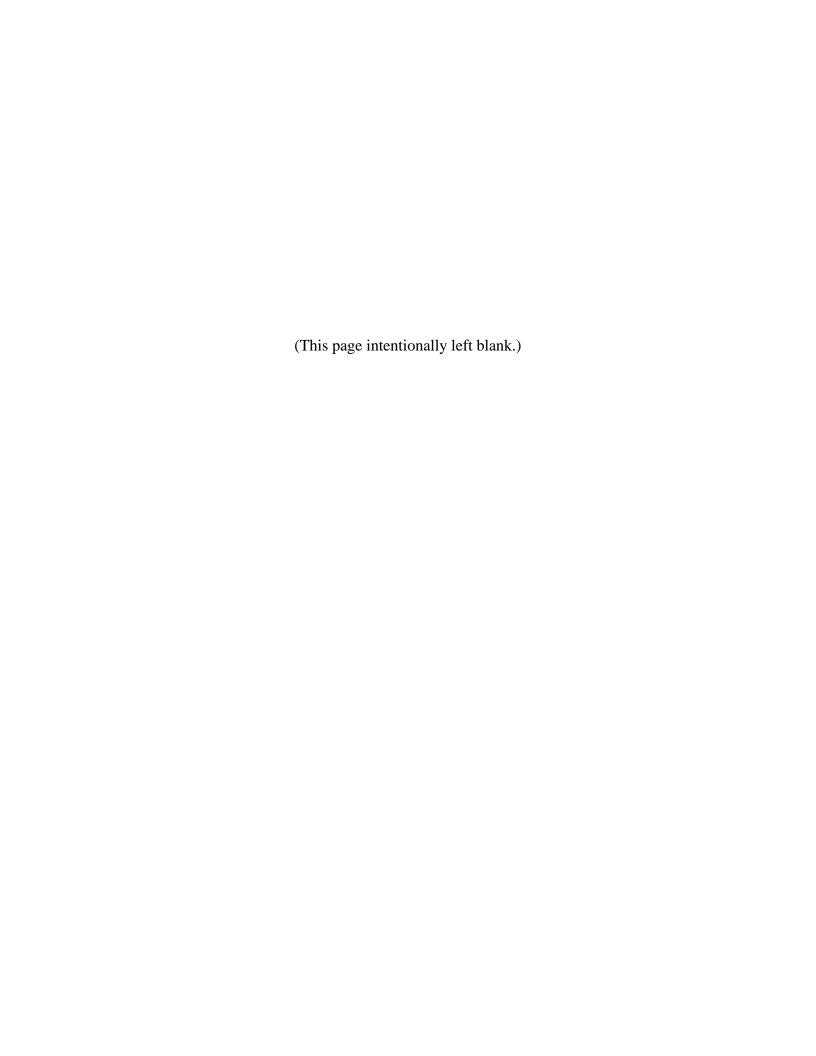
strategies in Regions G and K.

10.5 Final Plan Adoption

As explained in Section 10.2.3, the RWGP held public hearings in Victoria, San Antonio,

and San Marcos and also gathered written comments submitted by various individuals and

organizations as well as public agencies. The TWDB reviewed the IPP and provided comments


and questions. The TWDB comments, together with SCTRWPG responses are included in

Section 10.2.3.1. TPWD comments and SCTRWPG responses are presented in Section 10.2.3.2. A summary of public comments and SCTRWPG responses are presented in Section 10.2.3.3.

The SCTRWPG met on August 5, 2010 to consider adoption of the 2011 South Central Texas Regional Water Plan as revised pursuant to comments on the Initially Prepared Plan and the SCTRWPG adopted the Regional Water Plan by consensus.

Appendix A Summary of References

Appendix A List of References

Alan Plummer Associates, Inc. and Water Prospecting and Resource Consulting, LLC, "An Analysis of Water Loss, as Reported by Water Suppliers in Texas," Texas Water Development Board, Austin, Texas, January, 2007.

Barker, Rene A., and Ann F. Ardis, "Hydrogeologic Framework of the Edwards-Trinity Aquifer System," West Central Texas, USGS Professional Paper 1421-B, 1996.

Blair, W. Frank, "The Biotic Provinces of Texas," Texas Journal of Science 2(1):93-117, 1950.

Braun, E.L., "Deciduous Forests of Eastern North America," Hafner Publishing Co., Inc., New York, 1950.

Brune, Gunnar, "Springs of Texas," Volume I, Branch-Smith, Inc., Fort Worth, Texas, 1981.

Correll, D.S., and M.C. Johnston, "Manual of Vascular Plants of Texas," Texas Research Foundation, Renner, Texas, 1979.

Daubenmire, Rexford, "Plant Geography with Special Reference to North America," Academic Press, New York, 1978.

Edwards Aquifer Authority," Hydrologic Data Report for 2008," July 2009.

Edwards, Robert J., Glen Longley, Randy Moss, John Ward, Ray Mathews, and Bruce Stewart, "A Classification of Texas Aquatic Communities with Special Consideration toward the Conservation of Endangered and Threatened Taxa," Vol. 41, No. 3, The Texas Journal of Science, University of Texas at Austin, Austin, Texas, 1989.

Gould, F.W. The Grasses of Texas. Texas A&M University Press, College Station, Texas, 1975.

Griffith, G.E., Bryce, S.A., Omernik, J.M., Comstock, J.A., Rogers, A.C., Harrison, B., Hatch, S.L., and Bezanson, D., Ecoregions of Texas (color poster with map, descriptive text, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:2,3000,000), 2004.

HDR Engineering, Inc., "Edwards Aquifer Recharge Analyses," Trans-Texas Water Program, West Central Study Area, Phase II, San Antonio River Authority, et al., March 1998.

HDR Engineering, Inc., "Updates and Enhancements to Lower Nueces River Basin Bay and Estuary Model and Corpus Christi Water Supply Model," City of Corpus Christi, January 2006.

HDR Engineering, Inc., "Water Availability in the Guadalupe-San Antonio River Basin," Texas Natural Resource Conservation Commission (TNRCC), December 1999.

HDR Engineering, Inc., "Water Availability in the Nueces River Basin," TNRCC, October 1999.

List of References (continued)

HDR Engineering, Inc., et al., "Trans-Texas Water Program, West Central Study Area, Phase I Interim Report," Volume 2, San Antonio River Authority, et al., May 1994.

INTERA Incorporated, "Groundwater Availability Models for the Queen City and Sparta Aquifers," Texas Water Development Board, October 2004.

Johns, N.D., Hess, M., Kaderka, S., McCormick, L., & McMahon, J., "Bays in Peril, A Forecast for Freshwater Flows to Texas Estuaries," National Wildlife Federation, October 2004.

Johnston, M.C., "The Vascular Plants of Texas, A List Updating the Manual of the Vascular Plants of Texas," Austin, Texas, 1988.

McMahan, Roy G. Frye, Kirby L. Brown. The Vegetation Types of Texas Including Cropland. Texas Parks and Wildlife Department, Austin. Texas, 1984.

National Research Council of the National Academies, "The Science of Instream Flows, A Review of the Texas Instream Flow Program," The National Academies Press, 2005.

Omernik, James M., "Ecoregions of the Conterminous United States," Annals of the Association of American Geographers, 77(1) pp. 118-125, 1987.

Soil Conservation Service, "Soil Survey of Calhoun County, Texas," Soil Conservation Service, Temple, Texas, 1978.

South Central Texas Regional Water Planning Group, "2011 Regional Water Plan, Study 3, Enhanced Water Conservation, Drought Management, and Land Stewardship," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

South Central Texas Regional Water Planning Group, "2011 Regional Water Plan Environmental Studies, Study 4, Part A," Texas Water Development Board, San Antonio River Authority, HDR Engineering, Inc., April 2009.

Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, & Texas Water Development Board, "Texas Instream Flow Studies: Technical Overview," TWDB Report 369, May 2008.

Texas Commission on Environmental Quality, Texas Surface Water Quality Standards - Section 307.7, August 2000.

Texas Department of Water Resources, "Ground-water Availability in Texas," Austin, Texas, September 1979.

Texas Department of Water Resources, "Groundwater Availability of the Lower Cretaceous Formations in the Hill Country of South-Central Texas," Austin, Texas, 1983.

List of References (continued)

Texas Department of Water Resources, "Groundwater Resources and Model Applications for the Edwards (Balcones Fault Zone) Aquifer in the San Antonio Region," Report 239, October 1979.

Texas Department of Water Resources, "Land Use/Land Cover Maps of Texas," Austin, Texas. LP-62, 1977, Reprinted 1978.

Texas Parks and Wildlife Department and Texas Water Development Board, "Freshwater Inflow Recommendation for the Guadalupe Estuary of Texas," Coastal Studies Technical Report No. 98-1, Texas Parks and Wildlife Department and Texas Water Development Board, Austin, Texas, 1998.

Texas Water Development Board, "Continuing Water Resources Planning and Development for Texas," May 1977.

Texas Water Development Board, "Major and Historical Springs of Texas (Report #189)," March 1975.

Texas Water Development Board, "Model Refinement and Applications for the Edwards (Balcones Fault Zone) Aquifer in the San Antonio Region, Texas," Report 340, July 1992.

Texas Water Development Board, *State Water Plan: Water for Texas – 2007*, Austin, Texas, 2007.

Texas Water Development Board,31 Texas Administrative Code, Chapter 357, Regional Water Planning Guideline Rules, Austin, Texas, March 11, 1998.

Tharp, B.C., "The Vegetation of Texas," Texas Acad. Sci., Anson Jones Press, Houston, 1939.

Thomas, G.W, "Texas Plants – An Ecological Summary," In: F.W. Gould. 1975. Texas Plants – a Checklist and Ecological Summary. Texas Agricultural Experiment Station, MP-585/Rev., College Station, Texas, 1975.

- U.S. Bureau of Reclamation, "Palmetto Bend Project Texas Final Environmental Impact Statement," Bureau of Reclamation, U.S. Department of the Interior, 1974.
- U.S. Department of Agriculture, 2007 Census of Agriculture, Volume 1 Geographic Area Series, "Table 1. County Summary Highlights: 2007.
- U.S. Department of Commerce, 2002 Census of Manufacturing.
- U.S. Department of Commerce, 2002 Economic Census.

Water Conservation Implementation Task Force, Report to the 79th Legislature, Texas Water Development Board, Special Report, Austin, Texas, November 2004.

List of References (concluded)

Weaver, J.E. and F.E. Clements, "Plant Ecology," 2nd Ed. McGraw-Hill Book Co., New York, 1938.

Appendix B Reliability Information for Surface Water Rights

Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
Guadalupe	Caldwell	HYD	P4492_1	15,000	69.8	0	HYDRACO POWER INC	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P4569_2	240	71.9	0	ROBERT L BOOTHE	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	C3898_1	20	90.8	0	CITY OF LULING	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P3600_3	750	77.4	0	THE LULING FOUNDATION	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P4080 1	425	77.2	0	BENO CORPORATION	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P4502_1	600	72.1	0	JOHN SCOTT GREENE ET AL	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	C3899_1	1,180	90.8	0	MIGUEL CALZADA URQUIZA ET UX	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	C3890_1	50	90.8	0	GEORGE PARTNERSHIP LTD	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P4022_1	450	78.3	0	MARY ANN LANGFORD ET AL	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	P4043_1	150	78.3	0	TERRAND LTD ET AL	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	C3904_1	28	79.7	0	SHERRY CHAPPELL	ELM CRK
Guadalupe	Caldwell	IRR	P4518_1	120	79.8	0	JOHN H COX	PLUM CRK
Guadalupe	Caldwell	IRR	P4033_1	300	78.3	0	DICK BROWN	SAN MARCOS RIVER
Guadalupe	Caldwell	IRR	C3886_1	150	80.3	0	HAYS COUNTY REC ASSOC INC	BLANCO RIVER
Guadalupe	Caldwell	IRR	C3906_1	63	89.4	0	TEXAS PARKS & WILDLIFE DEPT	CLEAR FRK PLUM CRK
Guadalupe	Caldwell	IRR	C3906_2	12	92.3	0	TEXAS PARKS & WILDLIFE DEPT	CLEAR FRK PLUM CRK
Guadalupe	Caldwell	MUN	C3888_1	320	96.7	0	JOHN F BAUGH	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	P5092_2	150	70.7	0	WILLIAM JAMES WOOTEN ET AL	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	C3889_1	24	100.0	24	CANYON REGIONAL	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	C3891_1	500	100.0	500	TRI-COMMUNITY WSC	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	C3896_1	1,500	87.6	0	GUADALUPE-BLANCO RIVER AUTH	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	C3896_2	1,300	79.4	0	GUADALUPE-BLANCO RIVER AUTH	SAN MARCOS RIVER
Guadalupe	Caldwell	MUN	P5234_2	1,022	70.0	0		
Guadalupe	Caldwell	MUN	C3887_2	772	100.0	772	MAXWELL	SAN MARCOS RIVER
Guadalupe	Calhoun	IND	C5178_1	75,000	97.1	0	GBRA - Exelon	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5178_2	20,000	100.0	20,000	GBRA - DOW/UCC	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5174_3	1,870	100.0	1,870	GBRA - Future Industrial	GUADALUPE RIVER
Guadalupe	Calhoun	IND	P4586_1	272	82.1	0	DEL & GLORIA WILLIAMS, Crawfis	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5175_2	940	100.0	940	GBRA - Future Industrial	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5176_1	9,944	100.0	9,944	GBRA - Future Industrial	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_1	10,000	100.0	10,000	GBRA - DOW/UCC	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_1	2,000	100.0	2,000	GBRA - DOW/UCC	GUADALUPE RIVER
	Calhoun	IND		8,000	100.0	8,000	GBRA - DOW/UCC	
Guadalupe			C5177_3					GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_4	1,400	100.0	1,400	GBRA - Ineous	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_5	400	100.0	400	GBRA - Seadrift Coke	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_7	10,871	100.0	10,871	GBRA - CCR, Victoria, UB	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5177_8	8,632	100.0	8,632	GBRA - Future Industrial	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5173_1	1,900	100.0	1,900	GBRA - Ineous	GUADALUPE RIVER
Guadalupe	Calhoun	IND	C5173_2	600	100.0	600	GBRA - Seadrift Coke	GUADALUPE RIVER
Guadalupe	Calhoun	IRR	C5178_3	11,000	98.8	0	GBRA - Irrigation	GUADALUPE RIVER
Guadalupe	Calhoun	IRR	C3863_1	200	100.0	200	JESS YELL WOMACK II ET AL	GUADALUPE RIVER
Guadalupe	Calhoun	MUN	C5177_6a	4,480	100.0	4,480	GBRA - Port Lavaca	GUADALUPE RIVER
Guadalupe	Calhoun	MUN	C5177_6b	1,500	100.0	1,500	GBRA - CCRWSC	GUADALUPE RIVER
Guadalupe	Calhoun	MUN	C5177_6c	1,120	100.0	1,120	GBRA - POCMUD	GUADALUPE RIVER
Guadalupe	Calhoun	MUN	C5177_6d	2,844	100.0	2,844	GBRA - Future MUN	GUADALUPE RIVER
Guadalupe	Calhoun	MUN	C3863_2	3,000	100.0	3,000	GUADALUPE-BLANCO RIVER AUTH	GUADALUPE RIVER
Guadalupe	Calhoun	OTH	P5381_1	150	82.6	0	BRETT BRATCHER	GUADALUPE RIVER
Guadalupe	Comal	HYD	C3824_1	124,870	84.0	0	NEW BRAUNFELS UTILITIES	COMAL RIVER
Guadalupe	Comal	IRR	C3824_4	200	61.0	0	NEW BRAUNFELS UTILITIES	COMAL RIVER
Guadalupe	Comal	IRR	C3820_1	4	98.6	0	VETERANS OF FOREIGN WARS	GUADALUPE RIVER
Guadalupe	Comal	IRR	C2072_1	35	97.3	0	ELOY GARCIA JR ET UX	GUADALUPE RIVER
Guadalupe	Comal	IRR	C1954_1	15	45.9	0	LAWRENCE D KRAUSE	JENTSCH CRK
Guadalupe	Comal	IRR	C1954_2	5	64.8	0	LAWRENCE D KRAUSE	JENTSCH CRK
Guadalupe	Comal	IRR	C3819_1	14	98.0	0	PATRICK S MOLAK	GUADALUPE RIVER
Guadalupe	Comal	IRR	C3821_1	4	98.5	0	ROBERT & MARY RAE PRESTON	GUADALUPE RIVER
Guadalupe	Comal	IRR	C3821_2	1	98.5	0	ROBERT & MARY RAE PRESTON	GUADALUPE RIVER
Guadalupe	Comal	IRR	C1955_1	10	44.8	0	CHESTER & RICKIE KRAUSE	UNNAMED TRIB JENTSCH CRK
Guadalupe	Comal	IRR	C3826_1	100	29.7	0	CITY OF NEW BRAUNFELS	OLD CHL COMAL RIVER
Guadalupe	Comal	IRR	P4607_1	50	95.4	0	PURALLOY INC	GUADALUPE RIVER
Guadalupe	Comal	IRR	C2068_1	72	83.9	0	KWW Ranches LTD	Iter Creek
Guadalupe	Contai	IIAN	U2000_1	14	UJ.8	U	INTERVENIALICITES ETU	NOI OICCA

Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
Guadalupe	Comal	IRR	C3822 1	3	99.8	0	ROBERT KRUEGER ET AL	GUADALUPE RIVER
Guadalupe	Comal	IRR	C2070_1	98	17.8	0	FRANK A STANUSH	GUADALUPE RIVER
Guadalupe	Comal	IRR	C2070_2	22	17.8	0	FRANK A STANUSH	GUADALUPE RIVER
Guadalupe	Comal	IRR	C3817_1	79	96.5	0	CLARENCE B ANDERSON ET AL	GUADALUPE RIVER
Guadalupe	Comal	IRR	C3828 1	1	99.8	0	CAMP WARNECKE INC	COMAL RIVER
Guadalupe	Comal	IRR	C3828 2	2	99.5	0	LIBERTY PARTNERSHIP LTD	COMAL RIVER
Guadalupe	Comal	IRR	C2071_1	1	99.1	0	GUADALUPE RIVER RANCH & CATTLE	GUADALUPE RIVER
Guadalupe						0		COMAL RIVER
Guadalupe	Comal	MUN	C3830_2 C3824_5	5 2,240	72.1 99.9	1,295	NEW BRAUNFELS UTILITIES NEW BRAUNFELS UTILITIES	COMAL RIVER
Guadalupe	Comal	MUN	C3824_6	3,418	73.4	0	NEW BRAUNFELS UTILITIES	COMAL RIVER
		MUN	C3819 2	9	98.5	0	PATRICK S MOLAK	GUADALUPE RIVER
Guadalupe	Comal	MUN	C3815_2	3	19.3	0		GUADALUPE RIVER
Guadalupe						0	J D MURRELL TEYAS DARKS & WILDLIEF DEDT	
Guadalupe	Comal	MUN	P4106_1	25	95.7		TEXAS PARKS & WILDLIFE DEPT	GUADALUPE RIVER
Guadalupe	Comal	MUN	C2074_7	40,000	98.3	0	GUADALUPE-BLANCO RIVER AUTH	GUADALUPE RIVER
Guadalupe	Comal	MUN	P4491_1	120	90.7	0	COMAL CO FRESH WSD #1	REBECCA CRK
Guadalupe	Comal	MUN	C3823_2	1,289	72.4	0	NEW BRAUNFELS UTILITIES	COMAL RIVER
Guadalupe	Comal	REC	P4114_1	3,711	17.4	0	BAD SCHOLOESS INC	COMAL RIVER
Guadalupe	Comal	REC	P4114_2	1,289	22.7	0	BAD SCHOLOESS INC	COMAL RIVER
Guadalupe	Comal	REC	C3816_1	1,460	19.3	0	WHITEWATER SPORTS INC	GUADALUPE RIVER
Guadalupe	Dewitt	HYD	C3853_1	538,560	55.1	0	CUERO HYDROELECTRIC, INC.	GUADALUPE RIVER
Guadalupe	Dewitt	IRR	C3856_1	50	81.6	0	PATRICK B & MARY KARYN ELDER	GUADALUPE RIVER
Guadalupe	Dewitt	IRR	P4318_1	80	80.8	0	F T BUCHEL	GUADALUPE RIVER
Guadalupe	Dewitt	IRR	P5006_2	299	83.5	0	LORITA MAE FITZGERALD	GUADALUPE RIVER
Guadalupe	Dewitt	IRR	C3850_1	80	97.7	0	JOSEPHINE B MUSSELMAN ET AL	GUADALUPE RIVER
Guadalupe	Dewitt	IRR	C3855_1	26	97.7	0	MRS JOHN C LEY	GUADALUPE RIVER
Guadalupe	Dewitt	REC	P5294_1	15	79.2	0	CITY OF YORKTOWN	YORKTOWN CRK
Guadalupe	Dewitt	WRP	C3852_1	35	99.4	0	JOHN BRADEN JR ET AL	GUADALUPE RIVER
Guadalupe	Dewitt	WRP	C3854_1	32	98.4	0	J D BRAMLETTE JR	GUADALUPE RIVER
Guadalupe	Dewitt	WRP	C3851_1	182	99.4	0	JACK H BOOTHE	GUADALUPE RIVER
Guadalupe	Gonzales	HYD	C3846_1	796,363	49.8	0	CITY OF GONZALES	GUADALUPE RIVER
Guadalupe	Gonzales	HYD	C5172_1	585,599	54.7	0	GUADALUPE-BLANCO R A H-4	GUADALUPE RIVER
Guadalupe	Gonzales	HYD	C5172_2	574,832	55.4	0	GUADALUPE-BLANCO R A H-5	GUADALUPE RIVER
Guadalupe	Gonzales	IRR	P5037_1	230	79.4	0	RICHARD D BRAMLET	SAN MARCOS RIVER
Guadalupe	Gonzales	IRR	P4089_1	830	79.6	0	DR I V EPSTEIN	SAN MARCOS RIVER
Guadalupe	Gonzales	IRR	C3908_1	670	90.8	0	LARRY E & PHYLIS A BROWNE	SAN MARCOS RIVER
Guadalupe	Gonzales	IRR	P5038_1	66	79.4	0	ARTHUR DENNIS HUEBNER ET AL	SAN MARCOS RIVER
Guadalupe	Gonzales	IRR	P4075_1	225	68.0	0	DAVID S SHELTON	GUADALUPE RIVER
Guadalupe	Gonzales	IRR	P4539_1	8	86.4	0	T PAUL SIDES	UNNAMED TRIB COTTLE CRK
Guadalupe	Gonzales	IRR	C3847_1	250	97.7	0	DR JAMES W NIXON JR	GUADALUPE RIVER
Guadalupe	Gonzales	IRR	C3848_1	1,800	100.0	1,800	KING RANCH INC	GUADALUPE RIVER
Guadalupe	Gonzales	IRR	P3916_1	50	81.6	0	DON A LIGHTSEY ET UX	SAN MARCOS RIVER
Guadalupe	Gonzales	MUN	C3846_2	2,240	100.0	2,240	CITY OF GONZALES	GUADALUPE RIVER
Guadalupe	Guadalupe	HYD	C5488_1	663,892	47.7	0	GUADALUPE-BLANCO R A TP-1	GUADALUPE RIVER
Guadalupe	Guadalupe	HYD	C5488_2	659,995	47.8	0	GUADALUPE-BLANCO R A TP-3	GUADALUPE RIVER
Guadalupe	Guadalupe	HYD	C5488_3	655,323	48.0	0	GUADALUPE-BLANCO R A TP-4	GUADALUPE RIVER
Guadalupe	Guadalupe	HYD	C5488_4	624,781	50.0	0	GUADALUPE-BLANCO R A TP-5	GUADALUPE RIVER
Guadalupe	Guadalupe	HYD	CANSUBB U	26,938	0.0	0	GUADALUPE-BLANCO R A TP-1	GUADALUPE RIVER
Guadalupe	Guadalupe	IND	C3829_1	5,000	98.6	0	MISSION VALLEY TEXTILES, INC	GUADALUPE RIVER
Guadalupe	Guadalupe	IND	C3836_1	25	100.0	25	ACME BRICK COMPANY	GUADALUPE RIVER
Guadalupe	Guadalupe	IND	C3837_1	34	98.8	0	STRUCTURAL METALS INC	GUADALUPE RIVER
Guadalupe	Guadalupe	IND	P5240_1	31	72.4	0	H B SHANKLIN	SAN MARCOS RIVER
Guadalupe	Guadalupe	IRR	C3839_3	200	99.3	0	SEGUIN MUNICIPAL UTILITIES	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3835_1	19	83.8	0	OTTO VOIGT	YOUNGS CRK
Guadalupe	Guadalupe	IRR	P4597_1	320	71.6	0	JOHN T O'BANION JR ET AL	SAN MARCOS RIVER
Guadalupe	Guadalupe	IRR	C3841_1	5	44.3	0	LEO P CLOUD JR ET AL	GERONIMO CRK
Guadalupe	Guadalupe	IRR	P4110_1	240	77.4	0	LYNN STORM	SAN MARCOS RIVER
Guadalupe	Guadalupe	IRR	P3857_1	144	81.6	0	ROBERT M KIEHN	SAN MARCOS RIVER
Guadalupe	Guadalupe	IRR	P4373_1	300	72.2	0	CONTINENTAL WHOLESALE FLORISTS	SAN MARCOS RIVER
							CONTINENTAL WHOLESALE	
Guadalupe	Guadalupe	IRR	P4373_2	300	71.5	0	FLORISTS	SAN MARCOS RIVER

		1			1	1	ı	1
						Minimum		
	County of Diversion			Authorized Diversion	Volume Reliability	Annual Supply	_	_
Basin	Location(s)	Use	WR ID#	(acft/yr)	(%)	(acft)	Owner	Stream
Guadalupe	Guadalupe	IRR	P3973_1	73	23.8	0	DONALD J JOHNSON ET UX	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3842_1	158	100.0	158	SARA DARILEK RAINWATER	GERONIMO CRK
Guadalupe	Guadalupe	IRR	C3832_1	44	100.0	44	RAY E DITTMAR	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3900_2	500	86.4	0	JAMES D JAMISON	UNNAMED TRIB
Guadalupe	Guadalupe	IRR	C3843_1	27	100.0	27	LEONARD FLEMING	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	P5604_1	8	67.9	0	ALBERT GREEN, ET UX	SAN MARCOS RIVER
Guadalupe	Guadalupe	IRR	C3838_1	37	21.3	0	DONALD E NORED	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3844_1	608	100.0	608	KENNETH E CASTLE	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3834_1	71	100.0	71	CANYON REGIONAL WATER AUTH	GUADALUPE RIVER
Guadalupe	Guadalupe	IRR	C3840_1	34	87.6	0	ARNO NEUMANN	GERONIMO CRK
Guadalupe	Guadalupe	MUN	C3839_1	7,000	99.8	3,273	SEGUIN MUNICIPAL UTILITIES	GUADALUPE RIVER
Guadalupe	Guadalupe	MUN	C3895_2	580	85.4	0	STATE BANK & TRUST COMPANY	SAN MARCOS RIVER
Guadalupe	Guadalupe	MUN	C3833_1	56	100.0	56	GARY A DITTMAR	GUADALUPE RIVER
Guadalupe	Guadalupe	MUN	C3833_2	5	99.7	0	GARY A DITTMAR	GUADALUPE RIVER
Guadalupe	Guadalupe	MUN	C3834 2	19	100.0	19	CANYON REGIONAL WATER AUTH	GUADALUPE RIVER
						0	GUADALUPE SKI-PLEX HOME ASSOC	YORK CRK
Guadalupe	Guadalupe	REC	P5121_1	83	64.8			
Guadalupe	Hays	HYD	C3865_1	64,370	98.1	30,317	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	IND	C3869_1	10,000	100.0	10,000	TEXAS PARKS & WILDLIFE DEPT	SAN MARCOS RIVER
Guadalupe	Hays	IND	C3865_3	534	92.1	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	IND	C3866_1	60	80.1	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	IRR	P5545_1	8	72.6	0	FRANK T & PAMELA H ARNOSKY	UNNAMED TRIB
Guadalupe	Hays	IRR	C3884_1	20	80.4	0	BRUCE COLLIE ET AL	BLANCO RIVER
Guadalupe	Hays	IRR	C3884_2	90	83.4	0	BRUCE COLLIE ET AL	BLANCO RIVER
Guadalupe	Hays	IRR	C3868_2	70	100.0	70	J R THORNTON, ET AL	SAN MARCOS RIVER
Guadalupe	Hays	IRR	P4027_1	9	63.7	0	JESS WEBB ET UX	BLANCO RIVER
Guadalupe	Hays	IRR	P4027_2	82	63.7	0	THOMAS L HUSBANDS ET UX	BLANCO RIVER
Guadalupe	Hays	IRR	P5426_1	165	73.3	0	JOHN G CURRIE	LTL BLANCO RIVER
Guadalupe	Hays	IRR	C3881_1	40	100.0	40	LYON L BRINSMADE	BLANCO RIVER
Guadalupe	Hays	IRR	P5371_1	5	66.0	0	ROBERT BOURKE SIMPSON	UNNAMED TRIB CYPRESS CRK
Guadalupe	Hays	IRR	C3901_1	100	32.7	0	M D HEATLY SR	PECAN SPRINGS
Guadalupe	Hays	IRR	C3865_5	100	90.0	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	IRR	C3882_1	100	94.5	0	NEWTON B THOMPSON	PIN OAK CRK
Guadalupe	Hays	IRR	C3866_2	20	92.0	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	IRR	C3887 1	15	100.0	15	GREEN VALLEY FARMS INC	SAN MARCOS RIVER
Guadalupe	Hays	IRR	C3902_1	30	85.1	0	FRITZ OTTO ANTON	BUNTON BR
Guadalupe	Hays	IRR	C3866_3	20	59.7	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
		IRR	C3887 3	5	100.0	5	GREEN VALLEY FARMS INC	SAN MARCOS RIVER
Guadalupe	Hays							
Guadalupe	Hays	MUN	C3865_4	513	91.3	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Hays	OTH	C3865_2	700	92.2	0	SOUTHWEST TEXAS STATE UNIV	SAN MARCOS RIVER
Guadalupe	Kendall	IRR	C2059_1	39	17.8	0	ROBERT C REINARZ ET AL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2044_1	16	100.0	16	LION'S LAIR LLC	GUADALUPE RIVER
Guadalupe	Kendall	IRR	P5534_1	20	72.7	0	MARGOT O BURRELL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2061_1	16	17.8	0	LOUIS SCOTT FELDER ET UX	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2044_2	2	100.0	2	PATRICIA GALT STEVES	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2061_2	18	17.8	0	MARJORIE RANZAU INGENHUETT	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2061_3	37	17.8	0	MURRAY A WINN JR	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2049_1	5	17.8	0	KENNETH M & CYNTHIA RUSCH	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2034_1	2	95.9	0	CHESTER P HEINEN ET AL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2066_1	5	17.8	0	ROY C SMITH ESTATE	SABINAS CRK
Guadalupe	Kendall	IRR	P5528_1	98	72.7	0	GEORGE A SCHMIDT ET UX	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2045_1	8	100.0	8	MARSHALL STEVES	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2062_1	60	41.3	0	WILLIAM L PULS	WASP CRK
Guadalupe	Kendall	IRR	C2051_1	2	86.3	0	JOE B. KERCHEVILLE	JOSHUA CRK
Guadalupe	Kendall	IRR	C2051_1	260	84.7	0	JOE B. KERCHEVILLE	JOSHUA CRK
Guadalupe	Kendall	IRR	P5321_1	150	78.5	0	LARRY J LANGBEIN	E SISTER CRK
Guadalupe	Kendall	IRR	C2035_1	2	17.8	0	HARRY C MECKEL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2035_1	20	17.8	0	TY RAMPY ET AL	GUADALUPE RIVER
		IRR				0		CYPRESS CRK
Guadalupe	Kendall		C2041_1	25	93.1		THOMAS L BRUNDAGE ET AL	
Guadalupe	Kendall	IRR	C2056_1	20	51.7	0	MARK E. WATSON, JR., ET UX	WILLIE CRK
Guadalupe	Kendall	IRR	C2067_2	20	44.9	0	TY RAMPY ET AL	GUADALUPE RIVER

				1	,	1	1	I
	County of			Authorized	Volume	Minimum Annual		
Basin	Diversion Location(s)	Use	WR ID#	Diversion (acft/yr)	Reliability (%)	Supply (acft)	Owner	Stream
Guadalupe	Kendall	IRR	C2041_2	109	92.0	0	THOMAS L BRUNDAGE ET AL	CYPRESS CRK
Guadalupe	Kendall	IRR	P4598_1	80	17.0	0	JACOB C GASS	GUADALUPE RIVER
Guadalupe	Kendall	IRR	P5490_1	10	72.7	0	BILLY J. & KARAN R. BOLES	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2046_1	28	17.8	0	WILLIAM G & MILDRED D SPROWLS	GUADALUPE RIVER
Guadalupe	Kendall	IRR	P5474_1	10	72.7	0	ELTON RUST	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2063_1	44	96.3	0	FROST-LANCASTER PROPERTIES	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2052_1	232	96.3	0	ZARCO FOWARDING, INC	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2063_2	15	96.3	0	RONALD L BAETZ ET AL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C3870_1	3	99.9	0	PATRICIA RYAN	BLANCO RIVER
Guadalupe	Kendall	IRR	C3870_2	22	99.7	0	T R IMMEL ET UX	BLANCO RIVER
Guadalupe	Kendall	IRR	C2036_1	125	42.7	0	WILLIAM K ANDERSON ET UX	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2057_1	25	52.2	0	MARK E. WATSON, JR., ET UX	ASKEY CRK
Guadalupe	Kendall	IRR	P4590_1	50	17.0	0	GEORGE M WILLIAMS SR ET AL	GUADALUPE RIVER
Guadalupe	Kendall	IRR	P5107_1	518	88.4	0	WILLIAM K ANDERSON ET UX	UNNAMED TRIB GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2047_1	20	96.3	0	H C SEIDENSTICKER	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2064_1	4	97.5	0	EARL S DODERER ET UX	SABINAS CRK
Guadalupe	Kendall	IRR	C2064_2	8	95.8	0	SYBIL R JONES CO-TRUSTEE ET AL	SABINAS CRK
Guadalupe	Kendall	IRR	C2053_1	32	17.8	0	ERNO SPENRATH	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2069_1	30	97.9	0	DOUBLE U-SPRING BRANCH	SIMMONS CRK
Guadalupe	Kendall	IRR	C2058 1	40	17.8	0	OTTO KASTEN	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2043_1	17	17.6	0	EDGAR SEIDENSTICKER ET UX	CYPRESS CRK
Guadalupe	Kendall	IRR	P5501_1	5	16.8	0	BARRY T & KATHRYN B NALL	FLAT ROCK CRK
Guadalupe	Kendall	IRR	C2060 1	10	17.8	0	TEXAS BEVERAGE PACKERS INC	GUADALUPE RIVER
Guadalupe	Kendall	IRR	C2043 2	4	17.6	0	L J MANNERING ET UX	CYPRESS CRK
Guadalupe	Kendall	IRR	C2043_3	20	17.6	0	MARY LEE EDWARDS	CYPRESS CRK
Guadalupe	Kendall	IRR	C2048_1	100	20.0	0	RAYMOND JAMES ROSE	BLOCK CRK
Guadalupe	Kendall	IRR	C2065_1	10	17.7	0	G PHIL BERRYMAN ET UX	SABINAS CRK
Guadalupe	Kendall	IRR	C2065_2	10	17.7	0	GUY BODINE III ET UX	SABINAS CRK
Guadalupe	Kendall	IRR	C2054_1	80	17.8	0	EDMUND BEHR ESTATE	GUADALUPE RIVER
Guadalupe	Victoria	IND	P3895 1	9,676	93.2	0	KATE S O'CONNOR TRUST	GUADALUPE RIVER
Guadalupe	Victoria	IND	C3859_1	1,900	94.3	0	SOUTH TEXAS ELECTRIC COOP INC	GUADALUPE RIVER
Guadalupe	Victoria	IND	P5376_1	2	100.0	2	HELDENFELS BROTHERS INC	SPRING CRK
Guadalupe	Victoria	IND	C5486_1	12,500	100.0	12,500	CENTRAL POWER & LIGHT CO	COLETO CREEK
Guadalupe	Victoria	IND	C3861 1	60,000	99.5	28,217	E I DU PONT DE NEMOURS	GUADALUPE RIVER
Guadalupe	Victoria	IRR	C3862_1	263	100.0	263	BIG RACK LTD	GUADALUPE RIVER
Guadalupe	Victoria	IRR	C3862 2	137	100.0	137	E I DUPONT DE NEMOURS & CO	GUADALUPE RIVER
Guadalupe	Victoria	IRR	P5012_1	140	62.5	0	JOE D. HAWES	ELM BAYOU
Guadalupe	Victoria	IRR	P4441 1	200	83.5	0	S F RUSCHHAUPT III	GUADALUPE RIVER
Guadalupe	Victoria	IRR	C3858_1	1,000	97.7	0	FIRST VICTORIA NATL BANK, TRST	GUADALUPE RIVER
Guadalupe	Victoria	IRR	P4182 1	200	83.8	0	MAXINE ROBSON KYLE ET AL	GUADALUPE RIVER
Guadalupe	Victoria	IRR	P4062_1	90	83.8	0	RONALD A KURTZ ET UX	GUADALUPE RIVER
Guadalupe	Victoria	IRR	P4020_1	100	83.8	0	NELSON PANTEL	GUADALUPE RIVER
Guadalupe	Victoria	MUN	P5466_1	20,000	85.1	0	VICTORIA, CITY OF	GUADALUPE RIVER
Guadalupe	Victoria	MUN	C3860_2	260	78.8	0	W L LIPSCOMB ET AL	GUADALUPE RIVER
Guadalupe	Victoria	ОТН	P5489_1	750	88.4	0	JESS Y WOMACK II	CUSHMAN BAYOU
San Antonio	Bexar	IND	C2161_1	12,000	97.7	0	CITY OF SAN ANTONIO	Arroyo Seco/San Antonio R.
San Antonio	Bexar	IND	C2162_2	60,000	93.7	0	CITY OF SAN ANTONIO	Arroyo Seco/San Antonio R.
San Antonio	Bexar	IND	C2162_3	36,900	99.8	0	CITY OF SAN ANTONIO	Arroyo Seco/San Antonio R.
San Antonio	Bexar	IND	C2162_5	11	99.6	0	CITY OF SAN ANTONIO	Arroyo Seco/San Antonio R.
San Antonio	Bexar	IND	P5337 1	25	38.4	0	H B ZACHRY CO	SIX MILE CRK
San Antonio	Bexar	IND	P5469_2	1,500	67.8	0	HAUSMAN ROAD W S C	LEON CRK
San Antonio	Bexar	IRR	P4187 2	333	74.4	0	LOTTIE WALSH MAHLA ESTATE	LEON CRK
San Antonio	Bexar	IRR	P4187_3	85	9.7	0	LOTTIE WALSH MAHLA ESTATE	LEON CRK
San Antonio	Bexar	IRR	P4141_3	179	69.7	0	JOHN POWELL WALKER TRUSTEE	LEON CRK
San Antonio	Bexar	IRR	P4141_4	77	69.7	0	PEOPLES SAVINGS & LOAN ASSN	LEON CRK
San Antonio	Bexar	IRR	C2159_1	60	100.0	60	CITY OF SAN ANTONIO	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C2150_1	62	98.3	0	ANGELINA BORDANO	LEON CRK
San Antonio	Bexar	IRR	C1170_1	17	99.8	4	JAMES N EVANS SR ET AL	MARTINEZ
San Antonio	Bexar	IRR	P4135_1	200	71.6	0	BESSIE WALSH	MEDINA RIVER
San Antonio	Bexar	IRR	P4497_1	20	80.6	0		
oan / intonio	DONAI				. 55.0		1	1

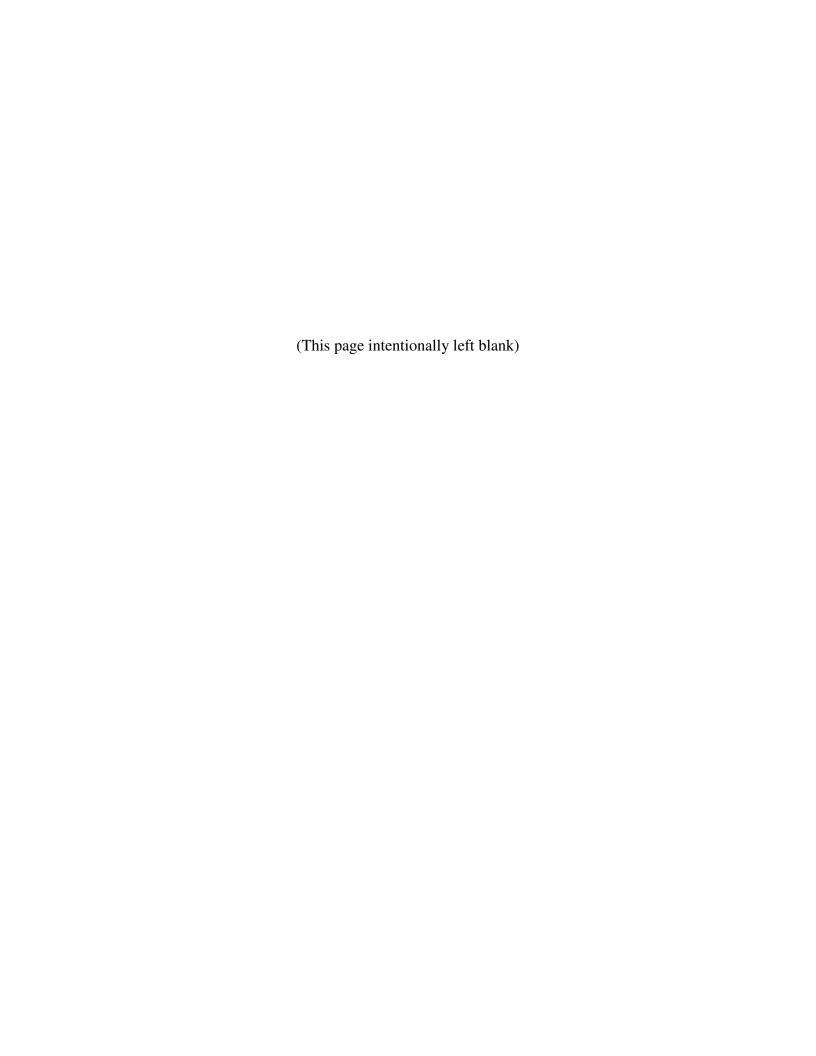
			7	1	1	1		
Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
San Antonio	Bexar	IRR	P4497_2	186	80.2	0		
San Antonio	Bexar	IRR	P4294_1	40	99.2	0	MARY HARPER TUDHOPE	PARITA CRK
San Antonio	Bexar	IRR	P5289_1	300	34.1	0	SOUTHEAST INVESTMENTS INC	ROSILLO CRK
San Antonio	Bexar	IRR	C2149_1	32	98.9	5	RANDALL S PREISSIG TRUSTEE	LEON CRK
San Antonio	Bexar	IRR	P3888_1	290	72.4	0	ALAN D BARIBEAU ET UX	MEDINA RIVER
San Antonio	Bexar	IRR	C2155_1	240	100.0	240	LES MENDELSOHN	MEDINA RIVER
San Antonio	Bexar	IRR	C1960_1	20	43.0	0	JOHN O SPICE	SALADO CRK
San Antonio	Bexar	IRR	P5503_1	220	57.3	0	O-SPORTS GOLF DEVELOPMENT II	PANTHER SPRING CRK
San Antonio	Bexar	IRR	C1944_1	16	47.2	0	SAN ANTONIO MISSIONS NATL PARK	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C1933_1	480	75.2	0	MISSION CEMETERY CO	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C2145_1	32	91.7	0	JERRY & MARIAM SPEARS	MEDINA RIVER
San Antonio	Bexar	IRR	C1965_1	300	49.5	0	LOMAS SANTA FE LTD	SALADO CRK
San Antonio	Bexar	IRR	P5577_1	420	69.4	0	ROBERT L G WATSON	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C2151_1	1,500	73.3	0	SOUTH LOOP LAND & CATTLE LC	SAUZ CRK
San Antonio	Bexar	IRR	P4136_1	124	71.6	0	SAWS	MEDINA RIVER
San Antonio	Bexar	IRR	C2151_2	401	17.0	0	SOUTH LOOP LAND & CATTLE LC	SAUZ CRK
San Antonio	Bexar	IRR	P3476_1	100	75.0	0	SAN ANTONIO RANCH LTD	UNNAMED OF LOS REYES CRK
San Antonio	Bexar	IRR	P4498_1	83	79.8	0	VIRGINIA JAKSIK	MARTINEZ CRK
San Antonio	Bexar	IRR	P4105_1	150	88.9	0	CITY OF LIVE OAK	SALITRILLO CRK
San Antonio	Bexar	IRR	C2156 1	294	100.0	294	CITY OF SAN ANTONIO	MEDINA RIVER
San Antonio	Bexar	IRR	C2141_1	75	81.0	0	BIPPERT FARMS	E BR BIG SOUS CRK
San Antonio	Bexar	IRR	C2146_1	215	100.0	215	BURRELL DAY	MEDINA RIVER
San Antonio	Bexar	IRR	C2152 1	409	81.9	0	CAROLYN VANCE COOK	MITCHELL LAKE
San Antonio	Bexar	IRR	P4137 1	34	72.4	0	SAWS	MEDINA RIVER
San Antonio	Bexar	IRR	P4499 1	54	79.8	0	JOSEPH M STANUSH ET AL	MARTINEZ CRK
San Antonio	Bexar	IRR	P5265 1	35	76.9	0	MARY JAKSIK ZIGMOND	MARTINEZ CRK
San Antonio	Bexar	IRR	C2142_1	197	89.9	0	ANTONIO MARIO FERNANDEZ	MEDINA RIVER
San Antonio	Bexar	IRR	C2157_1	50	100.0	50	LOUIS PAWELEK	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C1962_1	10	49.8	0	JULIA H. KUSENER JACQUET ET AL	SALADO CRK
San Antonio	Bexar	IRR	C2142 2	3	87.8	0	BEXAR, COUNTY OF	MEDINA RIVER
San Antonio	Bexar	IRR	C2147_1	28	94.8	0	JOSE LUIS AMADOR	ELM CRK
San Antonio	Bexar	IRR	P4138 1	126	71.6	0	JOHN H SMALL	MEDINA RIVER
San Antonio	Bexar	IRR	C3091_4	498	64.9	0	RICHARD DALE LEDOUX ET AL	COMANCHE CRK
San Antonio	Bexar	IRR	C3184 2	150	70.2	0	JOHN E MINNE ET AL	SPRING CRK
San Antonio	Bexar	IRR	P4138 2	23	71.6	0	SAN ANTONIO WATER SYSTEM	MEDINA RIVER
San Antonio	Bexar	IRR	P5266_1	45	59.7	0	RANDALL K HOOVER ET UX	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C1942_1	886	91.9	0	ESPADA DITCH COMPANY	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C1146 1	26	99.1	0	CIBOLO CREEK MUNICIPAL AUTH	CIBOLO CRK
San Antonio	Bexar	IRR	C1931_1	1,440	87.8	0	SAN JUAN DITCH WSC	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C2158_1	24	100.0	24	JOE S GARCIA JR ET UX	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	C1146_2	62	96.6	0	DOUG WISE	CIBOLO CRK
San Antonio	Bexar	IRR	C1146_3	5	92.1	0	JOHN E NEWTON ET AL	CIBOLO CRK
San Antonio	Bexar	IRR	C1146_4	8	91.4	0	JOHN K KOHLHAAS	CIBOLO CRK
San Antonio	Bexar	IRR	P4134 1	200	70.9	0	ANITA T WALSH ESTATE	MEDINA RIVER
San Antonio	Bexar	IRR	P4187_1	333	70.6	0	LOTTIE WALSH MAHLA ESTATE	LEON CRK
San Antonio	Bexar	IRR	P4496_1	30	80.6	0	WILLIAM WALLS JR	MARTINEZ CRK
San Antonio	Bexar	IRR	C2148_1	8	90.4	0	DONALD G RAMBIE	ELM CRK
San Antonio	Bexar	IRR	P5262_1	250	40.5	0	ANTHONY J GRANIERI	E CHANNEL
San Antonio	Bexar	IRR	C2154_2	200	52.0	0	ARNOLD ALBERT	MITCHELL LAKE
San Antonio	Bexar	IRR	P4139_1	200	71.1	0	BESSIE WALSH	LEON CRK
San Antonio	Bexar	IRR	C2160_1	116	100.0	116	BEN B MORRIS ESTATE	SAN ANTONIO RIVER
San Antonio	Bexar	IRR	P4141_1	20	70.1	0	GULF LAND & INVESTMENT CO INC	LEON CRK
San Antonio	Bexar	IRR	P4141_2	23	69.9	0	H H GIRDLEY TRUSTEE	LEON CRK
San Antonio	Bexar	MIN	P4025_1	431	71.7	0	CAPITOL AGGREGATES INC	MEDINA RIVER
San Antonio	Bexar	MIN	P4025_2	769	70.8	0	CAPITOL AGGREGATES INC	MEDINA RIVER
San Antonio	Bexar	MIN	P4025_3	3,304	51.3	0	CAPITOL AGGREGATES INC	MEDINA RIVER
San Antonio		MUN	C4768 1			89	BEXAR METROPOLITAN WATER DIST	MEDIO CRK
San Antonio San Antonio	Bexar Bexar	MUN	P5517_1	7,500	100.0 63.2	0	LEON CREEK WSC	LEON CRK
							BEXAR METROPOLITAN WATER	
San Antonio	Bexar	MUN	C4768_2	417	100.0	417	DIST	MEDIO CRK
San Antonio	Bexar	MUN	C4768_3	4,494	99.4	3,217	BEXAR METROPOLITAN WATER	Medio Cr. & Medina R.

County of Operations			1	1		1	n		1
Dec	Basin	Diversion	Use	WR ID#	Diversion	Reliability	Annual Supply		Stream
Beauton Beau									
Sear Amenion	San Antonio	Bexar	MUN	P5549_1	2,250	52.0	0	DIST	POLECAT CRK
Sept. Anthonics	San Antonio	Bexar	MUN	C2144 1	215	97.8	74		MEDIO CRK
Bear Mark Mark Child 196 71.5 0 0 0 0 0 0 0 0 0								BEXAR METROPOLITAN WATER	
See America Security MANIL CELLO 1950 77.5 0 0 METROPOLITIN RECORDES INC. MEDINA ROPE MANIL 1959 1 150 156.4 0 0 0 0 0 0 0 0 0								BEXAR METROPOLITAN WATER	
Sept Amento Description Policy 100 Policy									
Sept Annahors								VERSTRAETEN BROTHERS FARMS	
Bear MURIN P4156 2 276 7.0 0 0 0 0 0 0 0 0 0	San Antonio	Bexar	MUN	P5598_1	120	74.0	0		LONG HOLLOW CRK
Bear MANN PS211 100 574 0 100 MORE STAND GROWERS CO METINA RIPER 102 102 102 103	San Antonio	Bexar	MUN	C1959_1	150	95.4	0	DIST	SAN ANTONIO RIVER
Bear MUN Post 2 2,000 50.5 0 LOUISTAR GROWERS CO. MEDINA NURB	San Antonio	Bexar	MUN	P4136_2	276	72.0	0	BMWD	MEDINA RIVER
Sear Antenion		Bexar							
Separation									
Sea Antonio Baser MAN	San Antonio	Bexar	MUN	C2162_4	100	99.6	0		Arroyo Seco/San Antonio R.
San Addresion Bezert MAN C1998 1 461 97.6 0 DIST SAN ANTONO RIVER	San Antonio	Bexar	MUN	C2130_6	19,974	92.0	0		MEDINA RIVER
San Arcento Beart MRDN P4198 3 152 71.9 0 MMYD MEDNA RIVER	San Antonio	Bexar	MUN	C1966_1	481	97.6	0		SAN ANTONIO RIVER
Sean Antonico Becar	San Antonio	Bexar	MUN	P4137_2	566	71.9	0	BMWD	MEDINA RIVER
Sean Antonico Beauer REC	San Antonio	Bexar	MUN	P4138_3	152	71.9	0	BMWD	MEDINA RIVER
San Antonio Beaut NEC C219 3 250 54.5 0 THE BLUE WING CLUB SAN ANTONIO RIVER	San Antonio	Bexar	REC	C2019_1	241	100.0	241	THE BLUE WING CLUB	SAN ANTONIO RIVER
San Antonio Seuer WRP P5086, 1 770 46.9 0 BILLY T MITCHELL MEDNA RIVER	San Antonio	Bexar	REC	C2019_2	509	99.8	75	THE BLUE WING CLUB	SAN ANTONIO RIVER
San Antonion Goliad IRR C2196 1 336 100.0 236 COLETO CATLE COMPANY SAN ANTONIO RIVER	San Antonio	Bexar	REC	C2019_3	250	54.5	0	THE BLUE WING CLUB	SAN ANTONIO RIVER
Sen Antonio Goliad IRR P9079 1 114 92.4 0 JOHN C. & SHERRY BROOKE SAN ANTONIO RIVER	San Antonio	Bexar	WRP	P5596_1	770	46.9	0	BILLY T MITCHELL	MEDINA RIVER
San Antonio Goliad IRR C2197, 1 66 94.0 0 JAMES M PETTUS II SAN ANTONIO RIVER San Antonio Goliad IRR C219, 1 2244 94.2 0 JAMES M PETTUS ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P9173, 1 300 75.2 0 PATRICA PITTANA ILOHT SAN ANTONIO RIVER San Antonio Goliad IRR C2198, 2 333 100.0 333 SAM HOUSTON CLINTON SAN ANTONIO RIVER San Antonio Goliad IRR C2198, 2 333 100.0 1.020 JULIA GANTI REVITON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR C2191, 1 1.020 100.0 1.020 JULIA GANTI REVITON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR C2193, 1 325 100.0 325 SAM HOUSTON CLINTON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P8117, 1 950 94.6 0 JUNE PETTUS SAN ANTONIO RIVER San Antonio Goliad IRR P8117, 1 950 94.6 0 JUNE PETTUS SAN ANTONIO RIVER San Antonio Goliad IRR P820, 1 90 92.4 0 CLARROE F SOLENDELE ETUX SAN ANTONIO RIVER San Antonio Goliad IRR P820, 1 410 100.0 410 JOE F FRENCH SAN ANTONIO RIVER San Antonio Goliad IRR P820, 1 80 90.1 0 GUVE LRIDEVE FTAL SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 80 90.1 0 GUVE LRIDEVE FTAL SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 80 90.1 0 GUVE LRIDEVE FTAL SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 200 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 200 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 200 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 200 92.7 0 VINCENT LABUS JR SAN ANTONIO RIVER San Antonio Kames IRR P820, 1 200 92.7 0 VINCENT LABUS JR SAN ANTONIO RIVER SAN ANT	San Antonio	Goliad	IRR	C2196_1	336	100.0	336	COLETO CATTLE COMPANY	SAN ANTONIO RIVER
San Antonio Goliad IRR C2183.1 284 94.2 0 JAMES M PETTUS ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P5478.1 300 775.2 0 PATRICIA PHTMAN LIGHT SAN ANTONIO RIVER San Antonio Goliad IRR C2198.2 333 100.0 333 SAM HOUSTON CLINTON SAN ANTONIO RIVER San Antonio Goliad IRR C2194.1 1,020 100.0 1,020 JULIA GANTT NEWTON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR C2199.1 2955 100.0 335 SAM HOUSTON CLINTON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P4117.1 950 94.6 0 JULIA GANTT NEWTON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P4117.1 950 94.6 0 JULIA PETTUS SAN ANTONIO RIVER San Antonio Goliad IRR P5133.1 100 99.7 1 EDWIN JACOBSON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P5220.1 90 92.4 0 CLARENCE F SCHENDEL ET UX SAN ANTONIO RIVER San Antonio Goliad IRR P5220.1 410 100.0 410 JOE F FRENCH SAN ANTONIO RIVER San Antonio Karines IRR P5383.1 80 90.1 0 QUIVE LRIDLEY ET AL SAN ANTONIO RIVER San Antonio Karines IRR P3803.2 90 90.7 0 QLIVE LRIDLEY ET AL SAN ANTONIO RIVER San Antonio Karines IRR P3803.2 90 90.7 0 QLIVE LRIDLEY ET AL SAN ANTONIO RIVER San Antonio Karines IRR P3803.1 80 90.1 40.9 90.7 0 QLIVE LRIDLEY ET AL SAN ANTONIO RIVER San Antonio Karines IRR P3803.1 200 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karines IRR P3803.1 200 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karines IRR P3803.1 200 90.7 0 Q.7 0 Q.7	San Antonio	Goliad	IRR	P5079_1	114	92.4	0	JOHN C & SHERRY BROOKE	SAN ANTONIO RIVER
Sen Antonio Goliad IRR	San Antonio	Goliad	IRR	C2197_1	86	94.0	0	JAMES M PETTUS II	SAN ANTONIO RIVER
San Antonio Goliad IRR C2198_2 333 100.0 333 SAM HOUSTON CLINTON SAN ANTONIO RIVER	San Antonio	Goliad	IRR	C2193_1	284	94.2	0	JAMES M PETTUS ET AL	SAN ANTONIO RIVER
San Antonio Gollad IRR C2194,1 1,020 100.0 1,020 JULIA GANTT NEWTON ET AL SAN ANTONIO RIVER	San Antonio	Goliad	IRR	P5478_1	300	75.2	0	PATRICIA PITTMAN LIGHT	SAN ANTONIO RIVER
San Antonio Goliad IRR C2199 1 325 100.0 325 SAM HOUSTON CLINTON ET AL SAN ANTONIO RIVER									
San Antonio Goliad IRR									
San Antonio Goliad IRR P5313 1 100 99.7 1 EDWIN JACOBSON ET AL SAN ANTONIO RIVER San Antonio Goliad IRR P5220 1 90 92.4 0 CLARENCE F SCHENDELET UX SAN ANTONIO RIVER San Antonio Goliad WRP C2195 1 410 100.0 410 JOE F FRENCH SAN ANTONIO RIVER San Antonio Karnes IRR P3803 1 80 99.1 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P3803 2 80 90.7 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P3803 2 80 90.7 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5367 1 300 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karnes IRR P5367 1 300 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karnes IRR P5368 1 232 75.0 0 FILVATIA BUSUR SAN ANTONIO RIVER San Antonio Karnes IRR P5368 1 232 75.0 0 FILVATIA BUSUR SAN ANTONIO RIVER San Antonio Karnes IRR C2192 1 140 100.0 140 HALLIS DAVENPORT REVO MAN TR SAN ANTONIO RIVER San Antonio Karnes IRR P3767 1 20 92.7 0 FELLX MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4512 1 160 92.9 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4512 1 160 92.9 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4582 1 50 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4583 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4588 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4588 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4588 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4588 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4588 1 150 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Anto									
San Antonio Goliad IRR P5220 1 90 92.4 0 CLARENCE F SCHENDEL ET UX SAN ANTONIO RIVER San Antonio Goliad WRP C2195.1 410 100.0 410 JOE F FRENCH SAN ANTONIO RIVER San Antonio Karnes IRR P3803.1 80 90.1 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P3803.2 80 90.7 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5367.1 300 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karnes IRR P5367.1 300 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER San Antonio Karnes IRR C2186.1 70 92.7 0 VINCENT LABUS IR SAN ANTONIO RIVER San Antonio Karnes IRR C2186.1 70 92.7 0 FLAVIAN B MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P3808.1 232 75.0 0 FLAVIAN B MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P3767.1 20 92.7 0 FELIX MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P3767.1 20 92.7 0 FELIX MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4512.1 160 92.9 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4582.1 160 92.9 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P3852.2 25 70.9 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4581.1 50 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P4583.1 150 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P4588.1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4588.1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4588.1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P459.1 150 89.6 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5002.1 150 89.6 0 ALICE P JENDRUSCH ET AL SAN ANT									
San Antonio Goliad WRP C2195_1 410 100.0 410 JOE F FRENCH SAN ANTONIO RIVER									
San Antonio Karnes IRR P3803 1 80 90.1 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER									
San Antonio Karnes IRR P3803 2 80 90.7 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER				_					
San Antonio Kames IRR P5367 1 300 74.8 0 SUSIE LEE YANTA SAN ANTONIO RIVER									
San Antonio Kames IRR C2186_1 70 92.7 0 VINCENT LABUS JR SAN ANTONIO RIVER									
San Antonio Karnes IRR P3808_1 232 75.0 0 FLAVIAN B MOCZYGEMBA SAN ANTONIO RIVER									
San Antonio Kames IRR C2192_1 140 100.0 140 HALLIS DAVENPORT REVC MAN TR SAN ANTONIO RIVER									
San Antonio Kames IRR P3767_1 20 92.7 0 FELIX MOCZYGEMBA SAN ANTONIO RIVER San Antonio Kames IRR P4512_1 160 92.9 0 OLIVE L RIDLEY ET AL SAN ANTONIO RIVER San Antonio Kames IRR P3852_1 50 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Kames IRR P3852_2 25 70.9 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Kames IRR P3407_1 50 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Kames IRR P4504_3 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Kames IRR P4581_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Kames IRR P4581_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
San Antonio Karnes IRR P4512_1 160 92.9 0 OLIVE LRIDLEY ET AL SAN ANTONIO RIVER	Carryantorno	ramoo				.,,,,,			
San Antonio Kames IRR P3852_1 50 90.0 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Kames IRR P3852_2 25 70.9 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Kames IRR P4407_1 50 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Kames IRR P5043_1 150 92.4 0 MELANIE A JACOBS ET AL SAN ANTONIO RIVER San Antonio Kames IRR P4538_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Kames IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Kames IRR P5588_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Kames IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San									
San Antonio Karnes IRR P3852 2 25 70.9 0 THOMAS A KORZEKWA SAN ANTONIO RIVER San Antonio Karnes IRR P4407_1 50 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5043_1 150 92.4 0 MELANIE A JACOBS ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4538_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Karnes IRR P5368_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS JMOY SAN ANTONIO RIVER Sa									
San Antonio Karnes IRR P4407_1 50 90.0 0 TOMMY NAJVAR ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5043_1 150 92.4 0 MELANIE A JACOBS ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4538_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Karnes IRR P4561_1 525 89.7 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P508_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P509_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P529_1 74 89.9 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER S									
San Antonio Karnes IRR P5043_1 150 92.4 0 MELANIE A JACOBS ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4538_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Karnes IRR P5388_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER									
San Antonio Karnes IRR P4538_1 150 90.0 0 ALICE P JENDRUSCH ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Karnes IRR P5368_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER <				_					
San Antonio Karnes IRR P4561_1 525 89.7 0 RIO GRANDE RESOURCES CORP CIBOLO CRK San Antonio Karnes IRR P5368_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karne									
San Antonio Karnes IRR P5368_1 300 74.8 0 ARTHUR RAY YANTA ET UX SAN ANTONIO RIVER San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Kar									
San Antonio Karnes IRR P5002_1 150 89.6 0 WM A JEFFERS JR & ANN JACKSON SAN ANTONIO RIVER San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Kar				_					
San Antonio Karnes IRR P5296_1 74 89.9 0 DENNIS J MOY SAN ANTONIO RIVER San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes <									
San Antonio Karnes IRR P5044_1 150 89.6 0 CHARLES WAYNE HUBBARD ET AL SAN ANTONIO RIVER San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes							i e		
San Antonio Karnes IRR C2183_2 100 100.0 100 B. Pawelek/Yanta San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P533_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER									
San Antonio Karnes IRR P4503_1 55 75.2 0 HENRY D STRINGER JR SAN ANTONIO RIVER San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER									
San Antonio Karnes IRR C2188_1 40 92.7 0 ALFRED MOCZYGEMBA SAN ANTONIO RIVER San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER									SAN ANTONIO RIVER
San Antonio Karnes IRR P4002_1 80 80.5 0 CASPER F MOCZYGEMBA JR ET AL CIBOLO CRK San Antonio Karnes IRR P4490_1 90 74.9 0 DANIEL R ANDERSON ET AL SAN ANTONIO RIVER San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER									
San Antonio Karnes IRR P5532_1 3 71.2 0 FELIX BRONDER SAN ANTONIO RIVER San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER	San Antonio	Karnes	IRR	P4002_1	80	80.5	0	CASPER F MOCZYGEMBA JR ET AL	CIBOLO CRK
San Antonio Karnes IRR P5062_1 100 89.6 0 ALFRED J RAHE SAN ANTONIO RIVER San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER	San Antonio	Karnes	IRR	P4490_1	90	74.9	0	DANIEL R ANDERSON ET AL	SAN ANTONIO RIVER
San Antonio Karnes IRR P5333_1 90 75.0 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER	San Antonio	Karnes	IRR	P5532_1	3	71.2	0	FELIX BRONDER	SAN ANTONIO RIVER
	San Antonio	Karnes	IRR	P5062_1	100	89.6	0	ALFRED J RAHE	SAN ANTONIO RIVER
San Antonio Karnes IRR P5333_2 300 74.8 0 HECTOR O HERRERA, ET UX SAN ANTONIO RIVER	San Antonio	Karnes	IRR	P5333_1	90	75.0	0	HECTOR O HERRERA, ET UX	SAN ANTONIO RIVER
	San Antonio	Karnes	IRR	P5333_2	300	74.8	0	HECTOR O HERRERA, ET UX	SAN ANTONIO RIVER

		П	1	1			1	I
Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
San Antonio	Karnes	IRR	C2184_1	120	82.8	0	BONNIE SKLOSS	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	C2184_2	80	74.9	0	BONNIE SKLOSS	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	C2190_1	100	100.0	100	FLORENCE S BAUMANN ET AL	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	C1167_1	5	100.0	5	FRANK B KRAWIETZ	CIBOLO CRK
San Antonio	Karnes	IRR	P5306 1	200	89.6	0		SAN ANTONIO RIVER
San Antonio		IRR	_			0	HERBERT JOHN EWALD JR ET AL	SAN ANTONIO RIVER
	Karnes		P5323_1	100	75.0		WILLIAM I DUBEL	
San Antonio	Karnes	IRR	P3431_1	60	92.7	0	ANDREW RIVES ET UX	CIBOLO CRK
San Antonio	Karnes	IRR	P5239_1	4	89.6	0	HOLY TRINITY CATHOLIC CHURCH	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	P4536_1	100	90.0	0	JAMES M & NANCY W BAILEY	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	P4536_2	200	89.6	0	JAMES M & NANCY W BAILEY	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	P5622_1	240	70.1	0	JAY E. BAKER ET AL FRANCIS MOY & MARY MOY	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	C2185_1	90	92.7	0	KOWALIK	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	P5455_1	3	75.0	0	DAVID C. "CHARLIE" ZUNKER	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	P3851_1	50	90.0	0	SAM M. KORZEKWA	SAN ANTONIO RIVER
San Antonio	Karnes	IRR	C1168_1	30	100.0	30	ALOYS PAWELEK	CIBOLO CRK
San Antonio	Karnes	WRP	C2189_1	350	100.0	350	CLEM R CANNON ET AL	SAN ANTONIO RIVER
San Antonio	Kendall	IRR	C1144_1	48	97.2	0	WILLIS JAY HARPOLE	FREDERICK CRK
San Antonio	Kendall	IRR	C1144 2	7	97.0	0	WILLIS JAY HARPOLE	ROBROY CRK
San Antonio	Kendall	IRR	C1142_1	4	94.2	0	JEB B MAEBIUS JR ET UX	CIBOLO CRK
San Antonio	Kendall	MUN	C1143_1	523	99.1	0	CITY OF BOERNE	CIBOLO CRK
San Antonio	Kendall	MUN	C1143_2	310	99.0	0	CITY OF BOERNE	CIBOLO CRK
San Antonio	Medina	IRR	C2133_1	18	76.6	0	HARLEY & DOROTHY TSCHIRHART	MEDINA RIVER
San Antonio	Medina	IRR	C2134_1	17	77.2	0	GLENNIS W STEIN	MEDINA RIVER
San Antonio	Medina	IRR	C2139_1	112	76.7	0	A L GILLIAM BEXAR-MEDINA-ATASCOSA COS	MEDINA RIVER
San Antonio	Medina	IRR	C2130_4	45,856	89.4	0	WCID	MEDINA RIVER
San Antonio	Medina	IRR	P4170_1	15	66.8	0	TWAIN J JAGGE ET UX	MEDINA RIVER
San Antonio	Medina	IRR	C2135_1	5	95.7	0	KITTIE NELSON FERGUSON	SAN GERONIMO CRK
San Antonio	Medina	IRR	P4159_1	50	66.8	0	MARIE I HABY ET AL	MEDINA RIVER
San Antonio	Medina	IRR	C2136_1	6	86.9	0	KITTIE NELSON FERGUSON	UNNAMED TRIB SAN GERONIMO CRK
San Antonio	Medina	IRR	P4149 1	20	66.9	0	GLENNIS W STEIN	MEDINA RIVER
San Antonio	Medina	IRR	P4140 1	185		0	KATHLEEN DAVENPORT CARSKADDEN	MEDINA RIVER
					66.9	0		
San Antonio	Medina	IRR	P4151_1	170	66.8		JAMES A OPPELT ET UX BEXAR-MEDINA-ATASCOSA COS	MEDINA RIVER
San Antonio	Medina	MUN	C2130_1	750	96.1	0	WCID BEXAR-MEDINA-ATASCOSA COS	MEDINA RIVER
San Antonio	Medina	MUN	C2130_2	170	96.1	0	WCID	MEDINA RIVER
San Antonio	Medina	RCG	P3220_1	9,996	8.0	0	EDWARDS UNDERGROUND WD	SAN GERONIMO
San Antonio	Wilson	IRR	C2181_1	64	100.0	64	FRED J LYSSY ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2181_2	157	74.8	0	FRED J LYSSY ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2181_3	159	74.8	0	FRED J LYSSY ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1158_1	30	94.0	0	VIVA LEA MILLS	CIBOLO CRK
San Antonio	Wilson	IRR	C1164_1	6	94.5	0	JANE LYSSY OPIELA ET AL	CIBOLO CRK
San Antonio	Wilson	IRR	P5320_1	200	65.6	0	SHELBY KOEHLER ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2165_1	50	92.7	0	ED WISEMAN MARITAL TRUST	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2165_1	70	65.6	0	ED WISEMAN MARITAL TRUST	SAN ANTONIO RIVER
San Antonio San Antonio	Wilson	IRR	C2165_2 C2171_1	63	100.0	63	R C CARROLL	SAN ANTONIO RIVER
San Antonio San Antonio	Wilson	IRR	C2171_1 C1154_1	69	100.0	69	JONAH H WILSON	CIBOLO CRK
San Antonio	Wilson	IRR	P5308_1	100	70.1	0	SAM JARZOMBEK	CIBOLO CRK
San Antonio	Wilson	IRR	C1160_1	140	94.0	0	MRS MAGGIE WEBER	CIBOLO CRK
San Antonio	Wilson	IRR	P5587_1	300	50.1	0	ALOIS D KOLLODZIEJ ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2176_1	105	100.0	105	POTH LAND & CATTLE CO	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5126_1	150	74.8	0	WILLIAM M PAVLISKA	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2176_2	145	67.2	0	POTH LAND & CATTLE CO	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2182_1	700	92.7	0	LEO V LYSSY ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P3994_1	1,056	74.7	0	BOENING ENTERPRISES	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2182_2	166	67.2	0	LEO V LYSSY ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1159_1	0	94.2	0	DEBORAH M IRWIN ET VIR	CIBOLO CRK
San Antonio	Wilson	IRR	C1148_1	11	100.0	11	ALLAN G LYNHAM ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	C1159_2	13	94.2	0	GAYLON T CLICK ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	C1165_1	4	100.0	4	EMERYK KELLER	CIBOLO CRK
San Antonio	Wilson	IRR	C1150_1	200	100.0	200	PAT HIGGINS ESTATE	CIBOLO CRK

Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
San Antonio	Wilson	IRR	C1159_3	16	94.2	0	GAYLON T CLICK ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	C1159_4	7	94.2	0	PATRICK NEIDORF	CIBOLO CRK
San Antonio	Wilson	IRR	C1171_1	80	100.0	80	ROSS OWEN SCULL	CIBOLO CRK
San Antonio	Wilson	IRR	C2166_1	105	98.6	0	NICK KOLENDA	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1159_5	3	94.2	0	WAYNE DODD ET AL TRUSTEES	CIBOLO CRK
San Antonio	Wilson	IRR	C1171_2	250	90.0	0	ROSS OWEN SCULL	CIBOLO CRK
San Antonio	Wilson	IRR	P4121_1	38	75.2	0	BENITO D. CABRIALES ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2166_2	95	67.0	0	NICK KOLENDA	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2172_1	18	100.0	18	CLYDE R MAHA ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1171_3	330	78.8	0	ROSS OWEN SCULL	CIBOLO CRK
San Antonio	Wilson	IRR	P5395_1	254	65.4	0	RENATO MARTINEZ ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5395_2	450	64.1	0	RENATO MARTINEZ ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5243_1	54	74.9	0	FRANK R BOLF	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5499_1	50	63.4	0	GARY ZOOK, ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5264_1	130	66.9	0	LILLIAN S WISEMAN TRUST ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1161_1	15	94.0	0	JOHN DRZYMALA	CIBOLO CRK
San Antonio	Wilson	IRR	C2177_1	81	100.0	81	FRANK & J A LABUS	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5171_1	200	74.8	0	MESCALERO PROPERTIES	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1149_1	62	100.0	62	RAY SMITH ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	C1166_1	25	94.5	0	GERVAS JASKINIA ESTATE	CIBOLO CRK
San Antonio	Wilson	IRR	C2167_1	17	100.0	17	TOMAS CAVAZOS	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4181_1	86	74.9	0	BERTRAND O BAETZ ESTATE ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4484_1	5	75.0	0	DELBERT J KELLER	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4181_2	120	74.9	0	BERTRAND O BAETZ ESTATE ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P3837_1	21	75.2	0	LAWRENCE R HALLIBURTON ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4484_2	200	90.0	0	DELBERT J KELLER	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5182_1	100	79.3	0	JAMES T WATSON	CIBOLO CRK
San Antonio	Wilson	IRR	P3837_2	29	75.2	0	W H HALLIBURTON, ESTATE OF	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4484_3	100	92.8	0	DELBERT J KELLER	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1156_1	35	100.0	35	WAYNE H STROUD ET AL	CIBOLO CRK
San Antonio San Antonio	Wilson	IRR IRR	C1162_1 C1162_2	2 78	92.7 76.9	0	ALVIN PRUSKI ALVIN PRUSKI	CIBOLO CRK CIBOLO CRK
San Antonio	Wilson	IRR	C2178_1	1	100.0	1	FELIX J JANEK JR ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178_1	44	100.0	44	CHARLES HONEYCUTT, ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178 2	5	100.0	5	FELIX J JANEK JR ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2163 2	256	74.8	0	CHARLES HONEYCUTT, ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178 3	15	75.0	0	FELIX J JANEK JR ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178_4	42	100.0	42	SIX J FARMS INC	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178 5	175	100.0	175	SIX J FARMS INC	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2178_6	485	74.4	0	SIX J FARMS INC	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5202_1	75	74.9	0	GEORGE R GAWLIK ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P4495_1	50	75.2	0	WILLIAM & IRENE C WALLS JR	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1152_1	35	98.6	0	BILL & MELVIN DEAGEN ET AL	CIBOLO CRK
San Antonio	Wilson	IRR	C2168_1	16	95.0	0	H W FINCK	UNNAMED TRIB SEGUIN BR
San Antonio	Wilson	IRR	C2174_1	14	100.0	14	WILLIE HOSEK ESTATE	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2180_1	18	100.0	18	DONALD A OCKER ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2180_2	110	100.0	110	DONALD A OCKER ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2180_3	497	74.4	0	DONALD A OCKER ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5194_1	210	74.8	0	JOE R HOLLAWAY JR ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5224_1	60	77.1	0	JOHNNY KOSUB & BETTY KOSUB	CIBOLO CRK
San Antonio	Wilson	IRR	P3861_1	200	75.0	0	GEO D POOL & RONALD R STINSON	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C1163_1	80	100.0	80	CYNTHIA A TITZMAN ET VIR	CIBOLO CRK
San Antonio	Wilson	IRR	P3897_1	716	46.4	0	ALFRED J NEWMAN, ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2179_1	47	100.0	47	A D D CORPORATION	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2164_1	23	100.0	23	JOHN WILLIAM HELTON JR ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2179_2	72	100.0	72	A D D CORPORATION	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2164_2	59	67.2	0	JOHN WILLIAM HELTON JR ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5611_1	175	63.3	0	ELIAS DUGI, ET UX	CIBOLO CREEK
San Antonio	Wilson	IRR	C2179_3	39	100.0	39	A D D CORPORATION	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2179_4	467	74.4	0	A D D CORPORATION	SAN ANTONIO RIVER

		ı					1	
Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
San Antonio	Wilson	IRR	P5218_1	360	77.4	0	WILLIAM P REDDICK ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	P5559_1	99	64.3	0	RALPH MCGREW ET UX	CIBOLO CRK
San Antonio	Wilson	IRR	C1153_1	100	92.7	0	WAYNE H STROUD ET AL	CIBOLO CRK
San Antonio	Wilson	IRR	P3887_1	50	75.2	0	PATTILLO FAMILY FARMS INC	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5307_1	300	66.9	0	JAMES R LEININGER	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2169_1	29	100.0	29	JIMMY E HOLT ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2169_2	18	100.0	18	RICHARD E ULLMANN ET UX	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	C2175_1	38	100.0	38	WELMA L R KIRCHOFF ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5633_1	130	93.6	0	LOUIS T. AND SONIA ROSENBERG	UNNAMED TRIB SAN ANTONIO
San Antonio	Wilson	IRR	C2175_2	60	63.9	0	WELMA L R KIRCHOFF ET AL	SAN ANTONIO RIVER
San Antonio	Wilson	IRR	P5633_2	8	0.0	0	LOUIS T. AND SONIA ROSENBERG	UNNAMED TRIB SAN ANTONIO
San Antonio	Wilson	MUN	C1155_1	42	100.0	42	SIESTA CATTLE COMPANY	CIBOLO CRK
San Antonio	Wilson	MUN	C1157_2	117	92.9	0	OSCAR SANDERS	CIBOLO CRK
San Antonio	Wilson	WRP	C2173_1	78	100.0	78	CECIL MARK RICHARDSON ET AL	SAN ANTONIO RIVER
Nueces	Atascosa	IRR	C3213_1	13	1.0	0	SAM COUNTISS	UNNAMED TRIB LIVE OAK CRK UNNAMED TRIB ATASCOSA
Nueces	Atascosa	IRR	C3216_1	20	14.1	0	ATASCOSA COWBOY RECREATION	RIVER
Nueces	Atascosa	IRR	C3217_1	27	14.3	0	WOODROW W MARSH	ATASCOSA RIVER
Nueces	Atascosa	IRR	C3218_1	7	14.3	0	JACK L MCGINNIS ET UX	ATASCOSA RIVER
Nueces	Atascosa	IRR	C3218_2	11	14.3	0	DOYLE LAWHON ET UX	ATASCOSA RIVER
Nueces	Atascosa	IRR	C3219_1	30	14.5	0	ERNEST KORUS	ATASCOSA RIVER
Nueces	Atascosa	IRR	C4772_1	2	98.4	0	MAGSONS N. V.	BONITA CRK
Nueces	Atascosa	MIN	P5511_1	120	2.4	0	SAN MIGUEL ELECTRIC COOP INC	UNNAMED TRIB LA PARITA CRK
Nueces	Dimmit	IRR	C3082_8	19,996	78.0	0	ZAVALA-DIMMIT CO WID 1	NUECES RIVER
Nueces	Dimmit	IRR	C3086_1	554	38.6	0	CHARLES W. WILSON, SR., ET AL	NUECES RIVER
Nueces	Dimmit	IRR	C3093_1	102	100.0	102	CHARLES H THALMAN	BERMUDA RES- SOLDIER SLOUGH
Nueces	Dimmit	IRR	C3094_1	300	100.0	300	ALBERT IVY	LIVE OAK CRK
Nueces	Dimmit	IRR	C3095_1	1,090	100.0	1,090	MARRS MCLEAN BOWMAN	NUECES RIVER
Nueces	Dimmit	IRR	C3095_2	201	100.0	201	MARRS MCLEAN BOWMAN	NUECES RIVER
Nueces	Dimmit	IRR	C3096_1	337	100.0	337	DONALD JACKSON ET UX	NUECES RIVER
Nueces	Dimmit	IRR	C3097_1	231	100.0	231	DALE L HASTEN	NUECES RIVER
Nueces	Dimmit	IRR	C3098_1	60	68.1	0	LUCILE C WHITECOTTON ET AL	SOLDIER SLOUGH
Nueces	Dimmit	IRR	C3099_1	34	35.8	0	CHARLES W & MARJORIE V WILSON	EL BARROSA CRK
Nueces	Dimmit	IRR	C3102_1	15	29.1	0	NEEDMORE RANCH INC	APPURCEON CRK
Nueces	Dimmit	IRR	C3103_1	400	89.1	0	R W BRIGGS, JR	BURRO CRK
Nueces	Dimmit	MIN	C3082_9	4	61.9	0	ZAVALA-DIMMIT CO WID 1	NUECES RIVER
Nueces	Dimmit	MIN	C3093_2	1	100.0	1	CHARLES H THALMAN	SOLDIER SLOUGH
Nueces	Frio	IRR	C3193_1	8	32.1	0	HOWARD F BENNETT	FRIO RIVER UNNAMED TRIB TODOS SANTOS
Nueces	Frio	IRR	C3199_1	50	17.9	0	JAMES BAKER III	CRK
Nueces	Frio	IRR	C3208_1	230	1.3	0	COX FEEDLOTS INC	UNNAMED TRIB CHACON CRK
Nueces	Frio	IRR	C3209_1	118	86.8	0	E F MORRIS	CHACON CRK
Nueces	Frio	IRR	C3210_1	20	31.4	0	FRANCIS MALDONADO	UNNAMED TRIB SAN MIGUEL CRK
Nueces	Frio	IRR	C3211_1	40	92.8	0	GLEN EARL BAKER	SAN MIGUEL CRK
Nueces	Frio	IRR	C3211_2	60	73.3	0	GLEN EARL BAKER	SAN MIGUEL CRK
Nueces	Frio	IRR	C3212_1	25	2.5	0	CHARLES CURTIS RAMSEY ET UX	BUCKHORN CRK
Nueces	Frio	IRR	P3884_1	80	0.6	0	CLAUDE D J SMITH	SAN MIGUEL CRK
Nueces	Frio	IRR	P3914_1	19	6.3	0	A E SCHLETZE FARMS	ELM CRK
Nueces	Frio	IRR	P3914_2	7	6.3	0	A R GALLOWAY ET UX	ELM CRK
Nueces	Frio	IRR	P4014_1	124	1.4	0	JOE H BERRY	LEONA RIVER
Nueces	Frio	IRR	P4041_1	25	0.3	0	FLOYD B NEUMAN	SAN MIGUEL CRK
Nueces Nueces	Frio Frio	IRR IRR	P4041_2 P4113_1	20 15	0.4 2.6	0	FLOYD B NEUMAN DR LESLIE R FRICKE	SAN MIGUEL CRK SAN MIGUEL CRK
Nueces	Karnes	IRR	C3201_1	649	35.8	0	JEFF E RUSK ET AL	FRIO RIVER
Nueces	La Salle	IRR	C3104_1	250	98.6	0	WAITZ SUPER MARKET, INC	NUECES RIVER
Nueces	La Salle	IRR	C3105_1	150	99.8	1	FRANKLIN JERRY MEEKS	NUECES RIVER
Nueces	La Salle	IRR	C3106_1	20	94.3	0	M C WHITWELL ET UX	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3106_2	20	93.2	0	M C WHITWELL ET UX	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3107_1	210	43.3	0	CARL CONWAY	NUECES RIVER
Nueces	La Salle	IRR IRR	C3108_1	298 10	31.5 48.2	0	C L LEHMAN ESTATE M C WHITWELL ET UX	NUECES RIVER NUECES RIVER
Nueces	La Salle	IKK	C3109_1	10	45.∠	U	IN C WHITWELL ET UA	INDECES RIVER


		ſ						[
Basin	County of Diversion Location(s)	Use	WR ID#	Authorized Diversion (acft/yr)	Volume Reliability (%)	Minimum Annual Supply (acft)	Owner	Stream
Nueces	La Salle	IRR	C3110_1	22	47.7	0		
Nueces	La Salle	IRR	C3111_1	30	95.3	0	EUGENE WHITE	NUECES RIVER
Nueces	La Salle	IRR	C3112_1	47	98.4	0	FREDNA K DOBIE	NUECES RIVER
Nueces	La Salle	IRR	C3114_1	199	98.3	0	RALPH P. GUTTMAN	NUECES RIVER
Nueces	La Salle	IRR	C3115_1	55	98.3	0	VALLEY FLEA MARKET INC	NUECES RIVER
Nueces	La Salle	IRR	C3116_1	33	98.3	0	BRENDA JOAN BOYD	NUECES RIVER
Nueces	La Salle	IRR	C3116 2	145	98.2	0	PRINCE WOOD ET AL	NUECES RIVER
Nueces	La Salle	IRR	C3117_1	270	97.5	0	ROBERT CARL HART ET UX	NUECES RIVER
Nueces	La Salle	IRR	C3118_1	50	100.0	50	GLENN T ROBERTS ET UX	NUECES RIVER
Nueces	La Salle	IRR	C3119_1	40	100.0	40	NORMA D GARCIA ET VIR	NUECES RIVER
Nueces	La Salle	IRR	C3120_1	200	100.0	200	JOE L. GILBERT	NUECES RIVER
Nueces	La Salle	IRR	C3121_1	5	100.0	5	RUDY & TERESA RODRIGUEZ SR	NUECES RIVER
Nueces	La Salle	IRR	C3122_1	30	100.0	30	SANTANA A MORIN ET AL	NUECES RIVER
Nueces	La Salle	IRR	C3123_1	70	100.0	70	LOUIS OSWALD LIND	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3123_2	130	100.0	67	LOUIS OSWALD LIND	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3124_1	5	99.9	0	RAUL DEL TORO ET UX	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3125_1	20	84.0	0	GEORGE & SHARON TRIGO	NUECES RIVER
Nueces	La Salle	IRR	C3126_1	100	82.8	0	SILLER BROTHERS	NUECES RIVER
Nueces	La Salle	IRR	C3126_2	260	62.2	0	SILLER BROTHERS	NUECES RIVER
Nueces	La Salle	IRR	C3127_1	180	91.3	0	LEE M & VALDA M GATES	NUECES RIVER
Nueces	La Salle	IRR	C3128_1	39	91.8	0	VALDA M GATES	NUECES RIVER
Nueces	La Salle	IRR	C3129 1	180	92.8	0	LOUISE G DAVIS	NUECES RIVER
Nueces	La Salle	IRR	C3130 1	126	91.2	0	BILLIE JEAN TAYLOR	NUECES RIVER
Nueces	La Salle	IRR	C3131_1	50	90.9	0	RONALD C FEUDO	NUECES RIVER
Nueces	La Salle	IRR	C3132 1	195	90.8	0	EL TRES EXPLORATION INC	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3133_1	54	95.8	0	H B RAMSEY	NUECES RIVER
Nueces	La Salle	IRR	C3133_2	296	95.1	0	RODNEY D JONES	NUECES RIVER
Nueces	La Salle	IRR	C3134_1	398	92.8	0	GEORGE C HIXON	NUECES RIVER
Nueces	La Salle	IRR	C3135_1	42	100.0	42	H.B. RAMSEY	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3135_2	38	91.7	0	H.B. RAMSEY	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3136_1	200	100.0	200	DOROTHY M. KINSEL	NUECES RIVER
Nueces	La Salle	IRR	C3137_1	84	91.5	0	T.G. RANKIN	NUECES RIVER
Nueces	La Salle	IRR	C3138_1	55	91.4	0	CHARLES D. JOHNSON	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3139_1	2,023	98.3	0	HOLLAND TEXAS DAM & IRR. CO.	UNNAMED TRIB NUECES RIVER
Nueces	La Salle	IRR	C3140_1	76	56.4	0	FRED HILLJE ESTATE	NUECES RIVER
Nueces	La Salle	IRR	C3203_1	106	33.1	0	DOUGLAS A MILLER, ET AL	UNNAMED SLOUGH FRIO RIVER
Nueces	Medina	IRR	C3189_1	40	7.7	0	RICHARD W SCHWEERS	HONDO CRK
Nueces	Medina	IRR	C3190 1	80	28.8	0	THOMAS J MOORE III	UNNAMED TRIB HONDO CRK
Nueces	Medina	IRR	C3191_1	20	15.3	0	L S MOLLERE, TRUSTEE	SECO CRK
Nueces	Medina	IRR	C3207_1	2,000	1.5	0	BEXAR-MEDINA-ATASCOSA WCID 1	CHACON CRK
Nueces	Medina	IRR	P4286_1	4	1.0	0	C H PIFER	CHACON CRK
Nueces	Medina	IRR	P4506_1	40	1.7	0	JAMES THOMAS BAGBY JR	HONDO CRK
Nueces	Medina	RCG	C3192_1	6,012	0.1	0	EDWARDS UNDERGROUND WATER DIST	PARKERS CRK
Nueces	Medina	RCG	P3745_1	12,172	4.7	0	EDWARDS UNDERGROUND W D	MIDDLE VERDE
Nueces	Medina	RCG	P3806_1	42,258	2.6	0	EDWARDS UNDERGROUND W D	SECO CRK
Nueces	Uvalde	IND	C3087 1	10	86.1	0	R L WHITE COMPANY	GATO CRK
Nueces	Uvalde	IRR	C3067_1	150	32.4	0	ADANA TEAGUE	NUECES RIVER
Nueces	Uvalde	IRR	C3065_1	720	100.0	720	F. KENNETH BAILEY JR.	NUECES RIVER
Nueces	Uvalde	IRR	C3065_1	10	31.4	0	GEORGE H MOFF	NUECES RIVER
Nueces	Uvalde	IRR	C3066_1	1,461	90.2	0	EVERETT L CLARK	NUECES RIVER
Nueces	Uvalde	IRR	C3068_1	310	87.7	0	WILLARD R WALLACE ET AL	NUECES RIVER
Nueces	Uvalde	IRR	C3069 1	134	45.2	0	ARIZONA T CRUMP	NUECES RIVER
Nueces	Uvalde	IRR	C3072_1	200	83.3	0	MIRASOL RANCH FAMILY LTD PART	NUECES RIVER
Nueces	Uvalde	IRR	C3072_1	144	26.8	0	SAM BARKLEY	NUECES RIVER
Nueces	Uvalde	IRR	C3163_1	113	36.3	0	JOHN HAMMAN JR ESTATE	FRIO RIVER
Nueces	Uvalde	IRR	C3163_1	133	3.5	0	JOHN HAMMAN JR ESTATE	FRIO RIVER
Nueces	Uvalde	IRR	C3165_2	86	36.1	0	WALLACE S & ISABEL B WILSON	FRIO RIVER
Nueces	Uvalde	IRR	C3166_1	35	36.5	0	JOE C KRANZ ET UX	FRIO RIVER
Nueces	Uvalde	IRR	C3166_1	11	36.4	0	MACONDA BROWN O'CONNOR	FRIO RIVER
Nueces	Uvalde	IRR	C3168_1	4	36.3	0	JOHN S BUCHANAN	FRIO RIVER
1400000	Jvaiut	axix	00100_I	**	30.3		COLINA O DOOLIVIAVIA	. MO MYEN

	County of			Authorized	Volume	Minimum Annual		
Basin	Diversion	Use	WR ID#	Diversion	Reliability	Supply	Owner	Stroom
	Location(s) Uvalde	IRR	C3168 2	(acft/yr) 37	(%) 36.2	(acft) 0	JOHN S BUCHANAN	Stream FRIO RIVER
Nueces		IRR		40		0		
Nueces Nueces	Uvalde Uvalde	IRR	C3169_1 C3170_1	19	36.2 9.2	0	JOHN S. GRAVES, JR, ET AL JOHN M & MARY ANN BARKLEY	MAYHEW FRIO RIVER
Nueces	Uvalde	IRR	C3171_1	75	26.2	0	MICHAEL L STONER	FRIO RIVER
Nueces	Uvalde	IRR	C3172_1	1,000	3.8	0	THOMAS & GRETEL EKBAUM	FRIO RIVER
Nueces	Uvalde	IRR	C3173 1	1,000	3.8	0	ALVIN M RIMKUS	FRIO RIVER
Nueces	Uvalde	IRR	C3174 1	31	12.1	0	RIO GRANDE CHILDRENS HOME INC	DRY FRIO RIVER
	Uvalde	IRR	C3174_1 C3175_1	9	9.2	0	EL CAMINO GIRL SCOUT COUNCIL	DRY FRIO RIVER
Nueces Nueces	Uvalde	IRR	C3175_1 C3182_1	40	8.3	0	PAUL G SILBER JR	SABINAL RIVER
Nueces	Uvalde	IRR	C3194_1	50	2.7	0	GEORGE E LIGOCKY	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	C3194_1 C3194_2	49	2.4	0	GEORGE E LIGOCKY	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	C3194_2 C3196_1	49	7.9	0	SAMUEL DON SMITH	LEONA RIVER
Nueces	Uvalde	IRR	C3190_1	523	90.6	0	MARJORIE LEE KERR ESTATE	LEONA RIVER
Nueces	Uvalde	IRR	C3197 2	305	90.5	0	MARJORIE LEE KERR ESTATE	LEONA RIVER
Nueces	Uvalde	IRR	P3988 1	28	2.8	0	GEORGE LIGOCKY	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	P3989_1	56	4.5	0	JAMES C HENRY, ET UX	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	P3990_1	30	1.4	0	DON INMAN	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	P3990_1 P3991_1	250	82.3	0	D S TURNER ET UX	UNNAMED TRIB COOK'S SLOUGH
Nueces	Uvalde	IRR	P4177 1	200	3.7	0	MARVIN G VERSTUYFT ET AL	FRIO RIVER
Nueces	Uvalde	IRR	P4177_1	795	3.5	0	MARVIN G VERSTUYFT ET AL	FRIO RIVER
Nueces	Uvalde	IRR	P4177_2 P4238_1	140	3.7	0	CON CAN ENTERPRISES INC	FRIO RIVER
Nueces	Uvalde	IRR	P4305_1	1,140	3.8	0	A C SANDERLIN ET AL	FRIO RIVER
Nueces	Uvalde	IRR	P4303_1	110	2.1	0	LOUIS A WATERS	LITTLE CRK
Nueces	Uvalde	IRR	P5063_1	94	3.8	0	GAFFORD FAMILY PARTNERSHIP	FRIO RIVER
Nueces	Uvalde	IRR	P5241 1	108	3.5	0	BARKAT LAND & CATTLE CO	FRIO RIVER
Nueces	Uvalde	IRR	P5325 1	255	2.0	0	RONALD E LEE, JR	SABINAL RIVER
Nueces	Uvalde	IRR	P5372_1	320	1.6	0	ROBERT L K LYNCH ET AL	FRIO RIVER
Nueces	Uvalde	MUN	P4505_1	200	2.6	0	UTOPIA WATER SUPPLY CORP	SABINAL RIVER
Nueces	Uvalde	MUN	P5063_2	6	3.9	0	GAFFORD FAMILY PARTNERSHIP	FRIO RIVER
Nueces	Uvalde	MUN	P5497 1	35	2.2	0	CONCAN WATER SUPPLY CORP	FRIO RIVER
							DONALD R LINDENBORN JR	
Nueces	Zavala	IRR	C3074_1	200	17.1	0	TRUSTEE	NUECES RIVER
Nueces	Zavala	IRR	C3075_1	124	17.1	0	WALTER D MOORE	NUECES RIVER
Nueces	Zavala	IRR	C3076_1	200	17.1	0	DON P DIXON	NUECES RIVER
Nueces	Zavala	IRR	C3077_1	200	17.1	0	K & M FARMS	NUECES RIVER
Nueces	Zavala	IRR	C3078_1	200	17.1	0	WILBA RALPH WALKER ET AL	NUECES RIVER
Nueces	Zavala	IRR	C3079_1	313	17.0	0	JACK RUTLEDGE	NUECES RIVER
Nueces	Zavala	IRR	C3080_1	75	8.4	0	F F BONNET EX UX	NUECES RIVER
Nueces	Zavala	IRR	C3081_1	390	38.5	0	GEORGE C THOREEN ET AL	NUECES RIVER
Nueces	Zavala	IRR	C3082_1 C3083_1	8,000 230	61.7 39.3	0	ZAVALA-DIMMIT CO WID 1	NUECES RIVER
Nueces	Zavala						MARIO A ESCOBAR ET UX	NUECES RIVER
Nueces	Zavala	IRR	C3084_1	320	39.0	0	OPAL E C MARBURGER	NUECES RIVER
Nueces	Zavala	IRR	C3085_1	320	27.0		CHARARROSA RANCHES LTD	NUECES RIVER
Nueces Nueces	Zavala	IRR	C3088_1 C3089_1	150	80.4	0	CHAPARROSA RANCHES, LTD ERROL O JONSSON ET AL	CHAPARROSA CRK CHACON CRK
	Zavala	IRR	C3089_1 C3090_1	206 45	77.4 45.4	0	JIM G FERGUSON, JR	
Nueces	Zavala	IRR	C3090_1 C3090_2		29.4	0	JIM G FERGUSON, JR	COMANCHE CRK COMANCHE CRK
Nueces Nueces	Zavala Zavala	IRR	C3090_2 C3091_1	65 800	67.3	0	L C ROBBINS JR	COMANCHE CRK
Nueces	Zavala	IRR	C3091_1 C3091_2	400	66.3	0	TURKEY CREEK RANCHES LTD	COMANCHE CRK
Nueces	Zavala	IRR	C3091_2 C3091_3	400	65.7	0	FRANK W HARBORTH	COMANCHE CRK
Nueces	Zavala	IRR	C3091_3 C3092_1	684	46.3	0	TURKEY CREEK RANCHES LTD	UNNAMED TRIB COMANCHE CRK
		IRR	C3092_1 C3198_1	150		0	DENVER C CARNES	LEONA RIVER
Nueces	Zavala	IKK	C3198_1	190	6.3	U	DEINVER C CARINES	LEUNA KIVEK

Appendix C Comprehensive Water Needs Assessment Data

D	Table		aa and Na	ماء				
Pro	ojected Water Deman Atascosa		es, and Ne	eds				
	South Central		gion					
		Total in			Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)						
Municipal Demand								
Nueces Basin								
Benton City WSC		464	710	963	1,185	1,353	1,506	1,617
Bexar Met Water District		389	505	621	715	780	843	895
Charlotte		282	296	312	324	332	342	350
Jourdanton*		740	801	861	914	955	994	1,026
Lytle*		399	412	423	433	439	448	456
McCoy WSC		760	1,065	1,381	1,643	1,851	2,042	2,181
Pleasanton*		1,833	1,906	1,969	2,027	2,063	2,109	2,151
Poteet Rural		729 569	735 432	741 328	740 242	740 172	745 124	752 94
Subtotal		6,165	6,862	7,599	8,223	8,685	9,153	9,522
San Antonio Basin		0,103	0,002	1,399	0,223	0,003	7,133	7,344
Benton City WSC		40	62	84	103	118	131	141
Rural		24	17	13	9	6	4	3
Subtotal		64	79	97	112	124	135	144
Total Municipal Demand		6,229	6,941	7,696	8,335	8,809	9,288	9,666
Municipal Existing Supply								
Nucces Basin	Camina	1007	1007	1007	1007	1007	1007	1007
Benton City WSC Bexar Met Water District	Carrizo ROR (San Antonio)	1007 186						
Charlotte	Carrizo	593	592	592	592	592	592	591
Jourdanton	Carrizo	690	689	689	689	688	688	688
Lytle	Edwards	290	290	290	290	290	290	290
McCoy WSC	Carrizo	1,472	1,469	1,468	1,468	1,468	1,468	1,468
Pleasanton	Carrizo	2,659	2,653	2,652	2,652	2,652	2,651	2,650
Poteet	Carrizo	1,035	1,033	1,033	1,033	1,033	1,032	1,032
Rural	Carrizo	265	265	265	265	265	265	265
	Queen City	350	350	350	350	350	350	350
Rural Subtotal		615	615	615	615	615	615	615
Subtotal San Antonio Basin		8,547	8,534	8,532	8,532	8,531	8,529	8,527
Benton City WSC	Carrizo	84	84	84	84	84	84	84
Rural	Carrizo	22	22	22	22	22	22	22
Subtotal		106	106	106	106	106	106	106
Total Existing Municipal Supply		8,653	8,640	8,638	8,638	8,637	8,635	8,633
Municipal Surplus/Shortage								
Nucces Basin		5.10	207		150	246	400	(10
Benton City WSC		543	297	-435	-178	-346	-499	-610
Bexar Met Water District		-203	-319 296		-529 268	-594	-657 250	-709
Charlotte Jourdanton*		311 -50	-112	-172	-225	260 -267	-306	-338
Lytle*		-109	-112	-172	-143	-149	-158	-166
McCoy WSC		712	404	87	-175	-383	-574	-713
Pleasanton*		826	747	683	625	589	542	499
Poteet		306	298	292	293	293	287	280
Rural		46	183	287	373	443	491	521
Subtotal		2,382	1,672	933	309	-154	-624	-995
San Antonio Basin								
Benton City WSC		44	22	0	-19	-34	-47	-57
Rural		-2	5	9	13	16	18	19
Subtotal		42	27	9	-6	-18	-29	-38
Total Municipal Suprlus/Shortage		2,424	1,699	942	303	-172	-653	-1,033
Municipal New Supply Need								
Nueces Basin								

Pro	ojected Water Dem		es, and Ne	eds				
		osa County ral Texas Reg	ion					
	South Cont.	Total in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Benton City WSC		0	0	0	178	346	499	610
Bexar Met Water District		203	319	435	529	594	657	709
Charlotte		0	0	0	0	0	0	0
Jourdanton*		50	112	172	225	267	306	338
Lytle*		109	122	133	143	149	158	166
McCoy WSC		0	0	0	175	383	574	713
Pleasanton*		0	0	0	0	0	0	0
Poteet		0	0	0	0	0	0	0
Rural		0	0	0	0	0	0	0
Subtotal		362	553	740	1,250	1,739	2,194	2,536
San Antonio Basin								
Benton City WSC		0	0	0	19	34	47	57
Rural		2	0	0	0	0	0	0
Subtotal		2	0	0	19	34	47	57
T. IM IN		261		- 1°	1.260	1.550	2.24:	0.500
Total Municipal New Supply Need		364	553	740	1,269	1,773	2,241	2,593
	<u> </u>							
Industrial Demand	ļ							
Nucces Basin		6	6	6	6	6	6	6
San Antonio Basin		0	0	0	0	0	0	0
Total Industrial Demand		6	6	6	6	6	6	6
Industrial Existing Supply	a .							
Nucces Basin	Carrizo	6	6	6	6	6	6	6
San Antonio Basin		0	0	0	0	0	0	0
Total Industrial Supply		6	6	6	6	6	6	6
In the state of Communication								
Industrial Surplus/Shortage		0	0	0	0	0	0	
Nucces Basin		0	0	0	0	0	0	0
San Antonio Basin Total Industrial Surplus/Shortage		0	0	0	0	0	0	0
Total fildustrial Surpius/Silottage		0	U	U	U	U	U	U
Industrial New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	0
Total Industrial New Supply Need		0	0	0	0	0	0	0
Total fildustrial New Supply Need		0	0	U	U	U	0	
Steam-Electric Demand								
Nucces Basin		5,814	7,000	4,807	6,101	5,997	7,336	7,672
San Antonio Basin		0,014		4,007	0,101	0,337	0	0
Total Steam-Electric Demand		5,814	7,000	4,807	6,101	5,997	7,336	7,672
- 5mm Steam Libetite Delimind		5,017	7,500	1,507	0,101	5,771	,,550	7,072
Steam-Electric Existing Supply								
Nucces Basin	Carrizo	6,751	6,737	6,734	6,734	6,733	6,732	6,730
San Antonio Basin		0,781	0	0	0	0,755	0,752	0,720
Total Steam-Electric Existing Supply		6,751	6,737	6,734	6,734	6,733	6,732	6,730
		,	,	,	,	,	,	, ,
Steam-Electric Surplus/Shortage								
Nueces Basin		937	-263	1,927	633	736	-604	-942
San Antonio Basin		0	0	0	0	0	0	0
Total Steam-Electric Surplus/Shortage		937	-263	1,927	633	736	-604	-942
Steam-Electric New Supply Need				-				-
Nueces Basin		0	263	0	0	0	604	942
San Antonio Basin		0	0	0	0	0	0	C
Total Steam-Electric New Supply Need		0	263	0	0	0	604	942
Irrigation Demand								
Nucces Basin		34,107	39,782	38,442	37,154	35,914	34,723	33,570
San Antonio Basin		946	1,103	1,067	1,031	997	963	932
Total Irrigation Demand		35,053	40,885	39,509	38,185	36,911	35,686	34,502

Pro	jected Water Den		es, and Ne	eds				
		osa County ral Texas Reg	ion					
	South Cont	Total in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Proje	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Irrigation Supply								
Nueces Basin	Edwards	353	353	353	353	353	353	353
	Run-of-River Carrizo	32,944	32,877	32,862	32,860	32,858	32,851	32,841
	Queen City	916	916	916	916	916	916	916
Subtotal	Queen City	34,213	34,146	34,131	34,129	34,127	34,120	34,110
Buotom		5 1,215	5 .,1 .0	5 1,151	5 1,125	01,127	0.,120	5 1,110
San Antonio Basin	Edwards	166	166	166	166	166	166	166
	Carrizo	476	478	478	477	477	476	475
Subtotal		642	644	644	643	643	642	641
Total Irrigation Supply		34,855	34,790	34,775	34,772	34,770	34,762	34,751
Irrigation Surplus/Shortage								
Nueces Basin		106	-5,636	-4,311	-3,025	-1,787	-603	540
San Antonio Basin		-304	-459	-423	-388	-354	-321	-291
Total Irrigation Surplus/Shortage		-198	-6,095	-4,734	-3,413	-2,141	-924	249
				_				
Irrigation New Supply Need						-		
Nueces Basin		0	5,636	4,311	3,025	1787	603	(
San Antonio Basin		304	459	423	388	354	321	291
Total Irrigation New Supply Need		304	6,095	4,734	3,413	2,141	924	291
Mining Demand								
Nueces Basin		1,125	1,298	1,370	1,405	1,439	1,472	1,509
San Antonio Basin		0	0	0	0	1,439	1,472	1,505
Total Mining Demand		1,125	1,298	1,370	1,405	1,439	1,472	1,509
		,	,	· ·		,	,	,
Mining Supply								
Nueces Basin	Carrizo	436	532	553	556	558	569	582
	Sparta	208	256	266	268	269	273	281
Cultantal	Queen City	506 1,150	541 1,329	583 1,402	613 1,437	644	663 1,505	679 1,542
Subtotal San Antonio Basin		1,130	1,329	1,402	1,437	1,471	1,303	1,342
Total Mining Supply		1,150	1,329	1,402	1,437	1,471	1,505	1,542
Total Hilling Supply		1,150	1,525	1,102	1,137	1,171	1,505	1,512
Mining Surplus/Shortage								
Nueces Basin		25	31	32	32	32	33	33
San Antonio Basin		0		0	0	0	0	
Total Mining Surplus/Shortage		25	31	32	32	32	33	33
Marcha a Name Consulta Na a 3								
Mining New Supply Need Nucces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	0	0	0	(
Total Mining New Supply Need		0	0	0	0	0	0	(
B ten walk-h risea			J	J		3	3	
Livestock Demand								
Nueces Basin		1,675	1,675	1,675	1,675	1,675	1,675	1,675
San Antonio Basin		70	70	70	70	70	70	70
Total Livestock Demand		1,745	1,745	1,745	1,745	1,745	1,745	1,745
T: 4 10 P								
Livestock Supplies Nueces Basin	Comiza	207	206	200	206	207	207	201
INUCCES D'ASIII	Carrizo Queen City	387 414	386 346	386 361	386 378	386 394	386 408	386 415
	Sparta	37	31	32	33	394	36	37
	Local	838	913	897	879	861	846	838
Subtotal		1,676	1,676	1,676	1,676	1,676	1,676	1,676
San Antonio Basin	Carrizo	20	18	18	19	19	20	21
	Local	51	53	53	52	52	51	50
Subtotal		71	71	71	71	71	71	71
Total Livestock Supply		1,747	1,747	1,747	1,747	1,747	1,747	1,747

	Ta	ble C-1						
	Projected Water Dem		es, and Ne	eds				
		osa County						
	South Centr	al Texas Reg	gion					
		Total in			Projec			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Surplus/Shortage								
Nucces Basin		1	1	1	1	1	1	1
San Antonio Basin		1	1	1	1	1	1	1
Total Livestock Surplus/Shortage		2	2	2	2	2	2	2
Livestock New Supply Need			0	0	0	0	0	0
Nucces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	0
Total Livestock New Supply Need		0	0	0	0	0	0	0
Total County Demand								
Municipal		6,229	6,941	7,696	8,335	8,809	9,288	9,666
Industrial		6	6	6	6	6	6	6
Steam-Electric		5,814	7,000	4,807	6,101	5,997	7,336	7,672
Irrigation		35,053	40,885	39,509	38,185	36,911	35,686	34,502
Mining		1,125	1,298	1,370	1,405	1,439	1,472	1,509
Livestock		1,745	1,745	1,745	1,745	1,745	1,745	1,745
Total County Demand		49,972	57,875	55,133	55,777	54,907	55,533	55,100
Total County Supply								
Municipal		8,653	8,640	8,638	8,638	8,637	8,635	8,633
Industrial		6	6	6	6	6	6	6
Steam-Electric		6,751	6,737	6,734	6,734	6,733	6,732	6,730
Irrigation		34,855	34,790	34,775	34,772	34,770	34,762	34,751
Mining		1,150	1,329	1,402	1,437	1,471	1,505	1,542
Livestock		1,747	1,747	1,747	1,747	1,747	1,747	1,747
Total County Supply		53,162	53,249	53,302	53,334	53,364	53,387	53,409
Total County Balance								
Municipal		2,424	1,699	942	303	-172	-653	-1,033
Industrial		0	0	0	0	0	0	0
Steam-Electric		937	-263	1,927	633	736	-604	-942
Irrigation		-198	-6,095	-4,734	-3,413	-2,141	-924	249
Mining		25	31	32	32	32	33	33
Livestock		2	2	2	2	2	2	2
Total County Surplus/Shortage		3,190	-4,626	-1,831	-2,443	-1,543	-2,146	-1,691

		Гable C-1						
	Projected Water De	emands, Suppli scosa County	es, and Ne	eds				
		scosa County ntral Texas Reg	rion					
	Journ CC.	Total in	31011		Proje	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Demand								
Nueces			- 0.64	7.500	2.000			2
Municipal		6,165	6,862	7,599	8,223	8,685	9,153	9,522
Industrial Steam-Electric		5,814	7,000	4,807	6,101	5,997	7,336	7,672
Irrigation		34,107	39,782	38,442	37,154	35,914	34,723	33,570
Mining		1125	1298	1370	1405	1439	1472	1509
Livestock		1,675	1,675	1,675	1,675	1,675	1,675	1,675
Total Nueces Basin Demand		48,892	56,623	53,899	54,564	53,716	54,365	53,954
San Antonio								
Municipal		64	79	97	112	124	135	144
Industrial		0	0	0	0	0	0	0
Steam-Electric		0	0	1.067	0	0	063	022
Irrigation		946	1,103	1,067	1,031	997	963	932
Mining Livestock		70	70	70	70	70	70	70
Total San Antonio Basin Demand		1,080	1,252	1,234	1,213	1,191	1.168	1,146
		1,000	1,202	1,20.	1,210	1,1/1	1,100	1,1.0
Total Basin Supply Nueces								
Municipal		8,547	8,534	8,532	8,532	8,531	8,529	8,527
Industrial		6	6,334	6,332	6,332	6,331	6,329	6,327
Steam-Electric		6,751	6,737	6,734	6,734	6,733	6,732	6,730
Irrigation		34,213	34,146	34,131	34,129	34,127	34,120	34,110
Mining		1,150	1,329	1,402	1,437	1,471	1,505	1,542
Livestock		1,676	1,676	1,676	1,676	1,676	1,676	1,676
Total Nueces Basin Supply		52,343	52,428	52,481	52,514	52,544	52,568	52,591
San Antonio								
Municipal		106	106	106	106	106	106	106
Industrial		0	0	0	0	0	0	0
Steam-Electric		0	0	0	0	0	0	0
Irrigation		642	644	644	643	643	642	641
Mining Livestock		0	71	71	0	71	71	71
Total San Antonio Basin Supply		71 819	71 821	71 821	71 820	71 820	71 819	71 818
Total Basin Balance Nueces								
Municipal		2,382	1,672	933	309	-154	-624	-995
Industrial		0		0		0	0	0
Steam-Electric		937	-263	1,927	633	736	-604	-942
Irrigation		106	-5,636	-4,311	-3,025	-1,787	-603	540
Mining		25	31	32	32	32	33	33
Livestock Total Nueces Basin Supply		3,451	-4,195	-1,418	-2,050	-1,172	-1,797	-1,363
Total Nueces Dasin Supply		J,401	-4,170	-1,410	-2,030	-1,1/2	-1,/7/	-1,505
San Antonio		42	27	0	6	10	20	26
Municipal Industrial		42	27	9	-6 0	-18 0	-29 0	-38
Steam-Electric		0	0	0	0	0	0	0
Irrigation		-304	-459	-423	-388	-354	-321	-291
Mining		0		0	0	0	0	
Livestock		1	1	1	1	1	1	1
Total San Antonio Basin Supply		-261	-431	-413	-393	-371	-349	-328
Groundwater Supplies								
Available								
Nueces	Edwards	353	353	353	353	353	353	353
P		<u> </u>						

	Ta Projected Water Dem	ble C-1 ands, Supplic	es, and Nec	eds				
	Atasc	osa County						
	South Cent	ral Texas Reg	ion					
		Total in			Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
San Antonio	Edwards	166	166	166	166	166	166	160
Nueces	Carrizo	47,288	47,288	47,288	47,288	47,288	47,288	47,288
San Antonio	Carrizo	518	518	518	518	518	518	518
Nueces	Sparta	1,150	1,150	1,150	1,150	1,150	1,150	1,150
Nueces	Queen City	4,380	4,380	4,380	4,380	4,380	4,380	4,380
Total Available		53,855	53,855	53,855	53,855	53,855	53,855	53,855
Allocated								-
Nueces	Edwards	353	353	353	353	353	353	353
San Antonio	Edwards	166	166	166	166	166	166	166
Nueces	Carrizo	47,288	47,288	47,288	47,288	47,288	47,288	47,288
San Antonio	Carrizo	518	518	518	518	518	518	518
Nueces	Sparta	245	287	298	301	304	309	318
Nueces	Queen City	2,186	2,153	2,210	2,257	2,304	2,337	2,360
Total Allocated		50,756	50,765	50,833	50,883	50,933	50,971	51,003
Total Unallocated		3,099	3,090	3,022	2,972	2,922	2,884	2,852
rojected demands, shortages, and needs may be greater than shown. These WUGs are requesting a population/demand revision.								

HR

			Table C-2						
		Projected V	Water Demands, S		l Needs				
			Bexar Cour						
	T .	<u> </u>	South Central Tex	as Region		Duoise	tions		
D.	o in	Source	Total in 2000	2010	2020	Projec 2030	2040	2050	2060
Di	asin	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
			(acrt)	(acrt)	(acrt)	(acrt)	(acrt)	(acrt)	(acrt)
Municipal Demand	1								
Nueces Basin	Î								
Atascosa Rural W	SC		31	38	44	51	56	60	6.
Bexar Met Water	District*		159	161	163	165	165	167	171
Lytle*			3	5	7	8	10	11	12
Rural			251	258	263	268	270	273	279
	Subtotal		444	462	477	492	501	511	527
San Antonio Basin									
Alamo Heights			2,000	2,071	2,134	2,136	2,132	2,146	2,170
Atascosa Rural W	'SC		735	903	1,068	1,213	1,335	1,441	1,548
Balcones Heights			480	514	555	578	600	633	670
Bexar Met Water			8,635	8,736	8,869	8,944	8,945	9,081	9,278
Castle Hills (BMV China Grove	((D)		838 288	820 376	807 457	793 531	780 591	771 645	771 695
Converse			1,495	1,907	2,331	2,729	3,044	3,311	3,564
East Central SUD			975	1,325	1,572	1,790	1,974	2,133	2,289
Elmendorf			99	112	123	132	1,974	148	156
Fair Oaks Ranch			889	1,090	1,094	1,097	1,101	1,099	1,104
Green Valley SUI)*		247	458	646	818	939	1,068	1,182
Helotes			845	1,537	2,249	2,820	3,264	3,679	4,047
Hill Country Villa	ge (BMWD)		842	838	835	831	828	826	826
Hollywood Park (BMWD)		2,229	2,314	2,389	2,458	2,511	2,565	2,616
Kirby			1,001	1,005	1,004	1,007	1,001	1,013	1,034
Lackland AFB (C	DP)		3,136	3,104	3,080	3,056	3,032	3,016	3,016
Leon Valley			711	694	678	667	655	650	659
Leon Valley (SAV	VS)		407	397	388	382	375	372	377
Live Oak*			1,128	1,145	1,157	1,177	1,193	1,232	1,284
Olmos Park			381	403	424	441	452	468	484
San Antonio (BM	,		21,419	24,654	27,471	30,157	32,187	34,150	36,107
San Antonio (SAV			166,813	192,007	213,943	234,865	250,671	265,958	281,204
San Antonio (Othe Schertz*	ers)		247 167	284 272	317 371	348 456	371 525	394 591	416 649
Selma			252	1,531	1,927	2,309	2,260	2,204	2,155
Shavano Park*			802	819	835	847	856	868	880
Somerset (BMWI))		321	405	484	552	609	660	709
St. Hedwig			256	310	358	403	436	469	501
Terrell Hills			815	863	914	956	983	1,018	1,057
Universal City			2,329	2,608	2,916	3,175	3,125	3,101	3,101
•	. (Apex Water Ser.)		435	570	697	809	902	982	1,061
Windcrest			1,212	1,204	1,196	1,187	1,177	1,174	1,182
Rural			1,226	705	559	472	742	985	1,205
Rural (SAWS)			5,595	5,661	5,747	5,796	5,796	5,884	6,012
	Subtotal		229,250	261,642	289,595	315,932	335,532	354,735	374,009
m . 15 f	<u> </u>		***	265 : 0 :	200.070	21 - 12 :	22 - 22 -	25551	25.5
Total Municipal	Demand		229,694	262,104	290,072	316,424	336,033	355,246	374,536
Municipal Eviction	· Cumply								
Municipal Existing Nueces Basin	s ouppry								
Atascosa Rural W	/SC	Edwards	16	16	16	16	16	16	16
Bexar Met Water		ROR (San Antonio)	76	76	76	76	76	76	76
Lytle		Edwards	2	2	2	2	2	2	7
Rural		Carrizo	314	314	314	314	314	314	314
	Subtotal		408	408	408	408	408	408	408
San Antonio Basin			.50				.50	.50	
Alamo Heights		Edwards	1,479	1,479	1,479	1,479	1,479	1,479	1,479
Atascosa Rural W	'SC	Edwards	379	379	379	379	379	379	379
Balcones Heights		Edwards (SAWS)	480	514	555	578	600	633	670

			Table C-2						
		Projected Water			Needs				
		Courth	Bexar Cour Central Tex						
		South	Total in	as Kegion		Projec	tions		
Ra	ısin	Source	2000	2010	2020	2030	2040	2050	2060
250		Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Bexar Met Water	District	Edwards	0	0	0	0	0	0	
		Trinity	1,500	1,500	1,500	1,500	1,500	1,500	1,50
		Carrizo	1,000	1,000	1,000	770	757	745	73
		ROR (San Antonio)	3,214	3,130	3,051	2,983	2,926	2,875	2,82
Bexar Met Water	District Subtotal		5,714	5,630	5,551	5,253	5,183	5,120	5,06
Castle Hills (BMV	VD)	Edwards (BMWD)	724	724	724	724	724	724	72
China Grove		Edwards (SAWS)	288	376	457	531	591	645	69
Converse		Edwards	1,095	1,095	1,095	1,095	1,095	1,095	1,09
		Edwards (BMWD)	0	1,500	1,500	1,500	1,500	1,500	1,50
Converse Subtotal			1,095	2,595	2,595	2,595	2,595	2,595	2,59
East Central SUD		Canyon (CRWA - Dunlap)	1,170	1,170	251	251	251	251	25
		Carrizo (Springs Hill/CRWA)	322	322	322	322	322	322	32
		Edwards (BMWD)	1,003	1,003	1,003	1,003	1,003	1,003	1,00
East Central Subto	otal	71 1 (0.17)	2,495	2,495	1,576	1,576	1,576	1,576	1,57
Elmendorf		Edwards (SAWS)	99	112	123	132	140	148	15
Fair Oaks Ranch		Trinity (Comal County)	197	197	197	197	197	161	16
T: 01 D 11		Canyon (GBRA - Western Cany	0	1,388	1,388	1,388	1,388	1,388	1,38
Fair Oaks Ranch		F.44-	197	1,585	1,585	1,585	1,585	1,549	1,54
Green Valley SUI) 	Edwards	317	317 21	317	317	317	317	2
		Edwards (East Central) Canyon (GBRA)	21 251	251	575	21 575	21 575	21 575	57
		Canyon (CRWA - Dunlap)	193	193	193	193	193	193	19
Green Valley SUI	Cubtotal	Canyon (CKWA - Dunap)	782	782	1,106	1,106	1,106	1,106	1,10
Helotes	Subtotal	Edwards (SAWS)	845	1,537	2,249	2,820	3,264	3,679	4,04
Hill Country Villa	ge (RMWD)	Edwards (BMWD)	108	108	108	108	108	108	10
Hollywood Park (Edwards (BMWD)	345	345	345	345	345	345	34
Kirby	Bivi vi D)	Edwards (BWWB)	670	670	670	670	670	670	67
Lackland AFB (C	DP)	Edwards (SAWS)	3,136	3,104	3,080	3,056	3,032	3,016	3,01
Leon Valley		Edwards	785	785	785	785	785	785	78
Leon Valley (SAV	VS)	Edwards (SAWS)	407	397	388	382	375	372	37
Live Oak		Edwards	984	984	984	984	984	984	98
		Edwards (SAWS)	338	344	347	353	358	370	38
		Edwards (BMWD)	0	1,000	1,000	1,000	1,000	1,000	1,00
Live Oak Subtotal			1,322	2,328	2,331	2,337	2,342	2,354	2,36
Olmos Park		Edwards (SAWS)	381	403	424	441	452	468	48
San Antonio (BM	WD)	Edwards (BMWD)	10,450	7,950	7,950	7,950	7,950	7,950	7,95
		Trinity (BMWD)	0	3,681	3,681	3,681	3,681	3,681	3,68
		Canyon (CRWA - Dunlap)	4,000	4,000	0	0	0	0	
		ROR (San Antonio)	0	0	0	0	0	0	
San Antonio (BM	WD) Subtotal		14,450	15,631	11,631	11,631	11,631	11,631	11,63
San Antonio (SAV	VS)	Edwards	103,622	102,696	101,723	102,083	101,537	100,895	100,22
		Carrizo	6,400	6,400	6,400	4,925	4,846	4,770	4,70
		Trinity	0	3,500	3,500	3,500	3,500	3,500	3,50
		Canyon (GBRA - Western Cany	0	7,500	5,500	4,000	0	0	
		Direct Reuse (SAWS)	3,435	3,435	3,435	3,435	3,435	3,435	3,43
San Antonio (SAV			113,457	123,531	120,558	117,943	113,318	112,600	111,86
San Antonio (Othe	ers)	ROR (San Antonio)	0	0	0	0	0	0	
Schertz		Edwards	55	55	55	55	55	55	
		Carrizo (Guadalupe) - S/S	0	194	194	194	194	194	19
01.01.		Carrizo (Gonzales) - S/S	354	354	354	354	354	354	35
Schertz Subtotal		F1 1	409	603	603	603	603	603	60
Selma		Edwards	837	837	837	837	837	837	8.
a. a		Carrizo (Gonzales) - S/S	733	733	733	733	733	733	73
Selma Subtotal		F1 1	1,570	1,570	1,570	1,570	1,570	1,570	1,57
Shavano Park		Edwards	499	499	499	499	499	499	49
Somerset (BMWI		ROR (San Antonio)	321	405	484	552	609	660	70
St. Hedwig	Estimate	Edwards	256	310	358	403	436	469	50
Terrell Hills		Edwards (SAWS)	815	863	914	956	983	1,018	1,05

Clarine color				Table C-						
Busin Source Central Texas Region Projections Projection P			Projected Wat			d Needs				
Basin										
Basin			Sout		as Region					
Clarine color					1					
Iniversal City	Bas	sin	Source							2060
Carriox Gonzales) - S/S 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 Water Service Inc. (Apex Water Ser.) Edwards 2.495										(acft)
Universal City Subtotal 2.495 2.	Universal City					,				1,695
Water Service Inc. (Apex Water Ser.) Edwards 24 24 24 24 24 24 24 2			Carrizo (Gonzales) - S/S							800
Minderest Subtotal Edwards (SAWS) 61 60 60 59 59 59 50 50 50 50 5										2,495
Edwards (SAWS)		(Apex Water Ser.)								24
Winderest Subtotal Edwards S70 969 969 968	Windcrest									909
Rural Edwards (SAWSEC) - PP 1,120 1,120 1,120 0 0 0 0 0 0 0 0 0	****		Edwards (SAWS)							59
Edwards (SAWS/EC) - PP										968
Rural Subtotal	Rural									383
Rural (SAWS) Edwards (SAWS) 5.595 5.661 5.747 5.796 5.796 5.784					,	,				
Rural (SAWS) Edwards (SAWS) 5.595 5.661 5.747 5.796 5.796 5.584	D 1011		Trinity							167
Subotal 164,508 180,770 174,174 170,969 166,877 166,753 1			F.1. (0.4W/0)							550
Municipal Surplus Notes		0.11	Edwards (SAWS)							6,012
Nucces Basin	i	Subtotal		164,508	180,770	174,174	170,969	166,877	166,753	166,677
Nucces Basin	Train in	10 1		161015	101.150	171 505	171 277	167.205	165.161	167.00
Nucces Basin	Total Existing M	unicipal Supply		164,915	181,178	174,582	171,377	167,285	167,161	167,085
Nucces Basin	M	CIL4								
Alascosa Rural WSC		Snortage								
Bexar Met Water District		ec.		15	22	20	25	40	4.4	40
Lytle										-49
Rural 63 56 51 46 44 41		District								-95
San Antonio Basin										-10 35
San Antonio Basin		C1-4-4-1								-119
Alamo Heights		Subtotal		-36	-54	-69	-84	-93	-103	-119
Atascosa Rural WSC				521	502	655	657	652	667	-691
Balcones Heights		70								
Bexar Met Water District		SC .								-1,169 0
Castle Hills (BMWD)		Notaint			-	-	_	-		-4,217
China Grove										-4,217 -47
Converse		<i>D)</i>								-47
East Central SUD 1,520						-		-		-969
Elmendorf										-713
Fair Oaks Ranch Green Valley SUD* S35 324 460 288 167 38 Helotes 0 0 0 0 0 0 0 0 0 0 Hill Country Village (BMWD) -734 -730 -727 -723 -720 -718 Hollywood Park (BMWD) -1,884 -1,969 -2,044 -2,113 -2,166 -2,220 Kirby 331 -335 -334 -337 -331 -343 Lackland AFB (CDP) 0 0 0 0 0 0 0 0 0 Licon Valley 74 91 107 118 130 135 Leon Valley 74 91 107 118 130 135 Leon Valley 194 1,183 1,174 1,160 1,149 1,122 Olmos Park 0 0 0 0 0 0 0 0 0 0 San Antonio (BMWD)* -6,969 -9,023 -15,840 -18,526 -20,556 -22,519 - San Antonio (Others) -53,356 -68,476 -93,385 -116,922 -137,353 -153,358 -1 San Antonio (Others) -247 -284 -317 -348 -371 -394 Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural (SAWS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										-713
Green Valley SUD*						-		-		445
Helotes		*				-				-76
Hill Country Village (BMWD)										-70
Hollywood Park (BMWD)		re (RMWD)				-		-	~	-718
Color Colo										-2,271
Lackland AFB (CDP)						,	,			-364
Leon Valley 74 91 107 118 130 135 Leon Valley (SAWS) 0		OP)								-304
Leon Valley (SAWS)		,				-				126
Live Oak* 194 1,183 1,174 1,160 1,149 1,122 Olmos Park 0		(S)								0
Olmos Park 0 0 0 0 0 0 San Antonio (BMWD)* -6,969 -9,023 -15,840 -18,526 -20,556 -22,519 - San Antonio (SAWS) -53,356 -68,476 -93,385 -116,922 -137,353 -153,358 -1 San Antonio (Others) -247 -284 -317 -348 -371 -394 Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 0 St. Hedwig 0		~,			-	_				1,085
San Antonio (BMWD)* -6,969 -9,023 -15,840 -18,526 -20,556 -22,519 -53,356 -68,476 -93,385 -116,922 -137,353 -153,358 -1 San Antonio (Others) -247 -284 -317 -348 -371 -394 Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 St. Hedwig 0 0 0 0 0 0 0 St. Hedwig 0 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 W						,				1,003
San Antonio (SAWS) -53,356 -68,476 -93,385 -116,922 -137,353 -153,358 -1 San Antonio (Others) -247 -284 -317 -348 -371 -394 Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 St. Hedwig 0 0 0 0 0 0 0 St. Hedwig 0 0 0 0 0 0 0 Terrell Hills 0 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 <td></td> <td>VD)*</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-24,476</td>		VD)*			-	-		-		-24,476
San Antonio (Others) -247 -284 -317 -348 -371 -394 Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 0 St. Hedwig 0										-169,336
Schertz* 242 331 232 147 78 12 Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 St. Hedwig 0 0 0 0 0 0 0 Terrell Hills 0 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0 0										-416
Selma 1,318 39 -357 -739 -690 -634 Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 0 St. Hedwig 0		*								-46
Shavano Park* -303 -320 -336 -348 -357 -369 Somerset (BMWD) 0 0 0 0 0 0 0 0 St. Hedwig 0										-585
Somerset (BMWD) 0										-381
St. Hedwig 0 0 0 0 0 0 0 Terrell Hills 0 0 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0 0)								0
Terrell Hills 0 0 0 0 0 0 Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0						-		-		C
Universal City 166 -113 -421 -680 -630 -606 Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0										0
Water Service Inc. (Apex Water Ser.) -411 -546 -673 -785 -878 -958 Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0										-606
Windcrest -242 -235 -227 -219 -209 -206 Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0		(Apex Water Ser.)								-1,037
Rural 689 1,156 1,254 176 -127 -403 Rural (SAWS) 0 0 0 0 0 0 0										-214
Rural (SAWS) 0 0 0 0 0										-655
										(
0.17.12 003012 1103000 1003000 1013002 1		Subtotal								-207,332
				3.,7.2	20,072	, .21	,,		,>02	
Total Municipal Surplus/Shortage -64,779 -80,926 -115,490 -145,047 -168,748 -188,085 -2	Total Municipal	Surplus/Shortage		-64 779	-80 926	-115 490	-145 047	-168 748	-188 085	-207,451

			Table C-						
		Projected Water			l Needs				
		C 4	Bexar Cou						
		South	h Central Tex	as Region		- n .			
_			Total in	2010		Projec		20.50	****
Ba	asin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
			(actt)	(acit)	(acit)	(acit)	(acit)	(acrt)	(acit)
Municipal New Su	pply Need								
Nueces Basin									
Atascosa Rural W			15	22	28	35	40	44	49
Bexar Met Water	District		83	85	87	89	89	91	95
Lytle*			1	3	5	6	8	9	10
Rural			0	0	0	0	0	0	
	Subtotal		99	110	120	130	137	144	154
San Antonio Basin									
Alamo Heights			521	592	655	657	653	667	691
Atascosa Rural W	SC		356	524	689	834	956	1,062	1,169
Balcones Heights			0	0	0	0	0	0	(
Bexar Met Water			2,921	3,106	3,318	3,691	3,762	3,961	4,217
Castle Hills (BMV	WD)		114	96	83	69	56	47	47
China Grove			0	0	0	0	0	0	C
Converse			400	0	0	134	449	716	969
East Central SUD			0	0	0	214	398	557	713
Elmendorf			0	0	0	0	0	0	0
Fair Oaks Ranch			692	0	0	0	0	0	0
Green Valley SUI)*		0	0	0	0	0	0	76
Helotes			0	0	0	0	0	0	0
Hill Country Villa			734	730	727	723	720	718	718
Hollywood Park (BMWD)		1,884	1,969	2,044	2,113	2,166	2,220	2,271
Kirby			331	335	334	337	331	343	364
Lackland AFB (C	DP)		0	0	0	0	0	0	0
Leon Valley			0	0	0	0	0	0	0
Leon Valley (SAV	VS)		0	0	0	0	0	0	0
Live Oak*			0	0	0	0	0	0	0
Olmos Park			0	0	0	0	0	0	0
San Antonio (BM			6,969	9,023	15,840	18,526	20,556	22,519	24,476
San Antonio (SAV			53,356	68,476	93,385	116,922	137,353	153,358	169,336
San Antonio (Oth	ers)		247	284	317	348	371	394	416
Schertz*			0	0	0	0	0	0	46
Selma			0	0	357	739	690	634	585
Shavano Park*			303	320	336	348	357	369	381
Somerset (BMWI	0)		0	0	0	0	0	0	0
St. Hedwig			0	0	0	0	0	0	0
Terrell Hills			0	0	0	0	0	0	0
Universal City			0	113	421	680	630	606	606
	. (Apex Water Ser.)		411	546	673	785	878	958	1,037
Windcrest			242	235	227	219	209	206	214
Rural			0	0	0	0	127	403	655
Rural (SAWS)			0	0	0	0	0	0	0
	Subtotal		69,481	86,349	119,406	147,339	170,662	189,738	208,987
Total Municipal	New Supply Need		69,580	86,459	119,526	147,469	170,799	189,882	209,141
Industrial Demand	l								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			21,252	25,951	29,497	32,775	36,068	38,965	42,112
Total Industrial	Demand		21,252	25,951	29,497	32,775	36,068	38,965	42,112
			,	- /	.,	,	.,	-7	

		N 1 / 177	Table C-2						
		Projected W	Vater Demands,		1 Needs				
		C-	Bexar Cou						
	<u> </u>		outh Central Tex	as Region		D	4		
		~	Total in	2010		Projec			****
Basin		Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial Existing Suppl	y								
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin		vards	16,855	16,855	16,855	16,855	16,855	16,855	16,855
		rizo	329	329	329	253	249	245	242
	Trii		5,711	5,711	5,711	5,711	5,711	5,711	5,71
		n-of-River	0	1.716	1.716	1.716	0 1,716	0 1,716	1.714
San Antonio Basin Subto		ect Reuse (SAWS)	1,716 24,611	1,716 24,611	1,716 24,611	1,716 24,535	24,531	24,527	1,716 24,524
San Antonio Dasin Subic	otai		24,011	24,011	24,011	24,333	24,331	24,327	24,324
Total Industrial Existin	g Supply		24,611	24,611	24,611	24,535	24,531	24,527	24,524
Total Industrial Existin	g Suppry		24,011	24,011	24,011	24,333	24,331	24,327	24,32
Industrial Surplus/Shorta	nge								
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin			3,359	-1,340	-4,886	-8,240	-11,537	-14,438	-17,588
Total Industrial Surplus	s/Shortage		3,359	-1,340	-4,886	-8,240	-11,537	-14,438	-17,588
Industrial New Supply N	eed								
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin			0	1,340	4,886	8,240	11,537	14,438	17,588
Total Industrial New S	upply Need		0	1,340	4,886	8,240	11,537	14,438	17,588
Steam-Electric Demand									
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin			17,399	20,395	25,761	30,139	32,973	36,120	39,614
Total Steam-Electric D	emand		17,399	20,395	25,761	30,139	32,973	36,120	39,614
Steam-Electric Existing S	Supply								
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin		tor Braunig Lake	12,000	12,000	12,000	12,000	12,000	12,000	12,000
		averas Lake	36,900	36,900	36,900	36,900	36,900	36,900	36,900
San Antonio Basin Subto	otal		48,900	48,900	48,900	48,900	48,900	48,900	48,900
Total Steam-Electric E	xisting Supply		48,900	48,900	48,900	48,900	48,900	48,900	48,900
Steam-Electric Surplus/S	hortage								
Nueces Basin			0	0	0	0	0	0	0.200
San Antonio Basin	1 (01)		31,501	28,505	23,139	18,761	15,927	12,780	9,286
Total Steam-Electric S	urplus/Shortage		31,501	28,505	23,139	18,761	15,927	12,780	9,286
Steam-Electric New Supp	oly Need								
Nueces Basin			0	0	0	0	0	0	(
San Antonio Basin			0	0	0	0	0	0	(
Total Steam-Electric N	ew Supply Need		0	0	0	0	0	0	(
Irrigation Demand									
Nueces Basin			1,333	1,283	1,229	1,177	1,127	1,080	1,034
San Antonio Basin			14,532	13,990	13,399	12,833	12,290	11,770	11,272
Total Irrigation Deman	d		15,865	15,273	14,628	14,010	13,417	12,850	12,300
Irrigation Supply									
Nueces Basin	Edv	vards	824	824	824	824	824	824	824
		rizo	984	959	946	358	350	342	33:
Nueces Basin Subtotal			1,808	1,783	1,770	1,182	1,174	1,166	1,159
			2,300	-,. 00	-,. 70	-,-02	-,-/	-,00	-,-

		Table C-2						
	Projected '	Water Demands, S		Needs				
		Bexar Cour						
		South Central Tex Total in	as Region		D	4		
Basin	S	2000	2010	2020	Projec 2030	2040	2050	2060
Basin	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
San Antonio Basin	Edwards	16,550	16,550	16,550	16,550	16,550	16,550	16,550
San Antonio Basin	Run-of-River	1,008	1,008	1,008	1,008	1,008	1,008	1,008
	Reuse (SARA)	230	230	230	230	230	230	230
	Reuse (SAWS)	4.616	4.616	4,616	4.616	4,616	4,616	4,610
	Reuse (CCMA)	24	24	24	24	24	24	24
	Carrizo	799	799	799	615	605	596	587
San Antonio Basin Subtotal	Carrizo	23,227	23,227	23,227	23,043	23,033	23,024	23,015
			,	,	,	,	,	
Total Irrigation Supply		25,035	25,010	24,997	24,225	24,207	24,190	24,174
Irrigation Surplus/Shortage								
Nueces Basin		475	500	541	5	47	86	125
San Antonio Basin		8,695	9,237	9,828	10,210	10,743	11,254	11,743
Total Irrigation Surplus/Sho	ortage	9,170	9,737	10,369	10,215	10,790	11,340	11,868
Irrigation New Supply Need								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	0	0	0	(
Total Irrigation New Supply	y Need	0	0	0	0	0	0	(
Mining Demand								
Nueces Basin		106	131	144	152	160	168	175
San Antonio Basin		2,796	3,451	3,790	3,998	4,203	4,408	4,591
Total Mining Demand		2,902	3,582	3,934	4,150	4,363	4,576	4,766
Mining Supply								
Nueces Basin	Carrizo	106	131	144	152	160	168	175
San Antonio Basin	Carrizo	2,796	3,451	3,790	3,077	3,183	3,286	3,375
Total Mining Supply		2,902	3,582	3,934	3,229	3,343	3,454	3,550
Mining Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	-921	-1,020	-1,122	-1,216
Total Mining Surplus/Short	age	0	0	0	-921	-1,020	-1,122	-1,216
Mining New Supply Need								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	921	1,020	1,122	1,216
Total Mining New Supply I	Need	0	0	0	921	1,020	1,122	1,216

			Table C-2						
		Projected '	Water Demands, S		l Needs				
			Bexar Cour						
			South Central Tex	as Region					
			Total in			Projec			
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Demand									
Nueces Basin			24	24	24	24	24	24	24
San Antonio Basin			1,295	1,295	1,295	1,295	1,295	1,295	1,295
Total Livestock	Demand		1,319	1,319	1,319	1,319	1,319	1,319	1,319
Livestock Supply									
		D1 1 D0X)2	0	0	0	0	0	0	
Nueces Basin		Edwards (D&L) ² Carrizo	8 2	8	8	8 2	8 2	8	
			2	2	2	2	2	2	2
		Trinity	12	12	12	12	12	12	
	Culatotal	Local	24	24	24	24	24	24	12 24
Con Antonio Docin	Subtotal	Comino				87		84	83
San Antonio Basin		Carrizo	113	113 268	113 268	268	86 268	268	268
		Trinity	268						
		Edwards (D&L) ²	320	321	322	346	346	346	346
	~	Local	648	648	648	648	648	648	648
	Subtotal		1,349	1,350	1,351	1,349	1,348	1,346	1,345
Total Livestock	Supply		1,373	1,374	1,375	1,373	1,372	1,370	1,369
T: 4 1 G 1 4									
Livestock Surplus/	Snortage		0	0	0	0	0	0	
Nueces Basin			0	55	0	0	0	0	50
San Antonio Basin	C 1 (C1)		54		56	54	53	51	50 50
Total Livestock	Surplus/Shortage		54	55	56	54	53	51	30
Livestock New Sup	unly Mood								
Nueces Basin	ppy Neeu		0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
	New Supply Need		0	0	0	0	0	0	0
Total Livestock	тем вирріу геса		0	· ·	U	U	· ·	Ü	
Total Bexar Count	v Demand								
Municipal Municipal	y Demana		229,694	262,104	290,072	316,424	336,033	355,246	374,536
Industrial			21,252	25,951	29,497	32,775	36,068	38,965	42,112
Steam-Electric			17,399	20,395	25,761	30,139	32,973	36,120	39,614
Irrigation			15,865	15,273	14,628	14,010	13,417	12,850	12,306
Mining			2,902	3,582	3,934	4,150	4,363	4,576	4,766
Livestock			1,319	1,319	1,319	1,319	1,319	1,319	1,319
Total County Dema	nd		288,431	328,624	365,211	398,817	424,173	449,076	474,653
ĺ			, i	,		,	ŕ	, i	
Total Bexar Count	y Supply								
Municipal			164,915	181,178	174,582	171,377	167,285	167,161	167,085
Industrial			24,611	24,611	24,611	24,535	24,531	24,527	24,524
Steam-Electric			48,900	48,900	48,900	48,900	48,900	48,900	48,900
Irrigation			25,035	25,010	24,997	24,225	24,207	24,190	24,174
Mining			2,902	3,582	3,934	3,229	3,343	3,454	3,550
Livestock			1,373	1,374	1,375	1,373	1,372	1,370	1,369
Total County Supply	y		267,736	284,655	278,399	273,639	269,638	269,602	269,602
	<u> </u>								
Total Bexar Count	y Balance								
			-64,779	-80,926	-115,490	-145,047	-168,748	-188,085	-207,451
Municipal			2.250	-1,340	-4,886	-8,240	-11,537	-14,438	-17,588
Industrial			3,359		-				
Industrial Steam-Electric			31,501	28,505	23,139	18,761	15,927	12,780	
Industrial Steam-Electric Irrigation			31,501 9,170	28,505 9,737	23,139 10,369	18,761 10,215	15,927 10,790	11,340	11,868
Industrial Steam-Electric Irrigation Mining			31,501 9,170 0	28,505 9,737 0	23,139 10,369 0	18,761 10,215 -921	15,927 10,790 -1,020	11,340 -1,122	9,286 11,868 -1,216
Industrial Steam-Electric Irrigation			31,501 9,170	28,505 9,737	23,139 10,369	18,761 10,215	15,927 10,790	11,340	11,868

	Projected '	Table C-2		l Needs				
	Trojecteu	Bexar Cour	11 /	i i i ccus				
	5	South Central Tex						
		Total in			Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Demand								
Nueces								
Municipal		444	462	477	492	501	511	52
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		1,333	1,283	1,229	1,177	1,127	1,080	1,034
Mining		106	131	144	152	160	168	175
Livestock		24	24	24	24	24	24	24
Total Nueces Basin Demand		1,907	1,900	1,874	1,845	1,812	1,783	1,760
San Antonio								
Municipal		229,250	261,642	289,595	315,932	335,532	354,735	374,009
Industrial		21,252	25,951	29,497	32,775	36,068	38,965	42,112
Steam-Electric		17,399	20,395	25,761	30,139	32,973	36,120	39,614
Irrigation		14,532	13,990	13,399	12,833	12,290	11,770	11,272
Mining		2,796	3,451	3,790	3,998	4,203	4,408	4,591
Livestock		1,295	1,295	1,295	1,295	1,295	1,295	1,295
Total San Antonio Basin Demand		286,524	326,724	363,337	396,972	422,361	447,293	472,893
Total Basin Supply								
Nueces								
Municipal		408	408	408	408	408	408	408
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		1,808	1,783	1,770	1,182	1,174	1,166	1,159
Mining		106	131	144	152	160	168	175
Livestock		24	24	24	24	24	24	24
Total Nueces Basin Supply		2,346	2,346	2,346	1,766	1,766	1,766	1,766
San Antonio								
Municipal		164,508	180,770	174,174	170,969	166,877	166,753	166,67
Industrial		24,611	24,611	24,611	24,535	24,531	24,527	24,524
Steam-Electric		48,900	48,900	48,900	48,900	48,900	48,900	48,900
Irrigation		23,227	23,227	23,227	23,043	23,033	23,024	23,01
Mining		2,796	3,451	3,790	3,077	3,183	3,286	3,37
Livestock		1,349	1,350	1,351	1,349	1,348	1,346	1,34
Total San Antonio Basin Supply		265,391	282,309	276,053	271,873	267,872	267,836	267,836

			Table C-						
		Projected Wa	ter Demands,		l Needs				
			Bexar Cou						
		Sou	th Central Tex	as Region					
			Total in	2010		Projec		20.50	****
]	Basin	Source	2000	2010	2020	2030	2040 (acft)	2050 (acft)	2060
T . I D . I D I			(acft)	(acft)	(acft)	(acft)	(acit)	(acit)	(acft)
Total Basin Bala	nce								
Nueces Municipal			-36	-54	-69	-84	-93	-103	-11
Industrial			-30	-34	-09	0	-93	-103	-11
Steam-Electric			0	0	0	0	0	0	
Irrigation			475	500	541	5	47	86	12
Mining			0	0	0	0	0	0	12
Livestock			0	0	0	0	0	0	
	in Crambro/Chantago		439	446	472	-79	-46	-17	
Total Nueces Basi	in Surplus/Shortage		439	440	472	-19	-40	-1/	
San Antonio			1						
Municipal			-64,742	-80,872	-115,421	-144,963	-168,655	-187,982	-207,33
Industrial			3,359	-1,340	-4,886	-8,240	-108,033	-14,438	-207,33
Steam-Electric			31,501	28,505	23,139	18,761	15,927	12,780	9,28
Irrigation			8,695	9,237	9,828	10,210	10,743	11,254	11,74
Mining			0,093	9,237	9,626	-921	-1,020	-1,122	-1,21
Livestock			54	55	56	54	-1,020	51	-1,21
	Basin Surplus/Shorta	ma.	-21,133	-44,415	-87,284	-125,099	-154,489	-179,457	-205,05
Total Sall Alltollic	basiii Surpius/Silorta	ge	-21,133	-44,413	-07,204	-123,099	-134,469	-179,437	-203,03
Groundwater Su	Available		024	024	024	024	024	024	
	Nueces	Edwards	824	824	824	824	824	824	82
	San Antonio	Edwards	175,112	175,112	175,112	175,112	175,112	175,112	175,11
	Nueces	Edwards (D&L)	320	321	322	8	346	8	2.4
	San Antonio	Edwards (D&L)				346		346	34
	Nueces	Carrizo	1,406	1,406	1,406	9,726	826	826	82
	San Antonio	Carrizo	16,544 223	16,544 223	16,544 223	223	9,726 223	9,726 223	9,72 22
	Nueces	Trinity	32,544	32,544					
	San Antonio Total Available	Trinity	226,981	226,982	32,544 226,983	32,544 219,609	32,544 219,609	32,544 219,609	32,54 219,60
	Allocated		220,981	220,982	220,983	219,009	219,009	219,009	219,00
	Nueces	Edwards	824	824	824	824	824	824	82
	San Antonio	Edwards	175,112	175,112	175,112	175,112	175,112	175,112	175,11
	Nueces	Edwards (D&L)	8	1/3,112	1/3,112	8	173,112	1/3,112	173,11
	San Antonio	Edwards (D&L)	320	321	322	346	346	346	34
	Nueces	Carrizo	1,406	1,406	1,406	826	826	826	82
	Nueces	Trinity	1,400	1,400	1,400	2	2	2	02
	San Antonio	Carrizo	11,437	12,092	12,431	9,726	9,726	9,726	9,72
	San Antonio	Trinity	11,327	14,827	14,827	14,827	14,827	14,827	14.82
	Total Allocated		200,436	204,592	204,932	201,671	201,671	201,671	201,67
	Total Allocated		200,430	204,372	404,734	201,071	201,071	201,071	201,07
	Total Unallocate	ed	26,545	22,390	22,051	17,938	17,938	17,938	17,93
	20th Chanocate		20,3 13	22,370	22,031	11,750	11,750	11,750	11,73
Notes:									
			+						
	on of golf courses and	• •	1						
		rds Aquifer for D&L however,						es.	
* Projected demar	nds, shortages, and nee	eds may be greater than shown.	These WUGs a	are requesting	a population	demand revis	sion.		

		Projected Wa	Table (nd Needs				
		· ·	Caldwell C	County	nu recus				
		Sou	th Central T	exas Region		D	.4 :		
Ва	sin	Source	Total in 2000 (acft)	2010 (acft)	2020 (acft)	Project 2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Municipal Demano									
Guadalupe Basin									
Aqua WSC			194	267	339	396	458	518	580
County Line WSC			114	204	308	405	501	600	695
Creedmore-Maha	WSC		68	98	127	154	181	207	235
Goforth WSC*			112	184	269	342	417	495	571
Gonzales County	WSC		46	63	79	94	108	122	136
Lockhart Luling			1,795 888	2,451 1,067	3,094 1,210	3,629 1,299	4,180 1,384	4,725 1,486	5,285 1,594
Martindale			107	1,007	1,210	1,299	1,364	1,460	1,394
Martindale WSC			93	142	153	158	162	170	179
Maxwell WSC			334	503	678	844	996	1,166	1,331
Mustang Ridge			9	13	18	21	25	29	33
Niederwald			11	26	43	61	78	95	111
Polonia WSC			322	466	618	749	884	1,016	1,155
Rural			207	214	201	177	154	136	122
1 01 15	Subtotal		4,300	5,823	7,271	8,468	9,671	10,915	12,185
Lower Colorado Ba			94	126	177	212	250	207	225
Creedmore-Maha Mustang Ridge	WSC		84	136 122	177 160	213 194	250 228	287 262	325 296
Polonia WSC			140	202	268	325	384	441	501
Rural			23	23	22	22	22	21	21
	Subtotal		341	483	627	754	884	1,011	1,143
								·	-
Total Municipal	Demand		4,641	6,306	7,898	9,222	10,555	11,926	13,328
Municipal Existing	Supply								
Guadalupe Basin	, ~ FF-J								
Aqua WSC		Carrizo	218	218	218	218	218	218	218
County Line WSC	2	Edwards	13	13	13	13	13	13	13
		ROR (Guadalupe) - CRWA	56	56	56	56	56	56	56
		Canyon (CRWA)	272	272	272	272	272	272	272
County Line WSC		Educada (Dantas Casia as)	341	341	341	341	341	341 54	341 54
Creedmore-Maha Goforth WSC	WSC	Edwards (Barton Springs) Edwards (Barton Springs)	54 92	54 92	54 92	54 92	54 92	92	92
Goloitii WSC		Canyon (GBRA)	92	151	151	151	151	151	151
Goforth WSC Sub	ototal	Curyon (GDIC1)	92	243	243	243	243	243	243
Gonzales County		Carrizo	129	129	129	129	129	129	129
·		Canyon (GBRA)	21	21	21	21	21	21	21
Gonzales County	WSC Subtotal		150	150	150	150	150	150	150
Lockhart		Carrizo	2,773	2,773	2,773	2,773	2,773	2,773	2,773
Luling		Carrizo	1,088	1,088	1,088	1,088	1,088	1,088	1,088
Luling Subtotal		Run-of-River	1.000	1.088	1.088	1 000	1.088	1.088	1 000
Martindale		ROR (Guadalupe)	1,088 159	1,088 159	1,088 159	1,088 159	1,088 159	1,088 159	1,088
Martindale WSC		Canyon (CRWA)	39	39	39	39	39	39	39
January 11 SC		ROR (Guadalupe)	74	74	74	74	74	74	74
Martindale WSC	Subtotal		113	113	113	113	113	113	113
Maxwell WSC		Edwards	116	116	116	116	116	116	116
		Canyon (CRWA)	477	477	477	477	477	477	477
L		ROR (Guadalupe) - CRWA	174	174	174	174	174	174	174
Maxwell Subtotal		G : (A 770G)	767	767	767	767	767	767	767
Mustang Ridge		Carrizo (Aqua WSC)	11	11	11	11	11	11	11
Niederwald Polonia WSC		Edwards (Barton Springs) Carrizo	18 970	18 970	18 970	18 970	18 970	18 970	18 970
Rural		Carrizo	86	86	86	86	86	86	86
Kurar		Queen City	122	122	122	122	122	122	122
		Run-of-River	500	500	500	500	500	500	500
Rural Subtotal			708	708	708	708	708	708	708
1	Subtotal		7,463	7,614	7,614	7,614	7,614	7,614	7,614

			Table (
		Projected Wa	ter Demands Caldwell C		nd Needs				
		Sou	th Central T						
			Total in			Proje	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lower Colorado Bas		Edmanda (Dantan Caninas)	75	75	75	75	75	75	75
Creedmore-Maha Mustang Ridge	wsc	Edwards (Barton Springs) Carrizo (Aqua WSC)	75 105	75 105	75 105	75 105	75 105	75 105	75 105
Polonia WSC		Carrizo (Aqua wsc)	421	421	421	421	421	421	421
Rural		Carrizo	29	29	29	29	29	29	29
	Subtotal		630	630	630	630	630	630	630
Total Municipal	Existing Supply		8,093	8,244	8,244	8,244	8,244	8,244	8,244
Municipal Surplus	/Shortage								
Guadalupe Basin									
Aqua WSC			24	-49	-121	-178	-240	-300	-362
County Line WSC			227	137	33	-64	-160	-259	-354
Creedmore-Maha	WSC		-14	-44	-73	-100	-127	-153	-181
Goforth WSC*	*****		-20	59	-26	-99	-174	-252	-328
Gonzales County	WSC		104	87	71	56	42	28	14
Lockhart			978	322	-321	-856	-1,407 206	-1,952	-2,512 506
Luling Martindale			200 52	21 34	-122 25	-211 20	-296 16	-398 9	-506 1
Martindale WSC			20	-29	-40	-45	-49	-57	-66
Maxwell WSC			433	264	-40 89	-43	-229	-399	-564
Mustang Ridge			2	-2	-7	-10	-14	-18	-22
Niederwald			7	-8	-25	-43	-60	-77	-93
Polonia WSC			648	504	352	221	86	-46	-185
Rural			501	494	507	531	554	572	586
	Subtotal		3,163	1,791	343	-854	-2,057	-3,301	-4,571
Lower Colorado Bas									
Creedmore-Maha	WSC		-19	-61	-102	-138	-175	-212	-250
Mustang Ridge			21	-17	-55	-89	-123	-157	-191
Polonia WSC			281	219	153	96	37	-20	-80
Rural	Subtotal		6 289	6 147	7	-124	-254	-381	-513
Total Municipal	Surplus/Shortage		3,452	1,938	346	-978	-2,311	-3,682	-5,084
M IN C	. 1 Nr. 1								
Municipal New Sup Guadalupe Basin	ppiy Neea								
Aqua WSC			0	49	121	178	240	300	362
County Line WSC			0	0	0	64	160	259	354
Creedmore-Maha			14	44	73	100	127	153	181
Goforth WSC*			20	0	26	99	174	252	328
Gonzales County	WSC		0	0	0	0		0	C
Lockhart			0	0	321	856	1,407	1,952	2,512
Luling			0	0	122	211	296	398	506
Martindale			0	0	0	0		0	0
Martindale WSC			0	29	40	45	49	57	66
Maxwell WSC Mustang Ridge			0	0 2	7	77 10	229 14	399 18	564 22
Niederwald			0	8	25	43	60	77	93
Polonia WSC			0	0	0	0		46	185
Rural			0	0	0	0		0	0
	Subtotal		34	132	735	1,682	2,755	3,910	5,172
Lower Colorado Bas							,	,	
Creedmore-Maha	WSC		19	61	102	138	175	212	250
Mustang Ridge			0	17	55	89	123	157	191
Polonia WSC			0	0	0	0		20	80
Rural			0	0	0	0		0	
	Subtotal		19	78	157	227	298	389	521
Total Municipal	New Supply Need		53	210	892	1,909	3,053	4,299	5,693
Industrial Demand									
Guadalupe Basin	<u> </u>		11	15	18	21	24	27	29
Lower Colorado Bas			0	0	0	0		0	(
Total Industrial	Demand		11	15	18	21	24	27	29

	Table C-3									
	Projected Water Demands, Supplies, and Needs									
			Caldwell C	County						
		Sor	uth Central T	exas Region						
	Total in Projections									
			Total in			Proje	ctions			
Bas	sin	Source	Total in 2000	2010	2020	Projection 2030	ctions 2040	2050	2060	
Ba	sin	Source		2010 (acft)	2020 (acft)			2050 (acft)	2060 (acft)	

			Table C	C-3					
		Projected	Water Demands		nd Needs				
			Caldwell C South Central To						
			Total in			Projec	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial Existing	Supply								
Guadalupe Basin Lower Colorado Bas	•	Carrizo	29	29	29	29	29	29	29
Total Industrial			29	29	29	29	29	29	29
Total fildustrial	Existing Suppry		29	2)	29	23	29	29	2;
Industrial Surplus/	Shortage								
Guadalupe Basin	_		18	14	11	8	5	2	(
Lower Colorado Bas			0	0	0	0		0	(
Total Industrial	Surplus/Shortage		18	14	11	8	5	2	(
T 1	1 37 1								
Industrial New Sup Guadalupe Basin	oply Need		0	0	0	0	0	0	(
Lower Colorado Bas	sin		0	0	0	0		0	(
	New Supply Need		0	0	0	0		0	(
	11 7								
Steam-Electric Der	nand								
Guadalupe Basin			0	0	0	0	0	0	(
Lower Colorado Bas			0	0	0	0	-	0	(
Total Steam-Ele	ctric Demand		0	0	0	0	0	0	(
G EL . E									
Steam-Electric Exi Guadalupe Basin	sting Supply		0	0	0	0	0	0	(
Lower Colorado Bas	zin		0	0	0	0		0	(
	ctric Existing Supply	V	0	0	0	0	-	0	(
Total Steam Est	cure Emoting Suppr	,		Ü	Ü			Ŭ	•
Steam-Electric Sur	plus/Shortage								
Guadalupe Basin			0	0	0	0	0	0	(
Lower Colorado Bas			0	0	0	0	0	0	(
Total Steam-Ele	ctric Surplus/Shortag	ge	0	0	0	0	0	0	(
G. El N	G 1 N 1								
Steam-Electric Nev Guadalupe Basin	v Supply Need		0	0	0	0	0	0	(
Lower Colorado Bas	zin		0	0	0	0		0	(
	ctric New Supply Ne	eed	0	0	0	0		0	(
				-				-	
Irrigation Demand									
Guadalupe Basin			974	1,029	914	812	722	641	570
Lower Colorado Bas			15	15	14	12	11	10	8
Total Irrigation	Demand		989	1,044	928	824	733	651	578
T. C. A. C.									
Irrigation Supply Guadalupe Basin		Dun of Diver	0	0	0	0	0	0	(
Guadalupe Basin		Run-of-River Carrizo	952	952	952	952	952	952	952
		Queen City	77	77	77	77	77	77	73
Guadalupe Basin	Subtotal	2.50.1.0.1.3	1,029	1,029	1,029	1,029		1,029	1,029
Lower Colorado Bas		Carrizo	15	15	15	15		15	15
Total Irrigation	Supply		1,044	1,044	1,044	1,044		1,044	1,044
									-
Irrigation Surplus/	Shortage								
Guadalupe Basin			55	0	115	217	307	388	459
Lower Colorado Bas			0	0	116	3		5 202	164
1 otai Irrigation	Surplus/Shortage		55	0	116	220	311	393	460
Irrigation New Sup	nly Need								
Guadalupe Basin	prj recu		0	0	0	0	0	0	(
Lower Colorado Bas	sin		0	0	0	0		0	(
	New Supply Need		0	0	0	0		0	(

			Table (2-3					
		Projected	Water Demands		nd Needs				
		•	Caldwell C						
			Total in	cas Region		Projec	ctions		
Ba	sin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Mining Demand									
Guadalupe Basin			5	5	6	6	6	7	7
Lower Colorado Bas			7	9	9	10	11	11	11
Total Mining De	emand		12	14	15	16	17	18	18
Mining Supply									
Guadalupe Basin		Carrizo	6	6	6	6	6	6	6
Guadalupe Basin	Subtotal	Queen City	2 8	<u>2</u> 8	2 8	2 8	2 8	2 8	2 8
Lower Colorado Bas		Carrizo	11	11	11	11	11	11	11
Total Mining Su		Calling	19	19	19	19	19	19	19
Mining Surplus/Sh	ortage								
Guadalupe Basin Lower Colorado Bas	nin .		3 4	2	2 2	2	0	1 0	0
Total Mining Su			7	5	4	3	2	1	1
_									
Mining New Suppl	y Need								
Guadalupe Basin			0	0	0	0	0	0	0
Lower Colorado Bas Total Mining No			0	0	0	0	0	0	0
Total Willing No	supply Need		0	U	U	0	U	U	U
Livestock Demand									
Guadalupe Basin			762	762	762	762	762	762	762
Lower Colorado Bas			156	156	156	156	156	156	156
Total Livestock	Demand		918	918	918	918	918	918	918
Livestock Supply									
Guadalupe Basin		Carrizo	381	381	381	381	381	381	381
•		Local	381	381	381	381	381	381	381
	Subtotal		762	762	762	762	762	762	762
Lower Colorado Bas	sin	Carrizo	78	78	78	78	78	78	78
	Subtotal	Local	78 156						
Total Livestock			918	918	918	918	918	918	918
	11 7								
Livestock Surplus/	Shortage								
Guadalupe Basin	•		0	0	0	0	0	0	0
Lower Colorado Bas	Surplus/Shortage		0	0	0	0	0	0	0
Total Livestock	Surpius/Snortage		0	0	0	0	U	U	0
Livestock New Sup	ply Need								
Guadalupe Basin			0	0		0	0	0	0
Lower Colorado Bas	sin New Supply Need		0	0		0	0	0	0
Total Livestock	New Supply Need		0	0	0	0	U	U	U
Total Caldwell Cou	inty Demand								
Municipal			4,641	6,306	7,898	9,222	10,555	11,926	13,328
Industrial			11	15	18	21	24	27	29
Steam-Electric			0	0	0	0	0	0	570
Irrigation Mining			989 12	1,044	928 15	824 16	733 17	651 18	578 18
Livestock			918	918	918	918	918	918	918
Total County Dema	nd		6,571	8,297	9,777	11,001	12,247	13,540	14,871
				-					-
Total Caldwell Cou	inty Supply		0.003	0.044	0.044	0.241	0.04	0.044	0.011
Municipal Industrial			8,093 29	8,244 29	8,244 29	8,244 29	8,244 29	8,244 29	8,244 29
Steam-Electric			0	0	0	0	0	0	0
Irrigation			1,044	1,044	1,044	1,044	1,044	1,044	1,044
Mining			19	19	19	19	19	19	19
Livestock			918	918	918	918	918	918	918
Total County Supply	y I		10,103	10,254	10,254	10,254	10,254	10,254	10,254

			Table C						
		Projected	Water Demands Caldwell C		nd Needs				
			South Central To						
			Total in			Projec	ctions		
Bas	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Caldwell Cou	nty Balance								
Municipal			3,452	1,938	346	-978	-2,311	-3,682	-5,084
Industrial			18	14	11	8	5	2	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			55	0	116	220	311	393	466
Mining			7	5	4	3	2	1]
Livestock	(0)		0	0	0	0	0	0	(
Total County Surplu	s/Shortage		3,532	1,957	477	-747	-1,993	-3,286	-4,617
Total Basin Deman	d								
Guadalupe	_								
Municipal			4,300	5,823	7,271	8,468	9,671	10,915	12,185
Industrial			11	15	18	21	24	27	29
Steam-Electric			0	0	0	0	0	0	(
Irrigation			974	1,029	914	812	722	641	570
Mining			5	5	6	6	6	7	7
Livestock			762	762	762	762	762	762	762
Total Guadalupe Bas	sin Demand		6,052	7,634	8,971	10,069	11,185	12,352	13,553
Colorado									
Municipal			341	483	627	754	884	1,011	1,143
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			15	15	14	12	11	10	8
Mining			7	9	9	10	11	11	11
Livestock			156	156	156	156	156	156	156
Total Colorado Basin	n Demand		519	663	806	932	1,062	1,188	1,318
T. A. I. D J. G I									
Total Basin Supply Guadalupe									
Municipal			7,463	7,614	7,614	7,614	7,614	7,614	7,614
Industrial			29	29	29	29	29	29	29
Steam-Electric			0	0	0	0	0	0	(
Irrigation			1,029	1,029	1,029	1,029	1,029	1,029	1,029
Mining			6	6	6	6	6	6	(
Livestock			762	762	762	762	762	762	762
Unallocated Groun	dwater Supply		16,611	16,611	16,611	16,611	16,611	16,611	16,611
Total Guadalupe Bas	sin Supply		25,899	26,050	26,050	26,050	26,050	26,050	26,050
Colorado									
Municipal			630	630	630	630	630	630	630
Industrial			0	0	0	0.50	0.50	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			15	15	15	15	15	15	15
Mining			11	11	11	11	11	11	11
Livestock			156	156	156	156	156	156	156
Unallocated Ground			677	677	677	677	677	677	677
Total Colorado Basin	n Supply		1,489	1,489	1,489	1,489	1,489	1,489	1,489
Total Basin Balance									
Guadalupe	E								
Municipal			3,163	1,791	343	-854	-2,057	-3,301	-4,571
Industrial			18	14	11	8	5	2	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			55	0	115	217	307	388	459
Mining			1	1	0	0	0	-1	-1
Livestock			0	0	0	0	0	0	(
Unallocated Groun	dwater Supply		16,611	16,611	16,611	16,611	16,611	16,611	16,611
Total Guadalupe Bas	sin Surplus/Shortage		19,847	18,416	17,079	15,981	14,865	13,698	12,497

			Table C	-						
		Projected	l Water Demands		nd Needs					
			Caldwell C							
			South Central To	exas Region						
			Total in		Projections					
B	Basin	Source	2000	2010	2020	2030	2040	2050	2060	
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	
Colorado										
Municipal			289	147	3	-124	-254	-381	-51	
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			0	0	1	3	4	5	,	
Mining			4	2	2	1	0	0	(
Livestock			0	0	0	0	0	0	(
Unallocated Groundwater Supply			677	677	677	677	677	677	67	
Total Colorado Ba	sin Surplus/Shortage		970	826	683	557	427	301	17	
Groundwater Supp										
	Available									
	Guadalupe	Carrizo	23,534	23,534	23,534	23,534	23,534	23,534	23,53	
	Colorado	Carrizo	926	926	926	926	926	926	92	
	Guadalupe	Queen City	320	320	320	320	320	320	320	
	Total Available		24,779	24,779	24,779	24,779	24,779	24,779	24,77	
	Allocated									
	Guadalupe	Carrizo	6,923	6,923	6,923	6,923	6,923	6,923	6,92	
	Colorado	Carrizo	249	249	249	249	249	249	24	
	Guadalupe	Queen City	320	320	320	320	320	320	320	
	Total Allocated		7,492	7,492	7,492	7,492	7,492	7,492	7,492	
	Total Unallocate	ed	17,287	17,287	17,287	17,287	17,287	17,287	17,28	
* Projected deman	ds, shortages, and nee	eds may be greater than s	hown. These WU	Gs are reques	ting a popula	tion/demand	revision.			

			Table C-4						
		Projected Wat	ter Demands, Su	• •	Needs				
		~	Calhoun Cour						
		Sout	h Central Texas	Region		ъ.			
			Total in	****	***		Projections		
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
			(acit)	(acit)	(acit)	(acit)	(acrt)	(acit)	(acit)
Municipal Demand	d								
Guadalupe Basin									
Rural			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	(
Colorado-Lavaca C	oastal Basin								
Point Comfort			140	224	323	500	677	667	667
Rural			111	65	39	23	14	8	5
	Subtotal		251	289	362	523	691	675	672
Lavaca-Guadalupe									
Calhoun County V	WS		356	436	516	572	609	618	632
Port Lavaca			1,658	1,769	1,877	1,981	2,079	2,209	2,345
Seadrift			247	252	255	257	256	257	258
Rural (Port O'Cor			186	198	210	222	234	248	264
G 4	Subtotal		2,447	2,655	2,858	3,032	3,178	3,332	3,499
San Antonio-Nuece	s Coastal Basin		-	4	-		-		
Rural	0.11		7	4	2	1	1	0	<u>C</u>
	Subtotal		7	4	2	1	1	0	0
Total Municipal	Domond		2 705	2.049	2 222	2.556	2 970	4.007	4 171
Total Municipal	Demand		2,705	2,948	3,222	3,556	3,870	4,007	4,171
Municipal Existing	Supply								
Guadalupe Basin	z Suppiy								
Rural		Run-of-River (GBRA)	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Kurai	Subtotal	Kun-or-Kiver (GBRA)	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Colorado-Lavaca C			3,000	3,000	3,000	5,000	3,000	3,000	3,000
Point Comfort	Justin Busin	Lake Texana (LNRA)	178	178	178	178	178	178	178
Rural		Gulf Coast	139	139	139	139	139	139	139
	Subtotal		317	317	317	317	317	317	317
Lavaca-Guadalupe	Coastal Basin								
Calhoun County V		Run-of-River (GBRA)	1,500	1,500	1,500	1,500	1,500	1,500	1,500
Port Lavaca		Run-of-River (GBRA)	4,480	4,480	4,480	4,480	4,480	4,480	4,480
Seadrift		Gulf Coast	728	728	728	728	728	728	728
Rural (Port O'Cor	nnor MUD)	Run-of-River (GBRA)	1,120	1,120	1,120	1,120	1,120	1,120	1,120
		Gulf Coast	221	221	221	221	221	221	221
Rural (Port O'Cor	nor MUD) Subtotal		1,341	1,341	1,341	1,341	1,341	1,341	1,341
	Subtotal		8,049	8,049	8,049	8,049	8,049	8,049	8,049
San Antonio-Nuece	s Coastal Basin								
Rural		Gulf Coast	9	9	9	9	9	9	9
	Subtotal		9	9	9	9	9	9	9
Total Municipal	Existing Supply		11,375	11,375	11,375	11,375	11,375	11,375	11,375
Municipal Surplus	/Shortage								
Guadalupe Basin			2.000	2.000	2.000	2.000	2.000	2.000	2.000
Rural	Carlata ta 1		3,000	3,000	3,000	3,000	3,000	3,000	3,000
Colomodo I C	Subtotal		3,000	3,000	3,000	3,000	3,000	3,000	3,000
Colorado-Lavaca C	Oastal Dasifi		20	46	145	222	-499	-489	400
Point Comfort Rural	1		38 28	-46 74	-145 100	-322 116	125	131	-489 134
Kuiai	Subtotal		66	28	-45	-206	-374	-358	-355
Lavaca-Guadalupe			00	28	-43	-200	-3/4	-338	-333
Calhoun County V			1,144	1,064	984	928	891	882	868
Port Lavaca			2,822	2,711	2,603	2,499	2,401	2,271	2,135
Seadrift			481	476	473	471	472	471	470
Rural (Port O'Cor	nnor MIID)		1,155	1,143	1,131	1,119	1,107	1,093	1,077

HDR-0<u>7755-93053-10</u>

Appendix C

		Projected Wate	Table C-4	innlies and	Noode				
		v		• •	reeas				
			Calhoun Cour Central Texas						
		South	Total in	s region		Projec	etions		
	D	C		2010	2020			2050	20/0
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060
G	G . 15 .		(acit)	(acit)	(acit)	(acit)	(acit)	(acit)	(acft)
	eces Coastal Basin			~	7	0	0	0	
Rural			2	5	7	8	8	9	-
	Subtotal		2	5	7	8	8	9	-
m . 134	. 10 1 (01		0.670	0.405	0.150	7.010	7.505	7.260	7.00
Total Munici	ipal Surplus/Shortage		8,670	8,427	8,153	7,819	7,505	7,368	7,20
37 137	CINI								
Municipal New									
Guadalupe Basir	n								
Rural			0	0	0	0	0	0	
~	Subtotal		0	0	0	0	0	0	
Colorado-Lavaca									
Point Comfort			0	46	145	322	499	489	48
Rural			0	0	0	0	0	0	
	Subtotal		0	46	145	322	499	489	48
	pe Coastal Basin		 						
Calhoun Count	ty WS		0	0	0	0	0	0	(
Port Lavaca			0	0	0	0	0	0	(
Seadrift			0	0	0	0	0	0	(
Rural (Port O'C			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	(
San Antonio-Nuc	eces Coastal Basin								
Rural			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	(
Total Munici	ipal New Supply Need		0	46	145	322	499	489	489
Industrial Dema	and								
Guadalupe Basir	n		136	160	176	190	204	216	232
Colorado-Lavaca	a Coastal Basin		19,175	22,516	24,810	26,790	28,753	30,486	32,67
Lavaca-Guadalu	pe Coastal Basin		23,086	27,108	29,871	32,255	34,618	36,704	39,33
San Antonio-Nuc	eces Basin		0	0	0	0	0	0	(
Total Industr	rial Demand		42,397	49,784	54,857	59,235	63,575	67,406	72,23
Industrial Exist	ting Supply								
Guadalupe Basir	n	Run-of-River (GBRA)	250	250	250	250	250	250	25
Colorado-Lavaca	a Coastal Basin	Lake Texana (LNRA)	30,650	30,650	30,650	30,650	30,650	30,650	30,65
	pe Coastal Basin	Run-of-River (Guadalupe)	39,353	39,353	39,353	39,353	39,353	39,353	39,35
San Antonio-Nuc	•	• • •	0	0	0	0	0	0	(
	rial Existing Supply		70,253	70,253	70,253	70,253	70,253	70,253	70,25
	2 11 7			, -	, -	,	, -	, -	, -
Industrial Surp	lus/Shortage								
Guadalupe Basir			114	90	74	60	46	34	18
Colorado-Lavaca			11,475	8,134	5,840	3,860	1,897	164	-2,02
	pe Coastal Basin		16,267	12,245	9,482	7,098	4,735	2,649	1
San Antonio-Nu			0	0	0,102	0	0	0	
	rial Surplus/Shortage		27,856	20,469	15,396	11,018	6,678	2,847	-1,98
- Can madsu	July morninge		27,050	20,107	15,570	11,010	0,070	2,077	1,70.
Industrial New	Supply Need								
Guadalupe Basir			0	0	0	0	0	0	
Colorado-Lavaca		+	0	0	0	0	0	0	2,02
	pe Coastal Basin		0	0	0	0	0	0	2,02
San Antonio-Nu			0	0	0	0	0	0	
	rial New Supply Need		0	0	0	0	0	0	2,02
10tai mdusti	nai ivew suppry iveed		U	U	U	U	U	U	2,02

HDR-0<u>7755-93053-10</u>

Appendix C

	Projected Water	Table C-4	ınnlies and	Needs				
	ů	Calhoun Coun	* * '	Needs				
		Central Texas						
	South	Total in	Kegion		Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dustii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Steam-Electric Demand		(1111)	(/	(,	(,	()	(,	()
Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin		684	0	0	0	0	0	
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	
San Antonio-Nueces Basin		0	0	0	0	0	0	
Total Steam-Electric Demand		684	0	0	0	0	0	
Steam-Electric Existing Supply								
Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin	Gulf Coast	684	0	0	0	0	0	1
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	
San Antonio-Nueces Basin		0	0	0	0	0	0	
Total Steam-Electric Existing Supply		684	0	0	0	0	0	
Steam-Electric Surplus/Shortage								
Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	
San Antonio-Nueces Basin		0	0	0	0	0	0	
Total Steam-Electric Surplus/Shortage		0	0	0	0	0	0	
Steam-Electric New Supply Need								
Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	
Total Steam-Electric New Supply Need		0	U	0	U	U	U	(
Irrigation Demand		0	0				0	
Guadalupe Basin Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		8,077	15,568	13,654	12,096	11,041	10,285	9,58
San Antonio-Nueces Basin		0,077	0	13,034	12,090	0	0	9,36
Total Irrigation Demand		8,077	15,568	13,654	12,096	11,041	10,285	9,58
Indication County								
Irrigation Supply Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	
Lavaca-Guadalupe Coastal Basin	Run-of-River (Guadalupe)	14,528	14,528	14,528	14,528	14,528	14,528	14,52
	Gulf Coast Aquifer	216	216	216	216	216	216	21
	Gulf Coast Aquifer (C-L CB)	0	824	824	824	824	824	82
Lavaca-Guadalupe CB Total		14,744	15,568	15,568	15,568	15,568	15,568	15,56
San Antonio-Nucces Basin		14.744	15.500	15.500	15.500		15.500	15.50
Total Irrigation Supply		14,744	15,568	15,568	15,568	15,568	15,568	15,56
Irrigation Surplus/Shortage			_				_	
Guadalupe Basin		0	0	0	0		0	
Colorado-Lavaca Coastal Basin		0	0	1.014	2 472	4 527	5 292	5.00
Lavaca-Guadalupe Coastal Basin San Antonio-Nueces Basin		6,667	0	1,914	3,472	4,527 0	5,283 0	5,98
Total Irrigation Surplus/Shortage		6,667	0	1,914	3,472	4,527	5,283	5,98
Irrigation New Supply Need								
Guadalupe Basin		0	0	0	0	0	0	
Colorado-Lavaca Coastal Basin		0	0	0	0		0	
Lavaca-Guadalupe Coastal Basin		0	0	0	0		0	
San Antonio-Nueces Basin		0	0	0	0		0	(
Total Irrigation New Supply Need		0	0	0	0		0	(

	Proiected W	Table C-4 Vater Demands, Su	ipplies, and	Needs				
	110jected W	Calhoun Cour		recus				
	So	outh Central Texas						
		Total in			Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining Demand								
Guadalupe Basin		13	15	16	17	17	18	18
Colorado-Lavaca Coastal Basin		1	1	1	1	1	1	
Lavaca-Guadalupe Coastal Basin		6	7	8	8	8	8	8
San Antonio-Nueces Basin		8	9	10	10	11	11	1:
Total Mining Demand		28	32	35	36	37	38	38
Mining Supply								
Guadalupe Basin	Gulf Coast	18	18	18	18	18	18	18
Colorado-Lavaca Coastal Basin	Gulf Coast	1	1	1	1	1	1	1
Lavaca-Guadalupe Coastal Basin	Gulf Coast	8	8	8	8	8	8	8
San Antonio-Nueces Basin	Gulf Coast	11	11	11	11	11	11	11
Total Mining Supply		38	38	38	38	38	38	38
Mining Surplus/Shortage			-	-			_	
Guadalupe Basin		5	3	2	1	1	0	(
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		2	1	0	0	0	0	(
San Antonio-Nueces Basin		3	2	1	1	0	0	(
Total Mining Surplus/Shortage		10	6	3	2	1	0	(
N								
Mining New Supply Need		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	(
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Mining New Supply Need		0	U	U	0	U	U	(
Y: (1 D)								
Livestock Demand		2	2	2	2	2	2	
Guadalupe Basin		3 17	3 17	3 17	3 17	3 17	3 17	17
Colorado-Lavaca Coastal Basin			322	322	322	322	322	322
Lavaca-Guadalupe Coastal Basin San Antonio-Nueces Basin		322	0	0	0	0	0	32.
Total Livestock Demand		342	342	342	342	342	342	342
Total Livestock Demand		342	342	342	342	342	342	342
Livestock Supply								
Guadalupe Basin	Gulf Coast	1	1	1	1	1	1	1
Guadarupe Basiii	Local	2	2	2	2	2	2	
Subtotal	Locai	3	3	3	3	3	3	3
Colorado-Lavaca Coastal Basin	Gulf Coast	8	8	8	8	8	8	
Colorado-Lavaca Cuastal Dasili	Local	9	9	9	9	9	9	
Subtotal	Local	17	17	17	17	17	17	17
Lavaca-Guadalupe Coastal Basin	Gulf Coast	161	161	161	161	161	161	161
Lavaca-Guadaiupe Coastai Basiii	Local	161	161	161	161	161	161	16
Subtotal	Local	322	322	322	322	322	322	322
San Antonio-Nueces Basin		0	0	0	0	0	0	
Total Livestock Supply		342	342	342	342	342	342	342
Total Errestock Supply		542	542	372	572	572	572	542
Livestock Surplus/Shortage								
Guadalupe Basin		0	0	0	0	0	0	(
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Livestock Surplus/Shortage		0	0	0	0	0	0	(
Pras, Shorage			3	3	3	3	,	
Livestock New Supply Need								
Guadalupe Basin		0	0	0	0	0	0	(
Colorado-Lavaca Coastal Basin		0	0	0	0	0	0	(
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Livestock New Supply Need		0	0	0	0		0	(
Total Livestock New Supply Need		()	O	(D)	())	0	())	

HDR-0<u>7755-93053-10</u>

Appendix C

	Projected W	Table C-4 ater Demands, St	ipplies, and	Needs				
	110jected W	Calhoun Cour	• •	. 10003				
	So	uth Central Texa						
	50	Total in	Kegion		Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dasin	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Calhoun County Demand		(ucrt)	(ucrt)	(ucrt)	(ucrt)	(ucrt)	(ucit)	(acrt)
,		2,705	2,948	3,222	3,556	3,870	4,007	4,17
Municipal Industrial								
Industrial Steam-Electric		42,397 684	49,784	54,857 0	59,235 0	63,575	67,406 0	72,23
Irrigation		8,077	-	13,654	12,096	11,041	10.285	9,58
Mining		28	15,568 32	35	36	37	38	9,38
Livestock		342	342	342	342	342	342	342
Total County Demand		54,233	68,674	72,110	75,265	78,865	82,078	86,370
Total County Demand		34,233	00,074	72,110	73,203	70,003	02,070	00,371
Total Calhoun County Supply								
Municipal		11,375	11,375	11,375	11,375	11,375	11,375	11,37
Industrial		70,253	70,253	70,253	70,253	70,253	70,253	70,253
Steam-Electric Steam-Electric		684	0	0	0	0	0	(
Irrigation		14,744	15,568	15,568	15,568	15,568	15,568	15,568
Mining		38	38	38	38	38	38	38
Livestock		342	342	342	342	342	342	342
Total County Supply		97,436	97,576	97,576	97,576	97,576	97,576	97,570
, 11 j			,	ŕ	ĺ	ŕ	ŕ	,
Total Calhoun County Balance								
Municipal		8,670	8,427	8,153	7,819	7,505	7,368	7,204
Industrial		27,856	20,469	15,396	11,018	6,678	2,847	-1,985
Steam-Electric		0	0	0	0	0	0	(
Irrigation		6,667	0	1,914	3,472	4,527	5,283	5,987
Mining		10	6	3	2	1	0	(
Livestock		0	0	0	0	0	0	(
Total County Surplus/Shortage		43,203	28,902	25,466	22,311	18,711	15,498	11,200
Total Basin Demand								
Guadalupe		0	0	0	0	0	0	
Municipal					190			232
Industrial		136	160	176	190	204	216	
Steam-Electric		0	0	0	0	0	0	(
Irrigation Mining		13	15	16	17	17	18	18
Livestock		3	3	3	3	3	3	10
Total Guadalupe Basin Demand		152	178	195	210	224	237	253
Total Guadalupe Basiii Delilalid		132	176	193	210	224	231	23.
Colorado-Lavaca								
Municipal		251	289	362	523	691	675	672
Industrial		19,175	22,516	24,810	26,790	28,753	30,486	32,67
Steam-Electric		684	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		1	1	1	1	1	1	
Livestock		17	17	17	17	17	17	17
Total Colorado-Lavaca Basin Demand		20,128	22,823	25,190	27,331	29,462	31,179	33,36
Lavaca-Guadalupe Municipal		2,447	2,655	2,858	3,032	3,178	2 222	3,499
Municipal Industrial		23,086	2,033	2,858	32,255	34,618	3,332 36,704	39,335
Steam-Electric		23,080	27,108	29,871	32,233	34,618	36,704	39,33
		8,077	15,568	13,654		11,041	10,285	9,58
Irrigation Mining			15,368	13,034	12,096 8	-	10,285	9,58
Livestock		322	322	322	322	8 322	322	322
Total Lavaca-Guadalupe Basin Demand		33,938	45,660		47,713	49,167	50,651	
Total Lavaca-Quadalupe Dasiii Dellialid		33,938	45,000	46,713	4/,/13	49,107	50,051	52,745

	Projected W	Table C-4 ater Demands, Su	innlies and	Needs				
	Projected w	Calhoun Cour		Needs				
	So	uth Central Texas						
	50	Total in	s Kegion		Projec	tions		
Do atia	C	2000	2010	2020	2050	2050 2060		
Basin	Source	(acft)	(acft)	(acft)	2030 (acft)	2040 (acft)	(acft)	(acft)
C A A · N		(acit)	(acit)	(acit)	(acit)	(acrt)	(acit)	(acit)
San Antonio-Nueces		7	4	2	1	1	0	
Municipal		7	4	2	1	1	0	
Industrial		0	0	0	0	0	0	
Steam-Electric		0	0	0	0	0	0	(
Irrigation			9					
Mining		8	-	10	10	11	11	1
Livestock Total San Antonio-Nueces Basin Demand		15	0 13	0 12	0 11	0 12	0 11	1
Total San Antonio-Nueces Basin Demand		15	13	12	11	12	11	1
Total Basin Supply								
Guadalupe								
Municipal		3,000	3,000	3,000	3,000	3,000	3,000	3,00
Industrial		250	250	250	250	250	250	25
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		18	18	18	18	18	18	1
Livestock		3	3	3	3	3	3	
Unallocated Groundwater Supply		23	23	23	23	23	23	2.
Total Guadalupe Basin Supply		3,294	3,294	3,294	3,294	3,294	3,294	3,29
Colorado-Lavaca		217	217	217	217	217	217	21/
Municipal		317	317 30.650	317 30.650	317	317	317	31′
Industrial		30,650	,	/	30,650	30,650	30,650	30,650
Steam-Electric		684	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		1	1	1	1	1	1	1
Livestock		17	17	17	17	17	17	17
Unallocated Groundwater Supply		386	246	246	246	246	246	246
Total Colorado-Lavaca Basin Supply		32,055	31,231	31,231	31,231	31,231	31,231	31,231
Lavaca-Guadalupe								
Municipal		8,049	8,049	8,049	8,049	8,049	8,049	8,049
Industrial		39,353	39,353	39,353	39,353	39,353	39,353	39,353
Steam-Electric		0	0	0	0	0	0	(
Irrigation		14,744	15,568	15,568	15,568	15,568	15,568	15,568
Mining		8	8	8	8	8	8	8
Livestock		322	322	322	322	322	322	322
Unallocated Groundwater Supply		0	0	0	0	0	0	(
Total Lavaca-Guadalupe Basin Supply		62,476	63,300	63,300	63,300	63,300	63,300	63,300
C. A. C. N.								
San Antonio-Nueces		0	0	0	0	0	0	
Municipal		9	9	9	9	9	9	9
Industrial		0	0		0	0	0	(
Steam-Electric Irrigation		0	0	0	0	0	0	(
Mining		11	11	11	11	11	11	1
Livestock Unallocated Groundwater Supply		0	0	0	0	0	0	(
		77	77	77	77	77	77	77
Total San Antonio-Nueces Basin Supply		97	97	97	97	97	97	97
Total Basin Balance								
Guadalupe								
Municipal		3,000	3,000	3,000	3,000	3,000	3,000	3,000
Industrial		114	90	74	60	46	34	18
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		5	3	2	1	1	0	(
Livestock		0	0	0	0	0	0	(
Unallocated Groundwater Supply		23	23	23	23	23	23	2.
Total Guadalupe Basin Surplus/Shortage		3,142	3,116	3,099	3,084	3,070	3,057	3,04

HDR-0<u>7755-93053-10</u>

Appendix C

Table C-4 Projected Water Demands, Supplies, and Needs **Calhoun County South Central Texas Region** Total in Projections Basin Source 2000 2020 (acft) (acft) (acft) (acft) (acft) (acft) (acft) Colorado-Lavaca 28 -45 -206 -374 -358 -355 66 Municipal Industrial 11,475 8,134 5,840 3,860 1,897 164 -2,021 Steam-Electric 0 0 0 0 0 0 0 0 Irrigation 0 0 0 0 0 Mining 0 0 0 0 0 0 0 0 0 0 0 0 0 Livestock Unallocated Groundwater Supply 386 246 246 246 246 246 246 Total Colorado-Lavaca Basin Surplus/Shortage 11,927 8,408 6,041 3,900 1,769 52 -2,130Lavaca-Guadalupe 5,394 5,017 4,871 4,550 5,602 5,191 4,717 Municipal Industrial 16,267 12,245 9,482 7,098 4,735 2,649 18 Steam-Electric 0 0 0 0 0 0 3,472 4,527 5,987 6,667 1,914 5,283 Irrigation 0 Mining 1 0 0 0 0 0 Livestock 0 0 0 0 0 0 0 Unallocated Groundwater Supply 0 0 0 0 0 0 0 15,587 14,133 10,555 Total Lavaca-Guadalupe Basin Surplus/Shortage 28,538 17,640 16,587 12,649 San Antonio-Nueces Municipal 2 5 8 8 9 9 Industrial 0 0 0 0 0 0 0 Steam-Electric 0 0 0 0 0 0 0 Irrigation 0 0 0 0 0 0 0 Mining 2 0 0 0 0 0 0 0 0 0 0 Livestock Unallocated Groundwater Supply 77 77 77 77 77 77 77 Total San Antonio-Nueces Basin Surplus/Shortage 84 86 86 Groundwater Supplies Available Gulf Coast 42 42 42 Guadalupe 42 42 42 42 Lavaca-Guadalupe Gulf Coast 1,334 1,334 1,334 1,334 1,334 1,334 1,334 1,467 1,467 1,467 1,467 1,467 1,467 Colorado-Lavaca Gulf Coast 1,467 97 97 97 97 97 97 San Antonio-Nueces Gulf Coast 97 Total Available 2,940 2,940 2,940 2,940 2,940 2,940 2,940 Allocated Gulf Coast Guadalupe 19 19 19 19 19 19 19 avaca-Guadalupe Gulf Coast 1,334 1,334 1,334 1,334 1,334 1,334 1,334 Colorado-Lavaca Gulf Coast 1,081 1,221 1,221 1,221 1,221 1,221 1,221 20 Gulf Coast 20 20 20 20 20 San Antonio-Nueces 20 Total Allocated 2,454 2,594 2,594 2,594 2,594 2,594 2,594 Total Unallocated 346 486 346 346 346 346 346

		Projected Water	Table C-5 Demands, St	unnlies and	Needs				
		Ü	Comal Coun	• •	11000				
			Central Texa	•					
		Journ	Total in	o region		Projec	tions		
Ra	ısin	Source	2000	2010	2020	2030	2040	2050	2060
		Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
			(41213)	(3333)	(0.000)	(3333)	(444-4)	(3321)	(44414)
Municipal Demand	l								
San Antonio Basin									
Bexar Met Water	District*		214	429	695	984	1,249	1,537	1,860
Bulverde City			501	1,044	1,728	2,507	3,283	4,089	4,954
Fair Oaks Ranch			58	58	58	58	58	58	59
Garden Ridge*			185	228	284	347	411	477	549
Schertz (part)*			7	11	16	23	28	35	42
Selma			6	77	129	193	222	248	274
	. (Apex Water Ser)		236	308	402	509	615	723	845
Rural			109	118	145	172	209	250	298
	Subtotal		1,316	2,273	3,457	4,793	6,075	7,417	8,881
Guadalupe Basin					_	_			
Bexar Met Water	District*		16	33	53	75	95	117	141
Bulverde City			1 405	2 020	14	21	27	34	41
Canyon Lake WS			1,495	2,928	4,769	6,838	8,898	11,034	13,331
Crystal Clear WS	U**		174 273	240 337	325 419	426 513	516 607	619 704	731 811
Garden Ridge* Green Valley SUI)*		173	235	314	409	493	704 591	696
New Braunfels*). 		8,073	10,042	12,510	15,390	18,241	21,168	24,416
Schertz*			44	71	107	13,390	185	226	24,410
Rural			2,487	2,603	2,785	2,987	3,167	3,408	3,700
Kurai	Subtotal		12,739	16,498	21,296	26,805	32,229	37,901	44,137
	Subtotal		12,737	10,470	21,200	20,003	32,227	37,501	77,137
Total Municipal	Demand		14,055	18,771	24,753	31,598	38,304	45,318	53,018
Total Manerpar			1 1,000	10,771	21,700	51,570	20,20	.5,510	55,010
Municipal Existing	Supply								
San Antonio Basin	~~ 								
Bexar Met Water	District	Trinity	43	43	43	43	43	35	35
Bulverde City		Canyon (GBRA - Western Canyo	0	396	396	396	396	396	396
Fair Oaks Ranch		Trinity	13	13	13	13	13	11	11
		Canyon (GBRA - Western Canyo	0	74	74	74	74	74	74
Fair Oaks Ranch S	Subtotal		13	87	87	87	87	85	85
Garden Ridge		Edwards	106	106	106	106	106	106	106
Schertz (part)		Edwards	3	3	3	3	3	3	3
		Carrizo (Guadalupe) - S/S	0	32	32	32	32	32	32
		Carrizo (Gonzales) - S/S	23	23	23	23	23	23	23
Schertz Subtotal			26	58	58	58	58	58	58
Selma		Edwards (Bexar)	151	151	151	151	151	151	151
0.1 0.1		Carrizo (Gonzales) - S/S	18	18	18	18	18	18	18
Selma Subtotal	(Amor W-t C)	Edwards	169	169	169	169	169	169	169
	. (Apex Water Ser)	Edwards	13	13	13	13	13	13	13
Rural		Trinity Canyon (GBRA - Western Canyor	20	20 500	20	20 500	20 500	16	16
Rural Subtotal		Canyon (GDKA - Western Canyon	20	500 520	500 520	500 520	520	500 516	500 516
Aurai Subiotai	Subtotal		390	1,392	1,392	1,392	1,392	1,378	1,378
Guadalupe Basin	Subtotal		390	1,392	1,392	1,392	1,392	1,378	1,370
Bexar Met Water	District								
Bulverde City		Canyon (GBRA - Western Canyo	0	4	4	4	4	4	4
Canyon Lake WS	C	Canyon (GBRA)	4,000	6,000	6,000	6,000	6,000	6,000	6,000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Trinity	768	734	718	709	700	568	562
Canyon Lake WS	C Subtotal		4,768	6,734	6,718	6,709	6,700	6,568	6,562
Crystal Clear WS		Edwards	56	56	56	56	56	56	56
,		ROR (Guadalupe) - CRWA	16	16	16	16	16	16	16
		Canyon (CRWA)	49	49	49	49	49	49	49
		Canyon (CRWA - Dunlap) - Sprir	28	28	28	28	28	28	28
		Canyon (New Braunfels)	102	102	102	102	102	102	102
		Canyon (GBRA)	90	90	90	90	90	90	90
Crystal Clear WS	C		341	341	341	341	341	341	341
Garden Ridge		Edwards	202	202	202	202	202	202	202

HDR-0<u>7755-93053-10</u>

Appendix C

			Table C-5						
		Projected Wate			Needs				
		C4-	Comal Coun						
	I	South	Central Texa Total in	is Region		Projec	tions		
De	ısin	Source	2000	2010	2020	2030	2040	2050	2060
Da	ISIII	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Green Valley SUI		Edwards	216	216	216	216	216	216	216
Green valley SUI) 	Edwards (East Central)	15	15	15	15	15	15	15
		Canyon (GBRA)	225	225	225	225	225	225	225
		Canyon (CRWA - Dunlap)	135	135	135	135	135	135	135
Green Valley SUI	O Subtotal	J. (1	591	591	591	591	591	591	591
New Braunfels		Edwards	5,060	5,060	5,060	5,060	5,060	5,060	5,060
		Canyon (GBRA)	5,634	5,634	5,634	5,634	5,634	5,634	5,634
		ROR (Guadalupe)	1,036	1,036	1,036	1,036	1,036	1,036	1,036
New Braunfels Su	btotal		11,730	11,730	11,730	11,730	11,730	11,730	11,730
Schertz		Edwards	14	14	14	14	14	14	14
		Carrizo (Guadalupe) - S/S	0	65	65	65	65	65	65
		Carrizo (Gonzales) - S/S	129	129	129	129	129	129	129
Schertz Subtotal			143	208	208	208	208	208	208
Rural		Edwards	73	73	73	73	73	73	73
		Trinity	362	346	338	334	330	268	265
		Run-of-River	0	0	0	0	0	0	0
D 101441		Canyon (GBRA)	402	402	402	402	402	402	402
Rural Subtotal	Subtotal		837 18,612	821	813 20,607	809 20,594	805 20,581	743	740
	Subtotai		18,012	20,631	20,007	20,594	20,581	20,387	20,378
Total Municipal	Existing Supply		19,002	22,023	21,999	21,986	21,973	21,765	21,756
Municipal Surplus	/Shortage								
San Antonio Basin									
Bexar Met Water	District*		-171	-386	-652	-941	-1,206	-1,502	-1,825
Bulverde City			-501	-648	-1,332	-2,111	-2,887	-3,693	-4,558
Fair Oaks Ranch			-45	29	29	29	29	27	26
Garden Ridge*			-79	-122	-178	-241	-305	-371	-443
Schertz (part)*			19	47	42	35	30	23	16
Selma			163	92	40	-24	-53	-79 -10	-105
	. (Apex Water Ser)		-223	-295	-389	-496	-602	-710	-832
Rural	C-1-4-4-1		-89	402	375	348	311	266	218
Cuadaluma Dasim	Subtotal		-926	-881	-2,065	-3,401	-4,683	-6,039	-7,503
Guadalupe Basin Bexar Met Water	Dietrict*		-16	-33	-53	-75	-95	-117	-141
Bulverde City	District		-4	-55	-10	-17	-23	-30	-37
Canyon Lake WS	C		3,273	3,806	1,949	-129	-2,198	-4,466	-6,769
Crystal Clear WS			167	101	16	-85	-175	-278	-390
Garden Ridge*			-71	-135	-217	-311	-405	-502	-609
Green Valley SUI)*		418	356	277	182	98	0	-105
New Braunfels*			3,657	1,688	-780	-3,660	-6,511	-9,438	-12,686
Schertz*			99	137	101	62	23	-18	-62
Rural			-1,650	-1,782	-1,972	-2,178	-2,362	-2,665	-2,960
	Subtotal		5,873	4,133	-689	-6,211	-11,648	-17,514	-23,759
Total Municipal	Surplus/Shortage		4,947	3,252	-2,754	-9,612	-16,331	-23,553	-31,262
Municipal New Su	pply Need								
San Antonio Basin	FF-J 1.000								
Bexar Met Water	District*		171	386	652	941	1,206	1,502	1,825
Bulverde City			501	648	1,332	2,111	2,887	3,693	4,558
Fair Oaks Ranch			45	0	0	0	0	0	0
Garden Ridge*			79	122	178	241	305	371	443
Schertz (part)*			0	0	0	0	0	0	0
Selma			0	0	0	24	53	79	105
Water Service Inc	. (Apex Water Ser)		223	295	389	496	602	710	832
Rural			89	0	0	0	0	0	0
	Subtotal		1,108	1,451	2,551	3,813	5,053	6,355	7,763

			Table C-5						
		Projected Wate		11 /	Needs				
			Comal Coun						
		South	Central Texa	s Region		n ·			
Do	sin	Source	Total in 2000	2010	2020	Projec 2030	2040	2050	2060
Da	SIII	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Guadalupe Basin			(ucrt)	(ucrt)	(ucrt)	(ucrt)	(ucrt)	(ucrt)	(ucit)
Bexar Met Water	District*		16	33	53	75	95	117	141
Bulverde City			4	5	10	17	23	30	37
Canyon Lake WS0	C		0	0	0	129	2,198	4,466	6,769
Crystal Clear WS0	C*		0	0	0	85	175	278	390
Garden Ridge*			71	135	217	311	405	502	609
Green Valley SUI)*		0	0	0	0	0	0	105
New Braunfels*			0	0	780	3,660	6,511	9,438	12,686
Schertz*			0	0	0	0	0	18	62
Rural			1,650	1,782	1,972	2,178	2,362	2,665	2,960
	Subtotal		1,741	1,955	3,032	6,455	11,769	17,514	23,759
Total Municipal	New Supply Need		2,849	3,406	5,583	10,268	16,822	23,869	31,522
Industrial Demand	<u>I</u>								
San Antonio Basin			1	1	1	1	2	2	2
Guadalupe Basin			6,282	7,728	8,562	9,313	10,043	10,670	11,551
Total Industrial	Demand		6,283	7,729	8,563	9,314	10,045	10,672	11,553
Industrial Existing	Supply								
San Antonio Basin		Edwards	352	352	352	352	352	352	352
Guadalupe Basin		Edwards	2,524	2,524	2,524	2,524	2,524	2,524	2,524
		Run-of-River	0	0	0	0	0	0	0
G 11 P : /		Canyon (GBRA)	5	5	5	5 2 520	5	5	2.520
Guadalupe Basin S	Subtotal		2,529	2,529	2,529	2,529	2,529	2,529	2,529
Total Industrial	Existing Supply		2,881	2,881	2,881	2,881	2,881	2,881	2,881
Industrial Surplus/	Shortage								
San Antonio Basin	Shortinge		351	351	351	351	350	350	350
Guadalupe Basin			-3,753	-5,199	-6,033	-6,784	-7,514	-8,141	-9,022
Total Industrial	Surplus/Shortage		-3,402	-4,848	-5,682	-6,433	-7,164	-7,791	-8,672
Industrial New Sup	ply Need								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin	Y 0 1 1 1		3,753	5,199	6,033	6,784	7,514	8,141	9,022
Total Industrial	New Supply Need		3,753	5,199	6,033	6,784	7,514	8,141	9,022
Steam-Electric Der	nand								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Total Steam-Ele	ctric Demand		0	0	0	0	0	0	0
Steam-Electric Exi	sting Supply								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Total Steam-Ele	ctric Existing Supply		0	0	0	0	0	0	0
Steam-Electric Sur	plus/Shortage								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Total Steam-Ele	ctric Surplus/Shortag	ge	0	0	0	0	0	0	0
Steam-Electric Nev	w Supply Need								
San Antonio Basin			0	0	0	0	0	0	C
Guadalupe Basin			0	0	0	0	0	0	0
Total Steam-Ele	ctric New Supply Ne	eed	0	0	0	0	0	0	0

C-32

			Table C-5						
		Projected Wate			Needs				
		South	Comal Coun Central Texa	•					
		South	Total in	is Region		Projec	ctions		
Bas	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Irrigation Demand									
San Antonio Basin			7	30	28	23	22	20	18
Guadalupe Basin Total Irrigation D	amand		43 50	174 204	158 186	146 169	130 152	115 135	101 119
Total Illigation E	Cmanu		50	204	100	109	132	133	117
Irrigation Supply									
San Antonio Basin		Edwards	32	32	32	32	32	32	32
San Antonio Basin	Subtotal		32	32	32	32	32	32	32
Guadalupe Basin		Edwards Canyon (GBRA)	511 376	511 376	511 376	511 376	511 376	511 376	511 376
		Direct Reuse (New Braunfels)	0	92	92	92	92	92	92
		Run-of-River	0	0	0	0	0	0	(
Guadalupe Basin S	ubtotal		887	979	979	979	979	979	979
						· · · · · ·			· · · · ·
Total Irrigation S	upply		919	1,011	1,011	1,011	1,011	1,011	1,011
Irrigation Surplus/S	Shortage								
San Antonio Basin	nion tage		25	2	4	9	10	12	14
Guadalupe Basin			844	805	821	833	849	864	878
Total Irrigation S	urplus/Shortage		869	807	825	842	859	876	892
Irrigation New Supp	ply Need		0	0	0		0	0	
San Antonio Basin Guadalupe Basin			0	0	0	0	0	0	0
Total Irrigation N	lew Supply Need		0	0	0	0	0	0	0
	on supply areas						-	-	
Mining Demand									
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			2,224	2,678	2,897	3,029	3,159	3,287	3,401
Total Mining Der	mand		2,224	2,678	2,897	3,029	3,159	3,287	3,401
Mining Supply									
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin		Trinity	342	393	416	430	443	373	382
		Edwards	1,846	1,846	1,846	1,846	1,846	1,846	1,846
Guadalupe Basin S			2,188	2,239	2,262	2,276	2,289	2,219	2,228
Total Mining Sup	pply		2,188	2,239	2,262	2,276	2,289	2,219	2,228
Mining Surplus/Sho	rtage								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			-36	-439	-635	-753	-870	-1,068	-1,173
Total Mining Sur	plus/Shortage		-36	-439	-635	-753	-870	-1,068	-1,173
Mining New Supply	Nood								
San Antonio Basin	11000		0	0	0	0	0	0	0
Guadalupe Basin			36	439	635	753	870	1,068	1,173
Total Mining Nev	w Supply Need		36	439	635	753	870	1,068	1,173
Livestock Demand				4					
San Antonio Basin			42 256	42 256	42	42	42 256	42 256	42 256
Guadalupe Basin Total Livestock I	Demand		298	298	256 298	256 298	298	298	298
10th Livestock I			270	270	270	270	270	270	270
Livestock Supply									
San Antonio Basin		Trinity	3	3	3	3	3	2	2
		Edwards (D&L) ¹	18	18	18	18	18	19	19
	0.11	Local	21	21	21	21	21	21	21
	Subtotal	Trinity	42 20	42 19	42	42	42	42 15	42 14
Guadalupe Basin		Trinity Edwards (D&I) ¹			18	18	18		
		Edwards (D&L) ¹ Local	108 128	109 128	110 128	110 128	110 128	113 128	114 128
	Subtotal	Local	256	256	256	256	256	256	256
Total Livestock S			298	298	298	298	298	298	298

HDR-0<u>7755-93053-10</u>

Appendix C

	Projected '	Water Demands, St	upplies, and	Needs				
	110,0000	Comal Coun		110000				
	5	South Central Texa						
		Total in	8		Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dusin .	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Surplus/Shortage		(,	(,	(*** - */	(,	()	((,
San Antonio Basin		0	0	0	0	0	0	(
Guadalupe Basin		0	0	0	0	0	0	(
Total Livestock Surplus/Shortage ¹		0	0	0	0	0	0	(
Total Elvestock Bulpius, Shortage			Ü	0	· ·	Ü	· ·	
Livestock New Supply Need								
San Antonio Basin		0	0	0	0	0	0	(
Guadalupe Basin		0	0	0	0	0	0	(
Total Livestock New Supply Need		0	0	0	0	0	0	(
Total Comal County Demand								
Municipal		14,055	18,771	24,753	31,598	38,304	45,318	53,018
Industrial		6,283	7,729	8,563	9,314	10,045	10,672	11,553
Steam-Electric		0	0	0	0	0	0	(
Irrigation		50	204	186	169	152	135	119
Mining		2,224	2,678	2,897	3,029	3,159	3,287	3,401
Livestock		298	298	298	298	298	298	298
Total County Demand		22,910	29,680	36,697	44,408	51,958	59,710	68,389
T + 1 C + 1 C + 1 C								
Total Comal County Supply		10.002	22.022	21.000	21.006	21.072	21.765	21.75
Municipal Industrial		19,002	22,023 2,881	21,999 2,881	21,986 2,881	21,973 2,881	21,765 2,881	21,756
Steam-Electric		2,881	2,001	2,001	2,001	2,001	2,001	2,881
Irrigation		919	1,011	1,011	1,011	1,011	1,011	1,011
Mining		2,188	2,239	2,262	2,276	2,289	2,219	2,228
Livestock		298	298	298	298	298	298	298
Total County Supply		25,288	28,452	28,451	28,452	28,452	28,174	28,174
and a sum y supply			,	,	,	,		,
Total Comal County Balance								
Municipal		4,947	3,252	-2,754	-9,612	-16,331	-23,553	-31,262
Industrial		-3,402	-4,848	-5,682	-6,433	-7,164	-7,791	-8,672
Steam-Electric		0	0	0	0	0	0	(
Irrigation		869	807	825	842	859	876	892
Mining		-36	-439	-635	-753	-870	-1,068	-1,173
Livestock		0	0	0	0	0	0	(
Total County Surplus/Shortage		2,378	-1,228	-8,246	-15,956	-23,506	-31,536	-40,215
T (ID I D								
Total Basin Demand								
San Antonio Mymicinal		1 216	2.272	2 457	4.702	6.075	7 417	0.001
Municipal Industrial		1,316	2,273	3,457	4,793	6,075	7,417	8,881
Steam-Electric		0	0	0	0		0	(
Irrigation		7	30	28	23	22	20	18
Mining		0	0	0	0	0	0	(
Livestock		42	42	42	42	42	42	42
Total San Antonio Basin Demand		1,366	2,346	3,528	4,859	6,141	7,481	8,943
		,	,	- /-	,	-,	.,	- /-
Guadalupe								
Municipal		12,739	16,498	21,296	26,805	32,229	37,901	44,137
Industrial	_	6,282	7,728	8,562	9,313	10,043	10,670	11,551
Steam-Electric	<u> </u>	0	0	0	0		0	(
Irrigation		43	174	158	146	130	115	101
Mining		2,224	2,678	2,897	3,029	3,159	3,287	3,401
Livestock		256	256	256	256	256	256	256
Total Guadalupe Basin Demand		21,544	27,334	33,169	39,549	45,817	52,229	59,446

		Projected	Water Demands, Su	* * /	Needs				
			Comal Count						
			South Central Texas Total in	s Region		Projec	tions		
R	asin	Source	2000	2010	2020	2030	2040	2050	2060
	asiii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Suppl	v		()	(444-4)	(41211)	(4,010)	(4,010)	(4,4,1,1)	(41414)
San Antonio	3								
Municipal			390	1,392	1,392	1,392	1,392	1,378	1,37
Industrial			352	352	352	352	352	352	35
Steam-Electric			0	0	0	0	0	0	
Irrigation			32	32	32	32	32	32	
Mining Livestock			42	0 42	0 42	0 42	0 42	0 42	
Total San Antonio	Basin Supply		816	1,818	1,818	1,818	1,818	1,804	1,80
Total Ban Fintonio	Dusin Suppry		010	1,010	1,010	1,010	1,010	1,001	1,0
Guadalupe									
Municipal			18,612	20,631	20,607	20,594	20,581	20,387	20,3
Industrial			2,529	2,529	2,529	2,529	2,529	2,529	2,5
Steam-Electric			0	0	0	0	0	0	
Irrigation			887	979 2,239	979	979 2,276	979 2,289	979 2,219	2,2
Mining Livestock			2,188 256	2,239	2,262 256	2,276	2,289	2,219	2,2.
Total Guadalupe B	asin Supply		24,472	26,634	26,633	26,634	26,634	26,370	26,3
				,	,	,	,	,	
Total Basin Balan	ce								
San Antonio									
Municipal			-926	-881	-2,065	-3,401	-4,683	-6,039	-7,50
Industrial			351	351	351	351	350	350	3:
Steam-Electric			0	0	0	0	0	0	
Irrigation Mining			25	2	4 0	9	10	12	
Livestock			0	0	0	0	0	0	
	Basin Surplus/Shortag	pe.	-550	-528	-1,710	-3,041	-4,323	-5,677	-7,13
Total Ban / Intolio	Busin Gurpius/Gnoraeg		330	320	1,710	3,011	1,525	3,077	7,11
Guadalupe									
Municipal			5,873	4,133	-689	-6,211	-11,648	-17,514	-23,75
Industrial			-3,753	-5,199	-6,033	-6,784	-7,514	-8,141	-9,02
Steam-Electric			0	0	0	0	0	0	
Irrigation			844	805	821	833	849	864	8′
Mining Livestock			-36 0	-439 0	-635 0	-753 0	-870 0	-1,068 0	-1,17
	asin Surplus/Shortage		2,928	-700	-6,536	-12,915	-19,183	-25,859	-33,0
Total Guadalupe B	asin Surpius/Shortage	,	2,720	-700	-0,550	-12,713	-17,103	-23,037	-33,0
Groundwater Supp	lies								
	Available								
	San Antonio	Edwards	384	384	384	384	384	384	3
	Guadalupe	Edwards	11,354	11,354	11,354	11,354	11,354	11,354	11,3
	San Antonio	Edwards (D&L)	18	18	18	18	18	19	
	Guadalupe San Antonia	Edwards (D&L)	108	109	110	110	110	113	1
	San Antonio Guadalupe	Trinity Trinity	309 1,491	309 1,491	309 1,491	309 1,491	309 1,491	253 1,223	1,2
	Total Available	11111Ity	13,664	13,665	13,666	13,666	13,666	13,346	13,3
	Allocated		13,004	15,005	13,000	13,000	13,000	13,570	1.5,5.
	San Antonio	Edwards	384	384	384	384	384	384	3
	Guadalupe	Edwards	11,354	11,354	11,354	11,354	11,354	11,354	11,3:
	San Antonio	Edwards (D&L)	18	18	18	18	18	19	
	Guadalupe	Edwards (D&L)	108	109	110	110	110	113	1
	San Antonio	Trinity	309	309	309	309	309	253	2:
	Guadalupe Total Allocated	Trinity	1,491	1,491	1,491	1,491	1,491	1,223	1,2
	Total Allocated		13,664	13,665	13,666	13,666	13,666	13,346	13,3
	Total Unallocate	:d	0	0	0	0	0	0	
			0	0	Ü	0	0		
Notes:									-
		Ú.							

			Tal	ble C-6					
		Projected	Water Dema		es, and Need	s			
				tt County					
			South Centr	al Texas Reg	gion				
			Total in			Projec	tions		
Ba	sin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Municipal Demand									
San Antonio Basin	-								
Rural			67	67	66	65	63	61	60
Rului	Subtotal		67	67	66	65	63	61	60
Guadalupe Basin	Suototai		0,	0,	00	0.5	0.5	01	
Cuero			1,244	1,249	1,257	1,250	1,232	1,198	1,177
Gonzales County	WSC		106	107	108	108	108	106	104
Yorktown	W BC		343	343	344	340	334	323	318
Rural			807	801	797	783	762	734	721
Kurar	Subtotal		2,500	2,500	2,506	2,481	2,436	2,361	2,320
Lavaca Basin	Subtotai		2,300	2,500	2,300	۷,401	4,430	2,301	2,320
Yoakum			252	252	254	251	215	224	220
			352 146	352 145	354 145	351 142	345 138	334 133	328 131
Rural	Subtotal		498	497	499	493	483	467	459
T C 11 (498	497	499	493	483	467	459
Lavaca-Guadalupe (Coastal Basin			0			0	0	
Rural	~		0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	(
Total Municipal	Demand		3,065	3,064	3,071	3,039	2,982	2,889	2,839
Municipal Existing	Supply								
San Antonio Basin									
Rural		Gulf Coast	84	84	84	84	84	84	84
	Subtotal		84	84	84	84	84	84	84
Guadalupe Basin									
Cuero		Gulf Coast	5,076	5,076	5,076	5,076	5,076	5,076	5,076
Gonzales County	WSC	Carrizo	71	71	71	71	71	71	71
		Canyon (GBRA)	49	49	49	49	49	49	49
Gonzales County	WSC Subtotal		120	120	120	120	120	120	120
Yorktown		Gulf Coast	1,149	1,149	1,149	1,149	1,149	1,149	1,149
Rural		Gulf Coast	1,009	1,009	1,009	1,009	1,009	1,009	1,009
	Subtotal		7,354	7,354	7,354	7,354	7,354	7,354	7,354
Lavaca Basin									
Yoakum		Gulf Coast	1,500	1,500	1,500	1,500	1,500	1,500	1,500
Rural		Gulf Coast	183	183	183	183	183	183	183
	Subtotal		1,683	1,683	1,683	1,683	1,683	1,683	1,683
Lavaca-Guadalupe (1,003	1,003	1,003	1,003	1,003	1,003	1,00.
Rural	Journal Darill		0	0	0	0	0	0	(
Kurar	Subtotal		0	0	0	0	0	0	(
1	Subtotal		U	U	U	U	U	U	
Total Municipal	Existing Supply		9,121	9,121	9,121	9,121	9,121	9,121	9,121
Municipal Surplus	/Shortoge								
	onortage	-							
San Antonio Basin			15	15	10	10	21	22	
Rural	0.11		17	17	18	19	21	23	24
G 11 5 '	Subtotal		17	17	18	19	21	23	24
Guadalupe Basin									
Cuero			3,832	3,827	3,819	3,826	3,844	3,878	3,89
Gonzales County	WSC		14	13	12	12	12	14	10
Yorktown			806	806	805	809	815	826	83
Rural			202	208	212	226	247	275	288
	Subtotal		4,854	4,854	4,848	4,873	4,918	4,993	5,034

				ble C-6					
		Project	ed Water Dem		ies, and Need	ls			
				tt County					
			South Centr	al Texas Re	gion				
			Total in			Projec	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca Basin									
Yoakum			1,148	1,148	1,146	1,149	1,155	1,166	1,172
Rural			37	38	38	41	45	50	52
	Subtotal		1,185	1,186	1,184	1,190	1,200	1,216	1,224
Lavaca-Guadalupe (Coastal Basin								
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Total Municipal	Surplus/Shortage		6,056	6,057	6,050	6,082	6,139	6,232	6,282
Manadalana I Niana Cara	l XIl								
Municipal New Sup San Antonio Basin	ppry Neea								
Rural			0	0	0	0	0	Δ.	^
Kurai	Subtotal	-	0	0	0	0	0	0	0
Guadalupe Basin	Subtotal		0	U	U	U	U	U	- 0
Cuero			0	0	0	0	0	0	0
Gonzales County	WSC		0	0	0	0	0	0	0
Yorktown	W.5C		0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	0
Ruitii	Subtotal		0	0	0	0	0	0	0
Lavaca Basin	o do total			0	Ü	Ü	Ü	Ü	
Yoakum			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Lavaca-Guadalupe (Coastal Basin								
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Total Municipal	New Supply Need		0	0	0	0	0	0	0
Industrial Demand									
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			147	176	190	202	215	225	242
Lavaca Basin			7	8	9	10	10	11	12
Lavaca-Guadalupe (Coastal Basin		0	0	0	0	0	0	0
Total Industrial	Demand		154	184	199	212	225	236	254
Industrial Existing	Supply								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin		Gulf Coast	245	245	245	245	245	245	245
Lavaca Basin		Gulf Coast	15	15	15	15	15	15	15
Lavaca-Guadalupe C			0	0	0	0	0	0	0
Total Industrial	Existing Supply		260	260	260	260	260	260	260
Industrial Surplus/	Shortage								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			98	69	55	43	30	20	3
Lavaca Basin			8	7	6	5	5	4	3
Lavaca-Guadalupe (0	0	0	0	0	0	0
Total Industrial	Surplus/Shortage		106	76	61	48	35	24	6
	-	· · · · · · · · · · · · · · · · · · ·		-					-

				ble C-6					
		Projecto	ed Water Dem		ies, and Need	ls			
				tt County					
			South Centr	al Texas Re	gion				
			Total in			Projec	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial New Sup	ply Need								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe (0	0	0	0	0	0	0
Total Industrial	New Supply Need		0	0	0	0	0	0	0
Steam-Electric Der	nand								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe (0	0	0	0	0	0	0
Total Steam-Elec	ctric Demand		0	0	0	0	0	0	0
Steam-Electric Exis	sting Supply								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe C			0	0	0	0	0	0	0
Total Steam-Elec	ctric Existing Supply	T	0	0	0	0	0	0	0
a									
Steam-Electric Sur	plus/Shortage						^	0	
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin	1.10		0	0	0	0	0	0	0
Lavaca-Guadalupe C			0	0	0	0	0	0	0
Total Steam-Elec	ctric Surplus/Shortag	ge .	0	0	0	0	0	0	0
C4 El4 N	- C l N J								
Steam-Electric Nev	v Supply Need		0		0	0	0	0	
San Antonio Basin Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
	Panatal Dania		0	0	0	0	0		0
Lavaca-Guadalupe (ctric New Supply Ne	ed	0	0	0	0	0	0	0
Total Steam-Ele	care thew Supply Ne	cu	- 0	U	U	U	U	U	- 0
Irrigation Demand									
San Antonio Basin			8	12	10	8	7	5	5
Guadalupe Basin			94	147	122	100	80	64	49
Lavaca Basin			0	0	0	0	0	0	- 49
Lavaca-Guadalupe (Coastal Basin		0	0	0	0	0	0	0
Total Irrigation I			102	159	132	108	87	69	54
Total Hilgation I	- Cinana		102	137	132	100	07	09	J4
Irrigation Supply									
San Antonio Basin		Gulf Coast	12	12	12	12	12	12	12
Guadalupe Basin		Run-of-River	0	0	0	0	0	0	0
		Gulf Coast	147	147	147	147	147	147	147
	Subtotal		147	147	147	147	147	147	147
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe (Coastal Basin		0	0	0	0	0	0	0
Total Irrigation S			159	159	159	159	159	159	159
Ĭ .	- * *								

			ble C-6					
	Project	ted Water Dem		ies, and Need	is			
		South Centr	tt County	~!~				
			ai Texas Ke	gion	D	4		
p :	G.	Total in	2010	2020	Projec		2050	2070
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Irrigation Surplus/Shortage		(ucre)	(ucrt)	(ucit)	(ucrt)	(ucrt)	(ucrt)	(ucit)
San Antonio Basin		4	0	2	4	5	7	7
Guadalupe Basin		53	0	25	47	67	83	98
Lavaca Basin		0	0	0	0	0	0	0
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
Total Irrigation Surplus/Shortage		57	0	27	51	72	90	105
Irrigation New Supply Need								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	(
Lavaca Basin		0	0	0	0	0	0	0
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	(
Total Irrigation New Supply Need		0	0	0	0	0	0	C
Mining Demand								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		9	10	10	10	10	10	11
Lavaca Basin		34	37	39	40	40	41	41
Lavaca-Guadalupe Coastal Basin		15	17	18	18	18	19	19
Total Mining Demand		58	64	67	68	68	70	71
Mining Supply								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin	Gulf Coast	11	11	11	11	11	11	11
Lavaca Basin	Gulf Coast	41	41	41	41	41	41	41
Lavaca-Guadalupe Coastal Basin	Gulf Coast	19	19	19	19	19	19	19
Total Mining Supply		71	71	71	71	71	71	71
Mining Surplus/Shortage								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		2	1	1	1	1	1	0
Lavaca Basin		7	4	2	1	1	0	0
Lavaca-Guadalupe Coastal Basin		4	2	1	1	1	0	C
Total Mining Surplus/Shortage		13	7	4	3	3	1	C
Mining New Supply Need								
San Antonio Basin		0	0	0	0	0	0	C
Guadalupe Basin		0	0	0	0	0	0	0
Lavaca Basin		0	0	0	0	0	0	0
Lavaca-Guadalupe Coastal Basin		0	0	0	0	0	0	0
Total Mining New Supply Need		0	0	0	0	0	0	0
Liverteel Demand								
Livestock Demand San Antonio Basin		135	135	135	135	135	135	135
Guadalupe Basin		1,267	1,267	1,267	1,267	1,267	1,267	1,267
Lavaca Basin		253	253	253	253	253	253	253
Lavaca-Guadalupe Coastal Basin		34	34	34	34	34	34	34
Total Livestock Demand		1,689	1,689	1,689	1,689	1,689	1,689	1,689
		2,000	-,~~/	-,//	-,~~/	-,//	-,/	-,,-

		D : 4		ble C-6	137				
		Projecte		tt County		IS			
	T	Т	South Centr	al Texas Re	gion	D			
P.	asin	Source	Total in 2000	2010	2020	Project 2030	2040	2050	2060
De	15111	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Supply			(11.1)	(,	()	(()	(,	(,
San Antonio Basin		Gulf Coast	67	67	67	67	67	67	67
		Local	68	68	68	68	68	68	68
	Subtotal		135	135	135	135	135	135	135
Guadalupe Basin		Gulf Coast	633	633	633	633	633	633	633
		Local	634	634	634	634	634	634	634
	Subtotal		1,267	1,267	1,267	1,267	1,267	1,267	1,267
Lavaca Basin		Gulf Coast	126	126	126	126	126	126	126
	0.11	Local	127	127	127	127	127	127	127
T C 1.1	Subtotal	C-16 C	253	253	253	253	253	253	253
Lavaca-Guadalupe	Coastal Basin	Gulf Coast	17	17 17	17	17	17 17	17	17 17
	Subtotal	Local	17 34	34	17 34	17 34	34	17 34	34
Total Livestock			1,689	1,689	1,689	1,689	1,689	1,689	1,689
TOTAL LIVESTOCK	Бирріу		1,009	1,009	1,009	1,009	1,009	1,009	1,009
Livestock Surplus/	Shortage								
San Antonio Basin	~		0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
	Surplus/Shortage		0	0	0	0	0	0	0
Livestock New Sup	ply Need								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe			0	0	0	0	0	0	0
Total Livestock	New Supply Need		0	0	0	0	0	0	0
Total DeWitt Cour	-4 D1								
Municipal	ity Demand		3,065	3,064	3,071	3,039	2,982	2,889	2,839
Industrial			154	184	199	212	2,982	2,889	2,839
Steam-Electric			0	0	0	0	0	0	0
Irrigation			102	159	132	108	87	69	54
Mining			58	64	67	68	68	70	71
Livestock			1,689	1,689	1,689	1,689	1,689	1,689	1,689
Total County Dema	nd		5,068	5,160	5,158	5,116	5,051	4,953	4,907
·						-			
Total DeWitt Cour	nty Supply								
Municipal			9,121	9,121	9,121	9,121	9,121	9,121	9,121
Industrial			260	260	260	260	260	260	260
Steam-Electric			0	0	0	0	0	0	0
Irrigation			159	159	159	159	159	159	159
Mining			71	71	71	71	71	71	71
Livestock			1,689	1,689	1,689	1,689	1,689	1,689	1,689
Total County Suppl	у		11,300	11,300	11,300	11,300	11,300	11,300	11,300
m . 1 r									
Total DeWitt Cour	nty Balance								
Municipal			6,056	6,057	6,050	6,082	6,139	6,232	6,282
Industrial			106	76	61	48	35	24	6
Steam-Electric	1		57	0	0	0	0	0	105
Irrigation Mining			57 13	7	27 4	51	72	90	105
Livestock	 		0	0	0	0	0	0	0
Total County Surplu	ıs/Shortage		6,232	6,140	6,142	6,184	6,249	6,347	6,393
2 July Surpit	an onorage		0,232	0,170	0,172	0,104	0,477	0,547	0,393
	Í.	Ĭ.	1						

Table C-6 Projected Water Demands, Supplies, and Needs DeWitt County **South Central Texas Region** Total in Projections Basin Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) **Total Basin Demand** San Antonio Municipal Industrial Steam-Electric Irrigation Mining Livestock Total San Antonio Basin Demand Guadalupe 2,500 2,500 2,506 2,481 2,436 2,361 2,320 Municipal Industrial Steam-Electric Irrigation Mining Livestock 1,267 1,267 1,267 1,267 1,267 1,267 1,267 Total Guadalupe Basin Demand 4,017 4,100 4,095 4,060 4,008 3,927 3,889 Lavaca Municipal Industrial Steam-Electric Irrigation Mining Livestock Total Lavaca Basin Demand Lavaca-Guadalupe Municipal Industrial Steam-Electric Irrigation Mining Livestock Total Lavaca-Guadalupe Basin Demand **Total Basin Supply** San Antonio Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total San Antonio Basin Supply 1,203 1,203 1,203 1,203 1,203 1,203 1,203

Table C-6 Projected Water Demands, Supplies, and Needs **DeWitt County South Central Texas Region** Total in **Projections** Basin Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Guadalupe 7,354 7,354 7,354 7,354 7,354 7,354 7,354 Municipal Industrial Steam-Electric Irrigation Mining Livestock 1,267 1,267 1,267 1,267 1,267 1,267 1,267 3,167 Unallocated Groundwater Supply 3,167 3.167 3,167 3.167 3.167 3,167 Total Guadalupe Basin Supply 12,191 12,191 12,191 12,191 12,191 12,191 12,191 Lavaca Municipal 1,683 1,683 1,683 1,683 1,683 1,683 1,683 Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total Lavaca Basin Supply 2,460 2,460 2,460 2,460 2,460 2,460 2,460 Lavaca-Guadalupe Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total Lavaca-Guadalupe Basin Supply **Total Basin Balance** San Antonio Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply 1,002 Total San Antonio Basin Surplus/Shortage 1,003 Guadalupe 4,854 4,854 4,848 4,873 4,918 4,993 5,034 Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply 3,167 3,167 3,167 3,167 3,167 3,167 3,167 Total Guadalupe Basin Surplus/Shortage 8,174 8,091 8,096 8,131 8,183 8,264 8,302

				ble C-6					
		Projecte	d Water Dem		es, and Need	S			
				tt County					
			South Centr	al Texas Re	gion				
_		_	Total in			Projec			
Bas	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca									
Municipal			1,185	1,186	1,184	1,190	1,200	1,216	1,224
Industrial			8	7	6	5	5	4	3
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			7	4	2	1	1	0	0
Livestock	1 . 0 . 1		0	0	0	0	0	0	0
Unallocated Groun			468	468	468	468	468	468	468
Total Lavaca Basin S	Surplus/Shortage		1,668	1,665	1,660	1,664	1,674	1,688	1,695
L C I-l									
Lavaca-Guadalupe Municipal			0	0	0	0	0	0	0
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			4	2	1	1	1	0	0
Livestock			0	0	0	0	0	0	0
Unallocated Groun	Auston Cumply		59	59	59	59	59	59	59
Total Lavaca-Guada		hortage	63	61	60	60	60	59	59
Total Lavaca-Guada	tupe Basin Surpius/S	mortage	03	01	00	00	00	37	37
Groundwater Suppli	es								
	Available								
	San Antonio	Gulf Coast	1,135	1,135	1,135	1,135	1,135	1,135	1,135
	Guadalupe	Gulf Coast	11,437	11,437	11,437	11,437	11,437	11,437	11,437
	Lavaca	Gulf Coast	2,333	2,333	2,333	2,333	2,333	2,333	2,333
	Lavaca-Guadalupe	Gulf Coast	95	95	95	95	95	95	95
	Total Available		15,000	15,000	15,000	15,000	15,000	15,000	15,000
	Allocated		.,	- 7	- ,	- /	- ,	- ,	- , , , , ,
	San Antonio	Gulf Coast	163	163	163	163	163	163	163
	Guadalupe	Gulf Coast	8,270	8,270	8,270	8,270	8,270	8,270	8,270
	Lavaca	Gulf Coast	1,865	1,865	1,865	1,865	1,865	1,865	1,865
	Lavaca-Guadalupe	Gulf Coast	36	36	36	36	36	36	36
	Total Allocated		10,334	10,334	10,334	10,334	10,334	10,334	10,334
								•	
	Total Unallocated	1	4,666	4,666	4,666	4,666	4,666	4,666	4,666

			Tal	ble C-7					
		Projecte	ed Water Dema	ands, Suppli	es, and Need	ls			
			Dimm	it County					
			South Centr	al Texas Reg	ion				
			Total in			Projec	ctions		
В	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Demar	ad.								
Rio Grande Basin	IQ								
Rural			2	2	2	2	2	2	2
	Subtotal		2	2	2	2	2	2	2
Nueces Basin									
Asherton			274	286	299	306	301	293	279
Big Wells			142	149	156	159	157	153	145
Carrizo Springs			1,742	1,842	1,943	1,996	1,981	1,930	1,836
Rural			272	282	292	293	284	274	261
	Subtotal		2,430	2,559	2,690	2,754	2,723	2,650	2,521
Total Municipa	al Demand		2,432	2,561	2,692	2,756	2,725	2,652	2,523
Municipal Existin	og Supply								
Municipal Existin Rio Grande Basin	ig suppiy								
Rural Rural		Carrizo	3	3	3	3	3	3	3
Kurai	Subtotal	Carrizo	3	3	3	3	3	3	3
Nueces Basin	Subtotal		3	3		3	3	3	
Asherton		Carrizo	613	613	613	613	613	613	613
Big Wells		Carrizo	651	651	651	651	651	651	651
Carrizo Springs		Carrizo	2,210	2,210	2,210	2,210	2,210	2,210	2,210
Rural		Carrizo	340	340	340	340	340	340	340
710707	Subtotal	Curre	3,814	3,814	3,814	3,814	3,814	3,814	3,814
			2,011	0,011	-,	2,021	2,021	-,	-,
Total Municipa	al Existing Supply		3,817	3,817	3,817	3,817	3,817	3,817	3,817
Municipal Surplu	s/Shortage								
Rio Grande Basin									
Rural			1	1	1	1	1	1	1
	Subtotal		1	1	1	1	1	1	1
Nueces Basin									
Asherton			339	327	314	307	312	320	334
Big Wells			509	502	495	492	494	498	506
Carrizo Springs			468	368	267	214	229	280	374
Rural	0.11		68	58	48	47	56	66	79
	Subtotal		1,384	1,255	1,124	1,060	1,091	1,164	1,293
Total Municips	al Surplus/Shortage		1,385	1,256	1,125	1,061	1,092	1,165	1,294
Total Municipa	ai Surpius/Siloitage		1,363	1,230	1,123	1,001	1,092	1,103	1,294
Municipal New S	upply Need								
Rio Grande Basin			+						
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Nueces Basin			†				-		
Asherton			0	0	0	0	0	0	0
Big Wells			0	0	0	0	0	0	C
Carrizo Springs			0	0	0	0	0	0	C
Rural			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	C
Total Municipa	al New Supply Need		0	0	0	0	0	0	0
					-				

			ble C-7					
	Projecte	d Water Dem		es, and Need	ls			
			nit County ral Texas Reg	rion				
		Total in	ai Texas Keş	31011	Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
	2222	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial Demand								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Industrial Demand		0	0	0	0	0	0	0
Industrial Existing Supply								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Industrial Existing Supply		0	0	0	0	0	0	0
Industrial Surplus/Shortage								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Industrial Surplus/Shortage		0	0	0	0	0	0	0
Industrial New Supply Need								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Industrial New Supply Need		0	0	0	0	0	0	0
Steam-Electric Demand								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Steam-Electric Demand		0	0	0	0	0	0	0
Steam-Electric Existing Supply								
Rio Grande		0	0	0	0	0	0	0
Nucces Basin	-	0	0	0	0	0	0	0
Total Steam-Electric Existing Supply	y	0	U	0	0	0	0	0
Steam-Electric Surplus/Shortage								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Steam-Electric Surplus/Shorta	ge	0	0	0	0	0	0	0
Steam-Electric New Supply Need								
Rio Grande Nueces Basin		0	0	0	0	0	0	0
Total Steam-Electric New Supply No	and and	0	0	0	0	0	0	0
Total Steam-Electric New Supply No	eed	U	U	U	U	U	U	0
Irrigation Demand								
Rio Grande		0	0	10.222	0	0 012	0 201	0.007
Nueces Basin		6,750	10,611	10,333	10,225	9,813	9,391	8,987
Total Irrigation Demand		6,750	10,611	10,333	10,225	9,813	9,391	8,987
Irrigation Supply								
Rio Grande	D 05:	0	0	0	0	0	0	0
Nueces Basin	Run-of-River	2,261	2,261	2,261	2,261	2,261	2,261	2,261
Nueces Basin Subtotal	Carrizo	8,350 10,611	8,350 10,611	8,350 10,611	8,350 10,611	8,350 10,611	8,350 10,611	8,350 10,611
rucces Dasin Subtotal		10,011	10,011	10,011	10,011	10,011	10,011	10,011
Total Irrigation Supply		10,611	10,611	10,611	10,611	10,611	10,611	10,611

	Project	ed Water Dema	ınds, Supplie	s, and Needs	3			
	·		it County					
		South Centra	al Texas Regi	ion				
		Total in			Project	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Irrigation Surplus/Shortage								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		3,861	0	278	386	798	1,220	1,624
Total Irrigation Surplus/Shortage		3,861	0	278	386	798	1,220	1,624
Irrigation New Supply Need								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Irrigation New Supply Need		0	0	0	0	0	0	0
5 11 3								
Mining Demand								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		919	1,003	1,034	1,051	1,067	1,082	1,095
Total Mining Demand		919	1,003	1,034	1,051	1,067	1,082	1,095
Mining Supply		1						
Rio Grande		0	0	0	0	0	0	0
Nueces Basin	Run-of-River	1	1	1	1	1	1	1 004
N. D. C.L. I	Carrizo	1,094	1,094	1,094	1,094	1,094	1,094	1,094
Nueces Basin Subtotal		1,095	1,095	1,095	1,095	1,095	1,095	1,095
Total Mining Supply		1,095	1,095	1,095	1,095	1,095	1,095	1,095
Total Willing Supply		1,093	1,093	1,093	1,093	1,093	1,093	1,093
Mining Surplus/Shortage								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		176	92	61	44	28	13	0
Total Mining Surplus/Shortage		176	92	61	44	28	13	0
Mining New Supply Need								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Mining New Supply Need		0	0	0	0	0	0	0
T: (1 B)								
Livestock Demand Rio Grande		105	105	105	105	105	105	105
Nueces Basin		447	447	447	447	447	447	447
Total Livestock Demand		552	552	552	552	552	552	552
Total El vestock Benfand		332	332	332	332	332	332	332
Livestock Supply								
Rio Grande	Carrizo	52	52	52	52	52	52	52
	Local	53	53	53	53	53	53	53
Subtotal		105	105	105	105	105	105	105
Nueces Basin	Carrizo	223	223	223	223	223	223	223
	Local	224	224	224	224	224	224	224
Subtotal		447	447	447	447	447	447	447
Total Livestock Supply		552	552	552	552	552	552	552
Liveate els Commissa (Classets es								
Livestock Surplus/Shortage Rio Grande			0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Livestock Surplus/Shortage		0	0	0	0	0	0	0
Total Exvestock Surplus/Siloitage		0	U	U	U	U	U	U
Livestock New Supply Need								
Rio Grande		0	0	0	0	0	0	0
Nueces Basin		0	0	0	0	0	0	0
Total Livestock New Supply Need		0	0	0	0	0	0	0
117								

	Project	ed Water Dema	nds, Supplie	es, and Needs	S			
	110,000		it County	, una 1 (cca.	,			
		South Centra		ion				
		Total in			Project	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Dimmit County Demand								
Municipal		2,432	2,561	2,692	2,756	2,725	2,652	2,523
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		6,750	10,611	10,333	10,225	9,813	9,391	8,987
Mining		919	1,003	1,034	1,051	1,067	1,082	1,095
Livestock		552	552	552	552	552	552	552
Total County Demand		10,653	14,727	14,611	14,584	14,157	13,677	13,157
Total Dimmit County Supply			2 2 4 5			2 2 4 5		
Municipal		3,817	3,817	3,817	3,817	3,817	3,817	3,817
Industrial Steam-Electric		0	0	0	0	0	0	(
Irrigation Steam-Electric		10,611	10,611	10,611	10,611	10,611	10,611	10,611
Mining		1,095	1,095	1,095	1,095	1,095	1,095	1,095
Livestock		552	552	552	552	552	552	552
Total County Supply		16,075	16,075	16,075	16,075	16,075	16,075	16,075
Total County Supply		10,075	10,073	10,073	10,075	10,073	10,073	10,072
Total Dimmit County Balance								
Municipal Summer Councy Butunee		1,385	1,256	1,125	1,061	1,092	1,165	1,294
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		3,861	0	278	386	798	1,220	1,624
Mining		176	92	61	44	28	13	(
Livestock		0	0	0	0	0	0	(
Total County Surplus/Shortage		5,422	1,348	1,464	1,491	1,918	2,398	2,918
Total Basin Demand								
Rio Grande								
Municipal Industrial		2	0	2	0	0	0	2
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		0	0	0	0	0	0	(
Livestock		105	105	105	105	105	105	105
Total Rio Grande Basin Demand		107	107	107	107	107	107	107
Nueces								
Municipal		2,430	2,559	2,690	2,754	2,723	2,650	2,521
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		6,750	10,611	10,333	10,225	9,813	9,391	8,987
Mining		919	1,003	1,034	1,051	1,067	1,082	1,095
Livestock		447	447	447	447	447	447	447
Total Nueces Basin Demand		10,546	14,620	14,504	14,477	14,050	13,570	13,050
T I D C	1	1						
Total Basin Supply								
Rio Grande Municipal		1	3	3	3	3	2	
Municipal Industrial		3	0	0	0	0	0	3
Steam-Electric		0	0	0	0	0	0	(
CHEATH-LINESHIP		0	0	0	0	0	0	(
		U	U				U	
Irrigation		Ω	0	0	0	0	0	(
Irrigation Mining		105	105	105	105	105	105	105
Irrigation Mining Livestock		105	105	105	105	105	105	105
Irrigation Mining						~		

				ole C-7					
		Projec	ted Water Dema		es, and Need	s			
				it County					
			South Centr	al Texas Reg	ion				
			Total in			Projec			
Basi	in	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Nueces									
Municipal			3,814	3,814	3,814	3,814	3,814	3,814	3,81
Industrial			0	0	0	0	0	0	
Steam-Electric			0	0	0	0	0	0	
Irrigation			10,611	10,611	10,611	10,611	10,611	10,611	10,61
Mining			1,095	1,095	1,095	1,095	1,095	1,095	1,09
Livestock			447	447	447	447	447	447	44
Unallocated Ground			7,271	7,271	7,271	7,271	7,271	7,271	7,27
Total Nueces Basin S	upply		23,238	23,238	23,238	23,238	23,238	23,238	23,23
Total Basin Balance									
Rio Grande									
Municipal			1	1	1	1	1	1	
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			0	0	0	0	0	0	(
Mining			0	0	0	0	0	0	(
Livestock			0	0	0	0	0	0	(
Unallocated Ground			2,973	2,973	2,973	2,973	2,973	2,973	2,97
Total Rio Grande Bas	in Surplus/Shortag	e	2,974	2,974	2,974	2,974	2,974	2,974	2,97
Nueces									
Municipal			1,384	1,255	1,124	1,060	1,091	1,164	1,29
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			3,861	0	278	386	798	1,220	1,62
Mining			176	92	61	44	28	13	(
Livestock			0	0	0	0	0	0	
Unallocated Ground			7,271	7,271	7,271	7,271	7,271	7,271	7,27
Total Nueces Basin S	urplus/Shortage		12,692	8,618	8,734	8,761	9,188	9,668	10,18
Groundwater Supplies									
	vailable	G :	2.020	2.000	2.020	2.020	2.020	2.020	2.02
	Rio Grande	Carrizo	3,028	3,028	3,028	3,028	3,028	3,028	3,02
P	Vueces	Carrizo	20,752	20,752	20,752	20,752	20,752	20,752	20,75
	Total Available		23,780	23,780	23,780	23,780	23,780	23,780	23,78
	Allocated	G :							-
	Rio Grande	Carrizo	55	55	55	55	55	55	5
	Vueces	Carrizo	13,482	13,482	13,482	13,482	13,482	13,482	13,48
	Total Allocated		13,537	13,537	13,537	13,537	13,537	13,537	13,53
	Total Unallocate	d	10,244	10,244	10,244	10,244	10,244	10,244	10,24

		Project	Tab ed Water Dema	ole C-8 ands, Suppli	es, and Need	s			
		.,,		County					
			Total in	ii Texas Neg	1011	Project	tions		
Basi	in	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Municipal Demand									
Nueces Basin									
Benton City WSC			2	3	4	5	6	6	6
Dilley			1,041	1,229	1,409	1,555	1,683	1,774	1,825
Pearsall			1,435	1,443	1,448	1,449	1,435	1,442	1,449
Rural			636	727	807	881	937	980	1,007
S	Subtotal		3,114	3,402	3,668	3,890	4,061	4,202	4,287
Total Municipal D	Demand		3,114	3,402	3,668	3,890	4,061	4,202	4,287
Municipal Existing S	Supply								
Nueces Basin		1	+						
Benton City WSC		Carrizo	6	6	6	6	6	6	6
Dilley		Carrizo	2,107	2,107	2,107	2,107	2,107	2,107	2,107
Pearsall		Carrizo	2,731	2,731	2,731	2,731	2,731	2,731	2,731
Rural		Carrizo	1,020	1,020	1,020	1,020	1,020	1,020	1,020
Total Municipal E	Existing Supply		5,864	5,864	5,864	5,864	5,864	5,864	5,864
Municipal Surplus/S	Shortage								
Nueces Basin									
Benton City WSC			4	3	2	1	0	0	0
Dilley			1,066	878	698	552	424	333	282
Pearsall			1,296	1,288	1,283	1,282	1,296	1,289	1,282
Rural			384	293	213	139	83	40	13
S	Subtotal		2,750	2,462	2,196	1,974	1,803	1,662	1,577
Total Municipal S	urplus/Shortage		2,750	2,462	2,196	1,974	1,803	1,662	1,577
Municipal New Supp	oly Need								
Nueces Basin	•								
Benton City WSC			0	0	0	0	0	0	0
Dilley			0	0	0	0	0	0	0
Pearsall			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	0
S	Subtotal		0	0	0	0	0	0	0
Total Municipal N	New Supply Need		0	0	0	0	0	0	0
Industrial Demand									
Nueces Basin			0	0	0	0	0	0	0
Total Industrial De	emand		0	0	0	0	0	0	0
Industrial Existing S	Supply								
Nueces Basin	winting Co 1-		0	0	0	0	0	0	0
Total Industrial Ex	xisting Supply		0	0	0	0	0	0	0
Industrial Surplus/S	hortage							0	
Nueces Basin Total Industrial Su	urplus/Shortage		0	0	0	0	0	0	0
Industrial New Supp	olv Need								
Nueces Basin	<u> </u>		0	0	0	0	0	0	0
Total Industrial No	ew Supply Need		0	0	0	0	0	0	0

	Duningt		ole C-8	a and Maada				
	Project	ed Water Dema Frio	inas, Supplie County	es, and Needs	<u> </u>			
		South Centra	al Texas Reg	ion				
D :	G	Total in	2010	2020	Project		2050	20.60
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Steam-Electric Demand								
Nueces Basin		129	289	268	201	192	76	91
Total Steam-Electric Demand		129	289	268	201	192	76	91
Steam-Electric Existing Supply								
Nueces Basin	Carrizo	289	289	289	289	289	289	289
Total Steam-Electric Existing Supply	y	289	289	289	289	289	289	289
Steam-Electric Surplus/Shortage								
Nueces Basin		160	0	21	88	97	213	198
Total Steam-Electric Surplus/Shorta	ge	160	0	21	88	97	213	198
Steam-Electric New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
Total Steam-Electric New Supply No	eed	0	0	0	0	0	0	0
Irrigation Demand								
Nueces Basin		117,098	82,017	79,098	76,302	73,627	71,065	68,592
Total Irrigation Demand		117,098	82,017	79,098	76,302	73,627	71,065	68,592
Indian Company								
Irrigation Supply Nueces Basin	Run-of-River	0	0	0	0	0	0	0
Nueces Basin	Queen City	560	560	560	560	560	560	560
	Carrizo	116,538	116,538	116,538	116,538	116,538	116,538	116,538
Total Irrigation Supply	Calling	117,098	117,098	117,098	117,098	117,098	117,098	117,098
Irrigation Surplus/Shortage								
Nueces Basin		0	35,081	38,000	40,796	43,471	46,033	48,506
Total Irrigation Surplus/Shortage		0	35,081	38,000	40,796	43,471	46,033	48,506
Irrigation New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
Total Irrigation New Supply Need		0	0	0	0	0	0	0
Mining Demand								
Nueces Basin		139	109	104	102	100	98	96
Total Mining Demand		139	109	104	102	100	98	96
Mining Supply								
Nueces Basin								
	Carrizo	139	139	139	139	139	139	139
Total Mining Supply		139	139	139	139	139	139	139
Mining Surplus/Shortage								
Nueces Basin		0	30	35	37	39	41	43
Total Mining Surplus/Shortage		0	30	35	37	39	41	43
Mining New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
Total Mining New Supply Need		0	0	0	0	0	0	0
Livestock Demand								
Nueces Basin		1,209	1,209	1,209	1,209	1,209	1,209	1,209
Total Livestock Demand		1,209	1,209	1,209	1,209	1,209	1,209	1,209

		Tal	ble C-8					
	Project	ed Water Dema		es, and Need	ls			
		Frio South Centr	County	•				
		Total in	ai Texas Keg	gion	Proje	otions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dasiii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Supply				, ,			, ,	
Nueces Basin	Carrizo	496	496	496	496	496	496	496
	Queen City	101	101	101	101	101	101	101
	Sparta	7	7	7	7	7	7	7
	Local	605	605	605	605	605	605	605
Total Livestock Supply		1,209	1,209	1,209	1,209	1,209	1,209	1,209
Livestock Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	(
Total Livestock Surplus/Shortage		0	0	0	0		0	(
Livestock New Supply Need								
Nueces Basin		0	0	0	0	0	0	(
Total Livestock New Supply Need	d	0	0	0	0		0	(
Total Frio County Demand								
Municipal Municipal		3,114	3,402	3,668	3,890	4,061	4,202	4,287
Industrial		0	0	0	0	,	0	(,207
Steam-Electric		129	289	268	201	192	76	91
Irrigation		117,098	82,017	79,098	76,302	73,627	71,065	68,592
Mining		139	109	104	102	100	98	96
Livestock		1,209	1,209	1,209	1,209	1,209	1,209	1,209
Total County Demand		121,689	87,026	84,347	81,704	79,189	76,650	74,275
Total Frio County Supply								
Municipal Municipal		5,864	5,864	5,864	5,864	5,864	5,864	5,864
Industrial		0	0	0	0	0	0	(
Steam-Electric		289	289	289	289	289	289	289
Irrigation		117,098	117,098	117,098	117,098	117,098	117,098	117,098
Mining		139	139	139	139	139	139	139
Livestock		1,209	1,209	1,209	1,209	1,209	1,209	1,209
Total County Supply		124,599	124,599	124,599	124,599	124,599	124,599	124,599
Total Frio County Balance								
Municipal Datanee		2,750	2,462	2,196	1,974	1,803	1,662	1,577
Industrial		0	0	0	0	0	0	(
Steam-Electric		160	0	21	88	97	213	198
Irrigation		0	35,081	38,000	40,796	43,471	46,033	48,506
Mining		0	30	35	37	39	41	43
Livestock		0	0	0	0	0	0	(
Total County Surplus/Shortage		2,910	37,573	40,252	42,895	45,410	47,949	50,324
Total Basin Demand								
Nucces		2 114	2 402	2.000	2 000	4.061	4 202	4.005
Municipal		3,114	3,402	3,668	3,890	4,061	4,202	4,287
Industrial		120	0	268	0	192	0	(
Steam-Electric Irrigation		129 117,098	289 82,017	79,098	201 76,302		76 71,065	68,592
Mining		117,098	109	104	102	73,627 100	71,065	68,39 <u>2</u> 96
Livestock		1,209	1,209	1,209	1,209		1,209	1,209
Total Nueces Basin Demand		121,689	87,026	84,347	81,704	79,189	76,650	74,275
Total Truccos Busin Demand		121,009	57,020	0T,JT/	31,704	, ,,109	, 0,030	, 7,2/2

				ole C-8						
		Projecto	ed Water Dema		es, and Need	s				
				County						
			South Centra	al Texas Reg	ion	~ .				
	1		Total in	2010		Projec			2060	
В	asin	Source	2000 (acft)	2010 (acft)	2020 (acft)					
m . I.D. I. G. I			(acit)	(acit)	(acrt)	(acft)	(acft)	(acft)	(acft)	
Total Basin Suppl	ly									
Nueces			7.064	5.064	5.064	5.064	5.064	5.064	5.064	
Municipal			5,864	5,864	5,864	5,864	5,864	5,864	5,864	
Industrial			Ü	0	0	Ü	0	0	0	
Steam-Electric			289	289	289	289	289	289	289	
Irrigation			117,098	117,098 139	117,098 139	117,098	117,098 139	117,098	117,098	
Mining			139			139			139	
Livestock	2 1		1,209	1,209	1,209	1,209	1,209	1,209	1,209	
Total Nueces Basin	Supply		124,599	124,599	124,599	124,599	124,599	124,599	124,599	
Total Basin Balan	ice									
Nueces										
Municipal			2,750	2,462	2,196	1,974	1,803	1,662	1,577	
Industrial			0	0	0	0	0	0	0	
Steam-Electric			160	0	21	88	97	213	198	
Irrigation			0	35,081	38,000	40,796	43,471	46,033	48,506	
Mining			0	30	35	37	39	41	43	
Livestock			0	0	0	0	0	0	0	
Total Nueces Basin	n Surplus/Shortage		2,910	37,573	40,252	42,895	45,410	47,949	50,324	
	1									
Groundwater Supp	lies									
	Available									
	Nueces	Carrizo	130,765	130,765	130,765	130,765	130,765	130,765	130,765	
	Nueces	Sparta	1,260	1,260	1,260	1,260	1,260	1,260	1,260	
	Nueces	Queen City	8,000	8,000	8,000	8,000	8,000	8,000	8,000	
	Total Available		140,025	140,025	140,025	140,025	140,025	140,025	140,025	
	Allocated									
	Nueces	Carrizo	123,320	123,320	123,320	123,320	123,320	123,320	123,320	
	Nueces	Sparta	7	7	7	7	7	7	7	
	Nueces	Queen City	661	661	661	661	661	661	661	
	Total Allocated		123,988	123,988	123,988	123,988	123,988	123,988	123,988	
	Total Unallocate	d	16.037	16.037	16.037	16.037	16.037	16.037	16,037	
	Total Ullanocate	u	10,037	10,037	10,037	10,037	10,037	10,037	10,03	

		Projected V	Table (Vater Demand		and Needs				-
		r rojecteu v	Goliad Co		and iveeus				
		Se	outh Central T	exas Region					
			Total in			Projec	ctions		
Ba	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
16 15									
Municipal Demand	di .								
San Antonio Basin Goliad			365	416	480	527	553	577	594
Rural			225	252	291	315	329	342	352
Kulai	Subtotal		590	668	771	842	882	919	946
Guadalupe Basin	Sucretar		2,0	000	,,,	0.12	002	717	,,,
Rural			256	286	330	357	374	388	399
	Subtotal		256	286	330	357	374	388	399
San Antonio-Nuece	s Coastal Basin								
Rural			62	70	80	87	91	94	97
	Subtotal		62	70	80	87	91	94	97
			1						
Total Municipal	l Demand*		908	1,024	1,181	1,286	1,347	1,401	1,442
Municipal E-d-4	r Cumulu		+						
Municipal Existing San Antonio Basin	g suppry		+						
Goliad		Gulf Coast	958	943	954	958	958	958	958
Rural		Gulf Coast Gulf Coast	355	349	354	355	355	355	355
Kuiai	Subtotal	Guii Coast	1,313	1,292	1,308	1,313	1,313	1,313	1,313
Guadalupe Basin	Subtotui		1,313	1,272	1,500	1,515	1,515	1,515	1,515
Rural		Gulf Coast	527	527	527	527	527	527	527
	Subtotal		527	527	527	527	527	527	527
San Antonio-Nuece	es Coastal Basin								
Rural		Gulf Coast	100	100	100	100	100	100	100
	Subtotal		100	100	100	100	100	100	100
Total Municipal	l Existing Supply		1,940	1,919	1,935	1,940	1,940	1,940	1,940
	107								
Municipal Surplus	S/Shortage								
San Antonio Basin			593	527	474	431	405	201	264
Goliad Rural			130	97	63	431	26	381 13	364
Kuiai	Subtotal		723	624	537	471	431	394	367
Guadalupe Basin	Subtotal		123	024	331	7/1	431	394	307
Rural			271	241	197	170	153	139	128
	Subtotal		271	241	197	170	153	139	128
San Antonio-Nuece	es Coastal Basin								
Rural			38	30	20	13	9	6	3
	Subtotal		38	30	20	13	9	6	3
Total Municipal	l Surplus/Shortage*		1,032	895	754	654	593	539	498
Municipal New Su	pply Need								
San Antonio Basin			0	0	0	0	0	0	
Goliad Rural			0	0	0	0	0	0	0
Kuiai	Subtotal		0	0	0	0	0	0	0
Guadalupe Basin	Sabiotai		+ 0	U	U	U	U	U	U
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
San Antonio-Nuece				Ŭ					
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Total Municipal	l New Supply Need*		0	0	0	0	0	0	0

	Projected W	Table (ater Demand		and Noods				
	r rojecteu vv	Goliad C		inu iveeus				
	Sor	ith Central T	exas Region					
		Total in			Projec			
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Industrial Demand		(ucre)	(ucre)	(ucr)	(uert)	(uere)	(uert)	(uere)
San Antonio Basin		0	4	8	12	16	20	24
Guadalupe Basin		0	0	0	0	0	0	C
San Antonio-Nueces Basin		0	0	0	0	0	0	C
Total Industrial Demand*		0	4	8	12	16	20	24
Industrial Existing Supply								
San Antonio Basin	Gulf Coast	24	24	24	24	24	24	24
Guadalupe Basin		0	0	0	0	0	0	0
San Antonio-Nueces Basin		0	0	0	0	0	0	0
Total Industrial Existing Supply		24	24	24	24	24	24	24
Industrial Surplus/Shortage								
San Antonio Basin		24	20	16	12	8	4	0
Guadalupe Basin		0	0	0	0	0	0	0
San Antonio-Nueces Basin		0	0	0	0	0	0	0
Total Industrial Surplus/Shortage*		24	20	16	12	8	4	0
Industrial New Supply Need								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
San Antonio-Nueces Basin		0	0	0	0	0	0	0
Total Industrial New Supply Need*	k	0	0	0	0	0	0	0
Steam-Electric Demand								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		9,027	9,027	16,643	16,643	16,643	16,643	16,643
San Antonio-Nueces Basin		0	0	0	0	0	0	0
Total Steam-Electric Demand		9,027	9,027	16,643	16,643	16,643	16,643	16,643
Steam-Electric Existing Supply								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin	Gulf Coast	203	203	203	203	203	203	203
	Canyon (GBRA)	4,000	4,000	6,000	6,000	6,000	6,000	6,000
	Coleto Creek Reservoir ¹	12,500	12,500	12,500	12,500	12,500	12,500	12,500
Guadalupe Basin Subtotal		16,703	16,703	18,703	18,703	18,703	18,703	18,703
San Antonio-Nueces Basin Total Steam-Electric Existing Supp	alv.	0 16,703	16,703	18,703	0 18,703	0 18,703	18,703	18,703
Total Steam-Electric Existing Supp	DIY	10,703	10,703	18,703	18,703	18,703	18,703	18,703
Steam-Electric Surplus/Shortage								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		7,676	7,676	2,060	2,060	2,060	2,060	2,060
San Antonio-Nueces Basin Total Steam-Electric Surplus/Short	age	7,676	7,676	2,060	2,060	2,060	2,060	2,060
		.,	.,	-,0	_,	_,	-,0	_,
Steam-Electric New Supply Need San Antonio Basin		0	0	0	0	0	0	(
Guadalupe Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Steam-Electric New Supply I	Need	0	0	0	0	0	0	
Steam Electric West Supply								

			Table						
		Project	ed Water Demand Goliad C		and Needs				
			South Central	Texas Region					
		_	Total in			Projec			
Bas	in	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
I ' (' D)			(acit)	(acrt)	(acit)	(acit)	(acit)	(acit)	(acit)
Irrigation Demand San Antonio Basin			298	257	222	193	166	144	124
Guadalupe Basin			50	43	38	32	28	24	21
San Antonio-Nueces	Basin		11	9	8	7	6	5	4
Total Irrigation D			359	309	268	232	200	173	149
Irrigation Supply									
San Antonio Basin		Run-of-River	2,425	2,425	2,425	2,425	2,425	2,425	2,425
		Gulf Coast	1,572	1,547	1,567	1,572	1,572	1,572	1,572
	Subtotal		3,997	3,972	3,992	3,997	3,997	3,997	3,997
Guadalupe Basin		Gulf Coast	263	263	263	263	263	263	263
San Antonio-Nueces		Gulf Coast	59	59	59	59	59	59	59
Total Irrigation S	upply		4,319	4,294	4,314	4,319	4,319	4,319	4,319
Irrigation Surplus/S	hortage								
San Antonio Basin	nor tage		3,699	3,715	3,770	3,804	3,831	3,853	3,873
Guadalupe Basin			213	220	225	231	235	239	242
San Antonio-Nueces	Rasin		48	50	51	52	53	54	55
Total Irrigation S			3,960	3,985	4,046	4,087	4,119	4,146	4,170
	F 8-			-,,	.,	.,	1,227	.,	.,
Irrigation New Supp	oly Need								
San Antonio Basin	•		0	0	0	0	0	0	C
Guadalupe Basin			0	0	0	0	0	0	C
San Antonio-Nueces	Basin		0	0	0	0	0	0	C
Total Irrigation N	ew Supply Need*		0	0	0	0	0	0	C
Mining Demand									
San Antonio Basin			0	129	91	64	43	21	11
Guadalupe Basin			9	137	98	73	51	30	20
San Antonio-Nueces			4	132	93	68	46	25	15
Total Mining Der	nand*		13	398	282	205	140	76	46
Mining Complex									
Mining Supply San Antonio Basin		Gulf Coast	0	129	91	64	43	21	11
Guadalupe Basin		Gulf Coast Gulf Coast	9	137	98	73	51	30	20
San Antonio-Nueces	Racin	Gulf Coast	4	137	93	68	46	25	15
Total Mining Sup		Guii Coast	13	398	282	205	140	76	46
Total Willing Sup	pry		13	370	202	203	140	70	
Mining Surplus/Sho	rtage								
San Antonio Basin	U		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
San Antonio-Nueces	Basin		0	0	0	0	0	0	(
Total Mining Sur	plus/Shortage*		0	0	0	0	0	0	(
Mining New Supply	Need								
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			0		0	0	0	0	(
San Antonio-Nueces	Basin		0	0	0		0	0	(
Total Mining Nev	v Supply Need*		0	0	0	0	0	0	(
Livestock Demand									
San Antonio Basin			359	359	359	359	359	359	359
Guadalupe Basin			202	202	202	202	202	202	202
San Antonio-Nueces			359	359	359	359	359	359	359
Total Livestock D	Demand		920	920	920	920	920	920	920

ototal sin ototal ply rtage	Source Gulf Coast Local Gulf Coast Local Gulf Coast Local	Water Demand Goliad C	ounty	2020 (acft) 178 180 358 101 101	Project 2030 (acft) 179 180 359 101 101	2040 (acft) 179 180 359 101	2050 (acft) 179 180 359 101	2060 (acft) 179 180 359
ototal sin ototal ply rtage	Gulf Coast Local Gulf Coast Local Gulf Coast Local	Total in 2000 (acft) 179 180 359 101 101 202 179 180	2010 (acft) 176 180 356 101 101 202	178 180 358 101 101	2030 (acft) 179 180 359 101	2040 (acft) 179 180 359 101	179 180 359	(acft) 179
ototal sin ototal ply rtage	Gulf Coast Local Gulf Coast Local Gulf Coast Local	2000 (acft) 179 180 359 101 101 202 179	176 180 356 101 101 202	178 180 358 101 101	2030 (acft) 179 180 359 101	2040 (acft) 179 180 359 101	179 180 359	(acft) 179
ototal sin ototal ply rtage	Gulf Coast Local Gulf Coast Local Gulf Coast Local	(acft) 179 180 359 101 101 202 179 180	176 180 356 101 101 202	178 180 358 101 101	179 180 359 101	179 180 359 101	179 180 359	(acft) 179
ototal sin ototal ply rtage	Local Gulf Coast Local Gulf Coast	179 180 359 101 101 202 179	176 180 356 101 101 202	178 180 358 101 101	179 180 359 101	179 180 359 101	179 180 359	179
ototal sin ototal ply rtage	Local Gulf Coast Local Gulf Coast	180 359 101 101 202 179 180	180 356 101 101 202	180 358 101 101	180 359 101	180 359 101	180 359	180
ototal sin ototal ply rtage	Local Gulf Coast Local Gulf Coast	180 359 101 101 202 179 180	180 356 101 101 202	180 358 101 101	180 359 101	180 359 101	180 359	180
ototal sin ototal ply rtage	Gulf Coast Local Gulf Coast	359 101 101 202 179 180	356 101 101 202	358 101 101	359 101	359 101	359	
ototal sin ototal ply rtage	Local Gulf Coast	101 101 202 179 180	101 101 202	101 101	101	101		
sin ototal ply rtage	Local Gulf Coast	101 202 179 180	101 202	101			1011	10
sin ototal ply rtage	Gulf Coast	202 179 180	202			101	101	10
sin ototal ply rtage		179 180		202	202	202	202	202
ototal ply rtage		180		179	179	179	179	179
ply			180	180	180	180	180	180
rtage		359	359	359	359	359	359	359
		920	917	919	920	920	920	920
sin								
sin		0	-3	-1	0	0	0	(
sin		0	0	0	0	0	0	(
		0	0	0	0	0	0	(
plus/Shortage		0	-3	-1	0	0	0	(
Need		0	2	1	0	0	0	-
		0	3	0	0	0	0	(
sin		0	0	0	0	0	0	(
v Supply Need		0	3	1	0	0	0	(
7 Supply Need		0	3	1	U	U	0	
emand								
		908	1,024	1,181	1,286	1,347	1,401	1,442
		0	4	8	12	16	20	24
		9,027	9,027	16,643	16,643	16,643	16,643	16,643
		359	309	268	232	200	173	149
		13	398	282	205	140	76	46
		920	920	920	920	920	920	920
		11,227	11,682	19,302	19,298	19,266	19,233	19,224
upply								
					,	,		1,940
								24
					,	,		18,703
								4,319
								920
								920 25,952
		23,919	4,433	20,1//	20,111	20,040	23,702	43,734
alance								
uidific		1.032	895	754	654	503	539	498
								170
							2,060	2,060
		3,960	3,985	4,046		4,119	4,146	4,170
		0	0	0	0	0	0	(
		0	-3	-1	0	0	0	(
		12,692	12,573	6,875	6,813	6,780	6,749	6,728
hortage								
	alance	alance	1,940 24 16,703 4,319 920 23,919 1lance 1,032 24 7,676 3,960 0	1,940 1,919 24 24 24 24 24 24 24 2	1,940	1,940	1,940	1,940

		Projected V	Table (Vater Demand		and Needs				
		Frojecteu v	Goliad C		ina Neeus				
		S	outh Central T						
			Total in			Projec	ctions		
Ba	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Demai	nd								
San Antonio			5 00			0.40	200	0.1.0	0.1
Municipal			590	668	771	842	882	919	940
Industrial			0	4 0	8	12	16 0	20	24
Steam-Electric			298	257	222	193	166	144	124
Irrigation Mining			0	129	91	64	43	21	12-
Livestock			359	359	359	359	359	359	359
Total San Antonio	Basin Demand		1,247	1,417	1,451	1,470	1,466	1,463	1,46
Guadalupe									
Municipal			256	286	330	357	374	388	399
Industrial			0	0	0	0	0	0	(
Steam-Electric			9,027	9,027	16,643	16,643	16,643	16,643	16,643
Irrigation			50	43	38	32	28	24	2
Mining			9	137	98	73	51	30	20
Livestock			202	202	202	202	202	202	202
Total Guadalupe Ba	asin Demand		9,544	9,695	17,311	17,307	17,298	17,287	17,285
San Antonio-Nuec	es								
Municipal			62	70	80	87	91	94	9′
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			11	9	8	7	6 46	5 25	14
Mining Livestock			359	132 359	93 359	68 359	359	359	15 359
	Nueces Basin Deman	d	436	570	540	521	502	483	475
Total Basin Supply	y								
San Antonio			1 212	1.202	1 200	1 212	1 212	1 212	1.010
Municipal Industrial			1,313 24	1,292 24	1,308 24	1,313 24	1,313 24	1,313 24	1,313
Steam-Electric			0	0	0	0	0	0	
Irrigation			3,997	3,972	3,992	3,997	3,997	3,997	3,997
Mining			0	129	91	64	43	21	11
Livestock			359	356	358	359	359	359	359
Unallocated Grou	indwater Supply		80	0	0	16	37	59	69
Total San Antonio	Basin Supply		5,773	5,773	5,773	5,773	5,773	5,773	5,773
Guadalupe									
Municipal			527	527	527	527	527	527	527
Industrial			0	0	0	0	0	0	(
Steam-Electric			16,703	16,703	18,703	18,703	18,703	18,703	18,703
Irrigation			263	263	263	263	263	263	263
Mining			9	137	98	73	51	30	20
Livestock			202	202	202	202	202	202	202
Total Guadalupe Ba	asin Supply		17,704	17,832	19,793	19,768	19,746	19,725	19,715
San Antonio-Nuec	es								
Municipal			100	100	100	100	100	100	100
Industrial			0	0	0	0		0	(
Steam-Electric			59	59	0 59	0 59	0 59	59	59
Irrigation Mining			39	132	93	68	59 46	25	15
Livestock			359	359	359	359	359	359	359
Unallocated Grou	indwater Supply		2,674	2,546	2,585	2,610		2,653	2,663
	Nueces Basin Supply		3,196	3,196	3,196	3,196	3,196	3,196	3,196

		D	Table (
		Ргојеси	d Water Demands		na Neeas				
			Goliad Co South Central T						
		1		exas Region		D!	4:		
			Total in	2010	2020	Projec		20.50	20.00
В	asin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Total Basin Balar	ice		(ucit)	(ucrt)	(ucit)	(ucit)	(ucit)	(ucit)	(ucit)
San Antonio									
Municipal			723	624	537	471	431	394	36
Industrial			24	20	16	12	8	4	-
Steam-Electric			0	0	0	0	0	0	
Irrigation			3,699	3,715	3,770	3,804	3,831	3,853	3,87
Mining			0	0	0	0	0	0	-,
Livestock			0	-3	-1	0	0	0	
Unallocated Gro	undwater Supply		80	0	0	16	37	59	6
	otal San Antonio Basin Surplus/Shortage		4,526	4,356	4,322	4,303	4,307	4,310	4,30
	•							·	
Guadalupe									
Municipal			271	241	197	170	153	139	12
Industrial			0	0	0	0	0	0	
Steam-Electric			7,676	7,676	2,060	2,060	2,060	2,060	2,06
Irrigation			213	220	225	231	235	239	24
Mining			0	0	0	0	0	0	
Livestock			0	0	0	0	0	0	
Total Guadalupe B	asin Surplus/Shortage	2	8,160	8,137	2,482	2,461	2,448	2,438	2,43
San Antonio-Nue	ces								
Municipal			38	30	20	13	9	6	
Industrial			0	0	0	0	0	0	
Steam-Electric			0	0	0	0	0	0	
Irrigation			48	50	51	52	53	54	5
Mining			0	0	0	0	0	0	
Livestock			0	0	0	0	0	0	
Unallocated Gro	***		2,674	2,546	2,585	2,610	2,632	2,653	2,66
Total San Antonio	-Nueces Basin Surplu	s/Shortage	2,760	2,626	2,656	2,675	2,694	2,713	2,72
Groundwater Supp	lies								
	Available								
	San Antonio	Gulf Coast	3,168	3,168	3,168	3,168	3,168	3,168	3,16
	Guadalupe	Gulf Coast	1,816	1,816	1,816	1,816	1,816	1,816	1,81
	San Antonio-Nuece	Gulf Coast	3,016	3,016	3,016	3,016	3,016	3,016	3,01
	Total Available		8,000	8,000	8,000	8,000	8,000	8,000	8,00
	Allocated					, .	,	,	,
	San Antonio	Gulf Coast	3,088	3,168	3,168	3,152	3,131	3,109	3,09
	Guadalupe	Gulf Coast	1,103	1,231	1,192	1,167	1,145	1,124	1,11
	San Antonio-Nuece		342	470	431	406	384	363	35
	Total Allocated		4,533	4,869	4,791	4,725	4,660	4,596	4,56
	Total Unallocate	rd	3,467	3,131	3,209	3,275	3,340	3,404	3,43
	1 otta Chanocate		3,107	3,131	3,207	3,213	5,510	5,101	۵,۳۰
Note:									
Supply from Col	eto Creek Reservoir is	s dependent upon a cor	ntract with GBRA f	or delivery o	f stored wate	r from Canvo	n Reservoir.		
		ds may be greater than							

				ole C-10						
		Projected	Water Dema		es, and Need	ls				
				les County						
<u> </u>		1	South Centr	al Texas Reg	gion	n!	4			
	Total in Projections									
Bas	sin	Source	2000 (acft)	2010 (acft)	2020	2030	2040	2050	2060	
			(acit)	(acit)	(acft)	(acft)	(acft)	(acft)	(acft)	
Municipal Demand										
Guadalupe Basin										
Gonzales			1,460	1,545	1,644	1,710	1,756	1,765	1,759	
Gonzales County V	WSC		1,364	1,578	1,805	1,982	2,101	2,133	2,120	
Nixon			414	438	460	479	488	490	488	
Waelder			133	154	175	190	202	204	203	
Rural			447	384	313	257	212	197	199	
	Subtotal		3,818	4,099	4,397	4,618	4,759	4,789	4,769	
Lavaca Basin										
Rural			10	9	7	6	5	5	5	
	Subtotal		10	9	7	6	5	5	5	
Total Municipal	Demand		3,828	4,108	4,404	4,624	4,764	4,794	4,774	
M	G 1									
Municipal Existing	Supply									
Guadalupe Basin		D C D:	2.240	2 240	2.240	2.240	2.240	2.240	2.240	
Gonzales		Run-of-River Carrizo	2,240 345	2,240 345	2,240 345	2,240 345	2,240 345	2,240 345	2,240	
Gonzales Subtotal		Carrizo	2,585	2,585	2,585	2,585	2,585	2,585	2,585	
Gonzales Subtotal Gonzales County V	WSC	Carrizo	1,593	1,593	1,593	1,593	1,593	1,593	1,593	
Gonzales County V	WSC	Canyon (GBRA)	630	630	630	630	630	630	630	
Gonzales County V	WSC Subtotal	Carryon (GDIC/1)	2,223	2,223	2,223	2,223	2,223	2,223	2,223	
Nixon	Tr DC Buototai	Carrizo	2,720	2,720	2,720	2,720	2,720	2,720	2,720	
Waelder		Queen City	598	598	598	598	598	598	598	
Rural		Carrizo	559	559	559	559	559	559	559	
	Subtotal		8,685	8,685	8,685	8,685	8,685	8,685	8,685	
Lavaca Basin			ĺ	,		Í	,	Í		
Rural		Carrizo	13	13	13	13	13	13	13	
	Subtotal		13	13	13	13	13	13	13	
Total Municipal	Existing Supply		8,698	8,698	8,698	8,698	8,698	8,698	8,698	
Municipal Surplus/	Shortage									
Guadalupe Basin										
Gonzales	****		1,125	1,040	941	875	829	820	826	
Gonzales County V	wsc		859	645	418	241	122	90	103	
Nixon			2,306	2,282	2,260	2,241	2,232	2,230	2,232	
Waelder			465	444 175	423 246	408 302	396 347	394 362	395 360	
Rural	Subtotal		4,867	4,586	4,288	4,067	3,926	3,896	3,916	
Lavaca Basin	Subibiai		4,007	4,300	4,208	4,007	3,920	3,090	3,910	
Rural			3	4	6	7	8	8	8	
	Subtotal		3	4	6	7	8	8	8	
	Jaorotti		3	+	U	,	o	0	C	
Total Municipal	Surplus/Shortage		4,870	4,590	4,294	4,074	3,934	3,904	3,924	
Manadala al Ni - C	I NI 3									
Municipal New Sur	ppry Need									
Guadalupe Basin			^			0	^			
Gonzales Country	NCC		0	0	0	0	0	0	0	
Gonzales County V	WSC			0	0	0	0	0	(
Nixon			0	0	0	0	0	0	(
Waelder			0	0	0	0	0	0	(
Rural	Subtotal		0	0	0	0	0	0	0	

		Project	Tab ed Water Dema	ole C-10 ands, Suppli	es, and Need	ls			
		y		les County					
			Total in	ai Texas Ke	gion	Projec	tions		
Ba	sin	Source	2000	2010	2020	2030	2050	2060	
		Source	(acft)	(acft)	(acft)	(acft)	2040 (acft)	(acft)	(acft)
Lavaca Basin									
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Total Municipal	New Supply Need		0	0	0	0	0	0	0
Industrial Demand									
Guadalupe Basin			2,051	2,400	2,628	2,822	3,011	3,177	3,402
Lavaca Basin			0	0	0	0	0	0	0
Total Industrial	Demand		2,051	2,400	2,628	2,822	3,011	3,177	3,402
Industrial Existing	Supply	G.	1.125	1.125		1.125	1.125	1.125	
Guadalupe Basin		Sparta	1,135	1,135	1,135	1,135	1,135	1,135	1,135
Guadalupe Basin	Cultantal	Carrizo	2,400	2,400	2,400 3,535	2,400 3,535	2,400	2,400	2,400 3,535
Lavaca Basin	Subtotai		3,535	3,535	3,333	3,333	3,535	3,535	<u>3,333</u>
Total Industrial	Existing Supply		3,535	3,535	3,535	3,535	3,535	3,535	3,535
Industrial Surplus	/Shortage								
Guadalupe Basin	3		1,484	1,135	907	713	524	358	133
Lavaca Basin			0	0	0	0	0	0	0
Total Industrial	Surplus/Shortage		1,484	1,135	907	713	524	358	133
Industrial New Suj	pply Need								
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin Total Industrial	New Supply Need		0	0	0	0	0	0	0
Steam-Electric Der	nand		0	0		0	0	0	
Guadalupe Basin			0	0	0	0	0	0	0
Lavaca Basin Total Steam-Ele	ctric Demand		0	0	0	0	0	0	0
G. 70 71									
Steam-Electric Exi	sting Supply		0	0	0	0	0	0	0
Guadalupe Basin Lavaca Basin			0	0	0	0	0	0	0
	ctric Existing Supply	,	0	0	0	0	0	0	0
Steam-Electric Sur	plus/Shortage								
Guadalupe Basin	1 s		0	0	0	0	0	0	0
Lavaca Basin			0	0	0	0	0	0	0
Total Steam-Ele	ctric Surplus/Shortag	ge	0	0	0	0	0	0	0
Steam-Electric Nev	v Supply Need								^
Guadalupe Basin Lavaca Basin			0	0	0	0	0	0	0
	ctric New Supply Ne	ed	0	0	0	0	0	0	0
Irrigation Demand									
Guadalupe Basin			2,438	1,304	1,124	969	835	720	621
Lavaca Basin			0	0	0		0	0	0
Total Irrigation l	Demand		2,438	1,304	1,124	969	835	720	621

Table C-10 Projected Water Demands, Supplies, and Needs **Gonzales County South Central Texas Region** Total in **Projections** Basin 2000 2010 2020 2030 2040 2050 2060 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Irrigation Supply Canyon (GBRA) Guadalupe Basin Run-of-River 1,800 1,800 1,800 1,800 1,800 1,800 1,800 Carrizo 950 950 950 950 950 950 950 293 293 293 293 293 293 293 Sparta Queen City 271 271 271 271 271 271 271 Gulf Coast 101 101 101 101 101 101 101 3,422 Guadalupe Basin Subtotal 3,422 3,422 3,422 3,422 3,422 3,422 Lavaca Basin 0 0 0 0 3,422 3,422 3,422 3,422 3,422 3,422 3,422 Total Irrigation Supply Irrigation Surplus/Shortage Guadalupe Basin 984 2,118 2,298 2,453 2,587 2,702 2,801 Lavaca Basin 0 2,702 984 2,118 2,298 2,453 2,587 2,801 Total Irrigation Surplus/Shortage Irrigation New Supply Need Guadalupe Basin 0 0 0 0 0 0 0 Lavaca Basin 0 0 0 0 0 0 0 Total Irrigation New Supply Need 0 0 0 0 0 0 0 Mining Demand Guadalupe Basin 30 25 24 23 23 22 22 Lavaca Basin Total Mining Demand 27 24 33 28 26 25 24 Mining Supply 15 15 15 15 15 15 15 Guadalupe Basin Carrizo 8 8 8 8 8 8 8 Sparta Queen City 8 8 8 8 8 8 8 Guadalupe Basin Subtotal 31 31 31 31 31 31 31 Lavaca Basin Carrizo 3 3 3 3 3 3 3 Total Mining Supply 34 34 34 34 34 34 34 Mining Surplus/Shortage Guadalupe Basin 1 6 7 8 8 9 9 0 1 Lavaca Basin 0 0 0 1 1 Total Mining Surplus/Shortage 8 9 10 10 Mining New Supply Need Guadalupe Basin 0 0 0 0 0 0 0 Lavaca Basin 0 0 0 0 0 0 0 Total Mining New Supply Need 0 0 0 0 0 0 Livestock Demand 5,107 5,354 5,354 5,354 5,354 5,354 5,354 Guadalupe Basin 99 99 Lavaca Basin 52 99 99 99 99 5,453 5,453 5,453 Total Livestock Demand 5,159 5,453 5,453 5,453

Table C-10 Projected Water Demands, Supplies, and Needs **Gonzales County** South Central Texas Region Total in **Projections** Basin 2000 2010 2020 2030 2040 2050 2060 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Livestock Supply 1,407 1,407 1,407 1,407 1,407 1,407 1,407 Guadalupe Basin Carrizo Queen City 813 813 813 813 813 813 813 Sparta 405 405 405 405 405 405 405 2,554 2,801 2,801 2,801 2,801 2,801 2,801 Local 5,179 5,426 5,426 5,426 5,426 5,426 5,426 Subtotal Lavaca Basin Carrizo 26 26 26 26 26 26 26 73 26 73 73 73 73 Local 73 Subtotal 52 99 99 99 99 99 99 5,231 5,525 5,525 5,525 5,525 5,525 5,525 Total Livestock Supply Livestock Surplus/Shortage Guadalupe Basin 72 72 72 72 72 72 72 Lavaca Basin 0 0 0 0 0 0 Total Livestock Surplus/Shortage 72 72 72 72 72 72 72 **Livestock New Supply Need** Guadalupe Basin 0 0 0 0 0 0 0 Lavaca Basin 0 0 0 0 0 0 0 Total Livestock New Supply Need 0 0 0 0 0 0 0 **Total Gonzales County Demand** Municipal 3,828 4,108 4,404 4,624 4,764 4,794 4,774 2,051 2,400 2,628 3,177 3,402 Industrial 2,822 3,011 Steam-Electric 0 0 0 0 0 0 1,304 Irrigation 2,438 1,124 969 835 720 621 33 28 27 26 25 24 24 Mining 5,453 5,453 5,159 5,453 5,453 5,453 5,453 Livestock 13,293 13,894 14,274 Total County Demand 13,509 13,636 14,088 14,168 **Total Gonzales County Supply** 8,698 8,698 8,698 8,698 8,698 8,698 8,698 Municipal Industrial 3,535 3,535 3,535 3,535 3,535 3,535 3,535 Steam-Electric 0 0 0 0 0 0 0 3,422 3,422 3,422 3,422 3,422 3,422 3,422 Irrigation 34 34 34 Mining 34 34 34 34 5,231 5,525 5,525 5,525 5,525 5,525 5,525 Livestock 21,214 21,214 Total County Supply 20,920 21,214 21,214 21,214 21,214 **Total Gonzales County Balance** Municipal 4,870 4,590 4,294 4,074 3,934 3,904 3,924 1,484 1,135 Industrial 907 713 524 358 133 Steam-Electric 0 0 0 0 0 2,702 Irrigation 984 2,118 2,298 2,453 2,587 2,801 Mining 10 10 8 6 Livestock 72 72 72 72 72 72 72 6,940 Total County Surplus/Shortage 7,411 7,921 7,578 7,320 7,126 7,046

Table C-10 Projected Water Demands, Supplies, and Needs **Gonzales County South Central Texas Region** Total in **Projections** Basin 2000 2010 2020 2030 2040 2050 2060 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) **Total Basin Demand** Guadalupe 3,818 4,099 4,397 4,759 4,789 4,769 4,618 Municipal Industrial 2,051 2,400 2,628 2,822 3,011 3,177 3,402 Steam-Electric 0 0 0 1,304 2,438 1,124 969 835 720 621 Irrigation Mining 30 25 24 23 23 22 22 5,107 5,354 5,354 5,354 5,354 5,354 5,354 Livestock 14,168 Total Guadalupe Basin Demand 13,444 13,182 13,527 13,786 13,982 14,062 Lavaca 10 9 6 5 Municipal 0 0 0 0 0 Industrial 0 0 Steam-Electric 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Irrigation 3 3 3 3 2 2 2 Mining 99 99 Livestock 52 99 99 99 99 Total Lavaca Basin Demand 65 111 109 108 106 106 106 **Total Basin Supply** Guadalupe 8,685 8,685 8,685 8,685 8,685 8,685 Municipal 8,685 Industrial 3,535 3,535 3,535 3,535 3,535 3,535 3,535 Steam-Electric 0 0 0 0 0 0 0 Irrigation 3,422 3,422 3,422 3,422 3,422 3,422 3,422 Mining 31 31 31 31 31 31 31 5,179 5,426 5,426 5,426 5,426 5,426 5,426 Livestock **Unallocated Groundwater Supply** 44,518 44,518 44,518 44,518 44,518 44,518 44,518 Total Guadalupe Basin Supply 65,370 65,617 65,617 65,617 65,617 65,617 65,617 Lavaca 13 13 13 13 13 Municipal 13 13 Industrial 0 0 0 0 0 0 0 0 Steam-Electric 0 0 0 0 0 0 Irrigation 0 0 0 0 0 0 0 3 Mining 3 3 3 3 3 3 52 99 99 99 99 99 99 Livestock Unallocated Groundwater Supply 261 261 261 261 261 261 261 Total Lavaca Basin Supply 329 376 376 376 376 376 376 **Total Basin Balance** Guadalupe Municipal 4,867 4,586 4,288 4,067 3,926 3,896 3,916 1,484 1,135 907 358 133 Industrial 713 524 Steam-Electric 0 0 0 0 0 0 2,702 984 2,118 2,298 2,453 2,587 2,801 Irrigation Mining 1 6 7 8 8 9 72 72 72 72 72 72 72 Livestock 44,518 Unallocated Groundwater Supply 44,518 44,518 44,518 44,518 44,518 44,518 Total Guadalupe Basin Surplus/Shortage 51,926 52,435 52,090 51,831 51,635 51,555 51,449

			Tab	ole C-10					
		Projecte	d Water Dem	ands, Suppli	es, and Need	s			
				les County					
			South Centr	al Texas Reg	gion				
			Total in			Projec	tions		
F	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca									
Municipal			3	4	6	7	8	8	8
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	1	1	1
Livestock			0	0	0	0	0	0	0
Unallocated Gro	undwater Supply		261	261	261	261	261	261	261
Total Lavaca Basin	n Surplus/Shortage		264	265	267	268	270	270	270
Groundwater Supp	olies				_				
	Available								
	Guadalupe	Carrizo	60,319	60,319	60,319	60,319	60,319	60,319	60,319
	Guadalupe	Sparta	4,500	4,500	4,500	4,500	4,500	4,500	4,500
	Guadalupe	Queen City	4,590	4,590	4,590	4,590	4,590	4,590	4,590
	Guadalupe	Gulf Coast	1,901	1,901	1,901	1,901	1,901	1,901	1,901
	Lavaca	Carrizo	121	121	121	121	121	121	121
	Lavaca	Gulf Coast	182	182	182	182	182	182	182
	Total Available		71,613	71,613	71,613	71,613	71,613	71,613	71,613
	Allocated								
	Guadalupe	Carrizo	23,161	23,161	23,161	23,161	23,161	23,161	23,161
	Guadalupe	Sparta	1,841	1,841	1,841	1,841	1,841	1,841	1,841
	Guadalupe	Queen City	1,690	1,690	1,690	1,690	1,690	1,690	1,690
	Guadalupe	Gulf Coast	101	101	101	101	101	101	101
	Lavaca	Carrizo	42	42	42	42	42	42	42
	Lavaca	Gulf Coast	0	0	0	0	0	0	C
	Total Allocated		26,834	26,834	26,834	26,834	26,834	26,834	26,834
	Total Unallocated	d	44,779	44,779	44,779	44,779	44,779	44,779	44,779

		Projected Water	Table C-11 Demands, Su	ipplies, and	Needs				
		G	uadalupe Cou Central Texas	inty					
			Total in			Projec	tions		
Ba	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Deman	d								
San Antonio Basin Cibolo			598	966	1 100	1.546	1 000	2 200	2.72
East Central SUD			102	866 94	1,190 128	1,546 166	1,898 203	2,298 240	2,730
Green Valley SUI			546	655	824	1,018	1,183	1,396	1,62
Marion			154	164	179	194	209	229	25
New Berlin				70	83	100	122	148	180
Santa Clara			92	177	280	395	505	631	76
Schertz (part)*			2,776	3,797	5,089	6,448	7,822	9,399	11,09
Selma	1		17	59	86	113	131	152	170
Springs Hill WSC	c. (Apex Water Ser)		323 25	365 30	417 37	475 45	533 53	599 61	67- 7
Rural	(Apex water ser)		58	50	39	27	17	9	
210101	Subtotal		4,691	6,327	8,352	10,527	12,676	15,162	17,85
Guadalupe Basin			,	.,/	. ,	. ,= = /	,	- /	.,
Crystal Clear WS	C*		1,017	1,316	1,688	2,112	2,498	2,977	3,493
Green Valley SUI	D		1,337	1,691	2,136	2,651	3,109	3,695	4,320
Martindale WSC			26	47	64	84	111	128	150
New Braunfels			266	467	703	960	1,216	1,499	1,810
Santa Clara			23	5 019	69 5.719	97	124	155	9,047
Seguin Springs Hill WSC	1		4,463 1,753	5,018 1,984	5,718 2,262	6,454 2,581	7,203 2,891	8,069 3,250	3,650
Rural	*		274	220	175	129	79	45	3,030
Turu.	Subtotal		9,159	10,786	12,815	15,068	17,231	19,818	22,681
			12.050	.=					10.50
Total Municipal	Demand		13,850	17,113	21,167	25,595	29,907	34,980	40,533
Municipal Existing	g Supply								
San Antonio Basin			222	4.2.50	* 0.50				
Cibolo		Canyon (CRWA - Dunlap)	800	1,350	2,850	2,850	2,850	2,850	2,850
East Central SUD	,	Canyon (CRWA - Dunlap) Carrizo (Springs Hill/CRWA)	123 34	123	26	26	26	26	20
		Edwards (BMWD)	106	106	106	106	106	106	100
East Central Subt	otal	Zawaras (Birriv 2)	263	229	132	132	132	132	132
Green Valley SUI	D	Edwards	187	187	187	187	187	187	187
		Edwards (East Central)	47	47	47	47	47	47	47
		Canyon (GBRA)	100	100	100	100	100	100	100
G **** ~	D.G.14 : 1	Canyon (CRWA - Dunlap)	427	391	1,478	1,461	1,439	1,413	1,38
Green Valley SUI	D Subtotal	Edwards	761	725	1,812	1,795	1,773	1,747	1,71:
Marion		Edwards Canyon (CRWA - Dunlap)	76 100	76 100	76 100	76 100	76 100	76 100	100
Marion Subtotal		curryon (CRWA - Duniap)	176	176	176	176	176	176	170
New Berlin		Carrizo (East Central-CRWA)	1,3	34	34	34	34	34	34
		Canyon (Green Valley-CRWA)		36	49	66	88	114	140
New Berlin Subto	otal		0	70	83	100	122	148	180
Santa Clara	estimated	Carrizo	115	115	115	115	115	115	11:
Schertz (part)		Edwards	921	921	921	921	921	921	92
		Carrizo (Guadalupe) - S/S Carrizo (Gonzales) - S/S	4.014	2,935	2,935	2,935	2,935	2,935	2,935
Schertz Subtotal		Carrizo (Gonzales) - 5/5	4,914 5,835	4,914 8,770	4,914 8,770	4,914 8,770	4,914 8,770	4,914 8,770	4,914 8,770
Selma		Edwards (Bexar County)	67	67	67	67	67	67	6,77
		Carrizo (Gonzales) - S/S	49	49	49	49	49	49	4:
Selma Subtotal			116	116	116	116	116	116	110
Springs Hill WSC		Canyon (GBRA)	375	375	375	375	375	375	37:
		Canyon (CRWA - Dunlap)	251	266	266	266	266	266	26
		Carrizo	0	0	0	0	0	0	0
Springs Hill WSC	Cubtotal	Carrizo (Gonzales) - S/S	87 713	87	87	87	87	87	8
Springs Hill WSC		1	/13	728	728	728	728	728	72
	(Anex Water Ser)	Edwards	1	1	11	1.1	11	1	
	c. (Apex Water Ser)	Edwards Carrizo	1 58	1 58	58	1 58	1 58	1 58	58

Table C-11 Projected Water Demands, Supplies, and Needs **Guadalupe County South Central Texas Region** Total in Projections 2000 2020 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Guadalupe Basin 325 Crystal Clear WSC Edwards 325 325 325 325 325 325 ROR (Guadalupe) - CRWA 58 58 58 58 58 58 58 158 158 158 158 158 158 158 Canyon (CRWA) 165 Canyon (CRWA-Dunlap) - Spring 165 165 165 165 165 165 Canyon (New Braunfels) 594 594 594 594 594 594 594 Canyon (GBRA) 528 528 528 528 528 528 528 Crystal Clear WSC Subtotal 1,828 1,828 1,828 1,828 1,828 1,828 1,828 Green Valley SUD Edwards 105 105 105 105 105 105 105 Edwards (East Central) 116 116 116 116 116 116 116 Canyon (GBRA) 424 424 100 100 100 100 100 Canyon (CRWA - Dunlap) 1,045 1,045 3,545 3,545 3,545 3,545 3,545 Green Valley SUD Subtotal 1,691 1,691 3,867 3,867 3,867 3,867 3,867 Canyon (CRWA) Martindale WSC 11 11 11 11 11 11 11 ROR (Guadalupe) 23 23 23 23 23 23 Martindale WSC Subtotal 34 34 34 34 34 34 34 New Braunfels Edwards 131 131 131 131 131 131 131 Run-of-River 259 259 259 259 259 259 259 Canyon (GBRA) 186 186 186 186 186 186 186 New Braunfels Subtotal 576 576 576 576 576 576 576 29 29 29 29 29 29 29 Santa Clara estimated Carrizo Seguin Run-of-River 3,273 3,273 3,273 3,273 3,273 3,273 3,273 Canyon (GBRA) 3,000 1,000 1,000 1,000 1,000 1,000 1,000 Carrizo (Gonzales) - S/S 5.392 5.392 5.392 5.392 5.392 5.392 5.392 Seguin Subtotal 11,665 9,665 9,665 9,665 9,665 9,665 9,665 Springs Hill WSC Canyon (GBRA) 2,125 2,125 2,125 2,125 2,125 2,125 2,125 1,509 1,509 1,509 1,509 Canyon (CRWA - Dunlap) 1.424 1.509 1.509 15 15 15 15 15 15 15 Carrizo (Gonzales) - S/S 473 473 473 473 473 473 473 Springs Hill WSC Subtotal 4,037 4,122 4,122 4,122 4,122 4,122 4,122 Rural Queen City 118 118 118 118 118 118 118 Carrizo 207 207 207 207 207 207 207 Run-of-River 56 56 56 56 56 56 56 Canyon (GBRA) 10 10 10 10 10 10 10 Rural Subtotal 391 391 391 391 391 391 391 20,251 18,336 20,512 20,512 Subtotal 20,512 20,512 20,512 Total Municipal Existing Supply 29,089 30,674 35,353 35,353 35,353 35,353 35,353 Municipal Surplus/Shortage San Antonio Basin Cibolo 202 484 1,660 1,304 952 552 120 East Central SUD 161 135 -34 -71 -108 -150Green Valley SUD* 215 70 988 777 590 351 93 Marion 22 12 -3 -18 -33 -53 -75 0 New Berlin 0 0 0 0 0 0 Santa Clara 23 -62 -165 -280 -390 -516 -651 3,059 4,973 948 Schertz (part)* 3,681 2,322 -629 -2,32899 57 -15 -36 Selma 30 -60 Springs Hill WSC 390 363 311 253 195 129 54 Water Service Inc. (Apex Water Ser) -24 -29 -36 -44 -52 -60 -70 19 31 41 49 56 Rural 0 8 -321 Subtotal 4,147 6,011 6,489 4,314 2,165 -3,011

		Dunia-4- J	Table C-11		Noods				
		Projected	Water Demands, S		Needs				
			Guadalupe Co South Central Texa						
			Total in	is Kegion		Proje	ctions		
Re	ısin	Source	2000	2010	2020	2030	2040	2050	2060
De	15111	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Guadalupe Basin			(ucit)	(ucrt)	(ucrt)	(ucit)	(ucrt)	(ucrt)	(ucrt)
Crystal Clear WS	C*		811	512	140	-284	-670	-1,149	-1,665
Green Valley SUI			354	0	1,731	1,216		172	-459
Martindale WSC			8	-13	-30	-50		-94	-116
New Braunfels			310	109	-127	-384		-923	-1,234
Santa Clara			6	-14	-40	-68	-95	-126	-159
Seguin			7,202	4,647	3,947	3,211	2,462	1,596	618
Springs Hill WSC			2,284	2,138	1,860	1,541	1,231	872	466
Rural			117	171	216	262	312	346	380
	Subtotal		11,092	7,550	7,697	5,444	3,281	694	-2,169
	~		17.000		44404				
Total Municipal	Surplus/Shortage		15,239	13,561	14,186	9,758	5,446	373	-5,180
Municipal N C	nnly Need								
Municipal New Su San Antonio Basin	ppry Need								
Cibolo			0	0	0	0	0	0	(
East Central SUD			0	0	0	34		108	150
Green Valley SUI			0	0	0	0		0	130
Marion	Ĭ		0	0	3	18		53	75
New Berlin			0	0	0	0		0	(
Santa Clara			0	62	165	280	390	516	651
Schertz (part)*			0	0	0	0	0	629	2,328
Selma			0	0	0	0	15	36	60
Springs Hill WSC			0	0	0	0	0	0	0
Water Service Inc	. (Apex Water Ser)		24	29	36	44	52	60	70
Rural			0	0	0	0		0	0
	Subtotal		24	91	204	376	561	1,402	3,334
Guadalupe Basin									
Crystal Clear WS			0	0	0	284	670	1,149	1,665
Green Valley SUI)*		0	0	0	0		0	459
Martindale WSC			0	13	30	50		94	116
New Braunfels Santa Clara			0	0 14	127 40	384 68	640 95	923 126	1,234 159
Seguin			0	0	0	08		0	139
Springs Hill WSC			0	0	0	0		0	0
Rural			0	0	0	0		0	0
	Subtotal		0	28	197	786	1,482	2,292	3,633
			-				, -	, -	- ,
Total Municipal	New Supply Need		24	119	401	1,162	2,043	3,694	6,967
Industrial Demand	l								
San Antonio Basin			3	4	4	5	5	5	6
Guadalupe Basin			2,094	2,634	2,953	3,244	3,525	3,766	4,091
Total Industrial	Demand		2,097	2,638	2,957	3,249	3,530	3,771	4,097
	<u> </u>								
Industrial Existing	Supply	G :			_			-	
San Antonio Basin		Carrizo	6	6	6	6		6	160
Guadalupe Basin		Edwards	160	160	160	160		160	160
		Carrizo Pup of Pivor	2,923	2,923	2,923	2,923		2,923	2,923
		Run-of-River Canyon (GBRA)	25 984	25 984	25 984	25 984		25 984	25 984
Guadalupe Basin	Subtotal	Carlyon (OBKA)	4,092	4,092	4,092	4,092		4,092	4,092
Total Industrial			4,092	4,092	4,092	4,092	4,092	4,092	4,092
1 otai muusuidi	and Supply		4,030	7,020	7,020	7,070	7,020	7,020	7,020
Industrial Surplus	/Shortage								
San Antonio Basin			3	2	2	1	1	1	(
Guadalupe Basin			1,998	1,458	1,139	848		326	1
	Surplus/Shortage		2,001	1,460	1,141	849		327	1
				,	,				

		D 1 XX	Table C-11		NJ-				
		Projected w	ater Demands, S Guadalupe Co		Needs				
		So	uth Central Texa						
			Total in	io riegion		Projec	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial New Sup	ply Need								
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Total Industrial	New Supply Need		0	0	0	0	0	0	(
Steam-Electric Der	nand								
San Antonio Basin			0	0	0	0	0	0	
Guadalupe Basin	D 1		129	4,788	3,406	3,326	5,136	5,585	7,515
Total Steam-Elec	ctric Demand		129	4,788	3,406	3,326	5,136	5,585	7,515
Steam-Electric Exi	sting Supply								
San Antonio Basin	Sung Suppri		0	0	0	0	0	0	(
Guadalupe Basin		Canyon (GBRA)	6,840	6,840	6,840	6,840	6,840	6,840	6,840
		Reuse (City of Seguin)	0	2,240	2,240	2,240	2,240	2,240	2,240
Guadalupe Basin S			6,840	9,080	9,080	9,080	9,080	9,080	9,080
Total Steam-Elec	ctric Existing Supply	· · · · · · · · · · · · · · · · · · ·	6,840	9,080	9,080	9,080	9,080	9,080	9,080
G: The state	1 (0)								
Steam-Electric Sur	plus/Shortage	1	0	0	0	0	0	0	
San Antonio Basin Guadalupe Basin			6,711	4,292	5,674	5,754	3,944	3,495	1,565
	tric Surplus/Shortag	na na	6,711	4,292	5,674	5,754	3,944	3,495	1,565
Total Steam-Ele	ctric Surprus/Snortag	gc	0,711	4,232	3,074	3,734	3,244	3,493	1,505
Steam-Electric Nev	w Supply Need								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Total Steam-Elec	ctric New Supply No	eed	0	0	0	0	0	0	0
Irrigation Demand									
San Antonio Basin			113	137	123	109	96	91	91
Guadalupe Basin			762	933	832	737	646	619	614
Total Irrigation I	Demand		875	1,070	955	846	742	710	705
Irrigation Supply									
San Antonio Basin		Carrizo	137	137	137	137	137	137	137
Guadalupe Basin		Run-of-River	908	908	908	908	908	908	908
Guadaiupe Basin		Canyon (GBRA)	342	342	342	342	342	342	342
		Carrizo	280	280	280	280	280	280	280
Guadalupe Basin S	Subtotal	Curring	1,530	1,530	1,530	1,530	1,530	1,530	1,530
Total Irrigation S			1,667	1,667	1,667	1,667	1,667	1,667	1,667
Irrigation Surplus/	Shortage		-						
San Antonio Basin			24	0	14	28	41	46	46
Guadalupe Basin	C1/Clt		768	597	698	793	884	911 957	916
Total Irrigation S	Surplus/Shortage		792	597	712	821	925	957	962
Irrigation New Sup	oply Need								
San Antonio Basin	F-3 11000	1	0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0		0	0
	New Supply Need		0	0	0	0	0	0	C
Mining Demand San Antonio Basin			14	16	16	17	17	18	10
Guadalupe Basin			256	290	305	313	321	328	335
Total Mining De	emand		270	306	303	330	338	346	353
Total Willing De	лини		270	500	341	330	330	J + 0	33.
Mining Supply									
San Antonio Basin		Carrizo	18	18	18	18	18	18	18
Guadalupe Basin		Carrizo	335	335	335	335	335	335	335
Total Mining Su	pply		353	353	353	353	353	353	353

		Duoinatad V	Table C-11 Water Demands, S		Needs				
		· ·	Guadalupe Co	unty	Needs				
		S	outh Central Texa	s Region					
			Total in			Projec			
Ba	asin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Mining Surplus/Sh	ortage								
San Antonio Basin			4	2	2	1	1	0	(
Guadalupe Basin			79	45	30	22	14	7	(
Total Mining Su	irplus/Shortage		83	47	32	23	15	7	(
Mining New Suppl	ly Need								
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Total Mining N	ew Supply Need		0	0	0	0	0	0	(
Livestock Demand	[
San Antonio Basin			264	264	264	264	264	264	264
Guadalupe Basin			793	793	793	793	793	793	793
Total Livestock	Demand		1,057	1,057	1,057	1,057	1,057	1,057	1,057
Livestock Supply									
San Antonio Basin		Carrizo	132	132	132	132	132	132	132
		Local	132	132	132	132	132	132	132
	Subtotal		264	264	264	264	264	264	264
Guadalupe Basin		Carrizo	396	396	396	396	396	396	396
		Local	397	397	397	397	397	397	397
	Subtotal		793	793	793	793	793	793	793
Total Livestock	Supply		1,057	1,057	1,057	1,057	1,057	1,057	1,057
Livestock Surplus/	Shortage								
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Total Livestock	Surplus/Shortage		0	0	0	0	0	0	0
Livestock New Sup	nly Need								
San Antonio Basin	эргу гчеси		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	0
	New Supply Need		0	0	0	0	0	0	C
T-4-1 C d-1 (S								
Total Guadalupe (ounty Demand		12.050	17 112	21.167	25 505	20.007	24.000	40.520
Municipal Industrial			13,850 2,097	17,113 2,638	21,167 2,957	25,595 3,249	29,907 3,530	34,980 3,771	40,533
Steam-Electric			129	4,788	3,406	3,326	5,136	5,585	7,515
Irrigation	1		875	1,070	955	846	742	710	7,313
Mining			270	306	321	330	338	346	353
Livestock			1,057	1,057	1,057	1,057	1,057	1,057	1,057
Total County Dema	nd		18,278	26,972	29,863	34,403	40,710	46,449	54,260
Total Guadalupe (County Supply								
Municipal	запед зарріз		29,089	30,674	35,353	35,353	35,353	35,353	35,353
Industrial			4,098	4,098	4,098	4,098	4,098	4,098	4,098
Steam-Electric			6,840	9,080	9,080	9,080	9,080	9,080	9,080
Irrigation			1,667	1,667	1,667	1,667	1,667	1,667	1,667
Mining			353	353	353	353	353	353	353
Livestock			1,057	1,057	1,057	1,057	1,057	1,057	1,057
Total County Suppl	у		43,104	46,929	51,608	51,608	51,608	51,608	51,608
Total Guadalupe (County Balance								
Municipal	.,		15,239	13,561	14,186	9,758	5,446	373	-5,180
Industrial			2,001	1,460	1,141	849	568	327	1
Steam-Electric			6,711	4,292	5,674	5,754	3,944	3,495	1,565
Irrigation			792	597	712	821	925	957	962
Mining			83	47	32	23	15	7	(
Livestock	101		0	0	0	0	0	5 150	2.650
Total County Surplu	us/Shortage		24,826	19,957	21,745	17,205	10,898	5,159	-2,652

		Table C-11						
	Projected V	Water Demands, Su		Needs				
		Guadalupe Cou						
	S	outh Central Texas	s Region		ъ :			
D :	g	Total in	2010	2020	Projec		2050	2070
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
T-4-1 D:- D1		(actt)	(acit)	(acrt)	(acit)	(acit)	(acrt)	(acrt)
Total Basin Demand San Antonio								
Municipal Municipal		4,691	6,327	8,352	10,527	12,676	15,162	17,852
Industrial		3	4	4	10,327	5	13,102	17,652
Steam-Electric		0	0	0	0	0	0	(
Irrigation		113	137	123	109	96	91	91
Mining		14	16	16	17	17	18	18
Livestock		264	264	264	264	264	264	264
Total San Antonio Basin Demand		5,085	6,748	8,759	10,922	13,058	15,540	18,231
Guadalupe								
Municipal		9,159	10,786	12,815	15,068	17,231	19,818	22,681
Industrial		2,094	2,634	2,953	3,244	3,525	3,766	4,091
Steam-Electric		129	4,788	3,406	3,326	5,136	5,585	7,515
Irrigation Mining		762 256	933 290	832 305	737 313	646 321	619 328	61 ² 335
Livestock		793	793	793	793	793	793	793
Total Guadalupe Basin Demand		13,193	20,224	21,104	23,481	27,652	30,909	36,029
Total Guadarape Basin Bernand		15,175	20,221	21,101	23,101	21,032	30,707	30,02
Total Basin Supply								
San Antonio								
Municipal		8,838	12,338	14,841	14,841	14,841	14,841	14,841
Industrial		6	6	6	6	6	6	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		137	137	137	137	137	137	137
Mining		18	18	18	18	18	18	18
Livestock		264	264	264	264	264	264	264
Total San Antonio Basin Supply		9,263	12,763	15,266	15,266	15,266	15,266	15,266
Guadalupe								
Municipal		20,251	18,336	20,512	20,512	20,512	20,512	20,512
Industrial		4,092	4,092	4,092	4,092	4,092	4,092	4,092
Steam-Electric		6,840	6,840	6,840	6,840	6,840	6,840	6,840
Irrigation		1,530	1,530	1,530	1,530	1,530	1,530	1,530
Mining		335	335	335	335	335	335	335
Livestock		793	793	793	793	793	793	793
Total Guadalupe Basin Supply		33,841	31,926	34,102	34,102	34,102	34,102	34,102
Total Basin Balance								
San Antonio								
Municipal		4,147	6,011	6,489	4,314	2,165	-321	-3,011
Industrial Steam-Electric		3	2	2	1	0	1 0	(
Steam-Electric Irrigation		24	0	14		41	46	
Mining		4	2	2	28	1	0	46
Livestock		0	0	0	0	0	0	(
Total San Antonio Basin Surplus/Shortage		4,178	6,015	6,507	4,344	2,208	-274	-2,965
Guadalupe								
Municipal		11,092	7,550	7,697	5,444	3,281	694	-2,169
Industrial		1,998	1,458	1,139	848	567	326	
Steam-Electric		6,711	2,052	3,434	3,514	1,704	1,255	-675
Irrigation Mining		768	597	698	793	884	911	910
Mining Livestock		79	45 0	30	22 0	14	7	(
Total Guadalupe Basin Surplus/Shortage		20,648	11,702	12,998	10,621	6,450	3,193	-1,927
Total Suddinge Busin Surpius/Snortage		20,040	11,702	12,770	10,021	0,430	3,173	1,721

		Projected '	Table C-11 Water Demands, S		Needs				
		,	Guadalupe Co						
		9	South Central Texa	s Region					
			Total in			Projec	tions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Groundwater Suppli	ies								
	Available								
	Guadalupe	Edwards	160	160	160	160	160	160	160
	San Antonio	Edwards	0	0	0	0	0	0	0
	Guadalupe	Carrizo	9,573	9,573	9,573	9,573	9,573	9,573	9,573
	San Antonio	Carrizo	3,010	3,010	3,010	3,010	3,010	3,010	3,010
	Total Available		12,743	12,743	12,743	12,743	12,743	12,743	12,743
	Allocated								
	Guadalupe	Edwards	160	160	160	160	160	160	160
	San Antonio	Edwards	0	0	0	0	0	0	(
	Guadalupe	Carrizo	8,417	8,417	8,417	8,417	8,417	8,417	8,417
	San Antonio	Carrizo	495	495	495	495	495	495	495
	Total Allocated		9,072	9,072	9,072	9,072	9,072	9,072	9,072
	Total Unallocate	ed	3,671	3,671	3,671	3,671	3,671	3,671	3,671
* Projected demand	s, shortages, and nee	eds may be greater than shown	These WUGs are	requesting a	population/de	emand revision	on.		

		D	Table C-12		NJ-				
		Projected Water	ys County (I		Needs				
			Central Texa						
			Total in			Proje	ctions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Demand									
Guadalupe Basin									
County Line WSC			252	947	1,999	2,319	2,393	2,612	2,982
Creedmore-Maha			8	10	12	15	17	20	23
Crystal Clear WSC	.*		349	485	639	806	959	1,165	1,32
Goforth WSC			666	972	1,340	1,704	2,075	2,545	2,914
Kyle Maxwell WSC			702 117	2,740 157	3,940 200	4,217 249	4,377 294	4,874 354	5,203
Mountain City			22	45	71	98	124	157	183
Niederwald			65	104	147	194	238	294	338
	Company (Monarch	(Utilities)	392	566	762	963	1,168	1,427	1,630
San Marcos	Company (Monarch	(Ctilities)	5,914	8,038	11,198	14,371	17,824	21,559	24,439
Wimberley WSC			578	776	997	1,224	1,442	1,736	1,960
Woodcreek			188	246	315	385	452	540	610
Woodcreek Utilitie	es		400	748	1,145	1,564	1,974	2,477	2,873
Rural			1,273	1,444	1,644	1,855	2,077	2,361	2,584
	Subtotal		10,926	17,278	24,409	29,964	35,414	42,121	47,474
			2-	,		,,	, .	, -	, ,
Total Municipal	Demand		10,926	17,278	24,409	29,964	35,414	42,121	47,474
-									
Municipal Existing	Supply								
Guadalupe Basin									
County Line WSC		Edwards	30	30	30	30	30	30	30
		ROR (Guadalupe) - CRWA	140	140	140	140	140	140	140
		Canyon (CRWA)	780	780	780	780	780	780	780
County Line WSC			950	950	950	950	950	950	950
Creedmore-Maha		Edwards (Barton Springs)	7	7	7	7	7	7	
Crystal Clear WS0		Edwards	111	111	111	111	111	111	111
		ROR (Guadalupe) - CRWA	27	27	27	27	27	27	27
		Canyon (CRWA) Canyon (CRWA-Dunlap) - Spring	85 57	85 57	85 57	85 57	85 57	85 57	85 57
		Canyon (New Braunfels)	204	204	204	204	204	204	204
		Canyon (GBRA)	182	182	182	182	182	182	182
Crystal Clear WS0	~ Subtotal	Carryon (GBRA)	666	666	666	666	666	666	666
Goforth WSC		Edwards (Barton Springs)	471	471	471	471	471	471	471
Golorui WSC		Canyon (GBRA)	7/1	899	899	899	899	899	899
Goforth WSC Sub	total	Canyon (GBIC1)	471	1,370	1,370	1,370	1,370	1,370	1,370
Kyle		Edwards	243	243	243	243	243	243	243
<i>y</i> -		Edwards (Barton Springs)	304	304	304	304	304	304	304
		Canyon (GBRA)	589	2,957	2,957	2,957	2,957	2,957	2,957
Kyle Subtotal			1,136	3,504	3,504	3,504	3,504	3,504	3,504
Maxwell WSC		Edwards	41	41	41	41	41	41	41
	-	Canyon (CRWA)	167	167	167	167	167	167	167
		ROR (Guadalupe) - CRWA	69	69	69	69	69	69	69
Maxwell WSC Su			277	277	277	277	277	277	277
Mountain City		Edwards (Barton Springs)	49	49	49	49	49	49	49
Niederwald		Edwards (Barton Springs)	54	54	54	54	54	54	54
Plum Creek Water	Company (Monarch	Edwards (Barton Springs)	413	413	413	413	413	413	413
m a		Canyon (GBRA)	560	560	560	560		560	560
Plum Creek WC S			973	973	973	973	973	973	973
San Marcos		Edwards	3,052	3,052	3,052	3,052	3,052	3,052	3,052
		ROR (Guadalupe)	5 000	10,000	10,000	10,000		10,000	10.000
Con Mosses Cult	to1	Canyon (GBRA)	5,000	10,000	10,000	10,000	10,000	10,000	10,000
San Marcos Subto		Teinity	8,052	13,052	13,052	13,052	13,052	13,052	13,052
Wimberley WSC Woodcreek		Trinity Trinity	557 223	557 223	557	557 223	557 223	557	55° 22°
Woodcreek Utilitie					223			223	
woodcreek Utiliti	CS .	Trinity	223 70	223 70	223 70	223 70	223	223	223
		Edwards					70	70	70

			Table C-12						
		Projected W	ater Demands, S		Needs				
		Sor	Hays County (I ath Central Texa						
		500	Total in	3 Region		Projec	ctions		
Ba	ısin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Rural		Edwards	13	13	13	13	13	13	13
		Trinity Canyon (GBRA)	3,136	124 3,136	124 3,136	124 3,136	124 3,136	124 3,136	3,136
Rural Subtotal		Callyon (GBKA)	3,273	3,130	3,130	3,130	3,130	3,130	3,130
	Subtotal		16,980	25,247	25,247	25,247	25,247	25,247	25,247
Total Municipal	Existing Supply		16,980	25,247	25,247	25,247	25,247	25,247	25,247
Municipal Surplus	/Shortage								
Guadalupe Basin	, snortage								
County Line WSC			698	3	-1,049	-1,369	-1,443	-1,662	-2,032
Creedmore-Maha			-1	-3	-5	-8	-10	-13	-16
Crystal Clear WS	C*		317	181	27	-140	-293	-499	-661
Goforth WSC Kyle			-195 434	398 764	-436	-334 -713	-705 -873	-1,175 -1,370	-1,544 -1,699
Maxwell WSC			160	120	-436 77	-/13 28	-8/3	-1,370 -77	-1,699
Mountain City			27	4	-22	-49	-75	-108	-134
Niederwald			-11	-50	-93	-140	-184	-240	-284
Plum Creek Water	r Company (Monarch	u Utilities)	581	407	211	10	-195	-454	-657
San Marcos			2,138	5,014	1,854	-1,319	-4,772	-8,507	-11,387
Wimberley WSC Woodcreek			-21 35	-219 -23	-440 -92	-667 -162	-885 -229	-1,179 -317	-1,409 -387
Woodcreek Utiliti	es		-107	-455	-852	-1,271	-1,681	-2,184	-2,580
Rural	CS		2,000	1,829	1,629	1,418	1,196	912	689
	Subtotal		5,236	7,391	1,836	-2,865	-7,715	-13,524	-17,973
Total Municipal	Surplus/Shortage		5,236	7,391	1,836	-2,865	-7,715	-13,524	-17,973
M: -:1 N C	l N J								
Municipal New Su Guadalupe Basin	ppiy Need								
County Line WSC	!		0	0	1,049	1,369	1,443	1,662	2,032
Creedmore-Maha			1	3	5	8	10	13	16
Crystal Clear WS	C*		0	0	0	140	293	499	661
Goforth WSC			195	0	0	334	705	1,175	1,544
Kyle			0	0	436	713	873	1,370	1,699
Maxwell WSC Mountain City			0	0	0 22	0 49	17 75	77 108	125 134
Niederwald			11	50	93	140	184	240	284
	r Company (Monarch	utilities)	0	0	0	0	195	454	657
San Marcos		,	0	0	0	1,319	4,772	8,507	11,387
Wimberley WSC			21	219	440	667	885	1,179	1,409
Woodcreek			0	23	92	162	229	317	387
Woodcreek Utiliti	es		107	455	852	1,271	1,681	2,184	2,580
Rural	Subtotal		335	750	2,989	6,173	11,363	0 17,786	22,916
	Subtotai		333	750	2,909	0,173	11,505	17,760	22,910
Total Municipal	New Supply Need		335	750	2,989	6,173	11,363	17,786	22,916
Industrial Demand									
Guadalupe Basin			157	212	249	285	322	355	386
Total Industrial	Demand		157	212	249	285	322	355	386
Industrial Existing	Supply								
Guadalupe Basin	~~ppij	Edwards	1,565	1,565	1,565	1,565	1,565	1,565	1,565
		Run-of-River	0	0	0	0	0	0	0
Total Industrial	Existing Supply		1,565	1,565	1,565	1,565	1,565	1,565	1,565
Industrial Surplus	Shortage		1 100	1.050	1.016	1.200	1.040	1.010	1.450
Guadalupe Basin	Cumlus/Chartana		1,408	1,353	1,316	1,280	1,243	1,210	1,179
ı otal industrial	Surplus/Shortage		1,408	1,353	1,316	1,280	1,243	1,210	1,179
ļ	1	l .							

		Table C-12						
	Projected W	ater Demands, S	11 /	Needs				
	So	Hays County (I outh Central Texa						
	30	Total in	s Region		Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dasiii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial New Supply Need		(uere)	(uere)	(Liere)	(uere)	(ucrt)	(uert)	(uere)
Guadalupe Basin		0	0	0	0	0	0	(
Total Industrial New Supply Need	1	0	0	0	0	0	0	
The state of the s			-				-	
Steam-Electric Demand								
Guadalupe Basin		0	1,009	718	949	1,949	2,663	3,627
Total Steam-Electric Demand		0	1,009	718	949	1,949	2,663	3,627
Steam-Electric Existing Supply								
Guadalupe Basin	Canyon (GBRA)	2,464	2,464	2,464	2,464	2,464	2,464	2,464
T 10 T 1 T 1 T 1	San Marcos Reclaimed	0	3,696	3,696	3,696	3,696	3,696	3,696
Total Steam-Electric Existing Sup	ріу	2,464	6,160	6,160	6,160	6,160	6,160	6,160
Steam-Electric Surplus/Shortage								
Guadalupe Basin		2,464	5,151	5,442	5,211	4,211	3,497	2,533
Total Steam-Electric Surplus/Shor	tage	2,464	5,151	5,442	5,211	4,211	3,497	2,533
Total Seam Electric Surplus/Shor	gc	2,704	3,131	3,772	3,211	7,211	5,771	2,332
Steam-Electric New Supply Need								
Guadalupe Basin		0	0	0	0	0	0	C
Total Steam-Electric New Supply	Need	0	0	0	0	0	0	(
Irrigation Demand								
Guadalupe Basin		162	353	350	347	344	341	338
Total Irrigation Demand		162	353	350	347	344	341	338
Irrigation Supply								
Guadalupe Basin	Edwards	544	544	544	544	544	544	544
Total Indication County	Run-of-River	125	125	125	125	125	125	125
Total Irrigation Supply		669	669	669	669	669	669	669
Irrigation Surplus/Shortage								
Guadalupe Basin		507	316	319	322	325	328	331
Total Irrigation Surplus/Shortage		507	316	319	322	325	328	331
Irrigation New Supply Need								
Guadalupe Basin		0	0	0	0	0	0	C
Total Irrigation New Supply Need	1	0	0	0	0	0	0	(
Mining Demand								
Guadalupe Basin		129	142	151	157	161	162	163
Total Mining Demand		129	142	151	157	161	162	163
M: C I								
Mining Supply Cyclebra Bosin	Trinity	(0)	(0	(0	(0	(0	(0	
Guadalupe Basin Total Mining Supply	Trinity	60	60 60	60	60 60	60	60 60	60
rotar terming suppry		00	00	00	00	00	00	00
Mining Surplus/Shortage								
Guadalupe Basin		-69	-82	-91	-97	-101	-102	-103
Total Mining Surplus/Shortage		-69	-82	-91	-97	-101	-102	-103
								-
Mining New Supply Need								
Guadalupe Basin		69	82	91	97	101	102	103
Total Mining New Supply Need		69	82	91	97	101	102	103
Livestock Demand								
Guadalupe Basin		280	280	280	280	280	280	280
Total Livestock Demand		280	280	280	280	280	280	280

			Table C-12	}					
		Projected V	Water Demands, S	• • '	Needs				
			Hays County (I						
	1	S	outh Central Texa	s Region		n .			
n		g	Total in	2010	2020	Projec		2050	2070
Ва	isin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Livestock Supply			(acit)	(acit)	(acit)	(acit)	(acit)	(acrt)	(acrt)
		Edwards (D&L) ¹	114	114	114	114	114	114	114
Guadalupe Basin		Trinity	114 26	114 26	114 26	114 26	114 26	114 26	114 26
		Local	140	140	140	140	140	140	140
Total Livestock	Supply	Dovar	280	280	280	280	280	280	280
Livestock Surplus/	Shortage								
Guadalupe Basin			0	0	0	0	0	0	0
Total Livestock	Surplus/Shortage		0	0	0	0	0	0	0
T	1 37 1								
Livestock New Sup Guadalupe Basin	ply Need		0	0	0	0	0	0	0
	New Supply Need		0	0	0	0	0	0	0
Total Livestock	тем вирргу глеец		0	0	U	U	U	0	U
Total Hays County	Demand								
Municipal	,		10,926	17,278	24,409	29,964	35,414	42,121	47,474
Industrial			157	212	249	285	322	355	386
Steam-Electric			0	1,009	718	949	1,949	2,663	3,627
Irrigation			162	353	350	347	344	341	338
Mining			129	142	151	157	161	162	163
Livestock	1		280	280	280	280	280	280	280
Total County Dema	nd		11,654	19,274	26,157	31,982	38,470	45,922	52,268
Total Have County	Cumule								
Total Hays County Municipal	Supply		16,980	25,247	25,247	25,247	25,247	25,247	25,247
Industrial			1,565	1,565	1,565	1,565	1,565	1,565	1,565
Steam-Electric			2,464	6,160	6,160	6,160	6,160	6,160	6,160
Irrigation			669	669	669	669	669	669	669
Mining			60	60	60	60	60	60	60
Livestock			280	280	280	280	280	280	280
Total County Supply	у		22,018	33,981	33,981	33,981	33,981	33,981	33,981
Total Hays County	Balance			- 0.00	0.00		10.14	44.0=4	
Municipal Industrial			6,054 1,408	7,969 1,353	838	-4,717 1,280	-10,167	-16,874	-22,227
Steam-Electric			2,464	5,151	1,316 5,442	5,211	1,243 4,211	1,210 3,497	1,179 2,533
Irrigation			507	316	319	322	325	328	331
Mining			-69	-82	-91	-97	-101	-102	-103
Livestock			0	0	0	0	0	0	0
Total County Surplu	is/Shortage		10,364	14,707	7,824	1,999	-4,489	-11,941	-18,287
Total Basin Demar	nd								
Guadalupe			10.00	15.050	04.400	20.07	25.41.	40.101	45.45
Municipal Industrial			10,926 157	17,278	24,409 249	29,964 285	35,414 322	42,121	47,474
Steam-Electric			0	212 1,009	718	285 949	1,949	355 2,663	386 3,627
Irrigation			162	353	350	347	344	341	338
Mining			129	142	151	157	161	162	163
Livestock			280	280	280	280	280	280	280
Total Guadalupe Ba	sin Demand		11,654	19,274	26,157	31,982	38,470	45,922	52,268
				-					
Total Basin Supply	7			-					
Guadalupe			14.000	25.24=	25.24-	25.24=	25.24-	25.245	25.2:-
Municipal Industrial			16,980	25,247	25,247	25,247	25,247	25,247	25,247
Industrial Steam-Electric			1,565 2,464	1,565	1,565 6,160	1,565 6,160	1,565 6,160	1,565	1,565
Irrigation			2,464	6,160 669	669	669	669	6,160 669	6,160 669
Mining			60	60	60	60	60	60	60
Livestock			280	280	280	280	280	280	280
Total Guadalupe Ba	sin Supply		22,018	33,981	33,981	33,981	33,981	33,981	33,981
•									

			Table C-12						
		Projected	Water Demands, S	upplies, and	Needs				
			Hays County (I	Part)					
			South Central Texa	s Region					
			Total in			Projec	tions		
1	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Bala	nce								
Guadalupe									
Municipal			6,054	7,969	838	-4,717	-10,167	-16,874	-22,22
Industrial			1,408	1,353	1,316	1,280	1,243	1,210	1,179
Steam-Electric			2,464	5,151	5,442	5,211	4,211	3,497	2,53
Irrigation			507	316	319	322	325	328	33
Mining			-69	-82	-91	-97	-101	-102	-10
Livestock			0	0	0	0	0	0	
Total Guadalupe I	Basin Surplus/Shortag	e	10,364	14,707	7,824	1,999	-4,489	-11,941	-18,28
Groundwater Supp	plies								
	Available								
	Guadalupe	Edwards	6,179	6,179	6,179	6,179	6,179	6,179	6,17
	Guadalupe	Edwards (D&L)	114	114	114	114	114	114	114
	Guadalupe	Trinity	1,213	1,213	1,213	1,213	1,213	1,213	1,21
	Total Available		7,506	7,506	7,506	7,506	7,506	7,506	7,50
	Allocated								
	Guadalupe	Edwards	6,179	6,179	6,179	6,179	6,179	6,179	6,17
	Guadalupe	Edwards (D&L)	114	114	114	114	114	114	11-
	Guadalupe	Trinity	1,213	1,213	1,213	1,213	1,213	1,213	1,21
	Total Allocated		7,506	7,506	7,506	7,506	7,506	7,506	7,50
	Total Unallocat	ed	0	0	0	0	0	0	
Notes:									
1 There is limited	supply from the Edw:	ards Aquifer for D&L however	er these values are r	ot part of the	320 000 acft	/vr allocated	to other uses		
		eds may be greater than show							

		D		le C-13	137				
		Projected	d Water Dema Karne	ands, Supplices County	es, and Need	S			
			South Centra		gion				
			Total in			Projec	ctions		
	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Deman									
Nueces Basin	a								
El Oso WSC			12	13	13	14	15	15	10
Rural			19	24	29	35	39	42	4
	Subtotal		31	37	42	49	54	57	60
San Antonio Basin									
El Oso WSC			458	482	514	547	573	590	60
Falls City			107	113	122	131	138	142	14:
Karnes City Kenedy			418 758	432 763	453 826	474 874	492 912	503 961	512 993
Runge			195	195	209	219	227	238	24
Sunko WSC			46	49	53	57	61	63	6-
Rural (TDCJ)			478	500	500	500	500	500	500
Rural			208	324	433	569	672	714	732
	Subtotal		2,668	2,858	3,110	3,371	3,575	3,711	3,794
Guadalupe Basin									
El Oso WSC			5	5	5	6	6	6	(
Rural	0.11		13	16	20	24	27	30	31
San Antonio-Nuece	Subtotal		18	21	25	30	33	36	37
El Oso WSC	es Coastai Basin		2	3	3	3	3	3	3
Rural			7	8	10	12	14	15	15
710101	Subtotal		9	11	13	15	17	18	18
Total Municipa	1 Demand		2,726	2,927	3,190	3,465	3,679	3,822	3,909
Municipal Existin	g Supply								
Nueces Basin									
El Oso WSC		Carrizo	17	17	17	17	17	17	17
Rural		Carrizo	44	44	44	44	44	44	44
C A D	Subtotal		61	61	61	61	61	61	6.
San Antonio Basin El Oso WSC		Carrizo	153	153	153	153	153	153	153
El Oso WSC		Gulf Coast	510	510	510	510	510	510	510
El Oso WSC Sub	total	Guii Coast	663	663	663	663	663	663	663
Falls City		Carrizo	171	171	171	171	171	171	17
Karnes City		Carrizo	250	250	250	250	250	250	250
Kenedy		Gulf Coast	875	875	875	875	875	875	875
Runge		Gulf Coast	299	299	299	299	299	299	299
Sunko WSC		Carrizo	118	118	118	118	118	118	118
Rural (TDCJ)		Gulf Coast	500	500	500	500	500	500	500
Rural		Carrizo Gulf Coast	5 880	5 880	5 880	5 880	5 880	5 880	880
Rural Subtotal		Guii Coast	885	885	885	885	885	885	885
Tarar Subtotal	Subtotal		3,761	3,761	3,761	3,761	3,761	3,761	3,761
Guadalupe Basin			5,751	5,701	2,7.01	2,731	2,,01	2,7.01	2,70
El Oso WSC		Carrizo	7	7	7	7	7	7	
Rural		Carrizo	23	23	23	23	23	23	23
		Gulf Coast	8	8	8	8	8	8	
Rural Subtotal	0.1		31	31	31	31	31	31	31
Com Amtonii Ni	Subtotal		38	38	38	38	38	38	38
San Antonio-Nuece El Oso WSC	es Coastal Basin	Corrigo	4	4	4	4	4	4	
Rural		Carrizo Gulf Coast	20	20	20	4 20	20	20	20
Kurar	Subtotal	Guii Coast	24	24	24	24	24	24	24
	_ 0000000		2-1	2-1	24	24	<i>∠</i> -т	2-1	
Total Municipa	l Existing Supply		3,884	3,884	3,884	3,884	3,884	3,884	3,884
•									

		D		le C-13	N	i-			
		Projecte	d Water Dema	ands, Supph es County	es, and Need	IS			
			South Centr		rion				
			Total in	ai i exas neg	31011	Projec	etions		
	Basin	Source	2000	2010	2020	2030	2040	2050	2060
	Dasin	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Surpl	us/Shortage		(0.000)	(4.42-1)	(0.010)	(0.010)	(3323)	(4.52.1)	(3321)
Nueces Basin	g-								
El Oso WSC			5	4	4	3	2	2	1
Rural			25	20	15	9	5	2	(
	Subtotal		30	24	19	12	7	4	1
San Antonio Basi	n								
El Oso WSC			205	181	149	116	90	73	62
Falls City			64	58	49	40	33	29	26
Karnes City			-168	-182	-203	-224	-242	-253	-262
Kenedy Runge			117 104	112 104	49 90	1 80	-37 72	-86 61	-118 52
Sunko WSC			72	69	65	61	57	55	54
Rural (TDCJ)		+	22	09	0.5	0	0	0	(
Rural		1	677	561	452	316	213	171	153
Turur	Subtotal		1,093	903	651	390	186	50	-33
Guadalupe Basin									
El Oso WSC			2	2	2	1	1	1	1
Rural			18	15	11	7	4	1	0
	Subtotal		20	17	13	8	5	2	1
San Antonio-Nue	ces Coastal Basin								
El Oso WSC			2	1	1	1	1	1	1
Rural			13	12	10	8	6	5	
	Subtotal		15	13	11	9	7	6	- 6
Tatal Municin	a 1 Crama la a /Cla anta a a		1,158	957	694	419	205	62	-25
Total Mullicip	oal Surplus/Shortage		1,136	937	094	419	203	02	-23
Municipal New S	Supply Need								
Nueces Basin	упрріў глеси								
El Oso WSC			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
San Antonio Basi	n								
El Oso WSC			0	0	0	0	0	0	C
Falls City			0	0	0	0	0	0	C
Karnes City			168	182	203	224	242	253	262
Kenedy			0	0	0	0	37	86	118
Runge			0	0	0	0	0	0	0
Sunko WSC Rural (TDCJ)			0	0	0	0	0	0	0
Rural (1DCJ)		1	0	0	0	0	0	0	(
Kurai	Subtotal		168	182	203	224	279	339	380
Guadalupe Basin	Subtotui		100	102	203	224	219	337	560
El Oso WSC			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	C
	Subtotal		0	0	0	0	0	0	(
San Antonio-Nue	ces Coastal Basin								
El Oso WSC			0	0	0	0	0	0	(
Rural			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	0
m . 135 11	127 0 127 1				***				
Total Municip	oal New Supply Need		168	182	203	224	279	339	380

		D		le C-13	NI	1-			
		Projected	l Water Dema Karne	ands, Suppli es County	es, and Need	ls			
			South Centra	al Texas Reg	gion				
	D :	G	Total in	2010	2020	Projec		2050	2070
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Industrial Demand	d		. /	` ,	` ′	` /	, ,	` ′	, ,
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			107	118	122	125	128	130	137
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece	es Basin		0	0	0	0	0	0	0
Total Industrial	Demand		107	118	122	125	128	130	137
Industrial Existing	r Cunnly								
Nueces Basin	g Suppry		0	0	0	0	0	0	0
San Antonio Basin		Gulf Coast	139	139	139	139	139	139	139
Guadalupe Basin		Guii Coast	0	0	0	0	0	0	0
San Antonio-Nuece	e Racin		0	0	0	0	0	0	0
	Existing Supply		139	139	139	139	139	139	139
Total Hidustilal	Dataing Suppry		139	139	137	139	139	139	137
Industrial Surplus	/Shortage								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			32	21	17	14	11	9	2
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece			0	0	0	0	0	0	0
Total Industrial	Surplus/Shortage		32	21	17	14	11	9	2
Industrial New Su	pply Need								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece			0	0	0	0	0	0	0
Total Industrial	New Supply Need		0	0	0	0	0	0	0
Steam-Electric De	mand								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece	es Basin		0	0	0	0	0	0	0
Total Steam-Ele	ectric Demand		0	0	0	0	0	0	0
Steam-Electric Ex	isting Supply								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece			0	0	0	0	0	0	0
Total Steam-Ele	ectric Existing Supply		0	0	0	0	0	0	0
Stoom Floatuic C-	rnlus/Showtogo								
Steam-Electric Sur Nueces Basin	prus/snortage	+	0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nuece	es Basin		0	0	0	0	0	0	0
	ectric Surplus/Shortage		0	0	0	0	0	0	0
Steam-Electric Ne	w Supply Need				-				
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin	. D i .		0	0	0	0	0	0	0
		1	. ()	Λ	()	()	Ω	(1)	()
San Antonio-Nuece	ectric New Supply Need		0	0	0	0	0	0	0

			ole C-13					
	Projected	Water Dem		es, and Need	ls			
			es County					
		South Centr	al Texas Reg	gion				
		Total in	2010	***	Projec			****
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Irrigation Demand								
Nueces Basin		0	0	1.250	0	0	0	024
San Antonio Basin		1,916	1,382	1,250	1,131	1,023	925	836
Guadalupe Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin Total Irrigation Demand		1,916	1,382	1,250	1,131	1,023	925	836
Total irrigation Demand		1,910	1,382	1,230	1,131	1,023	923	830
Irrigation Supply								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin	Run-of-River	725	725	725	725	725	725	725
	Gulf Coast	657	657	657	657	657	657	657
San Antonio Basin Subtotal		1,382	1,382	1,382	1,382	1,382	1,382	1,382
Guadalupe Basin		0	0	0	0	0	0	C
San Antonio-Nueces Basin		0	0	0	0	0	0	C
Total Irrigation Supply		1,382	1,382	1,382	1,382	1,382	1,382	1,382
Irrigation Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		-534	0	132	251	359	457	546
Guadalupe Basin		0	0	0	0	0	0	0
San Antonio-Nueces Basin		0	0	0	0	0	0	0
Total Irrigation Surplus/Shortage		-534	0	132	251	359	457	546
Irrigation New Supply Need		_	_			_	_	
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		534	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	
San Antonio-Nueces Basin Total Irrigation New Supply Need		534	0	0	0	0	0	(
Total Imgation New Supply Need		334	U	U	U	U	U	
Mining Demand								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		105	94	91	90	89	89	88
Guadalupe Basin		8	7	7	7	7	7	7
San Antonio-Nueces Basin		6 119	5	5	5 102	5	5	100
Total Mining Demand		119	106	103	102	101	101	100
Mining Supply								
Nueces Basin		0	0	0	0	0	0	C
San Antonio Basin	Carrizo	5	5	5	5	5	5	5
	Gulf Coast	95	95	95	95	95	95	95
San Antonio Basin Subtotal		100	100	100	100	100	100	100
Guadalupe Basin	Carrizo	7	7	7	7	7	7	7
San Antonio-Nueces Basin	Gulf Coast	6	6	6	6	6	6	ϵ
Total Mining Supply		113	113	113	113	113	113	113
Mining Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		-5	6	9	10	11	11	12
Guadalupe Basin		-1	0	0	0	0	0	C
San Antonio-Nueces Basin		0	1	1	1	1	1	1
Total Mining Surplus/Shortage		-6	7	10	11	12	12	13

			Tab	le C-13					
		Projecte	d Water Dema		es, and Need	ls			
				es County	,				
			South Centr		ion				
			Total in		,	Projec	ctions		
I	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining New Supply	v Need				, ,	, ,	1 /	, ,	
Nueces Basin	,		0	0	0	0	0	0	0
San Antonio Basin			5	0	0	0	0	0	0
Guadalupe Basin			1	0	0	0	0	0	0
San Antonio-Nueces	Basin		0	0	0	0	0	0	0
Total Mining Ne			6	0	0	0	0	0	0
	** •								
Livestock Demand									
Nueces Basin			107	107	107	107	107	107	107
San Antonio Basin			936	936	936	936	936	936	936
Guadalupe Basin			83	83	83	83	83	83	83
San Antonio-Nueces	Basin		59	59	59	59	59	59	59
Total Livestock l	Demand		1,185	1,185	1,185	1,185	1,185	1,185	1,185
Livestock Supply									
Nueces Basin		Carrizo	9	9	9	9	9	9	9
		Gulf Coast	45	45	45	45	45	45	45
		Local	53	53	53	53	53	53	53
	Subtotal		107	107	107	107	107	107	107
San Antonio Basin		Gulf Coast	468	468	468	468	468	468	468
		Local	468	468	468	468	468	468	468
~ ~ .	Subtotal	~ .	936	936	936	936	936	936	936
Guadalupe Basin		Carrizo	5	5	5	5	5	5	5
		Gulf Coast	37	37	37	37	37	37	37
	0.11	Local	41	41	41	41	41	41	41
C A N.	Subtotal	C-16 C	83	83 30	83 30	83 30	83 30	83 30	83 30
San Antonio-Nueces	s Basın	Gulf Coast	30 29	29	29	29	29	29	29
	Cht-stal	Local	59	59	59	59	59	59	59
Total Livestock	Subtotal		1,185	1,185	1,185	1,185	1,185	1,185	1,185
Total Livestock s	Supply		1,103	1,105	1,105	1,105	1,105	1,165	1,103
Livestock Surplus/S	Shortage								
Nueces Basin	onor tage		0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nueces	Basin		0	0	0	0	0	0	0
	Surplus/Shortage		0	0	0	0	0	0	0
Livestock New Sup	ply Need								
Nueces Basin			0	0	0	0	0	0	0
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
San Antonio-Nueces			0	0	0	0	0	0	0
Total Livestock 1	New Supply Need		0	0	0	0	0	0	0
Total Karnes Coun	ty Demand								
Municipal			2,726	2,927	3,190	3,465	3,679	3,822	3,909
Industrial			107	118	122	125	128	130	137
Steam-Electric			1.016	1 202	1.250	1 121	1.022	0	026
Irrigation			1,916	1,382	1,250	1,131	1,023	925	836
Mining			119	106	103	102	101	101	100
Livestock	1		1,185	1,185	1,185	1,185	1,185	1,185	1,185
Total County Demar	ıu		6,053	5,718	5,850	6,008	6,116	6,163	6,167
l l	1								

				le C-13	137				
		Projected	d Water Dema		es, and Need	S			
				s County					
		ı	South Centra Total in	al Texas Reg	ion	Duoise	4: am a		
,	D!	G		2010	2020	Projec		2050	20.0
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
T . 1 IZ . C	4 6 1		(acit)	(acit)	(acit)	(acit)	(acit)	(acit)	(acit)
Total Karnes Coun	ity Supply		2.004	2.004	2.004	2.004	2.004	2.004	2.00
Municipal Industrial			3,884 139	3,884 139	3,884 139	3,884 139	3,884 139	3,884 139	3,88
Steam-Electric			0	0	0	0	0	0	15
Irrigation			1,382	1,382	1,382	1,382	1,382	1,382	1,38
Mining			113	113	113	113	113	113	1,38
Livestock			1,185	1,185	1,185	1,185	1,185	1,185	1,18
Total County Supply	V		6,703	6,703	6,703	6,703	6,703	6,703	6,70
Total County Suppl			0,702	0,700	0,702	0,700	0,700	0,700	0,70
Total Karnes Coun	ity Balance								
Municipal			1,158	957	694	419	205	62	-2
Industrial			32	21	17	14	11	9	
Steam-Electric			0	0	0	0	0	0	
Irrigation			-534	0	132	251	359	457	54
Mining			-6	7	10	11	12	12	1:
Livestock			0	0	0	0	0	0	(
Total County Surplu	is/Shortage		650	985	853	695	587	540	53
Total Basin Demar	nd.								
Nueces	lu								
Municipal			31	37	42	49	54	57	6
Industrial			0	0	0	0	0	0	
Steam-Electric			0	0	0	0	0	0	(
Irrigation			0	0	0	0	0	0	(
Mining			0	0	0	0	0	0	(
Livestock			107	107	107	107	107	107	10
Total Nueces Basin	Demand		138	144	149	156	161	164	16
San Antonio									
Municipal			2,668	2,858	3,110	3,371	3,575	3,711	3,79
Industrial			107	118	122	125	128	130	13
Steam-Electric			0	0	0	0	0	0	13
Irrigation			1,916	1,382	1,250	1,131	1,023	925	83
Mining			105	94	91	90	89	89	8
Livestock			936	936	936	936	936	936	93
Total San Antonio E	Basin Demand		5,732	5,388	5,509	5,653	5,751	5,791	5,79
			- 7	- ,	- /	- ,	- ,	- ,	- /
Guadalupe									
Municipal			18	21	25	30	33	36	3'
Industrial			0	0	0	0	0	0	(
Steam-Electric			0	0	0	0	0	0	(
Irrigation			0	0	0	0	0	0	(
Mining			8	7	7	7	7	7	
Livestock			83	83	83	83	83	83	8:
Total Guadalupe Ba	sin Demand		109	111	115	120	123	126	12
Com Amtor-!- NT-									
San Antonio-Nuece	2S			11	10	1.7	17	10	41.
Municipal			9	11	13	15	17	18	1
Industrial			0	0	0	0	0	0	
Steam-Electric			0	0	0	0	0	0	
Irrigation			0	5	0	0	5	0	
Mining Livestock			6 59	59	50	59 59	59	5 59	5
	Nueces Basin Demand		74	75	59 77	79 79	81	82	82
	tucces Dusin Demand	I .	/+	13	, ,	17	01	02	0.

			le C-13					
	Projecte	d Water Dem		es, and Need	ls			
			es County					
		South Centr	al Texas Reg	gion				
		Total in			Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Supply								
Nueces								
Municipal		61	61	61	61	61	61	61
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		0	0	0	0	0	0	(
Livestock		107	107	107	107	107	107	107
Unallocated Groundwater Supply		1,620	1,620	1,620	1,620	1,620	1,620	1,620
Total Nueces Basin Supply		1,788	1,788	1,788	1,788	1,788	1,788	1,788
San Antonio								
Municipal		3,761	3,761	3,761	3,761	3,761	3,761	3,761
Industrial		139	139	139	139	139	139	139
Steam-Electric		0	0	0	0	0	0	(
Irrigation		1,382	1,382	1,382	1,382	1,382	1,382	1,382
Mining		5	5	5	5	5	5	5
Livestock		936	936	936	936	936	936	936
Unallocated Groundwater Supply		7,453	7,453	7,453	7,453	7,453	7,453	7,453
Total San Antonio Basin Supply		13,676	13,676	13,676	13,676	13,676	13,676	13,676
Guadalupe								
Municipal		38	38	38	38	38	38	38
Industrial		0	0	0	0	0	0	0
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		7	7	7	7	7	7	7
Livestock		83	83	83	83	83	83	83
Unallocated Groundwater Supply		325	325	325	325	325	325	325
Total Guadalupe Basin Supply		453	453	453	453	453	453	453
San Antonio-Nueces								
Municipal		24	24	24	24	24	24	24
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		6	6	6	6	6	6	ϵ
Livestock		59	59	59	59	59	59	59
Unallocated Groundwater Supply		733	733	733	733	733	733	733
Total San Antonio-Nueces Basin Supply		822	822	822	822	822	822	822
Total Basin Balance								
Nueces		†						
Municipal		30	24	19	12	7	4	1
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		0	0	0	0	0	0	(
Livestock		0	0	0	0	0	0	(
Unallocated Groundwater Supply		1,620	1,620	1,620	1,620	1,620	1,620	1,620
Total Nueces Basin Surplus/Shortage		1,650	1,644	1,639	1,632	1,627	1,624	1,621

				le C-13					
		Projected	d Water Dema		es, and Need	s			
				es County	-				
		T	South Centra	al Texas Reg	ion	ъ.			
			Total in		***	Projec			****
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
San Antonio							, ,	, ,	, ,
Municipal			1,093	903	651	390	186	50	-33
Industrial			32	21	17	14	11	9	2
Steam-Electric			0	0	0	0	0	0	0
Irrigation			-534	0	132	251	359	457	546
Mining			-100	-89	-86	-85	-84	-84	-83
Livestock			0	0	0	0	0	0	0
Unallocated Groun			7,453	7,453	7,453	7,453	7,453	7,453	7,453
Total San Antonio E	Basin Surplus/Shortage		7,944	8,288	8,167	8,023	7,925	7,885	7,885
Guadalupe									
Municipal			20	17	13	8	5	2	1
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			-1	0	0	0	0	0	0
Livestock			0	0	0	0	0	0	0
Unallocated Groun			325	325	325	325	325	325	325
Total Guadalupe Ba	sin Surplus/Shortage		344	342	338	333	330	327	326
San Antonio-Nuece	es								
Municipal			15	13	11	9	7	6	6
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	1	1	1	1	1	1
Livestock			0	0	0	0	0	0	0
Unallocated Groun	ndwater Supply		733	733	733	733	733	733	733
	Nueces Basin Surplus/Sh	ortage	748	747	745	743	741	740	740
Groundwater Suppli									
	Available								
	Guadalupe	Carrizo	35	35	35	35	35	35	35
	Nueces	Carrizo	53	53	53	53	53	53	53
	San Antonio	Carrizo	611	611	611	611	611	611	611
	San Antonio-Nueces	Gulf Coast	789	789	789	789	789	789	789
	Guadalupe	Gulf Coast	370	370	370	370	370	370	370
	Nueces	Gulf Coast	1,665	1,665	1,665	1,665	1,665	1,665	1,665
	San Antonio	Gulf Coast	12,376	12,376	12,376	12,376	12,376	12,376	12,376
	Total Available		15,899	15,899	15,899	15,899	15,899	15,899	15,899
<u> </u>	Allocated	g :	2.5	2.5	2.5	2.5	2.5	2.5	
<u> </u>	Guadalupe	Carrizo	35	35	35	35	35	35	35
	Nueces	Carrizo	53	53	53	53	53	53	53
	San Antonio	Carrizo	611	611	611	611	611	611	611
	San Antonio-Nueces	Gulf Coast	56	56	56	56	56	56	56
	Guadalupe	Gulf Coast	45	45	45	45	45	45	45
1	Nueces	Gulf Coast	45	45	45	45	45	45	45
	San Antonio	Gulf Coast	4,923	4,923	4,923	4,923	4,923	4,923	4,923
	Total Allocated	-	5,768	5,768	5,768	5,768	5,768	5,768	5,768
	Total Unallocated	1	10,131	10,131	10,131	10,131	10,131	10,131	10,131

Table C-14 Projected Water Demands, Supplies, and Needs **Kendall County South Central Texas Region** Total in **Projections** Basin 2000 2010 2020 2030 2040 2050 2060 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Municipal Demand San Antonio Basin 1,170 1,570 2,188 2,843 3,370 3,831 4,282 Boerne Fair Oaks Ranch 152 286 296 300 305 310 316 Water Service Inc (Apex Water Ser) 37 43 52 61 69 75 81 748 1,080 1,506 1,939 2,304 2,620 2,930 Rural Subtotal 2,107 2,979 4,042 5,143 6,048 6,836 7,609 Guadalupe Basin 2,279 2,936 4,434 1,131 1,635 3,487 3,966 Rural Subtotal 1,131 1,635 2,279 2,936 3,487 3,966 4,434 Lower Colorado Basin 49 75 96 Rural 24 63 86 24 35 49 75 Subtotal 63 86 96 Total Municipal Demand 3,262 6,370 10,888 12,139 4,649 8,142 9,610 Municipal Existing Supply San Antonio Basin Boerne Boerne Lake 0 0 0 0 0 Canyon (GBRA -0 3,611 3,611 3,611 3,611 3,611 3,611 Trinity 394 394 394 394 394 395 395 Boerne Subtotal 394 4,005 4,005 4,005 4,005 4,006 4,006 34 28 Trinity (Comal) 34 34 34 34 28 Fair Oaks Ranch Canyon (GBRA 0 389 389 389 389 389 389 Fair Oaks Ranch Subtotal 34 423 423 423 423 417 417 2 Water Service Inc (Apex Water Ser) Edwards 2 2 2 2 2 2 Rural 373 373 373 373 373 375 375 Trinity Canyon (GBRA -2,072 0 2,072 2.072 2,072 2,072 2.072 Rural Subtotal 373 2,445 2,445 2,445 2,445 2,447 2,447 6,872 Subtotal 803 6,875 6,875 6,875 6,875 6,872 Guadalupe Basin Rural Edwards-Trinity 31 31 31 31 31 31 31 1,383 1.383 1.383 1.383 1.383 1.383 1 383 Trinity Rural Subtotal 1,414 1,414 1,414 1,414 1,414 1,414 1,414 Subtotal 1,414 1,414 1,414 1,414 1,414 1,414 1,414 Lower Colorado Basin Rural Edwards-Trinity 46 46 46 46 46 46 46 39 39 39 39 39 39 39 Trinity Subtotal 85 85 85 85 85 85 85 8,371 Total Municipal Existing Supply 2,302 8,374 8,374 8,374 8,374 8,371 Municipal Surplus/Shortage San Antonio Basin -776 2,435 1,817 1,162 175 -276 Boerne 635 Fair Oaks Ranch 137 118 107 101 -118 127 123 Water Service Inc (Apex Water Ser) -35 -41 -50 -59 -67 -73 -79 -375 1,365 939 506 141 173 -483 Rural Subtotal -1,304 3,896 2,833 1,732 827 36 -738 Guadalupe Basin -2,552 -3,020 -1,522 -2,073 Rural 283 -221 -865 -1,522 Subtotal 283 -221 -2,552 -865 -2.073-3,020

			le C-14					
	Projecte	ed Water Dema		es, and Need	ls			
			ll County					
		South Centr	al Texas Reg	gion		_		
		Total in			Projec			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lower Colorado Basin								
Rural		61	50	36	22	10	-1	-11
Subtotal		61	50	36	22	10	-1	-11
Total Municipal Surplus/Shortage		-960	3,725	2,004	232	-1,237	-2,518	-3,769
Municipal New Supply Need								
San Antonio Basin								
Boerne		776	0	0	0	0	0	276
Fair Oaks Ranch		118	0	0	0	0	0	0
Water Service Inc (Apex Water Ser)		35	41	50	59	67	73	79
Rural		375	0	0	0	0	173	483
Subtotal		1,304	41	50	59	67	246	838
Guadalupe Basin								
Rural		0	221	865	1,522	2,073	2,552	3,020
Subtotal		0	221	865	1,522	2,073	2,552	3,020
Lower Colorado Basin								
Rural		0	0	0	0	0	1	11
Subtotal		0	0	0	0	0	1	11
Total Municipal New Supply Need		1,304	262	915	1,581	2,140	2,799	3,869
Industrial Demand								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Industrial Demand		0	0	0	0	0	0	0
Industrial Existing Supply								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Industrial Existing Supply		0	0	0	0	0	0	0
Total fidustrial Existing Supply		0	U	U	0	0	0	U
Industrial Surplus/Shortage								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Industrial Surplus/Shortage		0	0	0	0	0	0	0
1 2								
Industrial New Supply Need								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Industrial New Supply Need		0	0	0	0	0	0	0
Steam-Electric Demand								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Steam-Electric Demand		0	0	0	0	0	0	0

			ole C-14					
	Projected	Water Dem		ies, and Need	ds			
			all County					
		South Centr	al Texas Re	gion				
		Total in			Projec	tions		
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Steam-Electric Existing Supply		(acit)	(acrt)	(acit)	(acit)	(acit)	(acit)	(acrt)
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Steam-Electric Existing Supply	ý.	0	0	0	0	0	0	0
Steam-Electric Surplus/Shortage								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Steam-Electric Surplus/Shortag	ge	0	0	0	0	0	0	0
Steam-Electric New Supply Need			^	^				
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0		0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Steam-Electric New Supply Ne	eed	0	0	0	0	0	0	0
Irrigation Demand								
San Antonio Basin		107	194	189	185	181	177	174
Guadalupe Basin		289	520	510	500	490	481	472
Lower Colorado Basin		0	0	0	0	0	0	0
Total Irrigation Demand		396	714	699	685	671	658	646
Irrigation Supply								
San Antonio Basin	Trinity	54	54	54	54	54	42	42
Sui Fillonio Busii	Trinity (Guadalup	140	140	140	140	140	140	140
San Antonio Basin Total	j (194	194	194	194	194	182	182
Guadalupe Basin	Run-of-River	18	18	18	18	18	18	18
	Trinity	530	530	530	530	530	530	530
Guadalupe Basin Subtotal	j	548	548	548	548	548	548	548
Lower Colorado Basin		0	0	0	0	0	0	1
Total Irrigation Supply		602	602	602	602	602	590	591
Irrigation Surplus/Shortage								
San Antonio Basin		87	0	5	9	13	5	8
Guadalupe Basin		259	28	38	48	58	67	76
Lower Colorado Basin		0	0	0	0	0	0	0
Total Irrigation Surplus/Shortage		346	28	43	57	71	72	84
Irrigation New Supply Need								
San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		0	0	0	0	0	0	0
Total Irrigation New Supply Need		0	0	0	0	0	0	0
Mining Domand		1						
Mining Demand San Antonio Basin		0	0	0	0	0	0	0
Guadalupe Basin		0	0	0	0	0	0	0
Lower Colorado Basin		6	6	6	6	6	6	6
Total Mining Demand		6	6	6	6	6	6	6
			- U			0		

			144	ole C-14					
		Project	ed Water Dem		es, and Need	ls			
				all County					
		1	South Centr	al Texas Re	gion				
			Total in			Projec			
Ba	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining Supply				_					
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin		m · · ·	0	0	0	0	0	0	0
Lower Colorado Ba		Trinity	6	6	6	6	6	6	6
Lower Colorado E			6	6	6	6	6	6	- 6
Total Mining Su	ipply		6	6	6	6	6	6	- 6
Mining Surplus/Sh	· · · · · · · · · · · · · · · · · · ·								
San Antonio Basin	iortage		0	0	0	0	0	0	C
			0	0		0			
Guadalupe Basin Lower Colorado Ba	cin.		0	0	0	0	0	0	0
Total Mining St			0	0	0	0	0	0	0
Total Milling St	irpius/siioitage		0	U	U	U	U	U	U
Mining New Suppl	ly Need								
San Antonio Basin	13 1100u		0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lower Colorado Ba	ein		0	0	0	0	0	0	0
	ew Supply Need		0	0	0	0	0	0	0
Total Milling IV	Варріј Песа			Ü	0	Ü	- O	Ü	
Livestock Demand									
San Antonio Basin	•		80	80	80	80	80	80	80
Guadalupe Basin			353	353	353	353	353	353	353
Lower Colorado Ba	sin		13	13	13	13	13	13	13
Total Livestock			446	446	446	446	446	446	446
				-	-	-			
Livestock Supply									
San Antonio Basin		Trinity	40	40	40	40	40	49	49
		Local	40	40	40	40	40	40	40
	Subtotal		80	80	80	80	80	89	89
Guadalupe Basin		Trinity	176	176	176	176	176	176	176
		Local	177	177	177	177	177	177	177
	Subtotal		353	353	353	353	353	353	353
Lower Colorado Ba	sin	Trinity	6	6	6	6	6	6	6
		Local	7	7	7	7	7	7	7
	Subtotal		13	13	13	13	13	13	13
Total Livestock	Supply		446	446	446	446	446	455	455
Livestock Surplus/	Shortage								
San Antonio Basin			0	0	0	0	0	9	9
Guadalupe Basin	<u> </u>		0	0	0	0	0	0	0
Lower Colorado Ba			0	0	0	0	0	0	0
Total Livestock	Surplus/Shortage		0	0	0	0	0	9	9
* · · · · · ·									
Livestock New Sur	ppiy Need			^	^	^	^		
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			0	0	0	0	0	0	0
Lower Colorado Ba	New Supply Need		0	0	0	0	0	0	0
Total Livestock	new Supply need		0	U	U	0	U	U	0

			Tal	ble C-14					
		Projected		ands, Suppl	ies, and Need	ds			
				all County					
				ral Texas Re	gion				
			Total in			Projec			
Basin		Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Kendall County De	mand								
Municipal			3,262	4,649	6,370	8,142	9,610	10,888	12,139
Industrial			0	0	0	0	0	0	0
Steam-Electric			396	714	699	0	671	0 658	646
Irrigation Mining			390	714 6	699	685	671	6	646
Livestock			446	446	446	446	446	446	446
Total County Demand			4,110	5,815	7,521	9,279	10,733	11,998	13,237
Total County Demand			4,110	3,013	7,321	9,219	10,733	11,770	13,237
Total Kendall County Su	nnly								
Municipal Municipal	ppry		2,302	8,374	8,374	8,374	8,374	8,371	8,371
Industrial			2,302	0,574	0,574	0,574	0,574	0,571	0,371
Steam-Electric			0	0	0	0	0	0	0
Irrigation			602	602	602	602	602	590	591
Mining			6	6	6	6	6	6	6
Livestock			446	446	446	446	446	455	455
Total County Supply			3,356	9,428	9,428	9,428	9,428	9,422	9,423
Total Kendall County Ba	lance								
Municipal			-960	3,725	2,004	232	-1,237	-2,518	-3,769
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			206	-112	-97	-83	-69	-68	-55
Mining			0	0	0	0	0	0	0
Livestock			0	0	0	0	0	9	9
Total County Surplus/Shor	tage		-754	3,613	1,907	149	-1,306	-2,577	-3,815
Total Basin Demand									
San Antonio									
Municipal			2,107	2,979	4,042	5,143	6,048	6,836	7,609
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			107	194	189	185	181	177	174
Mining Livestock			80	80	80	0 80	80	80	80
Total San Antonio Basin D	amand		2,294	3,253	4,311	5,408	6,309	7,093	7,863
Total Sall Alitolilo Basili D	emand		2,294	3,233	4,311	3,406	0,309	7,093	7,803
Guadalupe									
Municipal			1,131	1,635	2,279	2,936	3,487	3,966	4,434
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0		0	0	0
Irrigation			289	520	510	500	490	481	472
Mining			0	0	0	0	0	0	0
Livestock			353	353	353		353	353	353
Total Guadalupe Basin Der	mand		1,773	2,508	3,142	3,789	4,330	4,800	5,259
Lower Colorado									
Municipal			24	35	49	63	75	86	96
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0		0	0	0
Mining			6	6	6	6	6	6	6
Livestock			13	13	13	13	13	13	13
Total Lower Colorado Basi	n Demand		43	54	68	82	94	105	115

Table C-14 Projected Water Demands, Supplies, and Needs **Kendall County South Central Texas Region** Total in Projections Basin Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Total Basin Supply San Antonio 6,875 6,875 6,875 6,875 6,872 6,872 Municipal Industrial Steam-Electric Irrigation Mining Livestock Total San Antonio Basin Supply 7,149 7,149 7,143 1,077 7,149 7,149 7,143 Guadalupe 1,414 1,414 1,414 1,414 1,414 1,414 1,414 Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total Guadalupe Basin Supply 3,181 3,181 3,181 3,181 3,181 3,181 3,181 Lower Colorado Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total Lower Colorado Basin Supply Total Basin Balance San Antonio -1,304 3,896 2,833 1,732 -738 Municipal Industrial Steam-Electric Irrigation Mining Livestock 2,838 -721 Total San Antonio Basin Surplus/Shortage -1,217 3,896 1,741 Guadalupe -221 -865 -1,522 -2,073 -2,552 -3,020 Municipal Industrial Steam-Electric Irrigation Mining Livestock Unallocated Groundwater Supply Total Guadalupe Basin Surplus/Shortage 1,408 -608 -1,149 -1,619 -2,078

			Tal	ole C-14					
		Projected	l Water Dem		ies, and Need	ls			
				all County					
				al Texas Re	gion				
			Total in			Projec			
В	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lower Colorado									
Municipal			61	50	36	22	10	-1	-11
Industrial			0	0	0	0	0	0	C
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	1
Mining			0	0	0	0	0	0	0
Livestock			0	0	0	0	0	0	0
Unallocated Grou	indwater Supply		0	0	0	0	0	0	0
Total Lower Colora	do Basin Surplus/Sho	ortage	61	50	36	22	10	-1	-10
Groundwater Supp	lies								
	Available								
	Colorado	Edwards-Trinity	46	46	46	46	46	46	46
	Guadalupe	Edwards-Trinity	103	103	103	103	103	103	103
	San Antonio	Edwards-Trinity	169	169	169	169	169	169	169
	Colorado	Trinity	51	51	51	51	51	51	51
	Guadalupe	Trinity	3,023	3,023	3,023	3,023	3,023	3,023	3,023
	San Antonio	Trinity	861	861	861	861	861	861	861
	Total Available		4,253	4,253	4,253	4,253	4,253	4,253	4,253
	Allocated								
	Colorado	Edwards-Trinity	46	46	46	46	46	46	46
	Guadalupe	Edwards-Trinity	31	31	31	31	31	31	31
	San Antonio	Edwards-Trinity	0	0	0	0	0	0	0
	Colorado	Trinity	51	51	51	51	51	51	51
	Guadalupe	Trinity	2,229	2,229	2,229	2,229	2,229	2,229	2,229
	San Antonio	Trinity	861	861	861	861	861	861	861
	Total Allocated		3,218	3,218	3,218	3,218	3,218	3,218	3,218
	Total Unallocate	<u>l</u> d	1,035	1,035	1,035	1,035	1,035	1,035	1,035

			Tal	ble C-15					
		Projected	l Water Dem		es, and Need	ls			
				le County					
	ı	•		al Texas Reg	gion				
		-	Total in	****	***	Projec		***	****
Ва	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Demand	1								
Nueces Basin									
Cotulla			1,271	1,407	1,516	1,566	1,615	1,677	1,743
Encinal*			110	110	109	108	106	107	107
Rural			244	282	321	384	441	478	500
	Subtotal		1,625	1,799	1,946	2,058	2,162	2,262	2,350
Total Municipal	Demand		1,625	1,799	1,946	2,058	2,162	2,262	2,350
16 11 15 14	g ,								
Municipal Existing Nueces Basin	Supply	1							
Cotulla		Carrizo	2,209	2,209	2,209	2,209	2,209	2,209	2,209
Encinal		Carrizo	2,209	2,209	2,209	2,209	2,209	2,209	2,209
Rural		Carrizo	500	500	500	500	500	500	500
	Subtotal		2,977	2,977	2,977	2,977	2,977	2,977	2,977
			,	ŕ			,	,	
Total Municipal	Existing Supply		2,977	2,977	2,977	2,977	2,977	2,977	2,977
Municipal Surplus	/Shortage								
Nueces Basin									
Cotulla			938	802	693	643	594	532	466
Encinal*			158	158	159	160	162	161	161
Rural	Subtotal		256 1,352	218 1,178	179 1,031	116 919	59 815	715	627
	Subtotal		1,552	1,170	1,031	919	013	/13	027
Total Municipal	Surplus/Shortage		1,352	1,178	1,031	919	815	715	627
Total Manierpar	Surprus, Shortage		1,552	1,170	1,001	,,,	010	710	02.
Municipal New Su	pply Need								
Nueces Basin									
Cotulla			0	0	0	0	0	0	C
Encinal*			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	C
	Subtotal		0	0	0	0	0	0	
Tatal Municipal	Name Committee Name		0	0	0	0	0	0	
1 otai Municipai	New Supply Need		U	0	0	0	U	U	C
Industrial Demand									
Nueces Basin			0	0	0	0	0	0	(
Total Industrial	Demand		0	0	0	0	0	0	(
				~		,			-
Industrial Existing	Supply								
Nueces Basin			0	0	0	0	0	0	0
Total Industrial	Existing Supply		0	0	0	0	0	0	(
Industrial Surplus	/Shortage		_	_		-	_	_	
Nueces Basin	C1/C1		0	0	0	0	0	0	
1 otal Industrial	Surplus/Shortage		0	0	0	0	0	0	C
Industrial New Su	only Need								
Nueces Basin	ppry recu	1	0	0	0	0	0	0	(
	New Supply Need		0	0	0	0	0	0	
	по пред теса		0	3		0	U	3	
Steam-Electric Der	nand								
Nueces Basin	**	1	0	0	0	0	0	0	0
Total Steam-Ele	ctric Demand		0	0	0	0	0	0	0

				Projected Water Demands, Supplies, and Needs LaSalle County										
	South Central Texas Region													
			Total in			Project	ions							
Bas	sin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)					
Steam-Electric Exis	sting Supply													
Nueces Basin			0	0	0	0	0	0						
Total Steam-Elec	etric Existing Supply	у	0	0	0	0	0	0						
Steam-Electric Sur	nlus/Shortage													
Nueces Basin	pius/Silvi tage		0	0	0	0	0	0						
	ctric Surplus/Shorta	ge	0	0	0	0	0	0						
Steam-Electric New	Supply Need													
Nueces Basin		1	0	0	0	0	0	0						
Total Steam-Elec	etric New Supply No	eed	0	0	0	0	0	0						
Irrigation Demand														
Nueces Basin			4,003	4,791	4,643	4,500	4,361	4,227	4,09					
Total Irrigation I	Demand		4,003	4,791	4,643	4,500	4,361	4,227	4,09					
Immigration C														
Irrigation Supply Nueces Basin		Run-of-River	705	705	705	705	705	705	70:					
INUCCES DASIII		Carrizo	4,427	4,427	4,427	4.427	4,427	4,427	4,42					
		Sparta	859	859	859	859	859	859	85					
Total Irrigation S	Supply	Spuriu	5,991	5,991	5,991	5,991	5,991	5,991	5,99					

Irrigation Surplus/	Shortage													
Nueces Basin	1 (01		1,988	1,200	1,348	1,491	1,630	1,764	1,89					
Total Irrigation S	Surplus/Shortage		1,988	1,200	1,348	1,491	1,630	1,764	1,89					
Irrigation New Sup	nly Need													
Nueces Basin	pij iteu		0	0	0	0	0	0	(
	New Supply Need		0	0	0	0	0	0	(
Mining Demand														
Nueces Basin			0	0	0	0	0	0	(
Total Mining De	mand		0	0	0	0	0	0	(
Mining Supply														
Nueces Basin	1		0	0	0	0	0	0						
Total Mining Su	pply		0	0	0	0	0	0						
Mining Surplus/Sho	ortage													
Nueces Basin	or emg v		0	0	0	0	0	0						
Total Mining Sur	rplus/Shortage		0	0	0	0	0	0						
Mining New Supply	y Need													
Nueces Basin	C1 N 1		0	0	0	0	0	0						
Total Mining Ne	w Supply Need		0	0	0	0	0	0	(
Livestock Demand			+ +											
Nueces Basin			1,687	1,687	1,687	1,687	1,687	1,687	1,68					
Total Livestock I	Demand		1,687	1,687	1,687	1,687	1,687	1,687	1,68					
Livestock Supply		Comic	600	(00	600	(00	(00	(00						
Nueces Basin		Carrizo Sparta	609	609 234	609 234	609	609	609	609					
		Sparta Local	234 844	844	844	234 844	234 844	234 844	234 844					
	Supply	Local	1,687	1,687	1,687	1,687	1,687	1,687	1,68					
Total Livestock S	117		1,007	-,007	-,007	-,007	-,007	2,007	1,00					
Total Livestock S														
Total Livestock S Livestock Surplus/S	Shortage													
Livestock Surplus/S Nueces Basin			0	0	0	0	0	0						
Livestock Surplus/S			0	0	0	0	0	0	(

	Table C-15									
	Projected Water Demands, Supplies, and Needs									
LaSalle County										
South Central Texas Region										
			Total in	Projections						
Bas	in	Source	2000	2010	2020	2030	2040	2050	2060	
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	
Nueces Basin			0	0	0	0	0	0	0	
Total Livestock N		0	0	0	0	0	0	0		

			ble C-15					
	Pr	ojected Water Den		ies, and Need	ds			
			lle County ral Texas Re	aion				
	<u> </u>	Total in	rai Texas Re	gion	Proje	otions		
Basin	Source		2010	2020	2030	2040	2050	2060
Dasin	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total La Salle County Der	mand	(3333)	(3.515)	(3.223)	(3323)	(222)	(5555)	(3333)
Municipal Municipal	inunu -	1,625	1,799	1,946	2,058	2,162	2,262	2,350
Industrial		0			,	-	0	2,550
Steam-Electric		0	0	0	0	0	0	(
Irrigation		4,003	4,791	4,643	4,500	4,361	4,227	4,097
Mining		0					0	(
Livestock		1,687		1,687	1,687	1,687	1,687	1,687
Total County Demand		7,315	8,277	8,276	8,245	8,210	8,176	8,134
Total La Salle County Suj	pply							
Municipal		2,977	2,977	2,977	2,977	2,977	2,977	2,977
Industrial		0	0	0	0	0	0	C
Steam-Electric		0					0	C
Irrigation		5,991	5,991	5,991	5,991	5,991	5,991	5,991
Mining		0	~	_		0	0	
Livestock		1,687	1,687	1,687	1,687	1,687	1,687	1,687
Total County Supply		10,655	10,655	10,655	10,655	10,655	10,655	10,655
Total La Salle County Bal	lance							
Municipal		1,352	1,178	1,031	919	815	715	627
Industrial		0					0	0
Steam-Electric		0		ų.			0	0
Irrigation		1,988	,		1,491	1,630	1,764	1,894
Mining		0		0		0	0	0
Livestock Total County Surplus/Short	tage	3,340	-		2,410	2,445	2,479	2,521
Total County Surplus/Short	lage	3,340	2,370	2,319	2,410	2,443	2,479	2,321
Total Basin Demand								
Nueces		1.625	1.700	1.046	2.050	2.1.62	2.262	2.250
Municipal		1,625	·	1,946	2,058	2,162	2,262	2,350
Industrial Steam-Electric		0					0	0
Irrigation		4,003		4,643	4,500	4,361	4,227	4,097
Mining		0	·	0			0	1,027
Livestock		1,687	1,687	1,687	1,687	1,687	1,687	1,687
Total Nueces Basin Deman	d	7,315		8,276		8,210	8,176	8,134
Total Basin Supply Nueces								
Municipal		2,977	2,977	2,977	2,977	2,977	2,977	2,977
Industrial		0					0	-,,,,
Steam-Electric		0	0	0	0	0	0	(
Irrigation		5,991	5,991	5,991	5,991	5,991	5,991	5,991
Mining		0		Ü	~		0	C
Livestock		1,687			,		1,687	1,687
Unallocated Groundwater		19,664				19,664	19,664	19,664
Total Nueces Basin Supply		30,319	30,319	30,319	30,319	30,319	30,319	30,319
Total Basin Balance								
Nueces								
Municipal		1,352			919	815	715	627
Industrial		0					0	(
Steam-Electric		1,000					1.764	1.90/
Irrigation Mining		1,988	·				1,764	1,894
Livestock		0					0	(
Unallocated Groundwater	r Supply	19,664	~	-		-	19,664	19,664
Total Nueces Basin Surplus		23,004					22,143	22,185
	-							·

	Project	ed Water Dem		es, and Need	s					
			le County							
South Central Texas Region										
		Total in			Projec	ctions				
Basin	Source	2000	2010	2020	2030	2040	27,341 27,341 1,100 1,100 330 330 28,770 28,770 8,013 8,013 1,093 1,093 0 0 9,106 9,106	2060		
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)		
Groundwater Supplies										
Availabl	e									
Nueces	Carrizo	27,341	27,341	27,341	27,341	27,341	27,341	27,34		
Nueces	Sparta	1,100	1,100	1,100	1,100	1,100	1,100	1,10		
Nueces	Queen City	330	330	330	330	330	330	33		
Total	Available	28,770	28,770	28,770	28,770	28,770	28,770	28,77		
Allocate	d									
Nueces	Carrizo	8,013	8,013	8,013	8,013	8,013	8,013	8,01		
Nueces	Sparta	1,093	1,093	1,093	1,093	1,093	1,093	1,09		
Nueces	Queen City	0	0	0	0	0	0			
Total	Allocated	9,106	9,106	9,106	9,106	9,106	9,106	9,10		
Total	Unallocated	19,664	19,664	19,664	19,664	19,664	19,664	19,66		
	_									

			Table	e C-16					
		Projected	Water Dema		s, and Needs	1			
				County					
			South Centra	l Texas Regi	on				
			Total in			Projec		-	
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
	•								
Municipal Demand	il								
Nueces Basin			226	414	504	500	661	727	905
Benton City WSC			336 830	837	504	589	661	737 878	805 896
Devine East Medina SUD			735	833	850 944	856	862 1,132	1,221	1,310
Hondo	1		1,601	1,784	2,001	1,048 2,205	2,375	2,548	2,717
Lytle*			63	62	2,001	59	58	2,348	2,717
Natalia			291	330	374	415	450	485	519
Rural			1,194	1,489	1,816	2,108	2,367	2,635	2,876
Kurar	Subtotal		5,050	5,749	6,549	7,280	7,905	8,562	9,181
San Antonio Basin	Sabiolai		3,030	3,177	0,547	1,200	1,203	0,502	2,101
Bexar Met Water	District*		15	24	33	41	47	54	60
Castroville	2 Dailet		621	680	743	802	854	908	961
East Medina SUD)		42	48	54	60	65	70	75
La Coste			190	205	222	239	251	265	281
Yancey WSC			668	832	1,013	1,180	1,328	1,469	1,603
Rural			30	38	46	54	60	67	73
	Subtotal		1,566	1,827	2,111	2,376	2,605	2,833	3,053
			-,,,,,	-,	_,	_,_,	_,,,,,	_,,,,,	-,,,,,,
Total Municipal	Demand		6,616	7,576	8,660	9,656	10,510	11,395	12,234
•			ŕ	ĺ	ŕ	ŕ	Í	ĺ	
Municipal Existing	Supply								
Nueces Basin									
Benton City WSC		Carrizo	587	587	587	587	587	587	587
Devine		Edwards	512	512	512	512	512	512	512
		Carrizo	471	471	471	471	471	471	471
Devine Subtotal			983	983	983	983	983	983	983
East Medina SUD	1	Edwards	846	846	846	846	846	846	846
Hondo		Edwards	1,465	1,465	1,465	1,465	1,465	1,465	1,465
Lytle		Edwards	46	46	46	46	46	46	46
Natalia		Edwards	136	136	136	136	136	136	136
Rural		Edwards	441	441	441	441	441	441	441
		Carrizo	1,139	1,139	1,139	1,139	1,139	1,139	1,139
Rural Subtotal			1,580	1,580	1,580	1,580	1,580	1,580	1,580
	Subtotal		5,643	5,643	5,643	5,643	5,643	5,643	5,643
San Antonio Basin						_		_	
Bexar Met Water	District	Edwards (BMWD)	9	9	9	9	9	9	9
Castroville		Edwards	386	386	386	386	386	386	386
East Medina SUD) 	Edwards	48	48	48	48	48	48	48
La Coste		Edwards	113	113	113	113	113	113	113
Yancey WSC		Edwards	618	618	618	618	618	618	618
Rural		Edwards	175	175	175	175	175	175	175
D 101		Trinity	177	1	1776	1	1	1	l
Rural Subtotal	6.14.4.1		176	176	176	176	176	176	176
	Subtotal		1,350	1,350	1,350	1,350	1,350	1,350	1,350
Total M	Evicting C1		6,993	6,993	6.002	6.002	6,993	6.002	6.002
rotai Municipai	Existing Supply		0,993	0,993	6,993	6,993	0,993	6,993	6,993
1				·			·		

	Duningt		e C-16	and Naada				
	Projecto	ed Water Demai Medina	County					
		South Central	l Texas Regi	on				
		Total in			Projec			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Municipal Surplus/Shortage		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Nueces Basin								
Benton City WSC		251	173	83	-2	-74	-150	-218
Devine		153	146	133	127	121	105	87
East Medina SUD		111	13	-98	-202	-286	-375	-464
Hondo		-136	-319	-536	-740	-910	-1,083	-1,252
Lytle*		-17	-16	-14	-13	-12	-12	-12
Natalia		-155	-194	-238	-279	-314	-349	-383
Rural		386	91	-236	-528	-787	-1,055	-1,296
Subtotal		593	-106	-906	-1,637	-2,262	-2,919	-3,538
San Antonio Basin Bexar Met Water District*		-6	-15	-24	-32	-38	-45	-51
Castroville	+	-235	-13	-357	-416	-468	-522	-575
East Medina SUD		6	-294	-6	-410	-408	-322	-27
La Coste		-77	-92	-109	-126	-138	-152	-168
Yancey WSC		-50	-214	-395	-562	-710	-851	-985
Rural		146	138	130	122	116	109	103
Subtotal		-216	-477	-761	-1,026	-1,255	-1,483	-1,703
Total Municipal Surplus/Shortage		377	-583	-1,667	-2,663	-3,517	-4,402	-5,241
Municipal New Supply Need								
Nueces Basin								
Benton City WSC		0	0	0	2	74	150	218
Devine		0	0	0	0	0	0	0
East Medina SUD		0	0	98	202	286	375	464
Hondo Lytle*		136 17	319	536 14	740 13	910 12	1,083	1,252
Natalia		155	16 194	238	279	314	349	383
Rural		0	0	236	528	787	1,055	1,296
Subtotal		308	529	1,122	1,764	2,383	3,024	3,625
San Antonio Basin		200	02)	1,122	1,701	2,505	5,021	2,020
Bexar Met Water District*		6	15	24	32	38	45	51
Castroville		235	294	357	416	468	522	575
East Medina SUD		0	0	6	12	17	22	27
La Coste		77	92	109	126	138	152	168
Yancey WSC		50	214	395	562	710	851	985
Rural		0	0	0	0	0	0	0
Subtotal		368	615	891	1,148	1,371	1,592	1,806
Total Municipal New Supply Need		676	1,144	2,013	2,912	3,754	4,616	5,431
Industrial Demand								
Nueces Basin		56	67	75	82	89	95	103
San Antonio Basin	1	0	0	0	0	0	0	0
Total Industrial Demand		56	67	75	82	89	95	103
Industrial Existing Supply								
Nueces Basin	Edwards	963	963	963	963	963	963	963
San Antonio Basin	Edwards	350	350	350	350	350	350	350
Total Industrial Existing Supply		1,313	1,313	1,313	1,313	1,313	1,313	1,313
Industrial Surplus/Shortage								
Nueces Basin		907	896	888	881	874	868	860
San Antonio Basin		350	350	350	350	350	350	350
Total Industrial Surplus/Shortage		1,257	1,246	1,238	1,231	1,224	1,218	1,210

		Table						
	Projecte	d Water Demar		, and Needs				
		Medina South Central		n				
		Total in	Texas Regio	<i>)</i> 11	Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
Dasiii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial New Supply Need				. ,	. /	. /		` ′
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	0	0	0	C
Total Industrial New Supply New	ed	0	0	0	0	0	0	(
Steam-Electric Demand								
Nueces Basin		0	0	0	0	0	0	(
San Antonio Basin		0	0	0	0	0	0	C
Total Steam-Electric Demand		0	0	0	0	0	0	C
Steam-Electric Existing Supply								
Nueces Basin		0	0	0	0	0	0	C
San Antonio Basin		0	0	0	0	0	0	0
Total Steam-Electric Existing Su	apply	0	0	0	0	0	0	C
Steam-Electric Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	C
San Antonio Basin		0	0	0	0	0	0	0
Total Steam-Electric Surplus/Sh	ortage	0	0	0	0	0	0	0
Steam-Electric New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	C
Total Steam-Electric New Suppl	ly Need	0	0	0	0	0	0	0
Irrigation Demand								
Nueces Basin		47,000	45,357	43,465	41,654	39,919	38,257	36,665
San Antonio Basin		9,422	9,093	8,714	8,351	8,003	7,670	7,350
Total Irrigation Demand		56,422	54,450	52,179	50,005	47,922	45,927	44,015
Irrigation Supply								
Nueces Basin	Edwards	32,477	32,477	32,477	32,477	32,477	32,477	32,477
	Carrizo	5,110	5,110	5,110	5,110	5,110	5,110	5,110
Nueces Basin Subtotal		37,587	37,587	37,587	37,587	37,587	37,587	37,587
San Antonio Basin	Edwards	11,831	11,831	11,831	11,831	11,831	11,831	11,831
	Run-of-River	0	0	0	0	0	0	0
	Carrizo	38	38	38	38	38	38	38
San Antonio Basin Subtotal		11,869	11,869	11,869	11,869	11,869	11,869	11,869
Total Irrigation Supply		49,456	49,456	49,456	49,456	49,456	49,456	49,456
Irrigation Surplus/Shortage								
Nueces Basin		-9,413	-7,770	-5,878	-4,067	-2,332	-670	922
San Antonio Basin		2,447	2,776	3,155	3,518	3,866	4,199	4,519
Total Irrigation Surplus/Shortag	e	-6,966	-4,994	-2,723	-549	1,534	3,529	5,441
Irrigation New Supply Need								
Nueces Basin		9,413	7,770	5,878	4,067	2,332	670	0
San Antonio Basin Total Irrigation New Supply New	ed	9,413	7,770	5,878	4,067	2,332	670	0
Total Illigation New Supply New	.a	7,413	7,770	3,076	+,007	2,332	070	U
Mining Demand					7.5	7.5		
Nueces Basin		62	68	71	72	73	74	75
San Antonio Basin Total Mining Demand		56 118	62 130	64 135	65 137	66 139	67 141	68 143
Total Willing Delitalid		118	130	155	13/	139	141	143
<u>'</u>	1	- 1						

	Projected	Water Demar	nds, Supplies	s, and Needs				
		Medina		,,				
		South Central		on				
		Total in			Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining Supply								
Nueces Basin	Carrizo	46	46	46	46	46	46	46
	Trinity	29	29	29	29	29	29	29
Subtotal		75	75	75	75	75	75	75
G. A D	G :	1		-				
San Antonio Basin	Carrizo Trinity	67	67	67	67	67	67	67
Subtotal	Tillity	68	68	68	68	68	68	68
Total Mining Supply		143	143	143	143	143	143	143
Total Willing Supply		143	143	143	143	143	143	14.
Mining Surplus/Shortage								
Nueces Basin		13	7	4	3	2	1	(
San Antonio Basin		12	6	4	3	2	1	(
Total Mining Surplus/Shortage		25	13	8	6	4	2	(
Mining New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	0
Total Mining New Supply Need		0	0	0	0	0	0	C
Livestock Demand								
Nueces Basin		1,116	1,116	1,116	1,116	1,116	1,116	1,116
San Antonio Basin		182	182	182	182	182	182	182
Total Livestock Demand		1,298	1,298	1,298	1,298	1,298	1,298	1,298
Livestock Supply								
Nueces Basin	Carrizo	205	205	205	205	205	205	205
	Trinity	89	89	89	89	89	89	89
	Edwards (D&L) ²	264	264	264	264	264	264	264
	Local	558	558	558	558	558	558	558
Subtotal		1,116	1,116	1,116	1,116	1,116	1,116	1,116
San Antonio Basin	Trinity	23	23	23	23	23	23	23
	Edwards (D&L) ²	68	68	68	68	68	68	68
	Local	91	91	91	91	91	91	91
Subtotal		182	182	182	182	182	182	182
Total Livestock Supply		1,298	1,298	1,298	1,298	1,298	1,298	1,298
Livestock Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	0
Total Livestock Surplus/Shortage		0	0	0	0	0	0	0
Livestock New Supply Need		+						
Nueces Basin		0	0	0	0	0	0	0
San Antonio Basin		0	0	0	0	0	0	0
Total Livestock New Supply Need		0	0	0	0	0	0	C
Total Medina County Demand								
Municipal Municipal		6,616	7,576	8,660	9,656	10,510	11,395	12,234
Industrial		56	67	75	82	89	95	103
Steam-Electric		0	0	0	0	0	0	(
Irrigation		56,422	54,450	52,179	50,005	47,922	45,927	44,015
Mining		118	130	135	137	139	141	143
Livestock		1,298	1,298	1,298	1,298	1,298	1,298	1,298
Total County Demand		64,510	63,521	62,347	61,178	59,958	58,856	57,793

	Projecte	d Water Demai	c C-16 nds, Supplies	, and Needs				
	Ţ.	Medina		<u></u>				
		South Central	Texas Region	on				
		Total in			Projec			
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
T-4-1M-P C		(acit)	(acrt)	(acit)	(acit)	(acit)	(acit)	(acit)
Total Medina County Supply		6,993	6,993	6,993	6,993	6,993	6,993	6,993
Municipal Industrial		1,313	1,313	1,313	1,313	1,313	1,313	1,313
Steam-Electric		1,313	1,515	1,313	1,313	1,313	1,313	1,513
Irrigation		49,456	49,456	49,456	49,456	49,456	49,456	49,456
Mining		143	143	143	143	143	143	143
Livestock		1,298	1,298	1,298	1,298	1,298	1,298	1,298
Total County Supply		59,203	59,203	59,203	59,203	59,203	59,203	59,203
some country supply		27,232		07,200	07,200	07,200	07,200	,
Total Medina County Balance								
Municipal		377	-583	-1,667	-2,663	-3,517	-4,402	-5,241
Industrial		1,257	1,246	1,238	1,231	1,224	1,218	1,210
Steam-Electric		0	0	0	0	0	0	(
Irrigation		-6,966	-4,994	-2,723	-549	1,534	3,529	5,441
Mining		25	13	8	6	4	2	(
Livestock		0	0	0	0	0	0	(
Total County Surplus/Shortage		-5,307	-4,318	-3,144	-1,975	-755	347	1,410
Total Basin Demand								
Nueces								
Municipal		5,050	5,749	6,549	7,280	7,905	8,562	9,181
Industrial		56	5,749	75	82	7,903	95	103
Steam-Electric		0	0	0	0	0	0	103
Irrigation		47,000	45,357	43,465	41,654	39,919	38,257	36,665
Mining		62	68	71	72	73	74	75
Livestock		1,116	1,116	1,116	1,116	1,116	1,116	1,116
Total Nueces Basin Demand		53,284	52,357	51,276	50,204	49,102	48,104	47,140
			,		,	.,,,,,,	10,201	,
San Antonio								
Municipal		1,566	1,827	2,111	2,376	2,605	2,833	3,053
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		9,422	9,093	8,714	8,351	8,003	7,670	7,350
Mining		56	62	64	65	66	67	68
Livestock		182	182	182	182	182	182	182
Total San Antonio Basin Demand		11,226	11,164	11,071	10,974	10,856	10,752	10,653
Total Basin Supply								
Nueces								
Municipal		5,643	5,643	5,643	5,643	5,643	5,643	5,643
Industrial		963	963	963	963	963	963	963
Steam-Electric		0	0	0	0	0	0	(
Irrigation		37,587	37,587	37,587	37,587	37,587	37,587	37,587
Mining		75	75	75	75	75	75	75
Livestock		1,116	1,116	1,116	1,116	1,116	1,116	1,116
Total Nueces Basin Supply		45,384	45,384	45,384	45,384	45,384	45,384	45,384
San Antonio								
San Antonio Municipal		1,350	1 250	1 250	1 250	1,350	1,350	1,350
Municipal Industrial		350	1,350	1,350	1,350		350	
Industrial Steam-Electric		350	350	350	350	350	350	350
Irrigation		11,869	11,869	11,869	11,869	11,869	11,869	11,869
Mining Mining		11,869	11,869	11,869	11,869	11,869	11,869	11,869
Livestock		182	182	182	182	182	182	182
Total San Antonio Basin Supply		13,819	13,819	13,819	13,819	13,819	13,819	13,819
Total San Amonio Basin Suppry		13,019	13,019	13,019	13,019	13,019	13,019	13,015

		Projected	Table Water Deman		and Needs				
		Trojecteu	Medina		, and incus				
			South Central		on				
			Total in	Temp Hegr		Projec	tions		
ī	Basin	Source	2000	2010	2020	2030	2040	2050	2060
	Dasiii	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Bala	nce		((()	(,	(,	(/	(
Nueces									
Municipal			593	-106	-906	-1,637	-2,262	-2,919	-3,53
Industrial			907	896	888	881	874	868	86
Steam-Electric			0	0	0	0	0	0	-
Irrigation			-9,413	-7,770	-5,878	-4,067	-2,332	-670	92
Mining			13	7	4	3	2	1	
Livestock			0	0	0	0	0	0	
	in Surplus/Shortage		-7,900	-6,973	-5,892	-4,820	-3,718	-2,720	-1,75
San Antonio									
Municipal			-216	-477	-761	-1,026	-1,255	-1,483	-1,70
Industrial			350	350	350	350	350	350	35
Steam-Electric			0	0	0	0	0	0	30
Irrigation			2,447	2,776	3,155	3,518	3,866	4,199	4,51
Mining			12	2,770	3,133	3,318	2,800	4,199	4,31
Livestock			0	0	0	0	0	0	
	Basin Surplus/Shorta	ma .	2,593	2,655	2,748	2,845	2,963	3,067	3,16
Total San Amonio	Dasin Surpius/Shora.	j –	2,373	2,000	2,770	2,0-10	2,703	3,007	٥,10
Groundwater Supp	Available	- 1	27.226	27.226	27.226	27.226	27.226	27.226	27.00
	Nueces	Edwards	37,226	37,226	37,226	37,226	37,226	37,226	37,22
	San Antonio	Edwards	13,473	13,473	13,473	13,473	13,473	13,473	13,47
	Nueces	Edwards (D&L)	264	264	264	264	264	264	26
	San Antonio	Edwards (D&L)	12.661	12.661	12.661	12.661	12.661	12.661	12.60
	Nueces	Carrizo	13,661	13,661	13,661	13,661	13,661	13,661	13,60
	San Antonio	Carrizo	39	7 290	39	7 290	39	7 290	7.29
	Nueces	Trinity	7,389	7,389	7,389	7,389	7,389	7,389	7,38
	San Antonio	Trinity	1,511	1,511	1,511	1,511	1,511	1,511	1,5
	Total Available		73,631	73,631	73,631	73,631	73,631	73,631	73,63
	Allocated Nueces	Edwards	37 226	27 226	27 226	27 226	27 226	37,226	37,22
	San Antonio	Edwards	37,226 13,473	37,226 13,473	37,226 13,473	37,226 13,473	37,226 13,473	13,473	13,47
	Nueces	Edwards (D&L)	264	264	264	264	264	264	13,4
	San Antonio	Edwards (D&L) Edwards (D&L)	68	68	68	68	68	68	
	Nueces	Carrizo	8,656	8,656	8,656	8,656	8,656	8,656	8,6
	San Antonio	Carrizo	39	39	39	39	39	39	8,0.
	Nueces	Trinity	118	118	118	118	118	118	1
	San Antonio	Trinity	91	91	91	91	91	91	1.
	Total Allocated	Timity	59,935	59,935	59,935	59,935	59,935	59,935	59,93
	Total Allocated		39,933	39,933	39,933	39,933	39,933	39,933	39,90
	Total Unallocate	d	13,696	13,696	13,696	13,696	13,696	13,696	13,69
Notes:					0 0		77.6		
	rigation demand for M								
	ersion points and the ir					er planning, s	upplies from	the	
	stem are not included	•							
There is limited	supply from the Edwa	rds Aquifer for D&L	; however, these	e values are n	ot part of the	320,000 acft	/yr allocated t	to other uses.	

There is limited supply from the Edwards Aquifer for D&L; however, these values are not part of the 320,000 acft/yr allocated to other uses
* Projected demands, shortages, and needs may be greater than shown. These WUGs are requesting a population/demand revision.

				le C-17					
		Projecte	d Water Dem		es, and Need	ls			
				io County					
	T.	1	South Centr	al Texas Reg	gion				
			Total in			Projec			
J	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Demand	1								
San Antonio Basin									
Rural			8	7	6	6	5	5	5
	Subtotal		8	7	6	6	5	5	5
San Antonio-Nuece					-	-	_		
Refugio			557	645	709	723	763	787	777
Woodsboro			272	283	291	289	292	295	293
Rural			354	314	281	264	239	225	227
	Subtotal		1,183	1,242	1,281	1,276	1,294	1,307	1,297
			,	,	, -	,	, -	, , , , , ,	,
Total Municipal	Demand		1,191	1,249	1,287	1,282	1,299	1,312	1,302
Municipal Existing	Supply								
San Antonio Basin									
Rural		Gulf Coast	10	10	10	10	10	10	10
	Subtotal		10	10	10	10	10	10	10
San Antonio-Nuece	s Coastal Basin								
Refugio		Gulf Coast	1,437	1,437	1,437	1,437	1,437	1,437	1,437
Woodsboro		Gulf Coast	674	674	674	674	674	674	674
Rural		Gulf Coast	443	443	443	443	443	443	443
	Subtotal		2,554	2,554	2,554	2,554	2,554	2,554	2,554
Total Municipal	Existing Supply		2,564	2,564	2,564	2,564	2,564	2,564	2,564
Total Manierpa	2.moung suppry		2,501	2,50.	2,00.	2,00.	2,50.	2,00	2,00.
Municipal Surplus	/Shortage								
San Antonio Basin									
Rural			2	3	4	4	5	5	5
	Subtotal		2	3	4	4	5	5	5
San Antonio-Nuece	s Coastal Basin								
Refugio			880	792	728	714	674	650	660
Woodsboro			402	391	383	385	382	379	381
Rural			89	129	162	179	204	218	216
	Subtotal		1,371	1,312	1,273	1,278	1,260	1,247	1,257
							·		
Total Municipal	Surplus/Shortage		1,373	1,315	1,277	1,282	1,265	1,252	1,262
Municipal New Su	pply Need								
San Antonio Basin	FF-J 1.000								
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
San Antonio-Nuece					Ŭ		- V		
Refugio			0	0	0	0	0	0	0
Woodsboro			0	0	0	0	0	0	0
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
m . 13.5	N G 1 37 1			-		-			
Total Municipal	New Supply Need		0	0	0	0	0	0	0
Industrial Demand	<u> </u> 								
San Antonio Basin			0	0	0	0	0	0	0
San Antonio-Nuece	s Basin		0	0	0	0	0	0	0
Total Industrial			0	0	0	0	0	0	0

	Dunia-4-		le C-17	og ond No	la.			
	Projecte	d Water Dema	ands, Supph io County	es, and Need	1S			
		South Centr		ion				
		Total in		,	Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial Existing Supply								
San Antonio Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Industrial Existing Supply		0	0	0	0	0	0	(
In directorial Commission (Characteria)								
Industrial Surplus/Shortage San Antonio Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0		0	0	(
Total Industrial Surplus/Shortage		0	0	0		0	0	(
Industrial New Supply Need								
San Antonio Basin		0	0	0		0	0	(
San Antonio-Nueces Basin		0	0	0		0	0	(
Total Industrial New Supply Need		0	0	0	0	0	0	(
C. Fl								
Steam-Electric Demand			^	^	^		0	
San Antonio Basin		0	0	0		0	0	
San Antonio-Nueces Basin Total Steam-Electric Demand		0	0	0		0	0	(
Total Steam-Electric Demand		0	0	0	U	U	U	,
Steam-Electric Existing Supply								
San Antonio Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0		0	0	(
Total Steam-Electric Existing Supply		0	0	0		0	0	(
Steam-Electric Surplus/Shortage								
San Antonio Basin		0	0	0		0	0	(
San Antonio-Nueces Basin		0	0	0		0	0	(
Total Steam-Electric Surplus/Shortage		0	0	0	0	0	0	(
Steam-Electric New Supply Need								
San Antonio Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		0	0	0	0	0	0	(
Total Steam-Electric New Supply Need		0	0	0	0	0	0	
Total Steam Electric New Supply Need								
Irrigation Demand								
San Antonio Basin		0	0	0	0	0	0	(
San Antonio-Nueces Basin		850	69	69	69	69	69	6
Total Irrigation Demand		850	69	69	69	69	69	69
T : 4: G 1								
Irrigation Supply San Antonio Basin		0	0	0	0	0	0	(
San Antonio Basin San Antonio-Nueces Basin	Gulf Coast	850	69	69		69	69	69
Total Irrigation Supply	Jun Cuasi	850	69	69	69	69	69	69
		32.0		37	37	07		0.
Irrigation Surplus/Shortage								
San Antonio Basin		0	0	0		0	0	(
San Antonio-Nueces Basin		0	0	0		0	0	
Total Irrigation Surplus/Shortage		0	0	0	0	0	0	(
Insigntion New County Mend								
Irrigation New Supply Need San Antonio Basin		0	0	0	0	0	0	(
San Antonio Basin San Antonio-Nueces Basin		0	0	0		0	0	(
Total Irrigation New Supply Need		0	0	0		0	0	
Total III Sation I tow Supply I total		U	U	0	U	U	U	

			Tab	ole C-17					
		Projecte	d Water Dem		ies, and Need	ls			
				io County					
			South Centr	al Texas Re	gion				
			Total in	****	***	Projec		***	*0.40
1	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Mining Demand			(acit)	(acrt)	(acrt)	(acrt)	(acrt)	(acrt)	(acrt)
San Antonio Basin			0	0	0	0	0	0	0
San Antonio-Nueces	Basin		6	7	8	8	8	8	8
Total Mining De	emand		6	7	8	8	8	8	8
Mining Supply									
San Antonio Basin			0	0	0	0	0	0	0
San Antonio-Nueces		Gulf Coast	8	8	8	8	8	8	8
Total Mining Su	pply		8	8	8	8	8	8	8
Mining Surplus/Sh	ortage								
San Antonio Basin	or tage		0	0	0	0	0	0	0
San Antonio-Nueces	s Basin		2	1	0	0	0	0	0
Total Mining Su			2	1	0	0	0	0	C
Mining New Suppl	y Need								
San Antonio Basin			0	0	0	0	0	0	0
San Antonio-Nueces			0	0	0	0	0	0	0
Total Mining Ne	w Supply Need		0	0	0	0	0	0	0
Livestock Demand									
San Antonio Basin			25	25	25	25	25	25	25
San Antonio-Nueces	Basin		598	598	598	598	598	598	598
Total Livestock	Demand		623	623	623	623	623	623	623
Livestock Supply									
San Antonio Basin		Gulf Coast	12	12	12	12	12	12	12
	G-1-4-4-1	Local	13	13	13	13	13	13	13
San Antonio-Nueces	Subtotal	Gulf Coast	25 299						
San Antonio-Nueces	S Dasiii	Local	299	299	299	299	299	299	299
	Subtotal	Local	598	598	598	598	598	598	598
Total Livestock			623	623	623	623	623	623	623
Livestock Surplus/S	Shortage								
San Antonio Basin			0	0	0	0	0	0	0
San Antonio-Nueces			0	0	0	0	0	0	0
Total Livestock	Surplus/Shortage		0	0	0	0	0	0	0
Livestock New Sup	ply Need								
San Antonio Basin	<u> </u>		0	0	0	0	0	0	0
San Antonio-Nueces	Basin		0	0	0		0	0	0
	New Supply Need		0	0	0	0	0	0	0
T. I.D.C.	1.70								
Total Refugio Cour Municipal	nty Demand		1,191	1,249	1,287	1,282	1,299	1,312	1,302
Industrial			1,191	1,249			1,299	1,312	1,302
Steam-Electric			0	0		0	0	0	0
Irrigation Irrigation			850	69	69	69	69	69	69
Mining			6	7	8	8	8	8	8
Livestock			623	623	623	623	623	623	623
Total County Demai	nd		2,670	1,948	1,987	1,982	1,999	2,012	2,002

				ole C-17					
		Projecte	d Water Dem		es, and Need	ls			
			Refug	io County					
			South Centr	al Texas Reg	gion				
			Total in			Projec	ctions		
Basin	S	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Refugio County Sur	oply								
Municipal			2,564	2,564	2,564	2,564	2,564	2,564	2,564
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			850	69	69	69	69	69	69
Mining			8	8	8	8	8	8	8
Livestock			623	623	623	623	623	623	623
Total County Supply			4,045	3,264	3,264	3,264	3,264	3,264	3,264
Jan			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, -	-, -	-, -	- , -	-, -	-, -
Total Refugio County Bal	ance								
Municipal			1,373	1,315	1,277	1,282	1,265	1,252	1,262
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			2	1	0	0	0	0	0
Livestock			0	0	0	0	0	0	0
Total County Surplus/Short	age		1,375	1,316	1,277	1,282	1,265	1,252	1,262
Total County Surplus/Short	age		1,373	1,510	1,2//	1,202	1,203	1,232	1,202
Total Basin Demand									
San Antonio									
Municipal			8	7	6	6	5	5	5
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	0	0	0
Livestock			25	25	25	25	25	25	25
Total San Antonio Basin D	emand		33	32	31	31	30	30	30
				-	-				
San Antonio-Nueces									
Municipal			1,183	1,242	1,281	1,276	1,294	1,307	1,297
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			850	69	69	69	69	69	69
Mining			6	7	8	8	8	8	8
Livestock			598	598	598	598	598	598	598
Total San Antonio-Nueces	Basin Demand		2,637	1,916	1,956	1,951	1,969	1,982	1,972
Total Basin Supply									
San Antonio									
Municipal			10	10	10	10	10	10	10
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	0	0	0
Livestock			25	25	25	25	25	25	25
Unallocated Groundwater	r Cumply		1,113	1,113	1,113	1,113	1,113	1,113	1,113
Total San Antonio Basin Su			1,113	1,113	1,113	1,113	1,113	1,113	1,113
Total Sall Alltollio Basill St	трріу		1,148	1,148	1,148	1,148	1,148	1,148	1,148

Bas	sin	Projecte	South Centr	io County		ls			
Bas	sin		South Centr						
Bas	sin								
Bas	sin		Total in	ai Texas Reş	gion	Duoiss	4i ama		
Das	SIII	Common	2000	2010	2020	Projec 2030	2040	2050	2060
		Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
San Antonio-Nueces			(3.22)	()	(444-4)	(3322)	(3323)	(0000)	(4,55,1)
Municipal			2,554	2,554	2,554	2,554	2,554	2,554	2,554
Industrial			850	69	69	69	69	69	69
Steam-Electric			0	0	0	0	0	0	0
Irrigation			850	69	69	69	69	69	69
Mining			8	8	8	8	8	8	8
Livestock			598	598	598	598	598	598	598
Unallocated Groundy	water Supply		19,654	20,435	20,435	20,435	20,435	20,435	20,435
Total San Antonio-Nue	eces Basin Supply		24,514	23,733	23,733	23,733	23,733	23,733	23,733
Total San Fintonio Fta	sees Busin Supply		2 1,011	20,700	20,700	20,700	20,700	20,700	20,700
Total Basin Balance									
San Antonio									
Municipal			2	3	4	4	5	5	5
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	0	0	0
Livestock			0	0	0	0	0	0	0
Unallocated Groundy	water Supply		1,113	1,113	1,113	1,113	1,113	1,113	1,113
Total San Antonio Bas	in Surplus/Shortage		1,115	1,116	1,117	1,117	1,118	1,118	1,118
San Antonio-Nueces									
Municipal			1,371	1,312	1,273	1,278	1,260	1,247	1,257
Industrial			850	69	69	69	69	69	69
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			2	1	0	0	0	0	0
Livestock			0	0	0	0	0	0	0
Unallocated Groundy	water Supply		19,654	20,435	20,435	20,435	20,435	20,435	20,435
Total San Antonio Bas		nortage	21,877	21,817	21,777	21,782	21,764	21,751	21,761
	*			,	ĺ	ĺ	Í	ĺ	
Groundwater Supplies									
	vailable								
	an Antonio	Gulf Coast	1,135	1,135	1,135	1,135	1,135	1,135	1,135
Sa	an Antonio-Nueces	Gulf Coast	23,365	23,365	23,365	23,365	23,365	23,365	23,365
	Total Available		24,500	24,500	24,500	24,500	24,500	24,500	24,500
	llocated								
	an Antonio	Gulf Coast	22	22	22	22	22	22	22
Sa	an Antonio-Nueces	Gulf Coast	3,711	2,930	2,930	2,930	2,930	2,930	2,930
	Total Allocated	1	3,733	2,952	2,952	2,952	2,952	2,952	2,952
	Total Unallocated		20,767	21,548	21,548	21,548	21,548	21,548	21,548

				le C-18					
		Projecte	d Water Dema		es, and Need	ls			
				e County	•				
			South Centra	al Texas Reg	gion	Duoise	4i awa		
D.		C	Total in 2000	2010	2020	Projec		2050	2060
Di	asin	Source	(acft)	(acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
Municipal Deman	d								
Nueces Basin									
Sabinal*			412	407	403	398	393	389	389
Uvalde			6,070	6,087	6,124	6,144	6,148	6,150	6,178
Rural			1,286	1,572	1,867	2,110	2,305	2,425	2,532
	Subtotal		7,768	8,066	8,394	8,652	8,846	8,964	9,099
Total Municipa	l Demand		7,768	8,066	8,394	8,652	8,846	8,964	9,099
Municipal Existing	g Supply								
Nueces Basin									
Sabinal		Edwards	280	280	280	280	280	280	280
Uvalde		Edwards	2,915	2,915	2,915	2,915	2,915	2,915	2,915
Rural		Edwards	448	448	448	448	448	448	448
		Carrizo	2,401	2,401	2,401	2,401	2,401	2,401	2,401
Rural Subtotal			2,849	2,849	2,849	2,849	2,849	2,849	2,849
	Subtotal		6,044	6,044	6,044	6,044	6,044	6,044	6,044
Total Municipal	Existing Supply		6,044	6,044	6,044	6,044	6,044	6,044	6,044
Manisimal Camplas	/Showtone								
Municipal Surplus Nueces Basin	s/Snortage								
Sabinal*			-132	-127	-123	-118	-113	-109	-109
Uvalde			-3,155	-3,172	-3,209	-3,229	-3,233	-3,235	-3,263
Rural			1,563	1,277	982	739	544	424	317
	Subtotal		-1,724	-2,022	-2,350	-2,608	-2,802	-2,920	-3,055
Total Municipa	l Surplus/Shortage		-1,724	-2,022	-2,350	-2,608	-2,802	-2,920	-3,055
Municipal New Su	nnly Need								
Nueces Basin	рргу гчеси								
Sabinal*			132	127	123	118	113	109	109
Uvalde			3,155	3,172	3,209	3,229	3,233	3,235	3,263
Rural			0	0	0	0	0	0	(
	Subtotal		3,287	3,299	3,332	3,347	3,346	3,344	3,372
Total Municipal	l New Supply Need		3,287	3,299	3,332	3,347	3,346	3,344	3,372
•			ŕ	ŕ		,	ĺ	,	
Industrial Demand	i		279	422	155	472	400	505	520
Nueces Basin Total Industrial	Demand		378 378	432 432	455 455	473 473	490 490	505 505	538 538
Industrial Evistins	- Cl								
Industrial Existing Nueces Basin	s ouppry	Edwards	1,375	1,375	1,375	1,375	1,375	1,375	1,375
	Existing Supply	Lawards	1,375	1,375	1,375	1,375	1,375	1,375	1,375
			-,0	-,0	-, 0	-,0	-,0	-,0	-,- / -
Industrial Surplus	/Shortage		207	0.45	0.00	002	005	0.50	0.22
Nueces Basin Total Industrial	Surplus/Shortage		997 997	943 943	920 920	902 902	885 885	870 870	831
			,,,,	7.13	,20	702	003	0.0	0.5
Industrial New Su	pply Need			0					
Nueces Basin Total Industrial	New Supply Need		0	0	0	0	0	0	(
Total Hidustifal	Thew Supply Inced		0	U	U	U	U	U	

				le C-18					
		Project	ed Water Dema		es, and Need	ls			
				e County					
		1	South Centra	al Texas Reg	ion				
			Total in			Projec			
Basi	in	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Steam-Electric Dema	and								
Nueces Basin			0	0	0	0	0	0	0
Total Steam-Elect	ric Demand		0	0	0	0	0	0	0
Steam-Electric Exist	ing Supply								
Nueces Basin			0	0	0	0	0	0	(
Total Steam-Elect	ric Existing Supply	1	0	0	0	0	0	0	(
Steam-Electric Surp	lus/Shortage				_	_			
Nueces Basin			0	0	0	0	0	0	C
Total Steam-Elect	ric Surplus/Shortag	ge	0	0	0	0	0	0	C
C4 File 4 * N	CI N								
Steam-Electric New	Supply Need			_	^	^			
Nueces Basin	mia Marri Communica NY	- 4	0	0	0	0	0	0	
10tai Steam-Elect	ric New Supply Ne	eu	0	0	0	0	0	0	0
Irrigation Demand									
Nueces Basin			58,061	55,791	53,609	51,513	49,498	47,563	45,703
Total Irrigation De	emand		58,061	55,791	53,609	51,513	49,498	47,563	45,703
Total Illigation De	Cinana		38,001	33,771	33,007	31,313	42,420	47,303	45,705
Irrigation Supply									
Nueces Basin		Edwards	69,751	69,751	69,751	69,751	69,751	69,751	69,751
rueces Busin		Run-of-River	720	720	720	720	720	720	720
Total Irrigation Su	apply		70,471	70,471	70,471	70,471	70,471	70,471	70,471
Irrigation Surplus/S	hortage								
Nueces Basin			12,410	14,680	16,862	18,958	20,973	22,908	24,768
Total Irrigation Su	urplus/Shortage		12,410	14,680	16,862	18,958	20,973	22,908	24,768
Irrigation New Supp	oly Need					_			
Nueces Basin			0	0	0	0	0	0	0
Total Irrigation No	ew Supply Need		0	0	0	0	0	0	0
10.1 5 1									
Mining Demand			250	212	245	264	202	401	410
Nueces Basin	1		250	313	345	364	383	401 401	418
Total Mining Den	nand		250	313	345	364	383	401	418
Mining Supply									
Nueces Basin		Carrizo	418	418	418	418	418	418	418
Total Mining Sup	ply	- 311120	418	418	418	418	418	418	418
Town mining bup	F-7		110	110	110	110	110	110	.110
Mining Surplus/Sho	rtage								
Nueces Basin	_		168	105	73	54	35	17	0
Total Mining Surp	olus/Shortage		168	105	73	54	35	17	0
Mining New Supply	Need								
Nueces Basin			0	0	0	0	0	0	0
Total Mining New	Supply Need		0	0	0	0	0	0	C
Livestock Demand									
Nueces Basin			1,284	1,284	1,284	1,284	1,284	1,284	1,284
Total Livestock D	emand		1,284	1,284	1,284	1,284	1,284	1,284	1,284

		Tab	ole C-18					
	Projected	d Water Dem	ands, Suppli	es, and Need	ls			
			le County					
_		South Centr	al Texas Reg	gion				
		Total in			Proje			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
	1	(acft)						
Livestock Supply	a :	25	25		25	2.7	25	
Nueces Basin	Carrizo	27	27	27	27	27	27	27
	Edwards-Trinity	430 12						
	Trinity							
	Edwards (D&L) ¹	173	173	173	173	173	173	173
m - 11; 1 0 - 1	Local	642	642	642	642	642	642	642
Total Livestock Supply		1,284	1,284	1,284	1,284	1,284	1,284	1,284
Livestock Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	0
Total Livestock Surplus/Shortage		0	0	0	0		0	0
Total El vesteen Surprus, Shortage			Ů				0	
Livestock New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
Total Livestock New Supply Need		0	0	0	0	0	0	0
Total Uvalde County Demand								
Municipal		7,768	8,066	8,394	8,652	8,846	8,964	9,099
Industrial		378	432	455	473	490	505	538
Steam-Electric		0	0	0	0	0	0	0
Irrigation		58,061	55,791	53,609	51,513	49,498	47,563	45,703
Mining		250	313	345	364	383	401	418
Livestock		1,284	1,284	1,284	1,284	1,284	1,284	1,284
Total County Demand		67,741	65,886	64,087	62,286	60,501	58,717	57,042
Total Uvalde County Supply								
Municipal		6,044	6,044	6,044	6,044	6,044	6,044	6,044
Industrial		1,375	1,375	1,375	1,375	1,375	1,375	1,375
Steam-Electric		0	0	0	0	0	0	0
Irrigation		70,471	70,471	70,471	70,471	70,471	70,471	70,471
Mining		418	418	418	418	418	418	418
Livestock		1,284	1,284	1,284	1,284	1,284	1,284	1,284
Total County Supply		79,592	79,592	79,592	79,592	79,592	79,592	79,592
Total Uvalde County Balance								
Municipal		-1,724	-2,022	-2,350	-2,608	-2,802	-2,920	-3,055
Industrial		997	943	920	902	885	870	837
Steam-Electric		0	0	0	0	0	0	0
Irrigation		12,410	14,680	16,862	18,958	20,973	22,908	24,768
Mining		168	105	73	54	35	17	0
Livestock		0	0	0	0	0	0	0
Total County Surplus/Shortage		11,851	13,706	15,505	17,306	19,091	20,875	22,550
Total Basin Demand								
Nueces								
Municipal	1	7,768	8,066	8,394	8,652	8,846	8,964	9,099
Industrial	1	378	432	455	473	490	505	538
Steam-Electric	1	0	55.701	0	0		0	0
Irrigation	1	58,061	55,791	53,609	51,513	49,498	47,563	45,703
Mining Liverteels	+	250	313	345	364	383	401	418
Livestock Total Nueces Basin Demand	1	1,284 67,741	1,284 65,886	1,284 64,087	1,284 62,286	1,284 60,501	1,284 58,717	1,284 57,042
Total Nucces Dasiii Deliialid		0/,/41	05,600	04,087	02,280	00,301	38,/1/	57,042
	1	1				ı		

Table C-18 Projected Water Demands, Supplies, and Needs **Uvalde County South Central Texas Region** Total in Projections Basin 2000 2010 2020 2030 2050 2060 Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) Total Basin Supply Nueces 6,044 6,044 6,044 6,044 6,044 6,044 6,044 Municipal Industrial 1,375 1,375 1,375 1,375 1,375 1,375 1,375 Steam-Electric 0 0 0 70,471 70,471 70,471 70,471 70,471 70,471 70,471 Irrigation Mining 418 418 418 418 418 418 418 1,284 1,284 1,284 1,284 1,284 1,284 1,284 Livestock Total Nueces Basin Supply 79,592 79,592 79,592 79,592 79,592 79,592 79,592 Total Basin Balance Nueces -1,724 -2,022 -2,350 -2,608 -2,802 -2,920 -3,055 Municipal 870 837 Industrial 997 943 920 902 885 Steam-Electric 0 12,410 14,680 16,862 18,958 20,973 22,908 24,768 Irrigation Mining 168 105 73 54 35 17 0 Livestock 0 0 0 0 0 0 0 Total Nueces Basin Surplus/Shortage 11,851 13,706 15,505 17,306 19,091 20,875 22,550 Groundwater Supplies Available Nueces Edwards 74,769 74,769 74,769 74,769 74,769 74,769 74,769 33,276 33,276 Nueces Carrizo 33,276 33,276 33,276 33,276 33,276 Edwards-Trinity 3,912 3,912 3,912 3,912 3,912 3,912 3,912 Nueces Nueces Trinity 712 712 712 712 712 712 712 Total Available 112,669 112,669 112,669 112,669 112,669 112,669 112,669 Allocated 74,769 Edwards 74,769 74,769 74,769 74,769 74,769 74,769 Nueces Carrizo 2,846 2,846 2,846 2,846 2,846 2,846 2,846 Nueces Nueces Edwards-Trinity 430 430 430 430 430 430 430 Trinity Nueces 12 12 12 12 12 12 12 Total Allocated 78,057 78,057 78,057 78,057 78,057 78,057 78,057 Total Unallocated 34,612 34,612 34,612 34,612 34,612 34,612 34,612

There is limited supply from the Edwards Aquifer for D&L; however, these values are not part of the 320,000 acft/yr allocated to other uses. Projected demands, shortages, and needs may be greater than shown. These WUGs are requesting a population/demand revision.

		Ducinete J III	Table Cater Demand		and Needs				
		Projected W	Victoria C		and Needs				
		So	uth Central T						
			Total in	entis region	•	Projec	tions		
F	Basin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Deman	d								
San Antonio Basin									
Rural			5	5	6	7	7	7	7
	Subtotal		5	5	6	7	7	7	7
Guadalupe Basin									
Victoria			7,573	8,013	8,505	8,860	9,092	9,361	9,650
Rural			1,365	1,520	1,686	1,821	1,912	1,998	2,095
	Subtotal		8,938	9,533	10,191	10,681	11,004	11,359	11,745
Lavaca Basin									
Rural			5	5	6	6	7	7	7
	Subtotal		5	5	6	6	7	7	7
Lavaca-Guadalupe	Coastal Basin								
Victoria			3,696	3,911	4,151	4,324	4,438	4,569	4,710
Rural			1,020	1,136	1,260	1,360	1,428	1,493	1,565
	Subtotal		4,716	5,047	5,411	5,684	5,866	6,062	6,275
Total Municipa	Demand		13,664	14,590	15,614	16,378	16,884	17,435	18,034
Municipal Existing	g Supply								
San Antonio Basin									
Rural		Gulf Coast	7	7	7	7	7	7	7
	Subtotal		7	7	7	7	7	7	7
Guadalupe Basin									
Victoria		Gulf Coast	9,848	9,462	9,313	9,218	9,120	9,019	8,944
		Run-of-River (GBRA)	1,240	1,240	1,240	1,240	1,240	1,240	1,240
		Run-of-River	0	0	0	0	0	0	0
Victoria Subtotal			11,088	10,702	10,553	10,458	10,360	10,259	10,184
Rural		Gulf Coast	2,021	1,920	1,882	1,857	1,831	1,805	1,785
	Subtotal		13,109	12,622	12,435	12,315	12,191	12,064	11,969
Lavaca Basin			_		_		_	_	_
Rural		Gulf Coast	7	7	7	7	7	7	7
	Subtotal		7	7	7	7	7	7	7
Lavaca-Guadalupe	Coastal Basın	0.100	4 727	4.505	4.727	4.727	4.727	4.727	4.505
Victoria		Gulf Coast Run-of-River (GBRA)	4,727	4,727	4,727	4,727	4,727 0	4,727	4,727
		Run-of-River (GBRA)	0	0	0	0	0	0	0
Victoria Subtotal		Run-oi-River	4,727	4,727	4,727		4,727	4,727	4,727
Rural		Gulf Coast	1,565	1,565	1,565	4,727 1,565	1,565	1,565	1,565
Kurai	Subtotal	Guii Coast	6,292	6,292	6,292	6,292	6,292	6,292	6,292
	Subtotal		0,292	0,292	0,292	0,292	0,292	0,292	0,292
Total Municipa	l Existing Supply		19,415	18,928	18,741	18,621	18,497	18,370	18,275
Municipal Surplus	/Chartage								
San Antonio Basin	snortage								
			2	2	1	0	0	0	-
Rural	Subtotal		2	2	1	0	0	0	(
Guadalupe Basin	Subtotal		2	2	1	0	U	U	
Victoria	<u> </u>		3,515	2,689	2,048	1,598	1,268	898	534
Rural	<u> </u>		656	400	196	36	-81	-193	-310
Kuiai	Subtotal		4,171	3,089	2,244	1,634	1,187	705	224
Lavaca Basin	Subtotal		4,1/1	3,069	2,244	1,054	1,10/	/03	224
Rural	 		2	2	1	1	0	0	(
Kurai	Subtotal		2	2	1	1	0	0	0
	อนบเงเลเ	1	2	2	1	1	0	U	(

		Drojected V	Table (Vater Demand		and Noods				
		Projected v	Vater Demand Victoria (and Needs				
		So	outh Central T		1				
			Total in	emis riegior	-	Projec	ctions		
В	asin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca-Guadalupe	Coastal Basin								
Victoria			1,031	816	576	403	289	158	17
Rural			545	429	305	205	137	72	0
	Subtotal		1,576	1,245	881	608	426	230	17
Total Municipal	Surplus/Shortage		5,751	4,338	3,127	2,243	1,613	935	241
Municipal New Su	pply Need								
San Antonio Basin									
Rural			0	0	0	0	0	0	0
	Subtotal		0	0	0	0	0	0	0
Guadalupe Basin									
Victoria			0	0	0	0	0	0	0
Rural			0	0	0	0	81	193	310
	Subtotal		0	0	0	0	81	193	310
Lavaca Basin				_	_	_	_	-	_
Rural	0.14.41		0	0	0	0	0	0	0
Lavage Cont. 1.1	Subtotal		0	0	0	0	0	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
Victoria Rural			0	0	0	0	0	0	0
Kurai	Subtotal		0	0	0	0	0	0	0
	Subtotal		0	U	U	U	U	U	0
Total Municipal	New Supply Need		0	0	0	0	81	193	310
Industrial Demand									
San Antonio Basin			0	0	0	0	0	0	0
Guadalupe Basin			24,323	28,726	32,095	35,035	37,962	40,578	43,520
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
Total Industrial	Demand		24,323	28,726	32,095	35,035	37,962	40,578	43,520
Industrial Existing	Cumply								
San Antonio Basin	Supply		0	0	0	0	0	0	0
Guadalupe Basin		Run-of-River	28,217	28,217	28,217	28,217	28,217	28,217	28,217
Guadarape Busin		Gulf Coast	976	928	909	897	885	872	862
Guadalupe Basin	Subtotal	oun coust	29,193	29,145	29,126	29,114	29,102	29,089	29,079
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
Total Industrial			29,193	29,145	29,126	29,114	29,102	29,089	29,079
I	(CL4								
Industrial Surplus San Antonio Basin	Snortage		0	0	0	0	0	0	0
Guadalupe Basin			4,870	419	-2,969	-5,921	-8,860	-11,489	-14.441
Lavaca Basin			4,670	0	-2,909	-5,921	-0,000	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
	Surplus/Shortage		4,870	419	-2,969	-5,921	-8,860	-11,489	-14,441
Industrial New Su	nnly Need								
San Antonio Basin	pp.y 1100u		0	0	0	0	0	0	0
Guadalupe Basin			0	0	2,969	5,921	8,860	11,489	14,441
Lavaca Basin			0	0	0	0	0	0	0
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
Total Industrial	New Supply Need		0	0	2,969	5,921	8,860	11,489	14,441
Steam-Electric Der	mand								
San Antonio Basin	nanu		0	0	0	0	0	0	0
Guadalupe Basin			2,197	4,052	53,178	53,178	53,178	53,178	53,178
Lavaca Basin			2,197	4,032	03,176	03,176	0	0	03,176
Lavaca-Guadalupe	Coastal Basin		0	0	0	0	0	0	0
Total Steam-Ele			2,197	4,052	53,178	53,178	53,178	53,178	53,178
			_,-,-,	.,	, 0	, 0	,0	, 0	,

		Projected W	Table (and Needs				
		<u> </u>	Victoria (County					
		Sor	uth Central	Fexas Region	1	ъ.			
Bas	ain.	Source	Total in 2000	2010	2020	Project 2030	2040	2050	2060
Das	5111	Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Steam-Electric Exist	ting Supply								
San Antonio Basin			0	0	0	0	0	0	C
Guadalupe Basin		Run-of-River	0	0	0	0	0	0	2.102
Guadalupe Basin Su	ubtotal	Gulf Coast	2,380 2,380	2,261 2,261	2,216 2,216	2,187 2,187	2,157 2,157	2,125 2,125	2,102 2,102
Lavaca Basin	abtotai		2,300	0	0	0	0	0	2,102
Lavaca-Guadalupe Co			0	0	0	0	0	0	C
Total Steam-Elect	tric Existing Supply		2,380	2,261	2,216	2,187	2,157	2,125	2,102
Steam-Electric Surp	Jus/Chortogo								
San Antonio Basin	olus/Shortage		0	0	0	0	0	0	(
Guadalupe Basin			183	-1,791	-50,962	-50,991	-51,021	-51,053	-51,076
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe Co			0	0	0	0	0	0	(
Total Steam-Elect	tric Surplus/Shortage		183	-1,791	-50,962	-50,991	-51,021	-51,053	-51,076
Steam-Electric New	Supply Need								
San Antonio Basin			0	0	0	0	0	0	C
Guadalupe Basin			0	1,791	50,962	50,991	51,021	51,053	51,076
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe Co		1	0	0 1,791	50,962	50,991	51,021	51,053	51,076
Total Steam-Elec	tric New Supply Need	1	U	1,791	30,962	30,991	31,021	31,033	31,070
Irrigation Demand									
San Antonio Basin			0	0	0	0	0	0	C
Guadalupe Basin			979	1,450	1,253	1,081	932	805	695
Lavaca Basin			0	0	0	0	0	0	C
Lavaca-Guadalupe Co			5,729	8,486	7,323	6,321	5,456	4,709	4,064 4,759
Total Irrigation D	emand		6,708	9,936	8,576	7,402	6,388	5,514	4,739
Irrigation Supply									
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin		Run-of-River	400	400	400	400	400	400	400
		Gulf Coast (San Antoni	257	605	485	374	278	197	125
G 11 D : 6	11	Gulf Coast	322	445	368	307	254	208	170
Guadalupe Basin Su Lavaca Basin	ubtotal		979 0	1,450	1,253	1,081	932	805	695
Lavaca-Guadalupe Co	oastal Basin	Gulf Coast	5,729	7,724	7,323	6,321	5,456	4,709	4,064
		Gulf Coast (San Antoni	0	762	0	0	0	0	(
Lavaca-Guadalupe			5,729	8,486	7,323	6,321	5,456	4,709	4,064
Total Irrigation St	upply		6,708	9,936	8,576	7,402	6,388	5,514	4,759
Irrigation Surplus/S	hortaga								
San Antonio Basin	noi tage		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	Č
Lavaca Basin			0	0	0	0	0	0	C
Lavaca-Guadalupe Co			0	0	0	0	0	0	(
Total Irrigation St	urplus/Shortage		0	0	0	0	0	0	(
Irrigation New Supp	oly Need								
San Antonio Basin	, -1000		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe Co			0	0	0	0	0	0	(
Total Irrigation N	ew Supply Need		0	0	0	0	0	0	(
Mining Demand									
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			2,267	2,965	3,391	3,688	3,990	4,301	4,541
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe Co			748	979	1,120	1,218	1,318	1,420	1,500
Total Mining Den	mand		3,015	3,944	4,511	4,906	5,308	5,721	6,041

		Projected Wa	Table C ater Demand		and Needs				
		110jecteu Wa	Victoria C		10003				
		Sou	th Central T						
			Total in	_		Projec	tions		
Ba	sin	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining Supply									
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin		Gulf Coast	2,187	2,718	3,046	3,269	3,488	3,705	3,870
		Gulf Coast (Lavaca)	222	222	222	222	222	222	222
		Gulf Coast (San Antoni	0	25	123	197	280	374	449
Guadalupe Basin S	Subtotal		2,409	2,965	3,391	3,688	3,990	4,301	4,541
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe C		Gulf Coast	748	979	1,120	1,218	1,318	1,420	1,500
Total Mining Sup	ply		3,157	3,944	4,511	4,906	5,308	5,721	6,041
Mining Surplus/Sho	rtage								
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			142	0	0	0	0	0	(
Lavaca Basin	agetal D:		0	0	0	0	0	0	(
Lavaca-Guadalupe C			0 142	0	0	0	0	0	(
Total Mining Sur	pius/siiortage		142	0	0	0	U	0	
Mining New Supply	Need								
San Antonio Basin	riccu		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe C	oastal Basin		0	0	0	0	0	0	(
Total Mining Nev			0	0	0	0	0	0	(
Total Mining Tte	, suppry riced		0	Ü	Ü	Ü			`
Livestock Demand									
San Antonio Basin			61	61	61	61	61	61	61
Guadalupe Basin			507	507	507	507	507	507	507
Lavaca Basin			5	5	5	5	5	5	4
Lavaca-Guadalupe C	oastal Basin		512	512	512	512	512	512	512
Total Livestock I			1,085	1,085	1,085	1,085	1,085	1,085	1,085
Livestock Supply									
San Antonio Basin		Gulf Coast	30	30	30	30	30	30	30
		Local	31	31	31	31	31	31	31
	Subtotal		61	61	61	61	61	61	61
Guadalupe Basin		Gulf Coast	253	253	253	253	253	253	253
		Local	254	254	254	254	254	254	254
	Subtotal	a 10 a	507	507	507	507	507	507	507
Lavaca Basin		Gulf Coast	2	2	2	2	2	2	2
	3.11	Local	3	3	3	3	3	3	3
Lavaca-Guadalupe C	Subtotal	Gulf Coast	5	5	5	5	5	5	254
Lavaca-Guadalupe C	oastai Basin		256	256	256	256	256	256	256
	Subtotal	Local	256 512	256 512	256 512	256 512	256 512	256 512	256 512
Total Livestock S		-	1,085	1,085	1,085	1,085	1,085	1,085	1,085
Total Livestock S	ирргу		1,063	1,063	1,063	1,000	1,063	1,065	1,083
Livestock Surplus/S	hortage								
San Antonio Basin	ung v		0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe C	oastal Basin		0	0	0	0	0	0	(
Total Livestock S			0	0	0	0	0	0	(
Livestock New Supp	ly Need								
San Antonio Basin			0	0	0	0	0	0	(
Guadalupe Basin			0	0	0	0	0	0	(
Lavaca Basin			0	0	0	0	0	0	(
Lavaca-Guadalupe C			0	0	0	0	0	0	(
Total Livestock N			0	0	0	0	0	0	(
Total Victoria Coun	ty Demand								
Municipal			13,664	14,590	15,614	16,378	16,884	17,435	18,034
Industrial			24,323	28,726	32,095	35,035	37,962	40,578	43,520
Steam-Electric			2,197	4,052	53,178	53,178	53,178	53,178	53,178
Irrigation	-		6,708	9,936	8,576	7,402	6,388	5,514	4,759

		Table (C-19					
	Projected V	Vater Demand	ls, Supplies,	and Needs				
		Victoria (County					
	Se	outh Central '	Fexas Region	1				
		Total in			Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Mining		3,015	3,944	4,511	4,906	5,308	5,721	6,041
Livestock		1,085	1,085	1,085	1,085	1,085	1,085	1,085
Total County Demand		50,992	62,333	115,059	117,984	120,805	123,511	126,617

		Table (
	Projected W	ater Demand		and Needs				
		Victoria (
	So	uth Central	exas Region	1				
		Total in			Projec			
Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
T-4-1 Vi-4i- Ci- Ci-		(acit)	(acit)	(acit)	(acrt)	(acit)	(acit)	(acit)
Total Victoria County Supply		19,415	18,928	18,741	18,621	18,497	18,370	18,275
Municipal Industrial		29,193				29,102	29,089	29,079
Steam-Electric		2,380	29,145 2,261	29,126 2,216	29,114 2,187	2,157	2,125	2,102
Irrigation Irrigation		6,708	9,936	8,576	7,402	6,388	5,514	4,759
Mining		3,157	3,944	4,511	4,906	5,308	5,721	6,041
Livestock		1,085	1,085	1,085	1,085	1,085	1.085	1,085
Total County Supply		61,938	65,299	64,255	63,315	62,537	61,904	61,341
Total County Supply		01,936	03,299	04,233	05,515	02,337	01,904	01,541
Total Victoria County Balance								
Municipal		5,751	4,338	3,127	2,243	1,613	935	241
Industrial		4,870	419	-2,969	-5,921	-8,860	-11,489	-14,441
Steam-Electric		183	-1,791	-50,962	-50,991	-51,021	-51,053	-51,076
Irrigation		0	0	0	0	0	0	0
Mining		142	0	0	0	0	0	0
Livestock		0	0	0	0	0	0	0
Total County Surplus/Shortage		10,946	2,966	-50,804	-54,669	-58,268	-61,607	-65,276
Total Basin Demand								
San Antonio								
Municipal		5	5	6	7	7	7	7
Industrial		0	0	0	0	0	0	0
Steam-Electric		0	0	0	0	0	0	0
Irrigation		0	0	0	0	0	0	0
Mining		0	0	0	0	0	0	0
Livestock		61	61	61	61	61	61	61
Total San Antonio Basin Demand		66	66	67	68	68	68	68
Guadalupe								
Municipal		8,938	9,533	10,191	10,681	11,004	11,359	11,745
Industrial		24,323	28,726	32,095	35,035	37,962	40,578	43,520
Steam-Electric		2,197	4,052	53,178	53,178	53,178	53,178	53,178
Irrigation		979	1,450	1,253	1,081	932	805	695
Mining		2,267	2,965	3,391	3,688	3,990	4,301	4,541
Livestock		507	507	507	507	507	507	507
Total Guadalupe Basin Demand		39,211	47,233	100,615	104,170	107,573	110,728	114,186
Lavaca								
Municipal		5	5	6	6	7	7	7
Industrial		0	0	0	0	0	0	C
Steam-Electric		0	0	0	0	0	0	(
Irrigation		0	0	0	0	0	0	(
Mining		0	0	0	0	0	0	(
Livestock		5	5	5	5	5	5	5
Total Lavaca Basin Demand		10	10	11	11	12	12	12

			Table (
		Projected W	ater Demand		and Needs				
		C-	Victoria Couth Central T						
		50	Total in	exas Region	1	D!	-4°		
				2010	2020	Projec		2050	20.00
	Basin	Source	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
			(acit)	(acit)	(acit)	(acit)	(acit)	(acit)	(acit)
Lavaca-Guadalup	e		4716	5.047	5 411	5.694	5.066	6.062	6.075
Municipal			4,716	5,047	5,411	5,684	5,866	6,062	6,275
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	~	0	~		-	-
Irrigation			5,729	8,486	7,323	6,321	5,456	4,709	4,064
Mining			748	979	1,120	1,218	1,318	1,420	1,500
Livestock			512	512	512	512	512	512	512
Total Lavaca-Guad	alupe Basin Demand		11,705	15,024	14,366	13,735	13,152	12,703	12,351
Total Basin Suppl	y								
San Antonio									
Municipal			7	7	7	7	7	7	7
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	0	0	0
Livestock			61	61	61	61	61	61	61
Unallocated Grou	andwater Supply		1,238	103	887	924	937	924	921
Total San Antonio	Basin Supply		1,306	171	955	992	1,005	992	989
Guadalupe									
Municipal			13,109	12,622	12,435	12,315	12,191	12,064	11,969
Industrial			29,193	29,145	29,126	29,114	29,102	29,089	29,079
Steam-Electric			2,380	2,261	2,216	2,187	2,157	2,125	2,102
Irrigation			979	1,450	1,253	1,081	932	805	695
Mining			2,409	2,965	3,391	3,688	3,990	4,301	4,541
Livestock			507	507	507	507	507	507	507
Unallocated Grou	andwater Supply		0	0	0	0	0	0	0
Total Guadalupe B	asin Supply		48,577	48,950	48,928	48,892	48,879	48,891	48,893
Lavaca									
Municipal			7	7	7	7	7	7	7
Industrial			0	0	0	0	0	0	0
Steam-Electric			0	0	0	0	0	0	0
Irrigation			0	0	0	0	0	0	0
Mining			0	0	0	0	0	0	0
Livestock			5	5	5	5	5	5	5
Unallocated Grou	ındwater Supply		0	0	0	0	0	0	0
Total Lavaca Basin			12	12	12	12	12	12	12
Total Lavaca Dasili	Бирріу		12	12	12	12	12	12	12

			Table C						
		Projecte	d Water Demand		and Needs				
			Victoria C South Central T						
			Total in	eaus region		Projec	tions		
Bas	in	Source	2000	2010	2020	2030	2040	2050	2060
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca-Guadalupe									
Municipal			6,292	6,292	6,292	6,292	6,292	6,292	6,29
Industrial Steam-Electric			0	0	0	0	0	0	(
Irrigation Irrigation			5,729	8,486	7,323	6,321	5,456	4,709	4,06
Mining			748	979	1,120	1,218	1,318	1,420	1,50
Livestock			512	512	512	512	512	512	51
Unallocated Ground			2,226	0	260	1,164	1,929	2,574	3,13
Total Lavaca-Guadalu	pe Basin Supply		15,507	16,269	15,507	15,507	15,507	15,507	15,50
T (ID I DI									
Total Basin Balance San Antonio									
Municipal Municipal			2	2	1	0	0	0	
Industrial			0	0	0	0	0	0	
Steam-Electric			0	0	0	0	0	0	
Irrigation			0	0	0	0	0	0	
Mining			0	0	0	0	0	0	
Livestock			0	0	0	0	0	0	
Unallocated Ground Total San Antonio Bas			1,238 1,240	103 105	887 888	924 924	937 937	924 924	92 92
Total Sall Alltollio Bas	siii Surpius/Siiortage		1,240	103	000	924	937	924	92.
Guadalupe									
Municipal			4,171	3,089	2,244	1,634	1,187	705	224
Industrial			4,870	419	-2,969	-5,921	-8,860	-11,489	-14,44
Steam-Electric			183	-1,791	-50,962	-50,991	-51,021	-51,053	-51,070
Irrigation			0	0	0	0	0	0	
Mining Livestock			142	0	0	0	0	0	(
Unallocated Ground	water Supply		0	0	0	0	0	0	(
Total Guadalupe Basin	***		9,366	1,717	-51,687	-55,278	-58,694	-61,837	-65,293
	The state of the s		. ,	,	,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
Lavaca									
Municipal			2	2	1	1	0	0	(
Industrial			0	0	0	0	0	0	(
Steam-Electric Irrigation			0	0	0	0	0	0	(
Mining			0	0	0	0	0	0	(
Livestock			0	0	0	0	0	0	(
Unallocated Ground	water Supply		0	0	0	0	0	0	(
Total Lavaca Basin Su	ırplus/Shortage		2	2	1	1	0	0	(
Lavaca-Guadalupe Municipal			1,576	1,245	881	608	426	230	1
Industrial			1,370	1,243	001	008	0	0	1
Steam-Electric			0	0	0	0	0	0	(
Irrigation			0	0	0	0	0	0	(
Mining	-		0	0	0	0	0	0	(
Livestock			0	0	0	0	0	0	(
Unallocated Ground		auta aa	2,226	1 245	260	1,164	1,929	2,574	3,139
Total Lavaca-Guadalu	pe Basin Surpius/Sh	orrage	3,802	1,245	1,141	1,772	2,355	2,804	3,150
Groundwater Supplies	;								
	vailable								_
	uadalupe	Gulf Coast	15,887	15,887	15,887	15,887	15,887	15,887	15,88
	avaca	Gulf Coast	231	231	231	231	231	231	23
	avaca-Guadalupe	Gulf Coast	17,351	17,351	17,351	17,351	17,351	17,351	17,35
S	an Antonio	Gulf Coast	1,532	1,532	1,532	1,532	1,532	1,532	1,53
	Total Available		35,000	35,000	35,000	35,000	35,000	35,000	35,00
	uadalupe	Gulf Coast	15,887	15,887	15,887	15,887	15,887	15,887	15,88
	avaca	Gulf Coast	231	231	231	231	231	231	23
	avaca-Guadalupe	Gulf Coast	15,125	17,351	17,091	16,187	15,422	14,777	14,21
	an Antonio	Gulf Coast	294	1,429	645	608	595	608	61
	Total Allocated		31,537	34,897	33,854	32,913	32,135	31,503	30,94

	Table C-19											
		Projected W	ater Demano	ls, Supplies,	and Needs							
			Victoria (County								
		So	outh Central Texas Region									
			Total in	Projections								
В	asin	Source	2000	2010	2020	2030	2040	2050	2060			
			(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)			
	Total Unallocated		3,463	103	1,146	2,087	2,865	3,497	4,059			

Table C-20 Projected Water Demands, Supplies, and Needs Wilson County South Central Texas Region Total in Projections Basin Source 2000 2020 2030 2050 2060 (acft) (acft) (acft) (acft) (acft) (acft) (acft) Municipal Demand Nueces Basin McCoy WSC 25 41 61 82 102 124 147 Rural 31 42 56 72 86 103 120 Subtotal 56 83 117 154 188 227 267 San Antonio Basin 104 124 194 222 89 146 169 East Central SUD El Oso WSC 45 52 62 71 81 91 102 Floresville 1,203 1,805 2,011 2,245 2,475 2,726 3,000 La Vernia 206 278 367 464 557 658 764 Oak Hills WSC 1,536 693 960 1,251 2,160 479 1,843 Poth* 315 348 389 434 480 530 585 SS WSC* 1,072 1,563 2,204 2,886 3,554 4,279 5,030 350 466 Stockdale³ 386 426 510 558 321 Sunko WSC 564 691 1,107 1,262 465 826 965 Rural 542 539 770 1,027 1,269 1,533 1,807 4,737 6,296 7,964 11,552 13,471 15,490 Subtotal 9,776 Guadalupe Basin Rural 20 28 37 47 57 68 79 20 28 37 47 57 68 79 6,407 Total Municipal Demand 4,813 8,118 9,977 11,797 13,766 15,836 Municipal Existing Supply Nueces Basin 49 49 McCoy WSC Carrizo 49 49 49 48 48 Rural Carrizo 120 120 120 120 120 120 120 169 169 169 169 169 168 168 Subtotal San Antonio Basin Canyon (CRWA - Dunlap) East Central SUD 106 106 23 23 23 23 23 Carrizo (Springs Hill/CRWA) 29 29 29 29 29 29 29 Edwards (BMWD) 91 91 91 91 91 91 91 East Central WSC Subtotal 143 227 227 143 143 143 143 El Oso WSC Carrizo 105 105 105 105 105 105 105 2,567 2,567 2,567 2,567 2,567 Floresville Carrizo 2,567 2,567 La Vernia 655 655 655 655 655 655 655 Carrizo Carrizo (Guadalupe) - SH/CRWA 400 400 400 400 400 400 400 La Vernia Subtotal 1,055 1,055 1,055 1,055 1,055 1,055 1,055 Oak Hills WSC 1,862 1,862 1,862 1,862 1,862 1,862 1,862 Carrizo 1,303 1,303 1,303 1.303 1.303 1.303 1.303 Poth Carrizo SS WSC Carrizo 1,340 1.340 1,340 1.340 1.340 1.340 1.340 Stockdale Carrizo 1,762 1,762 1,762 1,762 1,762 1,762 1,762 Sunko WSC 1,192 1,192 1,192 1,192 1,192 1,192 1,192 Carrizo 1,774 1,774 1,774 1,774 1,774 1,774 1,774 Rural Carrizo ROR (San Antonio) 0 0 0 0 0 0 1,774 1,774 1,774 1,774 1,774 1,774 1,774 Rural Subtotal 13,187 13,187 13,103 13,103 13,103 Subtotal 13,103 13,103 Guadalupe Basin Carrizo 79 79 79 79 79 79 79 Rural 79 79 79 79 79 79 79 Subtotal Total Municipal Existing Supply 13,435 13,435 13,351 13,351 13,351 13,350 13,350 Municipal Surplus/Shortage Nueces Basin McCoy WSC 24 -12 -33 -53 -99 Rural 89 78 64 48 34 Subtotal 113 86 52 15 -19 -59 -99

Table C-20 Projected Water Demands, Supplies, and Needs Wilson County South Central Texas Region Total in Projections Basin Source (acft) (acft) (acft) (acft) (acft) (acft) (acft) San Antonio Basin East Central SUD -26 -51 -79 El Oso WSC 1,364 -159 -433 Floresville La Vernia Oak Hills WSC 1,383 1,169 -298 Poth* SS WSC* -223 -864 -1,546-2,214 -2,939 -3,690 Stockdale* 1,441 1,412 1,376 1,336 1,296 1,252 1,204 Sunko WSC -70 1,232 1,235 1,004 -33 Rural Subtotal 8,450 6,891 5,139 3,327 1,551 -368 -2,387 Guadalupe Basin Rural Subtotal Total Municipal Surplus/Shortage 8,622 7,028 5,233 3,374 1,554 -416 -2,486 Municipal New Supply Need Nueces Basin McCoy WSC Rural Subtotal San Antonio Basin East Central SUD El Oso WSC Floresville La Vernia Oak Hills WSC Poth* SS WSC* 1,546 2,214 2,939 3,690 Stockdale* Sunko WSC Rural Subtotal 1,549 2,240 3,149 4,603 Guadalupe Basin Rural Total Municipal New Supply Need 1,582 2,293 3,225 4,702 Industrial Demand Nueces Basin San Antonio Basin Guadalupe Basin Total Industrial Demand Industrial Existing Supply Nueces Basin San Antonio Basin Carrizo Guadalupe Basin Total Industrial Existing Supply

		Table C-20						
	Projected V	Water Demands, Su		leeds				
		Wilson County						
	S	outh Central Texas	Region					
		Total in			Projec			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Industrial Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	-
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Industrial Surplus/Shorta	ge	0	0	0	0	0	0	
Industrial New Supply Need								
Nueces Basin		0	0	0	0	0	0	
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Industrial New Supply N	eed	0	0	0	0	0	0	
Steam-Electric Demand								
Nueces Basin		0	0	0	0	0	0	
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Steam-Electric Demand		0	0	0	0	0	0	
Total Steam Electric Belliand			- U	Ü		· ·		
Steam-Electric Existing Supply								
Nueces Basin		0	0	0	0	0	0	
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Steam-Electric Existing S	Supply	0	0	0	0	0	0	-
Steam-Electric Surplus/Shortage	2							
Nueces Basin		0	0	0	0	0	0	
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Steam-Electric Surplus/S	hortage	0	0	0	0	0	0	
Steam-Electric New Supply Need	1							
Nueces Basin		0	0	0	0	0	0	
San Antonio Basin		0	0	0	0	0	0	
Guadalupe Basin		0	0	0	0	0	0	
Total Steam-Electric New Supp	nly Need	0	0	0	0	0	0	
	.,							
Irrigation Demand			6.045	2.52-	22/-	2.00:	4.50	
Nueces Basin		5,263	2,847	2,529	2,248	2,001	1,783	1,59
San Antonio Basin		15,474	8,370	7,435	6,610	5,883	5,245	4,69
Guadalupe Basin		146	79	70	63	56	49	4
Total Irrigation Demand		20,883	11,296	10,034	8,921	7,940	7,077	6,33
Irrigation Supply								
Nueces Basin	Carrizo	2,319	2,319	2,319	2,319	2,319	2,319	2,31
	Queen City	800	800	800	800	800	800	80
Nueces Basin Subtotal	<u></u>	3,119	3,119	3,119	3,119	3,119	3,119	3,11
San Antonio Basin	Carrizo	3,200	3,200	3,200	3,200	3,200	3,200	3,20
The second second	Queen City	3,400	3,400	3,400	3,400	3,400	3,400	3,40
	Run-of-River	1,770	1,770	1,770	1,770	1,770	1,770	1,77
San Antonio Basin Subtotal	run or rever	8,370	8,370	8,370	8,370	8,370	8,370	8,37
Guadalupe Basin	Carrizo	114	114	114	114	114	114	11
Total Irrigation Supply	Carrie	11,603	11,603	11,603	11,603	11,603	11,603	11,60
							11 003	

			Projected	Table C-20	unnline and N	Noode				
South Central Teass Region			Frojecteu			veeus				
Basin Source 2000 2010 2020 2030 2040 2050 2050										
Basin Source 2000 2010 2020 2040 2040 2040 (acft) (acft							Proje	ctions		
GerU	Bas	sin	Source		2010	2020			2050	2060
									(acft)	(acft)
Nuces Basin	igation Surplus/S	Shortage		` '					`	
San Antronio Basin				-2,144	272	590	871	1.118	1,336	1,524
Gaadalupe Basin									3,125	3,679
Irrigation New Supply Need	adalupe Basin			-32	35	44	51	58	65	70
Naces Basin	Total Irrigation S	urplus/Shortage		-9,280	307	1,569	2,682	3,663	4,526	5,273
Naces Basin										
San Antonio Basin		ply Need		2.144			0		0	
Gandalupe Basin									0	(
Total Irrigation New Supply Need									0	(
Nuces Basin		New Supply Need							0	(
Nuces Basin										
San Antonio Basin					0	0	0			
Guadalupe Basin									208	206
Total Mining Demand									208	206
Mining Supply Nueces Basin		mand							221	218
Nucces Basin	Total Willing Del	manu		211	242	234	229	223	221	210
Nucces Basin	ning Supply									
San Antonio Basin				0	0	0	0	0	0	C
Caudalupe Basin			Carrizo	261					208	206
Total Mining Supply				16					13	12
Nueces Basin		pply		277	242	234	229	225	221	218
Nueces Basin										
San Antonio Basin	ning Surplus/Sho	ortage								
Guadalupe Basin	eces Basin								0	C
Total Mining Surplus/Shortage									0	C
Mining New Supply Need									0	C
Nucces Basin	Total Mining Sur	plus/Shortage		0	0	0	0	0	0	C
Nucces Basin	ning New Supply	Need								
Guadalupe Basin	eces Basin			0	0	0	0	0	0	C
Total Mining New Supply Need	n Antonio Basin			0	0	0	0	0	0	C
Livestock Demand Nucces Basin 145	adalupe Basin			0	0	0	0	0	0	C
Nucces Basin	Total Mining Nev	w Supply Need		0	0	0	0	0	0	C
Nueces Basin	reste als Domend			<u> </u>						
San Antonio Basin				145	145	145	145	145	145	145
Guadalupe Basin	n Antonio Basin								1,609	1,609
Total Livestock Demand	adalupe Basin			54	54	54	54	54	54	54
Nucces Basin Carrizo 72 72 72 72 72 72 72 7	Total Livestock D	Demand		1,808	1,808	1,808	1,808	1,808	1,808	1,808
Nucces Basin Carrizo 72 72 72 72 72 72 72 7	vestock Supply									
Local 73 73 73 73 73 73 73 7			Carrizo	77	72	72	72	72	72	72
Subtotal 145									73	73
San Antonio Basin Carrizo 804 805	5	Subtotal							145	145
Local 805 80			Carrizo						804	804
Guadalupe Basin				805	805	805	805	805	805	805
Local 27 27 27 27 27 27 27 2	5	Subtotal		1,609	1,609	1,609	1,609	1,609	1,609	1,609
Subtotal 54 54 54 54 54 54 54 5	adalupe Basin		Carrizo		27				27	27
Total Livestock Supply			Local						27	27
Livestock Surplus/Shortage 0 0 0 0 0 Nueces Basin 0									54	54
Nueces Basin 0 0 0 0 0 San Antonio Basin 0 0 0 0 0	Total Livestock S	Supply		1,808	1,808	1,808	1,808	1,808	1,808	1,808
Nueces Basin 0 0 0 0 0 San Antonio Basin 0 0 0 0 0	vestock Surplus/S	Shortage								
San Antonio Basin 0 0 0 0 0		tuge		0	0	0	0	0	0	C
									0	
Quadatupe dastri Ul Ul Ul Ul Ul	adalupe Basin			0	0	0			0	0
Total Livestock Surplus/Shortage 0 0 0 0 0		Surplus/Shortage								0

Table C-20 Projected Water Demands, Supplies, and Needs Wilson County South Central Texas Region Total in Projections 2060 Basin Source 2000 2020 2030 2050 (acft) (acft) (acft) (acft) (acft) (acft) (acft) Livestock New Supply Need Nueces Basin San Antonio Basin 0 0 0 0 0 0 Guadalupe Basin 0 0 0 0 0 0 0 Total Livestock New Supply Need 0 0 0 0 0 0 0 **Total Wilson County Demand** 4,813 6,407 8,118 9,977 11,797 13,766 15,836 Municipal Industrial Steam-Electric 0 0 0 0 0 0 10,034 Irrigation 20,883 11,296 8,921 7,940 7,077 6,330 Mining 277 242 234 229 225 221 218 1,808 1,808 1,808 1,808 1,808 1,808 1.808 Livestock 27,782 21,771 Total County Demand 19,754 20,195 20,936 22,873 24,193 Total Wilson County Supply 13,351 13,350 Municipal 13,435 13,435 13,351 13,351 13,350 Industrial Steam-Electric 0 0 0 0 0 0 0 11,603 Irrigation 11,603 11,603 11,603 11,603 11.603 11,603 Mining 277 242 234 229 225 221 218 1,808 1,808 1,808 1,808 Livestock 1,808 1,808 1,808 26,997 27,124 27,089 26,992 26,988 26,983 26,980 Total County Supply **Total Wilson County Balance** 1,554 8,622 7,028 5,233 3,374 -2,486 Municipal -416 Industrial 0 0 Steam-Electric 0 0 0 0 0 0 -9,280 307 1,569 4,526 5,273 2,682 3,663 Irrigation Mining 0 0 0 0 0 0 0 0 0 Livestock Total County Surplus/Shortage -658 7,335 6,802 6,056 5,217 4,110 2,787 Total Basin Demand Nueces Municipal 56 83 117 154 188 227 267 Industrial 0 0 0 Steam-Electric 0 0 0 0 0 Irrigation 5,263 2,847 2,529 2,248 2,001 1,783 1,595 Mining 0 0 145 145 145 145 145 145 145 Livestock 3,075 2,007 Total Nueces Basin Demand 5,464 2,791 2,547 2,334 2,155 San Antonio 4,737 7,964 9,776 11,552 13,471 15,490 6,296 Municipal Industrial Steam-Electric 0 0 0 0 0 0 Irrigation 15,474 8,370 7,435 6,610 5,883 5,245 4,691 Mining 261 228 221 216 212 208 206 1,609 1,609 1,609 1,609 1,609 1,609 1,609 Livestock Total San Antonio Basin Demand 22,082 16,504 17,230 18,212 19,257 20,534 21,997

		Table C-20						
	Projected Wa	ter Demands, Su	pplies, and N	Needs				
		Wilson County	y					
	Sou	th Central Texas	Region					
		Total in			Projec	tions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Guadalupe								
Municipal		20	28	37	47	57	68	79
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		146	79	70	63	56	49	44
Mining		16	14	13	13	13	13	12
Livestock		54	54	54	54	54	54	54
Total Guadalupe Basin Demand		236	175	174	177	180	184	189
Total Basin Supply								
Nueces	·							
Municipal	·	169	169	169	169	169	168	168
Industrial	·	0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		3,119	3,119	3,119	3,119	3,119	3,119	3,119
Mining		0	0	0	0	0	0	(
Livestock		145	145	145	145	145	145	145
Unallocated Groundwater Supply		870	870	870	870	870	870	870
Total Nueces Basin Supply		4,303	4,303	4,303	4,303	4,303	4,302	4,302
San Antonio								
Municipal		13,187	13,187	13,103	13,103	13,103	13,103	13,103
Industrial		1	1	1	1	1	1	1
Steam-Electric		0	0	0	0	0	0	(
Irrigation		8,370	8,370	8,370	8,370	8,370	8,370	8,370
Mining		261	228	221	216	212	208	206
Livestock		1,609	1,609	1,609	1,609	1,609	1,609	1,609
Unallocated Groundwater Supply		2,893	2,926	2,933	2,938	2,942	2,946	2,948
Total San Antonio Basin Supply		26,321	26,321	26,237	26,237	26,237	26,237	26,237
Guadalupe								
Municipal		79	79	79	79	79	79	79
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		114	114	114	114	114	114	114
Mining		16	14	13	13	13	13	12
Livestock		54	54	54	54	54	54	54
Unallocated Groundwater Supply		781	783	784	784	784	784	785
Total Guadalupe Basin Supply		1,044	1,044	1,044	1,044	1,044	1,044	1,044
Total Basin Balance								
Nueces								
Municipal		113	86	52	15	-19	-59	-99
Industrial		0	0	0	0	0	0	(
Steam-Electric		0	0	0	0	0	0	(
Irrigation		-2,144	272	590	871	1,118	1,336	1,52
Mining		0	0	0	0	0	0	(
Livestock		0	0	0	0	0	0	(
Unallocated Groundwater Supply		870	870	870	870	870	870	870
Total Nueces Basin Surplus/Shortage		-1,161	1,228	1,512	1,756	1,969	2,147	2,295

Table C-20 Projected Water Demands, Supplies, and Needs Wilson County South Central Texas Region Total in Projections Basin Source 2000 2020 2030 (acft) (acft) (acft) (acft) (acft) (acft) (acft) San Antonio 8,450 5,139 3,327 -368 -2,387 Municipal Industrial 0 0 0 0 0 0 Steam-Electric 0 0 0 0 0 0 0 Irrigation -7,104 0 935 1,760 2,487 3,125 3,679 0 Mining 0 0 0 0 0 0 0 0 0 Livestock 0 Unallocated Groundwater Supply 2,893 2,926 2,933 2,938 2,942 2,946 2,948 Total San Antonio Basin Surplus/Shortage 4,239 9,817 9,007 8,025 6,980 5,703 4,240 Guadalupe Municipal 59 51 42 32 22 11 Industrial 0 0 0 0 Steam-Electric 0 0 0 0 0 0 0 Irrigation -32 35 44 51 58 65 70 Mining 0 0 0 0 0 0 0 0 0 0 0 0 0 Livestock Unallocated Groundwater Supply 785 781 783 784 784 784 784 Total Guadalupe Basin Surplus/Shortage 808 869 870 867 864 860 855 Groundwater Supplie Available Guadalupe Carrizo 236 236 236 236 236 236 230 2,520 2,520 2,520 2,520 2,520 2,520 2,520 Nueces Carrizo 19,048 19,048 19,048 19,048 19,048 19,048 19,048 San Antonio Carrizo Guadalupe Sparta 95 95 95 95 95 95 9 Nueces 185 185 185 185 185 185 185 Sparta San Antonio 700 700 700 700 700 700 700 Sparta 686 Guadalupe Queen City 686 686 686 686 686 686 Nueces Queen City 1,476 1,476 1,476 1,476 1,476 1,476 1,476 3,488 3,488 3,488 3,488 3,488 3,488 3,488 San Antonio Queen City 28,434 28,434 28,434 28,434 28,434 28,434 28,434 Total Available Allocated Guadalupe Carrizo 236 234 233 233 233 233 232 Nueces Carrizo 2,511 2,511 2,511 2,511 2,511 2,511 2,51 San Antonio 16,943 16,910 16,903 16,898 16,894 16,890 16,888 Carrizo Guadalupe Sparta 0 0 0 0 0 0 0 0 0 0 0 0 Nueces Sparta 0 0 0 San Antonio 0 0 Sparta Queen City Guadalupe 0 0 0 0 0 0 Queen City 800 800 800 800 800 800 800 San Antonio Queen City 3,400 3,400 3,400 3,400 3,400 3,400 3,400 Total Allocated 23,890 23,856 23,848 23,843 23,839 23,835 23,832 4,595 4,599 Total Unallocated 4,544 4,578 4,586 4,591 4,602 * Projected demands, shortages, and needs may be greater than shown. These WUGs are requesting a population/demand revision

				able C-21					
		Projec	ted Water Der		plies, and Ne	eds			
				ala County tral Texas R	Pagion				
			Total in	tiai itaas i	egion	Projec	rtions		
R	asin	Source	2000	2010	2020	2030	2040	2050	2060
		Source	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Municipal Demand	d								
Nueces Basin									
Crystal City			2,175	2,247	2,272	2,343	2,337	2,349	2,37
Rural	0.11		741	864	1,028	1,134	1,241	1,327	1,37
	Subtotal		2,916	3,111	3,300	3,477	3,578	3,676	3,74
Total Municipal	Demand		2,916	3,111	3,300	3,477	3,578	3,676	3,74
Municipal Existing	Cunnly								
Municipal Existing Nueces Basin	s Guppiy								
Crystal City		Carrizo	3,524	3,524	3,524	3,524	3,524	3,524	3,52
Rural		Carrizo	1,388	1,388	1,388	1,388	1,388	1,388	1,38
	Subtotal		4,912	4,912	4,912	4,912	4,912	4,912	4,91
			ĺ	,	ŕ	,	ŕ	Í	<u> </u>
Total Municipal	Existing Supply		4,912	4,912	4,912	4,912	4,912	4,912	4,912
Municipal Surplus	/Shortage								
Nueces Basin									
Crystal City			1,349	1,277	1,252	1,181	1,187	1,175	1,15
Rural			647	524	360	254	147	61	17
	Subtotal		1,996	1,801	1,612	1,435	1,334	1,236	1,17
Total Municipal	Surplus/Shortage		1,996	1,801	1,612	1,435	1,334	1,236	1,17
Municipal New Su	pply Need								
Nueces Basin									
Crystal City			0	0	0	0	0	0	(
Rural			0	0	0	0	0	0	(
	Subtotal		0	0	0	0	0	0	
Total Municipal	New Supply Need		0	0	0	0	0	0	
Industrial Demand	l								
Nueces Basin			922	1,043	1,106	1,154	1,200	1,238	1,31
Total Industrial	Demand		922	1,043	1,106	1,154	1,200	1,238	1,315
Industrial Existing	Supply								
Nueces Basin		Carrizo	1,315	1,315	1,315	1,315	1,315	1,315	1,31:
Total Industrial	Existing Supply		1,315	1,315	1,315	1,315	1,315	1,315	1,315
Industrial Surplus	/Shortage								
Nueces Basin			393	272	209	161	115	77	(
Total Industrial	Surplus/Shortage		393	272	209	161	115	77	(
Industrial New Su	pply Need								
Nueces Basin			0	0	0	0	0	0	(
Total Industrial	New Supply Need		0	0	0	0	0	0	(

		Ta	able C-21					
	Projec	ted Water Der		olies, and Neo	eds			
	-		ala County					
			tral Texas R	egion				
		Total in			Projec	ctions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Steam-Electric Demand								
Nueces Basin		0	0	0	0	0	0	(
Total Steam-Electric Demand		0	0	0	0	0	0	(
Steam-Electric Existing Supply								
Nueces Basin		0	0	0	0	0	0	(
Total Steam-Electric Existing Supply	,	0	0	0	0	0	0	(
Total Steam-Electric Existing Suppry		0	U	U	U	U	U	,
Steam-Electric Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	(
Total Steam-Electric Surplus/Shortag	e	0	0	0	0	0	0	(
Steam Floatric Nav Supply Nac-J								
Steam-Electric New Supply Need Nucces Basin		0	0	0	0	0	0	(
Total Steam-Electric New Supply Ne	ed	0	0	0	0	0	0	(
Total Steam Electric New Supply Ne		0	Ü	O O	0	· ·	O O	
Irrigation Demand								
Nueces Basin		46,275	71,800	68,963	66,238	63,621	61,107	58,692
Total Irrigation Demand		46,275	71,800	68,963	66,238	63,621	61,107	58,692
Irrigation Supply								
Nueces Basin	Carrizo	17,200	17,200	17,200	17,200	17,200	17,200	17,200
Total Irrigation Supply		17,200	17,200	17,200	17,200	17,200	17,200	17,200
Irrigation Surplus/Shortage								
Nueces Basin		-29,075	-54,600	-51,763	-49,038	-46,421	-43,907	-41,492
Total Irrigation Surplus/Shortage		-29,075	-54,600	-51,763	-49,038	-46,421	-43,907	-41,492
Irrigation New Supply Need		20.075	54.600	51.762	40.020	46 421	42.007	41 400
Nueces Basin Total Irrigation New Supply Need		29,075 29,075	54,600 54,600	51,763 51,763	49,038 49,038	46,421 46,421	43,907 43,907	41,492
Total Hilgation New Supply Need		29,013	54,000	31,703	49,038	40,421	+3,907	41,492
Mining Demand								
Nueces Basin		114	122	125	127	128	129	130
Total Mining Demand		114	122	125	127	128	129	130
M: C 1								
Mining Supply Nueces Basin	Comin	120	120	120	120	120	120	100
Total Mining Supply	Carrizo	130 130	130 130	130 130	130 130	130 130	130 130	130
Mining Surplus/Shortage			_	_		_		
Nucces Basin		16	8	5	3	2	1	(
Total Mining Surplus/Shortage		16	8	5	3	2	1	(
Mining New Supply Need								
Nueces Basin		0	0	0	0	0	0	(
Total Mining New Supply Need		0	0	0	0	0	0	C
]		-					

			able C-21					
	Projec	cted Water Der		lies, and Nee	ds			
			ala County					
			tral Texas R	egion				
		Total in			Projec			
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Livestock Demand								
Nueces Basin		756	756	756	756	756	756	756
Total Livestock Demand		756	756	756	756	756	756	756
Livestock Supply								
Nueces Basin	Carrizo	378	378	378	378	378	378	378
	Local	378	378	378	378	378	378	378
Total Livestock Supply		756	756	756	756	756	756	756
Livestock Surplus/Shortage								
Nueces Basin		0	0	0	0	0	0	0
Total Livestock Surplus/Shortage		0	0	0	0	0	0	C
Livestock New Supply Need								
Nueces Basin		0	0	0	0	0	0	0
Total Livestock New Supply Need		0	0	0	0	0	0	C
Total Zavala County Demand								
Municipal		2,916	3,111	3,300	3,477	3,578	3,676	3,741
Industrial		922	1,043	1,106	1,154	1,200	1,238	1,315
Steam-Electric		0	0	0	0	0	0	1,515
Irrigation		46,275	71,800	68,963	66,238	63,621	61,107	58,692
Mining		114	122	125	127	128	129	130
Livestock		756	756	756	756	756	756	756
Total County Demand		50,983	76,832	74,250	71,752	69,283	66,906	64,634
Total Zavala County Supply								
Municipal		4,912	4,912	4,912	4,912	4,912	4,912	4,912
Industrial		1,315	1,315	1,315	1,315	1,315	1,315	1,315
Steam-Electric		0	0	0	0	0	0	(
Irrigation		17,200	17,200	17,200	17,200	17,200	17,200	17,200
Mining		130	130	130	130	130	130	130
Livestock		756	756	756	756	756	756	756
Total County Supply		24,313	24,313	24,313	24,313	24,313	24,313	24,313
Total Zavala County Balance								
Municipal Municipal		1,996	1,801	1,612	1,435	1,334	1,236	1,171
Industrial		393	272	209	161	115	77	0
Steam-Electric		0	0	0	0	0	0	0
Irrigation		-29,075	-54,600	-51,763	-49,038	-46,421	-43,907	-41,492
Mining	1	16	8	5	3	2	1	(
Livestock		0	0	0	0	0	0	C
Total County Surplus/Shortage		-26,670	-52,519	-49,937	-47,439	-44,970	-42,593	-40,321
			,		, -			,

			ble C-21					
	Projec	ted Water Den		lies, and Need	ds			
			ala County tral Texas Re	egion				
		Total in	iai icas ic	gion	Project	ions		
Basin	Source	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Total Basin Demand								
Nueces								
Municipal		2,916	3,111	3,300	3,477	3,578	3,676	3,741
Industrial		922	1,043	1,106	1,154	1,200	1,238	1,315
Steam-Electric		0	0	0	0	0	0	(
Irrigation		46,275	71,800	68,963	66,238	63,621	61,107	58,692
Mining		114	122	125	127	128	129	130
Livestock		756	756	756	756	756	756	756
Total Nueces Basin Demand		50,983	76,832	74,250	71,752	69,283	66,906	64,634
Total Basin Supply								
Nueces								
Municipal		4.912	4,912	4,912	4,912	4,912	4,912	4,912
Industrial		1,315	1,315	1,315	1,315	1,315	1,315	1,315
Steam-Electric		0	0	0	0	0	0	, (
Irrigation		17,200	17,200	17,200	17,200	17,200	17,200	17,200
Mining		130	130	130	130	130	130	130
Livestock		756	756	756	756	756	756	756
Total Nueces Basin Supply		24,313	24,313	24,313	24,313	24,313	24,313	24,313
Total Basin Balance								
Nueces								
Municipal		1,996	1,801	1,612	1,435	1,334	1,236	1,171
Industrial		393	272	209	161	115	77	(
Steam-Electric Irrigation		-29,075	-54,600	-51,763	-49,038	-46,421	-43,907	-41,492
Mining		-29,073 16	-34,600	-51,765	-49,038	2	-43,907 1	-41,492
Livestock		0	0	0	0	0	0	(
Total Nueces Basin Surplus/Shortage		-26,670	-52,519	-49,937	-47,439	-44,970	-42,593	-40,321
Total Nucces Basin Surprus/Shortage		20,070	32,319	12,231	17,137	11,570	12,373	10,521
Groundwater Supplies								
Available								
Nueces	Carrizo	23,936	23,936	23,936	23,936	23,936	23,936	23,936
Total Availab		23,936	23,936	23,936	23,936	23,936	23,936	23,936
Allocated					,	,,-0	,, 50	,,,,,,
Nueces	Carrizo	23,935	23,935	23,935	23,935	23,935	23,935	23,935
Total Allocate	d	23,935	23,935	23,935	23,935	23,935	23,935	23,935
Total Unallocation	ated	0	0	0	0	0	0	(
Total Challoca	acca	U	U	U	U	U	U	

	D t -		Table C-22	!:J NI	3 -			
		cted Water D in and South						
	111,01 1240	South Ce	ntral Texas					
		Total in	2010	****	****	****	****	•0.50
	Basin	2000 (acft)	2010 (acft)	2020 (acft)	2030 (acft)	2040 (acft)	2050 (acft)	2060 (acft)
		(acit)	(acit)	(acit)	(acit)	(acit)	(acit)	(acit)
Nueces Basin Deman	d							
Municipal		29,599	32,130	34,782	37,029	38,703	40,264	41,555
Industrial		1,362	1,548	1,642	1,715	1,785	1,844	1,962
Steam-Electric		5,943	7,289	5,075	6,302	6,189	7,412	7,763
Irrigation		319,890	314,279	302,311	291,011	279,881	269,196	258,935
Mining		2,715	3,044	3,193	3,273	3,350	3,424	3,498
Livestock		8,450	8,450	8,450	8,450	8,450	8,450	8,450
Total Nueces Basin I	Demand	367,959	366,740	355,453	347,780	338,358	330,590	322,163
Nueces Basin Supply								
Municipal			38,426	38,424	38,424	38,423	38,420	38,418
Industrial			3,659	3,659	3,659	3,659	3,659	3,659
Steam-Electric			7,026	7,023	7,023	7,022	7,021	7,019
Irrigation			298,006	297,978	297,388	297,378	297,363	297,346
Mining			3,317	3,403	3,446	3,488	3,530	3,574
Livestock			8,451	8,451	8,451	8,451	8,451	8,451
Unallocated Ground	water Supply		29,425	29,425	29,425	29,425	29,425	29,425
Total Nueces Basin S	upply		388,310	388,363	387,816	387,846	387,869	387,892
Nueces Basin Balanc	e ¹							
Municipal			6,296	3,642	1,395	-280	-1,844	-3,137
Industrial			2,111	2,017	1,944	1,874	1,815	1,697
Steam-Electric			-263	1,948	721	833	-391	-744
Irrigation			-16,273	-4,333	6,377	17,497	28,167	38,411
Mining			273	210	173	138	106	76
Livestock			20.425	20.425	20.425	20.425	20.425	20.425
Unallocated Ground	water Supply		29,425	29,425	29,425	29,425	29,425	29,425
San Antonio Basin D	amand							
Municipal Municipal	emanu	247,069	285,028	319,577	352,950	379,144	405,292	431,850
Industrial		21,364	26,079	29,633	32,919	36,220	39,123	42,282
Steam-Electric		17,399	20,395	25,761	30,139	32,973	36,120	39,614
Irrigation		42,823	34,568	32,437	30,474	28,668	27,010	25,493
Mining		3,232	3,980	4,273	4,450	4,630	4,811	4,982
Livestock		5,058	5,058	5,058	5,058	5,058	5,058	5,058
Total San Antonio Ba	asin Demand	336,945	375,108	416,739	455,990	486,693	517,414	549,279
San Antonio Basin Si Municipal	пры		221,172	217,012	213,812	200.720	209,579	209,503
Industrial			25,483	25,483	25,407	209,720 25,403	25,399	25,396
Steam-Electric			48,900	48,900	48,900	48,900	48,900	48,900
Irrigation			49,839	49,859	49,679	49,669	49,647	49,637
Mining			3,899	4,193	3,448	3,529	3,606	3,683
Livestock			5,111	5,114	5,113	5,112	5,119	5,118
Unallocated Ground	water Supply		12,567	13,358	13,416	13,454	13,467	13,476
Total San Antonio Ba			366,970	363,918	359,774	355,786	355,716	355,712
San Antonio Basin B	alance 1							
Municipal			-63,857	-102,566	-139,139	-169,425	-195,714	-222,348
Industrial			-596	-4,150	-7,512	-10,817	-13,724	-16,886
Steam-Electric			28,505	23,139	18,761	15,927	12,780	9,286
Irrigation			15,271	17,422	19,205	21,001	22,637	24,144
Mining			-81	-80	-1,002	-1,101	-1,205	-1,299
Livestock			53	56	55	54	61	60
Unallocated Ground	water Supply		12,567	13,358	13,416	13,454	13,467	13,476
I								

	Dr	ojected Water D	Cable C-22 emands, Sun	nlies and N	eeds			
		Basin and South (
	MIVEL D		ntral Texas I					
		Total in		0				
Basin		2000	2010	2020	2030	2040	2050	2060
24511		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Guadalupe Basin Demand		(ucre)	(delt)	(uere)	(ucit)	(4010)	(4610)	(ucre)
Municipal Municipal		53,805	68,487	85,556	101,455	116,695	133,722	150,260
Industrial		35,201	42,051	46,871	51,112	55,306	59,014	63,453
Steam-Electric		11,353	18,876	73,945	74,096	76,906	78,069	80,96
Irrigation		5,937	6,032	5,371	4,787	4,263	3,859	3,52
Mining		4,966	6,288	6,918	7,336	7,758	8,185	8,53
Livestock		9,667	9,914	9,914	9,914	9,914	9,914	9,91
Total Guadalupe Basin Dem	and	120,929	151,648	228,575	248,700	270,842	292,763	316,652
Total Guadalupe Basili Delli	anu	120,929	131,046	220,373	240,700	270,842	292,703	310,032
Guadalupe Basin Supply								
Municipal Municipal			105,547	107,512	107,379	107,242	106,921	106,81
Industrial			41,390	41,371	41,359	41,347	41,334	41,32
Steam-Electric			31,964	33,919	33,890	33,860	33,828	33,80
Irrigation			10,151	9,954	9,782	9,633	9,506	9,39
Mining			5,823	6,232	6,518	6,811	7,031	7,26
Livestock			9,986	9,986	9,986	9,986	9,986	9,98
Unallocated Groundwater Su	ınnly		66,291	66,292	66,292	66,292	66,292	66,293
Total Guadalupe Basin Supp			271,152	275,266	275,206	275,171	274,898	274,890
тош ошинире визи вирр	· - J		271,102	270,200	275,200	2,0,1,1	27 1,070	27.,02
Guadalupe Basin Balance ¹								
Municipal Municipal			37,060	21,956	5,924	-9,453	-26,801	-43,443
Industrial			-661	-5,500	-9,753	-9,433		- , .
Steam-Electric			13,088	-40,026	-9,733	-43,046	-17,680 -44,241	-22,129 -47,158
Irrigation			4,119	4,583	4,995	5,370	5,647	5,87
Mining			-465 72	-686 72	-818 72	-947 72	-1,154 72	-1,268 72
Livestock Unallocated Groundwater Su			66,291	66,292	66,292	66,292	66,292	66,293
Unanocated Groundwater St	ірріу		00,291	00,292	00,292	00,292	00,292	00,29.
Larray Calarada Barba Darra	1							
Lower Colorado Basin Dema	ana	265	£10	(7)	017	050	1.007	1.000
Municipal		365	518	676	817	959	1,097	1,239
Industrial		0	0	0	0	0	0	(
Steam-Electric		15	0	0	12	0	10	(
Irrigation Mining		13	15 15	14 15	16	11 17	17	1
Livestock		169	169	169	169	169	169	169
Total Lower Colorado Basin	Domand	562	717	874	1,014	1,156	1,293	1,433
Total Lower Colorado Basin	Demand	302	/1/	0/4	1,014	1,130	1,293	1,43.
Lower Colorado Basin Supp	ls ₇							
Municipal Municipal	ıy		715	715	715	715	715	71:
Industrial			0	0	0	0	0	/1.
Steam-Electric			0	0	0	0	0	(
Irrigation Irrigation			15	15	15	15	15	10
Mining			17	17	17	17	17	1
Livestock			169	169	169	169	169	169
Unallocated Groundwater Su	ınnly		677	677	677	677	677	67
Total Lower Colorado Basin			1,593	1,593	1,593	1,593	1,593	1,594
Total Lowel Colorado Dasili	Sappiy		1,393	1,393	1,393	1,393	1,393	1,39
Lower Colorado Basin Balar	1							
	ice		107	20	102	244	202	50
Municipal			197	39	-102	-244	-382	-52
Industrial			0	0	0	0	0	-
Steam-Electric			0	0	0	0	0	
Irrigation			0	1	3	4	5	
Mining			2	2	1	0	0	(
Livestock			0	0	0	0	0	(
Unallocated Groundwater Su	ıpply		677	677	677	677	677	67

		Table C-22					
	Projected Water D						
Rive	r Basin and South			mmaries			
		ntral Texas	Region				
	Total in	2010	2020	2020	20.40	2050	20.60
Basin	2000	2010	2020	2030	2040	2050	2060
	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Colorado-Lavaca Basin Demand	251	200	2.5		504		
Municipal	251	289	362	523 26,790	691 28,753	675 30,486	672
Industrial Steam-Electric	19,175 684	22,516	24,810	26,790	28,/53	30,486	32,671
Irrigation	084	0	0	0	0	0	
Mining	1	1	1	1	1	1	1
Livestock	17	17	17	17	17	17	17
Total Colorado-Lavaca Basin Demand	20,128	22,823	25,190	27,331	29,462	31,179	33,361
Total Colorado-Lavaca Basin Belland	20,120	22,023	23,170	27,331	27,402	31,177	33,301
Colorado-Lavaca Basin Supply							
Municipal Supply		317	317	317	317	317	317
Industrial		30,650	30,650	30,650	30,650	30,650	30,650
Steam-Electric		0	0	0	0	0	0
Irrigation		0	0	0	0	0	0
Mining		1	1	1	1	1	1
Livestock		17	17	17	17	17	17
Unallocated Groundwater Supply		246	246	246	246	246	246
Total Colorado-Lavaca Basin Supply		31,231	31,231	31,231	31,231	31,231	31,231
Colorado-Lavaca Basin Balance 1							
Municipal		28	-45	-206	-374	-358	-355
Industrial		8,134	5,840	3,860	1,897	164	-2,021
Steam-Electric		0	0	0	0	0	0
Irrigation		0	0	0	0	0	0
Mining		0	0	0	0	0	0
Livestock		0	0	0	0	0	0
Unallocated Groundwater Supply		246	246	246	246	246	246
Lavaca Basin Demand	510	511	510	505	40.5	470	451
Municipal	513	511	512	505	495	479	471
Industrial Steam-Electric	7	8	9	10	10	11	12
	0	0	0	0	0	0	0
Irrigation Mining	37	40	42	43	42	43	43
Livestock	310	357	357	357	357	357	357
Total Lavaca Basin Demand	867	916	920	915	904	890	883
Total Eavaca Basin Bemana	007	710	720	713	704	070	003
Lavaca Basin Supply							
Municipal		1,703	1,703	1,703	1,703	1,703	1,703
Industrial		15	15	15	15	15	15
Steam-Electric		0	0	0	0	0	0
Irrigation		0	0	0	0	0	0
Mining		44	44	44	44	44	44
Livestock		357	357	357	357	357	357
Unallocated Groundwater Supply		729	729	729	729	729	729
Total Lavaca Basin Supply		2,848	2,848	2,848	2,848	2,848	2,848
Lavaca Basin Balance 1							
Municipal		1,192	1,191	1,198	1,208	1,224	1,232
Industrial		7	6	5	5	4	3
Steam-Electric		0	0	0	0	0	C
Irrigation		0	0	0	0	0	C
Mining		4	2	1	2	1	1
Livestock		0	0	0	0	0	0
Unallocated Groundwater Supply		729	729	729	729	729	729

	D _r	ojected Water Do	Table C-22	nlies and Na	ande			
		Basin and South (
	1	South Cer	ntral Texas I					
	Basin	Total in 2000	2010	2020	2030	2040	2050	2060
	Dasin	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Lavaca-Guadalup	e Basin Demand							
Municipal		7,163	7,702	8,269	8,716	9,044	9,394	9,77
Industrial		23,086	27,108	29,871	32,255	34,618	36,704	39,33
Steam-Electric		0	0	0	0	0	0	10.51
Irrigation		13,806	24,054	20,977	18,417	16,497	14,994	13,64
Mining Livestock		769	1,003	1,146	1,244	1,344	1,447	1,52
	dalupe Basin Demand	868 45,692	868 60,735	868 61,131	868 61,500	868 62,371	868 63,407	65,14
Totai Lavaca-Gua	аапире базіп Бешапа	43,092	00,733	01,131	01,300	02,371	03,407	03,14
Lavaca-Guadalup	e Basin Supply							
Municipal			14,341	14,341	14,341	14,341	14,341	14,34
Industrial			39,353	39,353	39,353	39,353	39,353	39,35
Steam-Electric			0	0	0	0	0	
Irrigation			24,054	22,891	21,889	21,024	20,277	19,63
Mining			1,006	1,147	1,245	1,345	1,447	1,52
Livestock			868	868	868	868	868	86
Unallocated Grou			60	319	1,223	1,988	2,633	3,19
Total Lavaca-Gua	dalupe Basin Supply		79,682	78,919	78,919	78,919	78,919	78,91
T C 11	n · n · 1							
Lavaca-Guadalupe Municipal	e Basin Balance		6,639	6.072	5 625	5,297	4,947	4,56
Industrial			12,245	6,072 9,482	5,625 7,098	4,735	2,649	4,30
Steam-Electric			0	9,462	7,098	4,733	2,049	1
Irrigation			0	1,914	3,472	4,527	5,283	5,98
Mining			3	1,714	3,472	1	0	3,76
Livestock			0	0	0	0	0	
Unallocated Grou	ndwater Supply		60	319	1,223	1,988	2,633	3,19
San Antonio-Nuec	es Basin Demand							
Municipal		1,261	1,327	1,376	1,379	1,403	1,419	1,41
Industrial		0	0	0	0	0	0	
Steam-Electric		0	0	0	0	0	0	7
Irrigation		861	78 153	77	76 91	75 70	74 49	7:
Mining Livestock		1,016		116		1,016	1,016	1,010
	-Nueces Basin Demand	3,162	1,016 2,574	1,016 2,585	1,016 2,562	2,564	2,558	2,54
100012001	Traces Busin Bennana	5,102	2,57	2,000	2,502	2,50.	2,000	2,0
San Antonio-Nuec	es Basin Supply							
Municipal			2,687	2,687	2,687	2,687	2,687	2,68
Industrial			69	69	69	69	69	6
Steam-Electric			0	0	0	0	0	(
Irrigation			128	128	128	128	128	12
Mining			157	118	93	71	50	40
Livestock			1,016	1,016	1,016	1,016	1,016	1,010
Unallocated Grou	11 /		23,791	23,830	23,855	23,877	23,898	23,90
Total San Antonio	-Nueces Basin Supply		27,848	27,848	27,848	27,848	27,848	27,84
San Antonio-Nuec	es Rasin Ralanca ¹							
Municipal Municipal	Co Dubin Dalantt		1,360	1,311	1,308	1,284	1,268	1,27
Industrial			69	69	69	69	69	6
Steam-Electric			0	09	0	0	09	0
Irrigation			50	51	52	53	54	5.
Mining			4	2	2	1	1	
Livestock			0	0	0	0	0	-
Unallocated Grou	ndwater Supply		23,791	23,830	23,855	23,877	23,898	23,90

		jected Water D						
		asin and South	Central Texa	s Region Su				
		South Ce	ntral Texas l	Region				
		Total in						
<u> </u>	Basin	2000	2010	2020	2030	2040	2050	2060
		(acft)	(acft)	(acft)	(acft)	(acft)	(acft)	(acft)
Rio Grande Basin D	emand							
Municipal		2	2	2	2	2	2	
Industrial		0	0	0	0	0	0	
Steam-Electric		0	0	0	0	0	0	
Irrigation		0	0	0	0	0	0	
Mining		0	0	0	0	0	0	
Livestock		105	105	105	105	105	105	1
Total Rio Grande B	asin Demand	107	107	107	107	107	107	1
Rio Grande Basin S	upply							
Municipal			3	3	3	3	3	
Industrial			0	0	0	0	0	
Steam-Electric			0	0	0	0	0	
Irrigation			0	0	0	0	0	
Mining			0	0	0	0	0	1
Livestock	Irrotan Crambr		105	105	105	105	105	
Unallocated Ground Total Rio Grande B			2,973 3,081	2,973 3,081	2,973 3,081	2,973 3,081	2,973 3,081	2,9
TOTAL KIO GEARGE B	азін эцрріу		3,081	3,081	3,081	3,081	3,081	3,0
D. G. 1 D. 1 D.	, 1							
Rio Grande Basin B	aiance -							
Municipal			1	1 0	1	1	0	
Industrial			0			0		
Steam-Electric			0	0	0	0	0	
Irrigation			0	0	0	0	0	
Mining Livestock			0	0	0	0	0	
Unallocated Ground	Iwatar Supply		2,973	2,973	2,973	2,973	2,973	2,9
Chanocated Ground	тwater Зирргу		2,913	2,913	2,913	2,913	2,913	2,9
South Central Texas	Pagion Damand							
Municipal Municipal	Kegion Demand	340,028	395,994	451,112	503,376	547,136	592,344	637,2
Industrial		100,195	119,310	132,836	144,801	156,692	167,182	179,7
Steam-Electric		35,379	46,560	104,781	110,537	116,068	121,601	128,3
Irrigation		383,332	379,026	361,187	344,777	329,395	315,143	301,6
Mining		11,757	14,524	15,704	16,454	17,212	17,977	18,6
Livestock		25,660	25,954	25,954	25,954	25,954	25,954	25,9
	Texas Region Demand	896,351	981,368	1,091,574	1,145,899	1,192,457	1,240,201	1,291,5
South Central Texas	Region Supply							
Municipal	•		384,910	382,713	379,380	375,150	374,685	374,5
Industrial			140,619	140,600	140,512	140,496	140,479	140,4
Steam-Electric			87,890	89,842	89,813	89,782	89,749	89,7
Irrigation			382,193	380,825	378,881	377,847	376,936	376,1
Mining			14,264	15,155	14,812	15,306	15,726	16,1
Livestock			26,080	26,083	26,082	26,081	26,088	26,0
Unallocated Ground			136,758	137,849	138,836	139,661	140,340	140,9
Total South Central	Texas Region Supply		1,172,714	1,173,067	1,168,316	1,164,323	1,164,003	1,164,0
South Central Texas	Region Balance 1							
Municipal			-11,084	-68,399	-123,996	-171,986	-217,659	-262,7
Industrial			21,309	7,764	-4,289	-16,196	-26,703	-39,2
Steam-Electric			41,330	-14,939	-20,724	-26,286	-31,852	-38,6
Irrigation			3,167	19,638	34,104	48,452	61,793	74,4
Mining			-260	-549	-1,642	-1,906	-2,251	-2,4
Livestock			126	129	128	127	134]
Unallocated Ground	lwater Supply		136,758	137,849	138,836	139,661	140,340	140,9
Notes:								

Appendix D Summary of Water Management Strategies

Appendix D, Table 1 2011 South Central Texas Regional Water Plan Water Management Strategies

	Section	Description	Short-term Unit Cost* (\$/acft/yr)	Long-term Unit Cost* (\$/acft/yr)	Quantity of Water	First Decade Needed	Notes
\longrightarrow	4C.1	Municipal Water Conservation	\$ 648	(\$/acit/yr)	(acft/yr) 72,570	2010	Unit Cost and Quantity at 2060.
F	4C.1	Edwards Transfers	\$ 454	-	51,875	2010	Onli Cost and Quantity at 2000.
F	4C.22	Local Groundwater Supplies (Carrizo)	\$ 687	\$ 258	33,874	2010	Quantity is cumulative of all Recommended WMS. Unit cost is average unit cost.
F	4C.36	TWA Regional Carrizo	\$ 1,523	\$ 512	27,000	2010	additional by a district of the recommended vivio. Since out to diverge district out.
F	4C.5	Recycled Water Programs	Varies	Varies	26,756	2010	
F	4C.34	Lavaca River Off-Channel Reservoir	\$ 701	\$ 100	26,242	2010	LNRA WMS
Ī	4C.1	Irrigation Water Conservation	\$ 143	-	20,709	2010	Maximum potential for Atascosa, Medina, & Zavala Counties.
Ī	4C.2	Drought Management	Varies	Varies	41,240	2010	
	4C.27	CRWA Wells Ranch Project	\$ 725	\$ 672	11,000	2010	
	4C.30	Medina Lake Firm-Up (ASR)	\$ 1,696	\$ 450	9,933	2010	15 Wells size
	4C.22	Local Groundwater Supplies (Trinity)	\$ 710	\$ 116	4,436	2010	Quantity is cumulative of all Recommended WMS. Unit cost is average unit cost.
Ī	4C.8	Wimberley and Woodcreek Water Supply Project	\$ 2,429	\$ 1,772	4,480	2010	
es	4C.9	Storage Above Canyon Reservoir (ASR)	\$ 1,772	\$ 587	3,140	2010	Meets needs Kendall County Rural
ige	4C.1	Mining Water Conservation	Varies	Varies	2,492	2010	
Strategies	4C.6	Facilities Expansions	-	-	-	2010	
ment	4C.32	Surface Water Rights	-	1	-	2010	Acquisition of existing rights only. As new supplies and associated costs have not be quantified, this strategy is more explicitly identified as an activity consistent with the 2 Regional Water Plan.
ge	4C.21	GBRA Simsboro Project	\$ 982	\$ 386	49,777	2020	
anagei	4C.10	GBRA-Exelon Project	\$ 641	\$ 224	49,126	2020	River Diversion
Ma Ba	4C.20	Hays/Caldwell PUA Project	\$ 1,245	\$ 439	35,000	2020	CRWA, San Marcos, Kyle, & Buda
	4C.23	Brackish Wilcox Groundwater for SAWS	\$ 1,245	\$ 465	26,400	2020	
Water	4C.15	GBRA Mid-Basin (Surface Water)	\$ 2,204	\$ 405	25,000	2020	
≥	4C.4	Edwards Aquifer Recharge – Type 2 Projects	\$ 2,005	\$ 340	21,577	2020	Includes full spectrum of potential projects.
mmended	4C.24	Brackish Wilcox Groundwater for Regional Water Alliance	\$ 1,293	\$ 536	14,700	2020	13.1 MGD Capacity
ž l	4C.18	Regional Carrizo for SAWS	\$ 1,343	\$ 324	11,687	2020	
Ĕ	4C.19	Regional Carrizo for SSLGC Project Expansion	\$ 608	\$ 293	10,364	2020	
Ę	4C.29	LCRA-SAWS Water Project	\$ 2,394	\$ 555	90,000	2030	
Recor	4C.13	GBRA Lower Basin Storage (100 acre site)	\$ 104	\$ 15	28,369	2030	
Œ.	4C.14	GBRA New Appropriation (Lower Basin)	\$ 1,953	\$ 239	11,300	2030	100,000 acft Off-Channel Storage Size
ļ	4C.28	CRWA Siesta Project	\$ 1,421	\$ 497	5,042	2030	
Ļ	4C.25	Brackish Wilcox Groundwater for SSWSC	\$ 1,883	\$ 766	1,120	2040	
	4C.22	Local Groundwater Supplies (Gulf Coast)	\$ 1,823	\$ 637	161	2040	City of Kenedy
ļ	4C.31	Seawater Desalination	\$ 2,284	\$ 941	84,012	2060	San Antonio Bay source.
ŀ		Purchase from WWP (GBRA)	Varies	Varies	*	2010	* Quantity already accounted for in other WMSs
ŀ		Purchase from WWP (CRWA)	Varies	Varies	*	2010	* Quantity already accounted for in other WMSs
ŀ		Purchase from WWP (BMWD)	Varies	Varies	*	2010	* Quantity already accounted for in other WMSs
ŀ		Purchase from WWP (SAWS)	Varies	Varies	*	2010	* Quantity already accounted for in other WMSs
ŀ		Purchase from WWP (SHWSC) Purchase from WWP (TWA)	Varies Varies	Varies	*	2010 2010	* Quantity already accounted for in other WMSs
ŀ		· · · · · · · · · · · · · · · · · · ·		Varies	*		Quantity already accounted for in other WMSs Quantity already accounted for in other WMSs
ŀ		Purchase from WWP (LNRA) Purchase from WWP (SSLGC)	Varies Varies	Varies Varies	*	2010 2010	* Quantity already accounted for in other WMSs
\longrightarrow	4C.12	LGWSP for Upstream GBRA Needs	\$ 1,506	\$ 536	60,000	2010	Quantity aready accounted for in other WIVIOS
<i>"</i>	4C.12 4C.13	GBRA Lower Basin Storage (500 acre site)	\$ 1,506	\$ 536	59,569		
<u>ĕ</u>	4C.13	LGWSP for Upstream GBRA Needs at Reduced Capacity	\$ 2,565	\$ 726	35,000		
Strategies	4C.11	GBRA Mid-Basin Project (Conjunctive Use)	\$ 1,779	\$ 425	25,000		
tra t	4C.17	Regional Carrizo for Guadalupe Basin (GBRA)	\$ 1,280	\$ 454	25,000		
	4C.30	Medina Lake Firm-Up (OCR)	\$ 1,197	\$ 199	9,078		Site 3
e l	4C.22	Local Groundwater Supplies (Barton Springs Edwards)	\$ 203	\$ 47	1,358		Goforth WSC
: E	4C.26	Calhoun County Brackish Groundwater Project	\$ 2,679	\$ 1,064	1,344		
Management	4C.22	Local Groundwater Supplies (Carrizo) (Yancy WSC)	\$ 517	\$ 99	1,210		Yancy WSC
a,		Purchase from WWP (GBRA)	Varies	Varies			
≥		Purchase from WWP (CRWA)	Varies	Varies			
		Purchase from WWP (SAWS)	Varies	Varies			
	4C.33	Balancing Storage (ASR and/or Surface)					
ૐ	4C.7	Brush Management (Above Canyon Reservoir)	\$ 897	\$ 244	5,500		25% Participation
ģ	4C.9	Storage Above Canyon Reservoir (Off-Channel)					
) Str	4C.35	Palmetto Bend - Stage II	\$ 887	\$ 84	22,964		LNRA WMS
9 6		CRWA Dunlap Project					
ا يَا عَ		Edwards Recharge and Recirculation Systems					
בַּ בַּ		Mesa Water Supply Project (SAWS)					
- E		Rainwater Harvesting					
		Regional Carrizo for BMWD					
ξĹ							1
duiring		Regional Carrizo for SSLGC Project Expansion - Wilson County Option					
Requiring Further Study & Funding		Regional Carrizo for SSLGC Project Expansion - Wilson County Option SAWS Other Water Supplies (Planned RFP) Seawater Desalination for Guadalupe River Basin					

*Cost in September 2008 dollars

Appendix D, Table 2 2011 South Central Texas Regional Water Plan Recommended Water Management Strategies

						Water S	upply Volume	e (acre-feet p	er year)		
Region	Section	Description	Total Capital Costs	First Decade Estimated Annual Average Unit Cost (\$/acft/yr)	2010	2020	2030	2040	2050	2060	Year 2060 Estimated Annual Average Unit Cost (\$/acft/yr)
L	4C.1	Municipal Water Conservation	-	\$ 648	13,231	22,742	31,616	40,528	53,925	72,570	-
L	4C.1	Irrigation Water Conservation	\$1,035,034	\$ 143	20,087	17,561	14,429	11,421	8,543	7,238	-
L	4C.1	Mining Water Conservation	-	Varies	521	726	1,771	1,991	2,292	2,492	Varies
L	4C.2	Drought Management	-	Varies	41,240	0	0	0	0	O	Varies
L	4C.3	Edwards Transfers	\$23,551,250	\$ 454	45,896	47,479	48,931	49,870	50,855	51,875	-
L	4C.4	Edwards Aquifer Recharge – Type 2 Projects	\$527,643,000	\$ 2,005	0	13,451	13,451	13,451	13,451	21,577	\$ 340
L	4C.5	Recycled Water Programs	\$465,339,000	Varies	21,666	26,046	30,151	34,178	37,706	41,737	Varies
L	4C.6	Facilities Expansions	\$144,560,579	1	0	0	0	0	0	C	-
L	4C.8	Wimberley and Woodcreek Water Supply Project	\$33,771,000	\$ 2,429	1,120	4,480	4,480	4,480	4,480	4,480	\$ 1,772
L	4C.9	Storage Above Canyon Reservoir (ASR)	\$37,326,000	\$ 1,772	0	3,140	3,140	3,140	3,140	3,140	\$ 587
L	4C.10	GBRA-Exelon Project	\$280,598,000	\$ 646	0	49,126	49,126	49,126	49,126	49,126	\$ 224
L	4C.13	GBRA Lower Basin Storage (100 acre site)	\$33,800,000	\$ 104	0	0	28,369	28,369	28,369	28,369	\$ 60
L	4C.14	GBRA New Appropriation (Lower Basin)	\$246,849,000	\$ 1,910	0	0	11,300	11,300	11,300	11,300	\$ 223
L	4C.15	GBRA Mid-Basin (Surface Water)	\$546,941,000	\$ 1,879	0	25,000	25,000	25,000	25,000	25,000	\$ 370
L	4C.18	Regional Carrizo for SAWS	\$136,550,000	\$ 1,343	0	11,687	11,687	11,687	11,687	11,687	\$ 324
L	4C.19	Regional Carrizo for SSLGC Project Expansion	\$28,189,000	\$ 568	0	10,364	10,364	10,364	10,364	10,364	\$ 331
L	4C.20	Hays/Caldwell PUA Project	\$323,296,000	\$ 1,245	0	12,000	12,000	35,000	35,000	35,000	\$ 439
L	4C.21	GBRA Simsboro Project	\$330,782,000	\$ 982	0	30,000	30,000	30,000	49,777	49,777	\$ 386
L	4C.22	Local Groundwater Supplies (Carrizo)	\$166,718,000	\$ 687	6,773	11,610	15,440	17,255	23,947	33,874	\$ 258
L	4C.22	Local Groundwater Supplies (Gulf Coast)	\$2,194,000	\$ 1,823	0	0	0	161	161	161	\$ 637
L	4C.22	Local Groundwater Supplies (Trinity)	\$30,224,000	\$ 710	2,016	3,146	3,468	3,630	3,952	4,436	\$ 116
L	4C.23	Brackish Wilcox Groundwater for SAWS	\$236,220,000	\$ 1,245	0	12,000	21,000	26,400	26,400	26,400	\$ 465
L	4C.24	Brackish Wilcox Groundwater for RWA	\$127,753,000	\$ 1,293	0	0	7,600	7,600	13,200	14,700	\$ 536
L	4C.25	Brackish Wilcox Groundwater for SSWSC	\$14,357,000	\$ 1,883	0	0	0	1,120	1,120	1,120	\$ 766
L	4C.27	CRWA Wells Ranch Project	\$34,910,000	\$ 725	11,000	11,000	11,000	11,000	11,000	11,000	\$ 672
L	4C.28	CRWA Siesta Project	\$53,481,000	\$ 1,421	0	0	1,000	5,042	5,042	5,042	
L	4C.29	LCRA-SAWS Water Project	\$1,986,684,000	\$ 2,394	0	0	90,000	90,000	90,000	90,000	\$ 829
L	4C.30	Medina Lake Firm-Up (ASR)	\$146,237,000	\$ 1,696	9,933	9,933	9,933	9,933	9,933	9,933	\$ 450
L	4C.31	Seawater Desalination	\$1,293,827,000	\$ 2,284	0	0	0	0	0	84,012	\$ 941
L	4C.34	Lavaca River Off-Channel Reservoir	\$224,183,000	\$ 701	26,242	26,242	26,242	26,242	26,242	26,242	
L	4C.36	TWA Regional Carrizo	\$313,060,000		0	27,000	27,000	27,000	27,000	27,000	\$ 512

Appendix D, Table 3. Regional Water Supply Plan Summary

		nand	_	hortage)		W	nt from MS
County/Motor Hoor Croup	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages) Section 4B.2.1	(acft)	(acft)
Atascosa County	1,189	Table 2-12 2,569	0	able 4A-1 885	Municipal Water Conservation		153
Benton City WSC	1,103	2,505		000	Local Carrizo Aquifer		1,613
					Purchase from WWP (BMWD)		,
	296	350	0	0	Municipal Water Conservation	20	43
					Drought Management	15	
Charlotte					Purchase from WWP (BMWD)		
					Local Carrizo Aquifer		
	801	1,026	112	338	Facilities Expansions Municipal Water Conservation	60	222
Jourdanton	601	1,026	112	330	Drought Management	40	222
odidanton					Local Carrizo Aquifer	403	403
	479	526	141	188	Municipal Water Conservation	38	108
Lytle	-				Edwards Transfers	141	188
-					Drought Management	24	
McCoy WSC	1,106	2,328	0	812	Municipal Water Conservation		129
					Local Carrizo Aquifer		1,613
Diagonton	1,906	2,151	0	0	Municipal Water Conservation	156	615
Pleasanton	—				Local Carrizo Aquifer Facilities Expansions	 	
Poteet	735	752	0	0	Municipal Water Conservation	60	213
1 Olect	449	97	0	0	Municipal Water Conservation	11	210
		0.			Drought Management ¹	<u> </u>	
Rural					Purchase from WWP (BMWD)		
					Edwards Transfers		
					Facilities Expansions		
Industrial	6	6	0	0			
Steam-Electric	7,000	7,672	263	942	Local Carrizo Aquifer	807	1613
Mining Irrigation	1,298 40,885	1,509 34,502	6.095	0 291	Irrigation Water Conservation	5369	291
Livestock	1,745	1,745	0,095	291	irrigation water Conservation	3369	291
Bexar County	1,740	1,740		able 4A-1	Section 4B.2.2		
•	2,071	2,170	592	691	Municipal Water Conservation	175	865
Alamo Heights					Edwards Transfers	592	691
					Drought Management	104	
	941	1,613	546	1,218	Municipal Water Conservation		22
Atascosa Rural WSC					Edwards Transfers	546	1,218
					Drought Management	47	100
Balcones Heights	514	670	0	0	Purchase from WWP (BMWD) Municipal Water Conservation	120 4	120 37
	9.888	12,405	3,944	7,038	Municipal Water Conservation	4	293
Bexar Metropolitan Water District	0,000	12,100	0,011	7,000	Purchase from WWP (BMWD)	3,944	7,038
	820	771	96	47	Municipal Water Conservation	61	166
Castle Hills					Drought Management	41	
					Purchase from WWP (BMWD)	96	47
China Grove	376	695	0	0	Municipal Water Conservation	28	217
Converse	1,907	3,564	0	969	Municipal Water Conservation		110
	1.500	0.700	0	040	Purchase from WWP (BMWD) Municipal Water Conservation	0	969
East Central SUD	1,523	2,793	- 0	942	Purchase from WWP (CRWA)	0	104 942
Elmendorf	112	156	0	0	Municipal Water Conservation	U	6
Fair Oaks Ranch	1,434	1,479	0	0	Municipal Water Conservation	125	509
Helotes	1,537	4,047	0	0	Municipal Water Conservation	115	993
	838	826	730	718	Municipal Water Conservation	77	365
Hill Country Village					Purchase from WWP (BMWD)	730	718
					Drought Management	42	
	2,314	2,616	1,969	2,271	Municipal Water Conservation	212	1,154
Hollywood Park					Purchase from WWP (BMWD)	1,969	2,271
	1.005	1 004	205	004	Drought Management	116	004
Kirby	1,005	1,034	335	364	Edwards Transfers Drought Management	335 50	364
Lackland AFB (CDP)	3,104	3,016	0	0	Municipal Water Conservation	268	1300
Leon Valley	1,091	1,036	0	0	Municipal Water Conservation	200	12
Live Oak	1,145	1,284	0	0	Municipal Water Conservation		
Olmos Park	403	484	0	0	Municipal Water Conservation	9	33
	216,945	317,727	77,783	194,228	Municipal Water Conservation	5,752	23,711
San Antonio					Purchase from WWP (SAWS)	68,760	169,752
San Antonio					Purchase from WWP (BMWD)	9,023	24,476
					Drought Management (SAWS)	37,622	
					Drought Management (BMWD)	1,233	

	Dem	and	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Selma	1,667	2,605	0	749	Municipal Water Conservation	135	1,12
Seillia					Purchase from WWP (SSLGC)	0	749
	819	880	320	381	Municipal Water Conservation	73	382
Shavano Park					Drought Management	41	
					Purchase from WWP (SAWS)	320	381
Somerset	405	709	0	0	Municipal Water Conservation	29	177
St. Hedwig	310	501	0	0	Municipal Water Conservation		14
Terrell Hills	863	1,057	0	0	Municipal Water Conservation	14	65
	2,608	3,101	113	606	Municipal Water Conservation		148
Universal City					Edwards Transfers	113	606
					Drought Management	130	
	951	2,058	911	2,018	Municipal Water Conservation		105
Water Service Inc. (Apex Water Ser.)					Edwards Transfers	587	1,116
Water Service Inc. (Apex Water Ser.)					Purchase from WWP (TWA)		1,000
					Purchase from WWP (SSLGC)	324	324
Windcrest	1,204	1,182	235	214	Municipal Water Conservation	99	385
Willacrest					Edwards Transfer	235	235
Durol	6,624	7,496	0	655	Municipal Water Conservation	49	505
Rural					Purchase from WWP (SAWS)	0	655
Industrial	25,951	42,112	1,340	17,588	Purchase from WWP (SAWS)	12,000	30,000
					Recycled Water	1,340	17,588
Steam-Electric	20,395	39,614	0	0			
Mining	3,582	4,766	0	1,216	Mining Water Conservation		1,216
Irrigation	15,273	12,306	0	0			
Livestock	1,319	1,319	0	0			
Caldwell County	Table	2-12	Table	e 4A-1	Section 4B.2.3		
	267	580	49	362	Municipal Water Conservation		19
Aqua WSC					Local Carrizo Aquifer	403	403
·					Drought Management	13	
Creedmoor-Maha WSC	244	583	108	447	Municipal Water Conservation		11
Creedmoor-Mana WSC					Purchase from WWP (GBRA)	108	447
	2,451	5,285	0	2,512	Municipal Water Conservation		333
Lastriani					Local Carrizo Aquifer		2823
Lockhart					Purchase from WWP (GBRA)		1,120
					Drought Management	123	
	1,067	1,594	0	506	Municipal Water Conservation	70	192
Lulian					Local Carrizo Aquifer		807
Luling					Purchase from WWP (GBRA)		1,680
					Drought Management	53	
Manatantala	125	158	0	0	Purchase from WWP (CRWA)	0	0
Martindale					Drought Management	6	
Maratinatala WOO	189	329	42	182	Purchase from WWP (CRWA)	396	896
Martindale WSC					Drought Management	9	
M	660	1,733	0	689	Municipal Water Conservation		55
Maxwell WSC		,			Purchase from WWP (CRWA)	0	2,000
	135	329	19	213	Municipal Water Conservation	10	116
Mustang Ridge					Purchase from WWP (GBRA)	19	213
0 0					Drought Management	6	
Polonia WSC	668	1,656	0	265	Local Wilcox		323
Rural	237	143	0	0	Municipal Water Conservation	21	29
Industrial	15	29	0	0	·		
Steam-Electric	0	0	0	0			
Mining	14	18	0	0			
Irrigation	1,044	578	0	0			
Livestock	918	918	0	0			
Calhoun County	Table		Table	e 4A-1	Section 4B.2.4		
Calhoun County WSC	436	632	0	0			
,	224	667	46	489	Municipal Water Conservation	18	98
Point Comfort					Purchase from WWP (LNRA)	46	489
					Drought Management	11	. 30
Port Lavaca	1,769	2,345	0	0	Municipal Water Conservation		89
Seadrift	252	258	0	0	Municipal Water Conservation	20	41
Rural (Port O'Conner MUD)	267	269	0	0	Municipal Water Conservation		11
Industrial	49,784	72,238	0	209	Purchase from WWP (LNRA)	10,000	10,000
Steam-Electric	0	0	0	0	,	-,	- ,556
Mining	32	38	0	0		1	
Irrigation	15,568	9,581	0	0		1	
Livestock	342	342	0	0			
Comal County	Table			€ 4A-1	Section 4B.2.5		
	1,053	4,995	653	4,595	Municipal Water Conservation		430
Bulverde City	1,000	1,000	- 555	1,000	Purchase from WWP (GBRA)	653	4,595
23.75.40 01.9					Drought Management	53	+,000
					D. Ought Managomont	50	

	Dem			hortage)		W	nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
	2,928	13,331	0	6,769	Municipal Water Conservation		1,41
Canyon Lake WSC					Purchase from WWP (GBRA)		6,76
Carryon Lake 1100					Drought Management ¹		
					Purchase from WWP (TWA)		12,00
	565	1,360	257	1,052	Municipal Water Conservation	42	46
Garden Ridge					Purchase from WWP (SSLGC)	257	105
					Drought Management	28	
	10,509	26,226	0	13,920	Municipal Water Conservation	815	8,15
New Braunfels					Drought Management	525	
					Purchase from WWP (GBRA)		13,92
	2,721	3,998	1,782	2,960	Municipal Water Conservation		8
Rural					Purchase from WWP (GBRA)	891	1,48
itulai					Purchase from NBU (term)	891	
					Purchase from WWP (TWA)		1,48
Industrial	7,729	11,553	5,199	9,022	Recycled Water	5,199	9,02
Steam-Electric	0	0	0	0			
Mining	2,678	3,401	439	1,173	Mining Water Conservation	439	1,17
Irrigation	204	119	0	0			
Livestock	298	298	0	0			
DeWitt County	Table	2-12	Table	4A-1	Section 4B.2.6		
Cuero	1,249	1,177	0	0	Municipal Water Conservation	99	21
Yoakum	352	328	0	0	Municipal Water Conservation	14	2
Yorktown	343	318	0	0	Municipal Water Conservation		1
Rural	1,013	912	0	0	Municipal Water Conservation	1	•
Industrial	184	254	0	0			
Steam-Electric	0	0	0	0			
Mining	64	71	0	0			
Irrigation	159	54	0	0			
Livestock	1,689	1,689	0	0			
Dimmit County	Table			2 4A-1	Section 4B.2.7		
						20	-
Asherton	286	279	0	0	Municipal Water Conservation	20	6
Big Wells	149	145	0	0	Municipal Water Conservation	11	3
Carrizo Springs	1,842	1,836	0	0	Municipal Water Conservation	152	77
Rural	284	263	0	0			
Industrial	0	0	0	0			
Steam-Electric	0	0	0	0			
Mining	1,003	1,095	0	0			
Irrigation	10,611	8,987	0	0			
Livestock	552	552	0	0			
Frio County	Table			4A-1	Section 4B.2.8		
Dilley	1,229	1,825	0	0	Municipal Water Conservation	104	77
Pearsall	1,443	1,449	0	0	Municipal Water Conservation	116	32
Rural	727	1,007	0	0	Municipal Water Conservation		1
Industrial	0	0	0	0			
Steam-Electric	289	91	0	0			
Mining	109	96	0	0			
Irrigation	82,017	68,592	0	0			
Livestock	1,209	1,209	0	0			
Goliad County	Table	2-12	Table	4A-1	Section 4B.2.9		
Goliad	416	594	0	0	Municipal Water Conservation	30	10
Rural	608	848	0	0	Municipal Water Conservation		1
Industrial	4	24	0	0	·		
Steam-Electric	9,027	16,643	0	0		1	
Mining	398	46	0	0		1	
Irrigation	309	149	0	0			
Livestock	920	920	0	0	Livestock Water Conservation		
Gonzales County	Table			e 4-10	Section 4B.2.10		
Gonzales	1,545	1,759	0	0	Municipal Water Conservation	116	41
	1,748	2,360	0	0	Municipal Water Conservation	143	1,00
Gonzales County WSC	1,7 10	_,000	Ť		Purchase from WWP (TWA)	1.10	1,00
Nixon	438	488	0	0	Municipal Water Conservation	35	.,,,,
Waelder	154	203	0	0	Municipal Water Conservation	00	1
Rural	393	203	0	0	Municipal Water Conservation	6	
ndustrial	2,400	3,402	0	0	iviumorpai vvalei Oomselvalion	U	
						1	
Steam-Electric	0	0	0	0		1	
Mining	28	24	0	0			
rrigation	1,304	621	0	0			
ivestock	5,453	5,453	0	0			
Guadalupe County	Table			4A-1	Section 4B.2.11		
	866	2,730	0	0	Municipal Water Conservation	65	6
Cibolo		<u> </u>			Purchase from WWP (CRWA)	700	7,1
					Purchase from WWP (BMWD)	500	5

	Dema	and	Nood (S	hortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
	2,041	5,551	0	2,716	Municipal Water Conservation	(0.010)	184
	, i	,		,	Local Wilcox Aquifer		2,823
Crystal Clear WSC					Purchase from WWP (CRWA)	1,300	5,185
					Purchase from WWP (SSLGC)		900
					Purchase from WWP (SHWSC)	0	0
	3,039	7,826	0	547	Municipal Water Conservation		20
Green Valley SUD					Purchase from WWP (CRWA)	700	9,500
	101	051	_		Purchase from NBU	552	552
Marion	164	251	0	75	Municipal Water Conservation	400	10
City of New Parlin	70	180	0	0	Purchase from WWP (CRWA)	100	400
City of New Berlin	220	954	76	810	Municipal Water Conservation		79
Santa Clara	220	334	70	010	Purchase from WWP (CRWA)	100	900
Santa Siara					Drought Management	11	
	1,451	12,059	0	2,420	Municipal Water Conservation	22	1,088
Schertz	1,101	12,000		_,	Purchase from WWP (SSLGC)	0	5,923
0 :	5,018	9,047	0	0	Municipal Water Conservation	377	2,131
Seguin		,			Purchase from WWP (SSLGC)		· · · · · ·
	2,349	4,330	0	0	Municipal Water Conservation	174	877
Cariana Hill MCC					Purchase from WWP (TWA)		3,000
Springs Hill WSC					Brackish Wilcox Groundwater for RWA		1,500
					Facilities Expansions		
Rural	270	13	0	0	Municipal Water Conservation	2	
Industrial	2,638	4,097	0	0			
Steam-Electric	4,788	7,515	0	0			
Mining	306	353	0	0			
Irrigation	1,070	705	0	0			
Livestock	1,057	1,057	0	0			
Hays (Part) County	Table			4A-1	Section 4B.2.12		
	1,151	3,677	0	2,386	Municipal Water Conservation	43	473
					Local Trinity Aquifer		2,420
County Line WSC					Purchase from WWP (CRWA)	0	570
					Drought Management	58	
	4.450	0.405	_	4.070	Recycled Water		
O - foodle MOO	1,156	3,485	0	1,872	Municipal Water Conservation		111
Goforth WSC					Hays/Caldwell PUA Project		1639
	0.740	E 000	0	1 000	Purchase from WWP (GBRA)		300
I/la	2,740	5,203	0	1,699	Municipal Water Conservation Hays/Caldwell PUA Project		9,355
Kyle					Drought Management	137	9,333
	45	183	0	134	Municipal Water Conservation	137	22
Mountain City	40	100	U	104	Hays/Caldwell PUA Project	<u>'</u>	150
	130	449	58	377	Municipal Water Conservation		42
Niederwald	100	110	- 00	0//	Purchase from WWP (GBRA)	58	377
Moderwald					Drought Management	7	011
	566	1,630	0	657	Municipal Water Conservation		54
Plum Creek Water Company		,			Purchase from WWP (GBRA)		657
0 14	8,038	24,439	0	11,387	Municipal Water Conservation	417	2,656
San Marcos		,		,	Hays/Caldwell PUA Project		11,910
	776	1,966	219	1,409	Municipal Water Conservation		70
Wimberley WSC					Wimberley and Woodcreek Water Supply	320	1,480
					Drought Management	39	
	246	610	23	387	Municipal Water Conservation		37
Woodcreek					Wimberley and Woodcreek Water Supply	100	400
					Drought Management	12	
Woodcreek Utilities	748	2,873	455	2,580	Municipal Water Conservation	56	771
Woodcreek Otilities					Wimberley and Woodcreek Water Supply	700	2,600
Rural	1,444	2,584	0	0	Municipal Water Conservation		184
Industrial	212	386	0	0			
Steam-Electric	1,009	3,627	0	0			
Mining	142	163	82	103	Mining Water Conservation	82	103
Irrigation	353	338	0	0			
Livestock	280	280	0	0	0		
Karnes County	Table			4A-1	Section 4B.2.13		
El Oso WSC	555	728	0	0	Municipal Water Conservation	41	139
Falls City	113	145	0	0	Municipal Water Conservation	8	23
Karnes City	432	512	182	262	Municipal Water Conservation	000	11
<u> </u>	700	000	_	110	Local Carrizo	323	323
Kenedy	763	993	0	118	Municipal Water Conservation	58	268
Runge	195	247	0	0	Local Gulf Coast Aquifer Municipal Water Conservation	15	161
Runge Rural (TDCJ)	500	500	0	0	wumunpai water conservation	15	37
	500	200	U				
Rural	372	822	0	0	Municipal Water Conservation	68	258

Appendix D HDR-07755-93053-10

Appendix D, Table 3 (Co		nand	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Steam-Electric	0	0	0	0			
Mining	106	100	0	0			
Irrigation	1,382	836	0	0			
Livestock	1,185	1,185	0	0			
Kendall County		2-12	Table	e 4A-1	Section 4B.2.14		
Boerne	1,570	4,282	0	276	Municipal Water Conservation	98	816
boerne					Western Canyon WTP Expansion		276
	2,750	7,460	0	3,514	Municipal Water Conservation		264
Rural					Purchase from WWP (GBRA)		3,140
					Western Canyon WTP Expansion		374
Industrial	0	0	0	0			
Steam-Electric	0	0	0	0			
Mining	6	6	0	0			
Irrigation	714	646	0	0			
Livestock	446	446	0	0			
LaSalle County		2-12	-	e 4A-1	Section 4B.2.15		
Cotulla	1,407	1,743	0	0	Municipal Water Conservation	118	745
Encinal	110	107	0	0	Municipal Water Conservation	9	14
Rural	282	500	0	0	Municipal Water Conservation	3	42
			0	0	iviunicipai vvatei Conservation	3	42
Industrial	0	0			 	1	
Steam-Electric	0	0	0	0		1	
Mining	0	0	0	0			
Irrigation	4,791	4,097	0	0			
Livestock	1,687	1,687	0	0			
Medina County		2-12		e 4A-1	Section 4B.2.16		
	680	961	294	575	Municipal Water Conservation	53	302
Castroville					Edwards Transfers	294	575
Castroville					Drought Management	34	
					Purchase from WWP (BMWD)		
Devine	837	896	0	0	Municipal Water Conservation	63	196
	881	1,385	0	491	Municipal Water Conservation		54
East Medina SUD		,			Edwards Transfers		491
					Drought Management	44	
	1,784	2,717	319	1,252	Municipal Water Conservation	125	640
Hondo	.,,,,,,,	_,,	0.0	.,202	Edwards Transfers	319	1,252
Tionao					Drought Management	89	1,202
	205	281	92	168	Municipal Water Conservation	09	11
La Coste	203	201	32	100	Edwards Transfers	92	168
La Coste					Drought Management	10	100
	000	F10	101	000			73
Natalia	330	519	194	383	Municipal Water Conservation	24	
Natalia					Edwards Transfers	194	383
	200	4 000	011	225	Drought Management	17	010
Yancey WSC	832	1,603	214	985	Municipal Water Conservation	61	316
,					Edwards Transfers	214	985
Rural	1,527	2,949	0	1,296	Municipal Water Conservation		244
					Edwards Transfers		1,296
Industrial	67	103	0	0			
Steam-Electric	0	0	0	0			
Mining	130	143	0	0			
Irrigation	54,450	44,015	7,770	0	Irrigation Water Conservation	7,770	
Livestock	1,298	1,298	0	0			
Refugio County	Table	2-12	Table	4A-1	Section 4B.2.17		
Refugio	645	777	0	0	Municipal Water Conservation	44	144
Woodsboro	283	293	0	0	Municipal Water Conservation	5	20
Rural	321	232	0	0			
Industrial	0	0	0	0			
Steam-Electric	0	0	0	0			
Mining	7	8	0	0		1	
Irrigation	69	69	0	0	 	1	
Livestock	623	623	0	0		1	
Uvalde County		2-12		9 4A-1	Section 4B.2.18		
Ovalue County	407	389	127	109	Municipal Water Conservation	34	145
Cabinal	407	309	121	109			
Sabinal	-				Edwards Transfers	127	109
	2 22-	0.176	0.470	0.000	Drought Management	20	0.05-
	6,087	6,178	3,172	3,263	Municipal Water Conservation	521	2,652
Uvalde					Edwards Transfers	3,172	3,263
	1				Drought Management	304	
Rural	1,572	2,532	0	0	Municipal Water Conservation		137
Industrial	432	538	0	0			
Steam-Electric	0	0	0	0			_
Mining	313	418	0	0			
Irrigation	55,791	45,703	0	0			
ingalion	33,731						

		nand		Shortage)		W	nt from MS
0	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
Victoria County Victoria		2-12		e 4A-1	Section 4B.2.19 Municipal Water Conservation	874	2.40
Victoria	11,924	14,360	0	0	Municipal Water Conservation Municipal Water Conservation	8/4	2,48
Rural	2,666	3,674	U	310	Purchase from WWP (GBRA)	1	31
Industrial	28,726	43,520	0	14,441	Purchase from WWP (GBRA)	1	14,44
industrial	4,052	53,178	1,791	51,076	Purchase from WWP (GBRA - Exelon)	1	49,12
Steam-Electric	4,032	33,176	1,731	31,070	Purchase from WWP (GBRA)	1,791	1,95
Oteam Electric			-		Steam Electric Water Conservation	500	50
Mining	3,944	6,041	0	0	Glodin Elodino Walor Gonoci Valion	000	- 00
Irrigation	9,936	4,759	0	0		1	
Livestock	1,085	1,085	0	0			
Wilson County		2-12		e 4A-1	Section 4B.2.20		
	1,805	3,000	0	433	Municipal Water Conservation	136	7
Floresville	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,000			Local Carrizo Aquifer		48
	278	764	0	0	Municipal Water Conservation	21	22
La Vernia					Purchase from WWP (CRWA)	400	40
0 1 155 1400	693	2,160	0	298	Municipal Water Conservation	100	13
Oak Hills WSC		,			Local Carrizo Aquifer		32
Poth	348	585	0	0	Municipal Water Conservation	20	6
	1,563	5,030	223	3,690	Municipal Water Conservation		22
00,1400					Local Carrizo Aquifer	807	4,03
SS WSC					Purchase from WWP (CRWA)		69
					Brackish Wilcox Groundwater for SS WSC		112
					Drought Management	78	
Stockdale	350	558	0	0	Municipal Water Conservation	27	17
Sunko WSC	613	1,326	0	16	Municipal Water Conservation	3	ç
Suliko WSC					Local Carrizo Aquifer		16
Rural	609	2,006	0	33	Municipal Water Conservation		11
Industrial	1	1	0	0			
Steam-Electric	0	0	0	0			
Mining	242	218	0	0			
Irrigation	11,296	6,330	0	0			
Livestock	1,808	1,808	0	0			
Zavala County		2-12		e 4A-1	Section 4B.2.21		
Crystal City	2,247	2,370	0	0	Municipal Water Conservation	192	1,00
Rural	864	1,371	0	0	Municipal Water Conservation	42	14
Industrial	1,043	1,315	0	0			
Steam-Electric	0	0	0	0			
Mining	122	130	0	0	1	0.040	
Irrigation	71,800	58,692	54,600	41,492	Irrigation Water Conservation	6,948	6,94
Livestock	756	756	0	0	Continue 4D 2		
Wholesale Water Providers		through 2-19		e 4A-3	Section 4B.3		
	217,954	328,442	73,600	193,264	Municipal Water Conservation ²	07.000	
					Drought Management Edwards Transfers	37,622	
					ASR Project and Phased Expansion	35,935	35,93
					Recycled Water Program Expansion	3,800 15,127	16,00 15,12
San Antonio Water System	-		.		Regional Carrizo for Bexar County	15,127	11,68
	-		.		Edwards Aquifer Recharge – Type 2 Projects	1	21,57
					Donaldah Commission Danadah (Allian)	1	26,40
					LCRA/SAWS Water Project	1	90.00
					Seawater Desalination	1	84,01
	137,065	279,484	0	67,580	Municipal Water Conservation ²	1	04,0
	107,000	270,101	Ť	07,000	Wimberley and Woodcreek Water Supply	4,480	
					Project	4,400	
					Simsboro Groundwater Project		49,77
			İ		GBRA Mid-Basin/Gonzales Project (Surface		.0,7
Guadalupe-Blanco River Authority					Water)		25,00
					Storage Above Canyon Reservoir (ASR)		3,14
					GBRA/Exelon Project		49,12
					GBRA Lower Basin Storage		28,3
					GBRA New Appropriation (Lower Basin)		11,50
					Western Canyon WTP Expansion	1	5,60
	43,439	57,954	16,638	35,418	Municipal Water Conservation ²		-,-
		,		, -	Edwards Transfers	3,000	3,00
D Mal					Local Trinity	2,016	2.0
Bexar Met					Local Carrizo	2,016 4,030	
Bexar Met							2,01 16,12 9,93

Appendix D HDR-07755-93053-10

	Dema	and	Need (S	Shortage)			nt from MS
	2010	2060	2010	2060	Recommended Management Strategies to	2010	2060
County/Water User Group	(acft)	(acft)	(acft)	(acft)	Meet Needs (Shortages)	(acft)	(acft)
	21,054	53,534	7,920	40,400	Municipal Water Conservation ²		
					Wells Ranch Project Phase I	5,200	5,200
Conser Deniesel Water Authority					Wells Ranch Project Phase II	5,800	5,800
anyon Regional Water Authority					Purchase from WWP (GBRA)		5,000
					Brackish Wilcox Groundwater for RWA		11,200
					Siesta Project		5,042
					Hays/Caldwell PUA Project		10,260
Lavaca-Navidad River Authority			10,046	10,489	Municipal Water Conservation ²		
Lavaca-Navidad River Admonty					Lavaca River Off-Channel Reservoir	26,242	26,242
Cabanta Camina I anal Camanana	12,704	21,071	0	4,935	Municipal Water Conservation ²		
Schertz-Seguin Local Government Corp.					Regional Carrizo for SSLGC Project Expansion		10,364
Corp.					Brackish Wilcox Groundwater for RWA		2,000
	3,384	5,365	0	0	Municipal Water Conservation ²		
Springs Hill WSC		•			Purchase from WWP (TWA)		3,000
pgc 1100					Brackish Wilcox Groundwater for RWA		1,500
Texas Water Alliance	0	18,480	0	18,480	Municipal Water Conservation ²		
rexas vvaler Amarice		-			TWA Regional Carrizo	0	27,000

 $^{^{\}rm I}$ Historical per capita water use data unavailable or insufficient for calculation of yield. $^{\rm 2}$ Municipal Water Conservation

(This page intentionally left blank.)

Appendix E Socioeconomic Impacts of Unmet Water Needs in the South Central Water Planning Area

(To be provided by Texas Water Development Board after submittal and review of the Initially Prepared Plan)

(This page intentionally left blank.)

TEXAS WATER DEVELOPMENT BOARD

James E. Herring, *Chairman* Lewis H. McMahan, *Member* Edward G. Vaughan, *Member*

J. Kevin Ward
Executive Administrator

Jack Hunt, Vice Chairman Thomas Weir Labatt III, Member Joe M. Crutcher, Member

June 15, 2010

Mr. Con Mims Chairman, South Central Texas Regional Water Planning Group c/o Nueces River Authority P.O. Box 349 Uvalde, Texas 78802-0349

Re: Socioeco

Socioeconomic Impact Analysis of Not Meeting Water Needs for the 2011 South Central

Texas Regional Water Plan

Dear Chairman Mims:

We have received your request for technical assistance to complete the socioeconomic impact analysis of not meeting water needs. In response, enclosed is a report that describes our methodology and presents the results. Section 1 provides an overview of the methodology. Section 2 presents results at the regional level, and Appendix 2 show results for individual water user groups.

If you have any questions or comments, please feel free to contact me at (512) 463-7928 or by email at stuart.norvell@twdb.state.tx.us.

Sincerely,

Stuart D. Norvell

Manager, Water Planning Research and Analysis

Water Resources Planning Division

SN/ao

Enclosure

c: Sam Vaughn, HDR Inc


Matt Nelson, TWDB

Our Mission

To provide leadership, planning, financial assistance, information, and education for the conservation and responsible development of water for Texas.

A Member of the Texas Geographic Information Council (TGIC)

Socioeconomic Impacts of Projected Water Shortages for the South Central Texas Regional Water Planning Area (Region L)

Prepared in Support of the 2011 South Central Texas Regional Water Plan

Stuart D. Norvell, Managing Economist Water Resources Planning Division Texas Water Development Board Austin, Texas

S. Doug Shaw, Agricultural Economist Water Resources Planning Division Texas Water Development Board Austin, Texas

June 2010

Table of Contents

Section	Title	Pag
1.0	Introduction	3
1.0	Methodology	3
1.1	Economic Impacts of Water Shortages	3
1.1.1	General Approach	8
4.4.2	General Assumptions and Clarifications of the Methodology	9
1.1.2	Impacts to Agriculture	9
	Irrigation	9
	Livestock	13
1.1.3	Impacts to Municipal Water User Groups	13
	Disaggregation of Municipal Water Demands	13
	Domestic Water Uses	14
	Commercial Businesses	17
	Water Utility Revenues	18
	Horticulture and Landscaping	18
	Recreational Impacts	19
1.1.4	Impacts to Industrial Water User Groups	20
	Manufacturing	20
	Mining	20
	Steam-electric	2:
1.2	Social Impacts of Water Shortages	2:
2.0	Results	22
2.1	Overview of Regional Economy	22
2.2	Impacts to Agricultural Water User Groups	24
2.3	Impacts to Municipal Water User Groups	24
2.4	Impacts to Manufacturing Water User Groups	2!
2.5	Impacts to Mining Water User Groups	20
2.6	Impacts to Steam-electric Water User Groups	2
2.7	Social Impacts	2
2.8	Distribution of Impacts by Major River Basin	28
Appendix	1: Economic Data for Individual IMPLAN Sectors	25
Appendix	2: Impacts by Water User Group	33
Tables		
1	Crop Classifications and Corresponding IMPLAN Crop Sectors	10
2	Summary of Irrigated Crop Acreage and Water Demand	10
3	Average Gross Sales Revenues per Acre for Irrigated Crops	1:
4	Description of Livestock Sectors	13
5	Water Use and Costs Parameters Used to Estimated Domestic Water Demand Functions	1
6	Economic Losses Associated with Domestic Water Shortages	1
7	Impacts of Municipal Water Shortages at Different Magnitudes of Shortages	20
8	Regional Baseline Economy by Water User Group	2:
9	Economic Impacts of Water Shortages for Irrigation Water User Groups	2.
10	Economic Impacts of Water Shortages for Municipal Water User Groups	2
10	Economic Impacts of Water Shortages for Manufacturing Water User Groups	2:
12	Economic Impacts of Water Shortages for Mining Water User Groups	2:
	Economic Impacts of Water Shortages for Steam-electric Water User Groups	2
13 14	Social Impacts of Water Shortages	2
14 15	Distribution of Impacts by Major River Basin	28

Introduction

Water shortages during drought would likely curtail or eliminate economic activity in business and industries reliant on water. For example, without water farmers cannot irrigate; refineries cannot produce gasoline, and paper mills cannot make paper. Unreliable water supplies would not only have an immediate and real impact on existing businesses and industry, but they could also adversely affect economic development in Texas. From a social perspective, water supply reliability is critical as well. Shortages would disrupt activity in homes, schools and government and could adversely affect public health and safety. For all of the above reasons, it is important to analyze and understand how restricted water supplies during drought could affect communities throughout the state.

Administrative rules require that regional water planning groups evaluate the impacts of not meeting water needs as part of the regional water planning process, and rules direct TWDB staff to provide technical assistance: "The executive administrator shall provide available technical assistance to the regional water planning groups, upon request, on water supply and demand analysis, including methods to evaluate the social and economic impacts of not meeting needs" [(§357.7 (4)(A)]. Staff of the TWDB's Water Resources Planning Division designed and conducted this report in support of the South Central Texas Regional Water Planning Group (Region L).

This document summarizes the results of our analysis and discusses the methodology used to generate the results. Section 1 outlines the overall methodology and discusses approaches and assumptions specific to each water use category (i.e., irrigation, livestock, mining, steam-electric, municipal and manufacturing). Section 2 presents the results for each category where shortages are reported at the regional planning area level and river basin level. Results for individual water user groups are not presented, but are available upon request.

1. Methodology

Section 1 provides a general overview of how economic and social impacts were measured. In addition, it summarizes important clarifications, assumptions and limitations of the study.

1.1 Economic Impacts of Water Shortages

1.1.1 General Approach

Economic analysis as it relates to water resources planning generally falls into two broad areas. Supply side analysis focuses on costs and alternatives of developing new water supplies or implementing programs that provide additional water from current supplies. Demand side analysis concentrates on impacts or benefits of providing water to people, businesses and the environment. Analysis in this report focuses strictly on demand side impacts. When analyzing the economic impacts of water shortages as defined in Texas water planning, three potential scenarios are possible:

1) Scenario 1 involves situations where there are physical shortages of raw surface or groundwater due to drought of record conditions. For example, City A relies on a reservoir with average conservation storage of 500 acre-feet per year and a firm yield of 100 acre feet. In 2010, the city uses about 50 acre-feet per year, but by 2030 their demands are expected to increase to 200

acre-feet. Thus, in 2030 the reservoir would not have enough water to meet the city's demands, and people would experience a shortage of 100 acre-feet assuming drought of record conditions. Under normal or average climatic conditions, the reservoir would likely be able to provide reliable water supplies well beyond 2030.

- 2) Scenario 2 is a situation where despite drought of record conditions, water supply sources can meet existing use requirements; however, limitations in water infrastructure would preclude future water user groups from accessing these water supplies. For example, City B relies on a river that can provide 500 acre-feet per year during drought of record conditions and other constraints as dictated by planning assumptions. In 2010, the city is expected to use an estimated 100 acre-feet per year and by 2060 it would require no more than 400 acre-feet. But the intake and pipeline that currently transfers water from the river to the city's treatment plant has a capacity of only 200 acre-feet of water per year. Thus, the city's water supplies are adequate even under the most restrictive planning assumptions, but their conveyance system is too small. This implies that at some point perhaps around 2030 infrastructure limitations would constrain future population growth and any associated economic activity or impacts.
- 3) Scenario 3 involves water user groups that rely primarily on aquifers that are being depleted. In this scenario, projected and in some cases existing demands may be unsustainable as groundwater levels decline. Areas that rely on the Ogallala aquifer are a good example. In some communities in the region, irrigated agriculture forms a major base of the regional economy. With less irrigation water from the Ogallala, population and economic activity in the region could decline significantly assuming there are no offsetting developments.

Assessing the social and economic effects of each of the above scenarios requires various levels and methods of analysis and would generate substantially different results for a number of reasons; the most important of which has to do with the time frame of each scenario. Scenario 1 falls into the general category of static analysis. This means that models would measure impacts for a small interval of time such as a drought. Scenarios 2 and 3, on the other hand imply a dynamic analysis meaning that models are concerned with changes over a much longer time period.

Since administrative rules specify that planning analysis be evaluated under drought of record conditions (a static and random event), socioeconomic impact analysis developed by the TWDB for the state water plan is based on assumptions of Scenario 1. Estimated impacts under scenario 1 are point estimates for years in which needs are reported (2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for a particular year and shortages are assumed to be temporary events resulting from drought of record conditions. Estimated impacts measure what would happen if water user groups experience water shortages for a period of one year.

The TWDB recognize that dynamic models may be more appropriate for some water user groups; however, combining approaches on a statewide basis poses several problems. For one, it would require a complex array of analyses and models, and might require developing supply and demand forecasts under "normal" climatic conditions as opposed to drought of record conditions. Equally important is the notion that combining the approaches would produce inconsistent results across regions resulting in a so-called "apples to oranges" comparison.

A variety tools are available to estimate economic impacts, but by far, the most widely used today are input-output models (IO models) combined with social accounting matrices (SAMs). Referred to as IO/SAM models, these tools formed the basis for estimating economic impacts for agriculture (irrigation and livestock water uses) and industry (manufacturing, mining, steam-electric and commercial business activity for municipal water uses).

Since the planning horizon extends through 2060, economic variables in the baseline are adjusted in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Future values for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category.

The following steps outline the overall process.

Step 1: Generate IO/SAM Models and Develop Economic Baseline

IO/SAM models were estimated using propriety software known as IMPLAN PROTM (Impact for Planning Analysis). IMPLAN is a modeling system originally developed by the U.S. Forestry Service in the late 1970s. Today, the Minnesota IMPLAN Group (MIG Inc.) owns the copyright and distributes data and software. It is probably the most widely used economic impact model in existence. IMPLAN comes with databases containing the most recently available economic data from a variety of sources. Using IMPLAN software and data, transaction tables conceptually similar to the one discussed previously were estimated for each county in the region and for the region as a whole. Each transaction table contains 528 economic sectors and allows one to estimate a variety of economic statistics including:

- total sales total production measured by sales revenues;
- intermediate sales sales to other businesses and industries within a given region;
- final sales sales to end users in a region and exports out of a region;
- employment number of full and part-time jobs (annual average) required by a given industry including self-employment;
- regional income total payroll costs (wages and salaries plus benefits) paid by industries, corporate income, rental income and interest payments; and
- **business taxes** sales, excise, fees, licenses and other taxes paid during normal operation of an industry (does not include income taxes).

TWDB analysts developed an economic baseline containing each of the above variables using year 2000 data. Since the planning horizon extends through 2060, economic variables in the baseline were allowed to change in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Projections for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category. Monetary impacts in future years are reported in constant year 2006 dollars.

It is important to stress that employment, income and business taxes are the most useful variables when comparing the relative contribution of an economic sector to a regional economy. Total sales as reported in IO/SAM models are less desirable and can be misleading because they include sales to other industries in the region for use in the production of other goods. For example, if a mill buys grain from local farmers and uses it to produce feed, sales of both the processed feed and raw corn are counted

¹The IMPLAN database consists of national level technology matrices based on benchmark input-output accounts generated by the U.S. Bureau of Economic Analysis and estimates of final demand, final payments, industry output and employment for various economic sectors. IMPLAN regional data (i.e. states, a counties or groups of counties within a state) are divided into two basic categories: 1) data on an industry basis including value-added, output and employment, and 2) data on a commodity basis including final demands and institutional sales. State-level data are balanced to national totals using a matrix ratio allocation system and county data are balanced to state totals.

as "output" in an IO model. Thus, total sales double-count or overstate the true economic value of goods and services produced in an economy. They are not consistent with commonly used measures of output such as Gross National Product (GNP), which counts only final sales.

Another important distinction relates to terminology. Throughout this report, the term sector refers to economic subdivisions used in the IMPLAN database and resultant input-output models (528 individual sectors based on Standard Industrial Classification Codes). In contrast, the phrase water use category refers to water user groups employed in state and regional water planning including irrigation, livestock, mining, municipal, manufacturing and steam electric. Each IMPLAN sector was assigned to a specific water use category.

Step 2: Estimate Direct and Indirect Economic Impacts of Water Needs

Direct impacts are reductions in output by sectors experiencing water shortages. For example, without adequate cooling and process water a refinery would have to curtail or cease operation, car washes may close, or farmers may not be able to irrigate and sales revenues fall. Indirect impacts involve changes in inter-industry transactions as supplying industries respond to decreased demands for their services, and how seemingly non-related businesses are affected by decreased incomes and spending due to direct impacts. For example, if a farmer ceases operations due to a lack of irrigation water, they would likely reduce expenditures on supplies such as fertilizer, labor and equipment, and businesses that provide these goods would suffer as well.

Direct impacts accrue to immediate businesses and industries that rely on water and without water industrial processes could suffer. However, output responses may vary depending upon the severity of shortages. A small shortage relative to total water use would likely have a minimal impact, but large shortages could be critical. For example, farmers facing small shortages might fallow marginally productive acreage to save water for more valuable crops. Livestock producers might employ emergency culling strategies, or they may consider hauling water by truck to fill stock tanks. In the case of manufacturing, a good example occurred in the summer of 1999 when Toyota Motor Manufacturing experienced water shortages at a facility near Georgetown, Kentucky. As water levels in the Kentucky River fell to historic lows due to drought, plant managers sought ways to curtail water use such as reducing rinse operations to a bare minimum and recycling water by funneling it from paint shops to boilers. They even considered trucking in water at a cost of 10 times what they were paying. Fortunately, rains at the end of the summer restored river levels, and Toyota managed to implement cutbacks without affecting production, but it was a close call. If rains had not replenished the river, shortages could have severely reduced output.

To account for uncertainty regarding the relative magnitude of impacts to farm and business operations, the following analysis employs the concept of elasticity. Elasticity is a number that shows how a change in one variable will affect another. In this case, it measures the relationship between a percentage reduction in water availability and a percentage reduction in output. For example, an elasticity of 1.0 indicates that a 1.0 percent reduction in water availability would result in a 1.0 percent reduction in

² Royal, W. "High And Dry - Industrial Centers Face Water Shortages." in Industry Week, Sept, 2000.

³ The efforts described above are not planned programmatic or long-term operational changes. They are emergency measures that individuals might pursue to alleviate what they consider a temporary condition. Thus, they are not characteristic of long-term management strategies designed to ensure more dependable water supplies such as capital investments in conservation technology or development of new water supplies.

economic output. An elasticity of 0.50 would indicate that for every 1.0 percent of unavailable water, output is reduced by 0.50 percent and so on. Output elasticities used in this study are:⁴

- if water needs are 0 to 5 percent of total water demand, no corresponding reduction in output is assumed;
- if water needs are 5 to 30 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.50 percent reduction in output;
- if water needs are 30 to 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.75 percent reduction in output; and
- if water needs are greater than 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 1.0 percent (i.e., a proportional reduction).

In some cases, elasticities are adjusted depending upon conditions specific to a given water user group.

Once output responses to water shortages were estimated, direct impacts to total sales, employment, regional income and business taxes were derived using regional level economic multipliers estimating using IO/SAM models. The formula for a given IMPLAN sector is:

$$D_{i,t} = Q_{i,t} *_{,} S_{i,t} *_{,} E_{Q} *_{,} RFD_{i} *_{,} DM_{i(Q,L,I,T)}$$

where:

 $D_{i,t}$ = direct economic impact to sector i in period t

 $Q_{i,t}$ = total sales for sector *i* in period *t* in an affected county

RFD_{i.} = ratio of final demand to total sales for sector i for a given region

 $S_{i,t}$ = water shortage as percentage of total water use in period t

 E_Q = elasticity of output and water use

 $DM_{i(L, I, T)}$ = direct output multiplier coefficients for labor (L), income (I) and taxes (T) for sector i.

Secondary impacts were derived using the same formula used to estimate direct impacts; however, indirect multiplier coefficients are used. Methods and assumptions specific to each water use sector are discussed in Sections 1.1.2 through 1.1.4.

⁴ Elasticities are based on one of the few empirical studies that analyze potential relationships between economic output and water shortages in the United States. The study, conducted in California, showed that a significant number of industries would suffer reduced output during water shortages. Using a survey based approach researchers posed two scenarios to different industries. In the first scenario, they asked how a 15 percent cutback in water supply lasting one year would affect operations. In the second scenario, they asked how a 30 percent reduction lasting one year would affect plant operations. In the case of a 15 percent shortage, reported output elasticities ranged from 0.00 to 0.76 with an average value of 0.25. For a 30 percent shortage, elasticities ranged from 0.00 to 1.39 with average of 0.47. For further information, see, California Urban Water Agencies, "Cost of Industrial Water Shortages," Spectrum Economics, Inc. November, 1991.

General Assumptions and Clarification of the Methodology

As with any attempt to measure and quantify human activities at a societal level, assumptions are necessary and every model has limitations. Assumptions are needed to maintain a level of generality and simplicity such that models can be applied on several geographic levels and across different economic sectors. In terms of the general approach used here several clarifications and cautions are warranted:

- 1. Shortages as reported by regional planning groups are the starting point for socioeconomic analyses.
- 2. Estimated impacts are point estimates for years in which needs are reported (i.e., 2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for each particular year and water shortages are assumed to be temporary events resulting from severe drought conditions combined with infrastructure limitations. In other words, growth occurs and future shocks are imposed on an economy at 10-year intervals and resultant impacts are measured. Given, that reported figures are not cumulative in nature, it is inappropriate to sum impacts over the entire planning horizon. Doing so, would imply that the analysis predicts that drought of record conditions will occur every ten years in the future, which is not the case. Similarly, authors of this report recognize that in many communities needs are driven by population growth, and in the future total population will exceed the amount of water available due to infrastructure limitations, regardless of whether or not there is a drought. This implies that infrastructure limitations would constrain economic growth. However, since needs as defined by planning rules are based upon water supply and demand under the assumption of drought of record conditions, it improper to conduct economic analysis that focuses on growth related impacts over the planning horizon. Figures generated from such an analysis would presume a 50-year drought of record, which is unrealistic. Estimating lost economic activity related to constraints on population and commercial growth due to lack of water would require developing water supply and demand forecasts under "normal" or "most likely" future climatic conditions.
- 3. While useful for planning purposes, this study is not a benefit-cost analysis. Benefit cost analysis is a tool widely used to evaluate the economic feasibility of specific policies or projects as opposed to estimating economic impacts of unmet water needs. Nevertheless, one could include some impacts measured in this study as part of a benefit cost study if done so properly. Since this is not a benefit cost analysis, future impacts are not weighted differently. In other words, estimates are not discounted. If used as a measure of economic benefits, one should incorporate a measure of uncertainty into the analysis. In this type of analysis, a typical method of discounting future values is to assign probabilities of the drought of record recurring again in a given year, and weight monetary impacts accordingly. This analysis assumes a probability of one.
- 4. IO multipliers measure the strength of backward linkages to supporting industries (i.e., those who sell inputs to an affected sector). However, multipliers say nothing about forward linkages consisting of businesses that purchase goods from an affected sector for further processing. For example, ranchers in many areas sell most of their animals to local meat packers who process animals into a form that consumers ultimately see in grocery stores and restaurants. Multipliers do not capture forward linkages to meat packers, and since meat packers sell livestock purchased from ranchers as "final sales," multipliers for the ranching sector do fully account for all losses to a region's economy. Thus, as mentioned previously, in some cases closely linked sectors were moved from one water use category to another.
- 5. Cautions regarding interpretations of direct and secondary impacts are warranted. IO/SAM multipliers are based on "fixed-proportion production functions," which basically means that input use including labor moves in lockstep fashion with changes in levels of output. In a

scenario where output (i.e., sales) declines, losses in the immediate sector or supporting sectors could be much less than predicted by an IO/SAM model for several reasons. For one, businesses will likely expect to continue operating so they might maintain spending on inputs for future use; or they may be under contractual obligations to purchase inputs for an extended period regardless of external conditions. Also, employers may not lay-off workers given that experienced labor is sometimes scarce and skilled personnel may not be readily available when water shortages subside. Lastly people who lose jobs might find other employment in the region. As a result, direct losses for employment and secondary losses in sales and employment should be considered an upper bound. Similarly, since projected population losses are based on reduced employment in the region, they should be considered an upper bound as well.

- 6. IO models are static. Models and resultant multipliers are based upon the structure of the U.S. and regional economies in 2006. In contrast, water shortages are projected to occur well into the future. Thus, the analysis assumes that the general structure of the economy remains the same over the planning horizon, and the farther out into the future we go, this assumption becomes less reliable.
- 7. Impacts are annual estimates. If one were to assume that conditions persisted for more than one year, figures should be adjusted to reflect the extended duration. The drought of record in most regions of Texas lasted several years.
- 8. Monetary figures are reported in constant year 2006 dollars.

1.1.2 Impacts to Agriculture

Irrigated Crop Production

The first step in estimating impacts to irrigation required calculating gross sales for IMPLAN crop sectors. Default IMPLAN data do not distinguish irrigated production from dry-land production. Once gross sales were known other statistics such as employment and income were derived using IMPLAN direct multiplier coefficients. Gross sales for a given crop are based on two data sources:

- 1) county-level statistics collected and maintained by the TWDB and the USDA Farm Services Agency (FSA) including the number of irrigated acres by crop type and water application per acre, and
- 2) regional-level data published by the Texas Agricultural Statistics Service (TASS) including prices received for crops (marketing year averages), crop yields and crop acreages.

Crop categories used by the TWDB differ from those used in IMPLAN datasets. To maintain consistency, sales and other statistics are reported using IMPLAN crop classifications. Table 1 shows the TWDB crops included in corresponding IMPLAN sectors, and Table 2 summarizes acreage and estimated annual water use for each crop classification (five-year average from 2003-2007). Table 3 displays average (2003-2007) gross revenues per acre for IMPLAN crop categories.

IMPLAN Category	TWDB Category		
Oilseeds	Soybeans and "other oil crops"		
Grains	Grain sorghum, corn, wheat and "other grain crops"		
Vegetable and melons	"Vegetables" and potatoes		
Tree nuts	Pecans		
Fruits	Citrus, vineyard and other orchard		
Cotton	Cotton		
Sugarcane and sugar beets	Sugarcane and sugar beets		
All "other" crops	"Forage crops", peanuts, alfalfa, hay and pasture, rice and "all other crops"		

Table 2: Summary of Irrigated Crop Acreage and Water Demand for the South Central Texas Regional Water Planning Area (average 2003-2007)				
Sector	Acres (1000s)	Distribution of acres	Water use (1000s of AF)	Distribution of water use
Oilseeds	2	1%	2	1%
Grains	108	43%	123	38%
Vegetable and melons	34	14%	39	12%
Tree nuts	3	1%	7	2%
Fruits	<1	<1%	<1	<1%
Cotton	32	13%	45	14%
All "other" crops	70	28%	105	33%
Total	251	100%	321	100%

Source: Water demand figures are a 5- year average (2003-2007) of the TWDB's annual Irrigation Water Use Estimates. Statistics for irrigated crop acreage are based upon annual survey data collected by the TWDB and the Farm Service Agency. Values do not include acreage or water use for the TWDB categories classified by the Farm Services Agency as "failed acres," "golf course" or "waste water."

IMPLAN Sector	Gross revenues per acre	Crops included in estimates
Oilseeds	\$178	Based on five-year (2003-2007) average weighted by acreage for "irrigated soybeans" and "irrigated 'other' oil crops."
Grains	\$235	Based on five-year (2003-2007) average weighted by acreage for "irrigated grain sorghum", "irrigated corn", "irrigated wheat" and "irrigated 'other' grain crops."
Vegetable and melons	\$5,725	Based on five-year (2003-2007) average weighted by acreage for "irrigated shallow and deep root vegetables", "irrigated Irish potatoes" and "irrigated melons."
Tree nuts	\$3,374	Based on five-year (2003-2007) average weighted by acreage for "irrigated pecans."
Fruits	\$26,423	Based on five-year (2003-2007) average weighted by acreage for "irrigated citrus", "irrigated vineyards" and "irrigated 'other' orchard."
Cotton	\$543	Based on five-year (2003-2007) average weighted by acreage for "irrigated cotton."
All "other" crops	\$359	Based on five-year (2003-2007) average weighted by acreage for "irrigated 'forage' crops", "irrigated peanuts", "irrigated alfalfa", "irrigated 'hay' and pasture" and "irrigated 'all other' crops."

An important consideration when estimating impacts to irrigation was determining which crops are affected by water shortages. One approach is the so-called rationing model, which assumes that farmers respond to water supply cutbacks by fallowing the lowest value crops in the region first and the highest valued crops last until the amount of water saved equals the shortage. For example, if farmer A grows vegetables (higher value) and farmer B grows wheat (lower value) and they both face a proportionate cutback in irrigation water, then farmer B will sell water to farmer A. Farmer B will fallow her irrigated acreage before farmer A fallows anything. Of course, this assumes that farmers can and do transfer enough water to allow this to happen. A different approach involves constructing farm-level profit maximization models that conform to widely-accepted economic theory that farmers make decisions based on marginal net returns. Such models have good predictive capability, but data requirements and complexity are high. Given that a detailed analysis for each region would require a substantial amount of farm-level data and analysis, the following investigation assumes that projected shortages are distributed equally across predominant crops in the region. Predominant in this case are crops that comprise at least one percent of total acreage in the region.

The following steps outline the overall process used to estimate direct impacts to irrigated agriculture:

- 1. Distribute shortages across predominant crop types in the region. Again, unmet water needs were distributed equally across crop sectors that constitute one percent or more of irrigated acreage.
- 2. Estimate associated reductions in output for affected crop sectors. Output reductions are based on elasticities discussed previously and on estimated values per acre for different crops. Values per acre stem from the same data used to estimate output for the year 2006 baseline. Using multipliers, we then generate estimates of forgone income, jobs, and tax revenues based on reductions in gross sales and final demand.

Livestock

The approach used for the livestock sector is basically the same as that used for crop production. As is the case with crops, livestock categorizations used by the TWDB differ from those used in IMPLAN datasets, and TWDB groupings were assigned to a given IMPLAN sector (Table 4). Then we:

- 1) Distribute projected water needs equally among predominant livestock sectors and estimate lost output: As is the case with irrigation, shortages are assumed to affect all livestock sectors equally; however, the category of "other" is not included given its small size. If water needs were small relative to total demands, we assume that producers would haul in water by truck to fill stock tanks. The cost per acre-foot (\$24,000) is based on 2008 rates charged by various water haulers in Texas, and assumes that the average truck load is 6,500 gallons at a hauling distance of 60 miles.
- 3) Estimate reduced output in forward processors for livestock sectors. Reductions in output for livestock sectors are assumed to have a proportional impact on forward processors in the region such as meat packers. In other words, if the cows were gone, meat-packing plants or fluid milk manufacturers) would likely have little to process. This is not an unreasonable premise. Since the

⁵ The rationing model was initially proposed by researchers at the University of California at Berkeley, and was then modified for use in a study conducted by the U.S. Environmental Protection Agency that evaluated how proposed water supply cutbacks recommended to protect water quality in the Bay/Delta complex in California would affect farmers in the Central Valley. See, Zilberman, D., Howitt, R. and Sunding, D. "Economic Impacts of Water Quality Regulations in the San Francisco Bay and Delta." Western Consortium for Public Health. May 1993.

1950s, there has been a major trend towards specialized cattle feedlots, which in turn has decentralized cattle purchasing from livestock terminal markets to direct sales between producers and slaughterhouses. Today, the meat packing industry often operates large processing facilities near high concentrations of feedlots to increase capacity utilization. As a result, packers are heavily dependent upon nearby feedlots. For example, a recent study by the USDA shows that on average meat packers obtain 64 percent of cattle from within 75 miles of their plant, 82 percent from within 150 miles and 92 percent from within 250 miles.

Table 4: Description of Livestock Sectors			
IMPLAN Category	TWDB Category		
Cattle ranching and farming	Cattle, cow calf, feedlots and dairies		
Poultry and egg production	Poultry production.		
Other livestock	Livestock other than cattle and poultry (i.e., horses, goats, sheep, hogs)		
Milk manufacturing	Fluid milk manufacturing, cheese manufacturing, ice cream manufacturing etc.		
Meat packing	Meat processing present in the region from slaughter to final processing		

1.1.3 Impacts to Municipal Water User Groups

Disaggregation of Municipal Water Demands

Estimating the economic impacts for the municipal water user groups is complicated for a number of reasons. For one, municipal use comprises a range of consumers including commercial businesses, institutions such as schools and government and households. However, reported water needs are not distributed among different municipal water users. In other words, how much of a municipal need is commercial and how much is residential (domestic)?

The amount of commercial water use as a percentage of total municipal demand was estimated based on "GED" coefficients (gallons per employee per day) published in secondary sources. For example, if year 2006 baseline data for a given economic sector (e.g., amusement and recreation services) shows employment at 30 jobs and the GED coefficient is 200, then average daily water use by that sector

⁶ Ferreira, W.N. "Analysis of the Meat Processing Industry in the United States." Clemson University Extension Economics Report ER211, January 2003.

⁷ Ward, C.E. "Summary of Results from USDA's Meatpacking Concentration Study." Oklahoma Cooperative Extension Service, OSU Extension Facts WF-562.

⁸ Sources for GED coefficients include: Gleick, P.H., Haasz, D., Henges-Jeck, C., Srinivasan, V., Wolff, G. Cushing, K.K., and Mann, A. "Waste Not, Want Not: The Potential for Urban Water Conservation in California." Pacific Institute. November 2003. U.S. Bureau of the Census. 1982 Census of Manufacturers: Water Use in Manufacturing. USGPO, Washington D.C. See also: "U.S. Army Engineer Institute for Water Resources, IWR Report 88-R-6.," Fort Belvoir, VA. See also, Joseph, E. S., 1982, "Municipal and Industrial Water Demands of the Western United States." Journal of the Water Resources Planning and Management Division, Proceedings of the American Society of Civil Engineers, v. 108, no. WR2, p. 204-216. See also, Baumann, D. D., Boland, J. J., and Sims, J. H., 1981, "Evaluation of Water Conservation for Municipal and Industrial Water Supply." U.S. Army Corps of Engineers, Institute for Water Resources, Contract no. 82-C1.

is (30 x 200 = 6,000 gallons) or 6.7 acre-feet per year. Water not attributed to commercial use is considered domestic, which includes single and multi-family residential consumption, institutional uses and all use designated as "county-other." Based on our analysis, commercial water use is about 5 to 35 percent of municipal demand. Less populated rural counties occupy the lower end of the spectrum, while larger metropolitan counties are at the higher end.

After determining the distribution of domestic versus commercial water use, we developed methods for estimating impacts to the two groups.

Domestic Water Uses

Input output models are not well suited for measuring impacts of shortages for domestic water uses, which make up the majority of the municipal water use category. To estimate impacts associated with domestic water uses, municipal water demand and needs are subdivided into residential, and commercial and institutional use. Shortages associated with residential water uses are valued by estimating proxy demand functions for different water user groups allowing us to estimate the marginal value of water, which would vary depending upon the level of water shortages. The more severe the water shortage, the more costly it becomes. For instance, a 2 acre-foot shortage for a group of households that use 10 acre-feet per year would not be as severe as a shortage that amounted to 8 acre-feet. In the case of a 2 acre-foot shortage, households would probably have to eliminate some or all outdoor water use, which could have implicit and explicit economic costs including losses to the horticultural and landscaping industry. In the case of an 8 acre-foot shortage, people would have to forgo all outdoor water use and most indoor water consumption. Economic impacts would be much higher in the latter case because people, and would be forced to find emergency alternatives assuming alternatives were available.

To estimate the value of domestic water uses, TWDB staff developed marginal loss functions based on constant elasticity demand curves. This is a standard and well-established method used by economists to value resources such as water that have an explicit monetary cost.

A constant price elasticity of demand is estimated using a standard equation:

$$w = kc^{(-\epsilon)}$$

where:

- w is equal to average monthly residential water use for a given water user group measured in thousands of gallons;
- k is a constant intercept;
- c is the average cost of water per 1,000 gallons; and
- ε is the price elasticity of demand.

Price elasticities (-0.30 for indoor water use and -0.50 for outdoor use) are based on a study by Bell et al. ⁹ that surveyed 1,400 water utilities in Texas that serve at least 1,000 people to estimate demand elasticity for several variables including price, income, weather etc. Costs of water and average use per month per household are based on data from the Texas Municipal League's annual water and

⁹ Bell, D.R. and Griffin, R.C. "Community Water Demand in Texas as a Century is Turned." Research contract report prepared for the Texas Water Development Board. May 2006.

wastewater rate surveys - specifically average monthly household expenditures on water and wastewater in different communities across the state. After examining variance in costs and usage, three different categories of water user groups based on population (population less than 5,000, cities with populations ranging from 5,000 to 99,999 and cities with populations exceeding 100,000) were selected to serve as proxy values for municipal water groups that meet the criteria (Table 5).¹⁰

Table 5: Water Use and Costs Parameters Used to Estimated Water Demand Functions			
(average monthly costs per acre-foot for delivered water and average monthly use per household)			

Community Population	Water	Wastewater	Total monthly cost	Avg. monthly use (gallons)
Less than or equal to 5,000	\$1,335	\$1,228	\$2,563	6,204
5,000 to 100,000	\$1,047	\$1,162	\$2,209	7,950
Great than or equal to 100,000	\$718	\$457	\$1,190	8,409

Source: Based on annual water and wastewater rate surveys published by the Texas Municipal League.

As an example, Table 6 shows the economic impact per acre-foot of domestic water needs for municipal water user groups with population exceeding 100,000 people. There are several important assumptions incorporated in the calculations:

- 1) Reported values are net of the variable costs of treatment and distribution such as expenses for chemicals and electricity since using less water involves some savings to consumers and utilities alike; and for outdoor uses we do not include any value for wastewater.
- 2) Outdoor and "non-essential" water uses would be eliminated before indoor water consumption was affected, which is logical because most water utilities in Texas have drought contingency plans that generally specify curtailment or elimination of outdoor water use during droughts.¹¹ Determining how much water is used for outdoor purposes is based on several secondary sources. The first is a major study sponsored by the American Water Works Association, which surveyed cities in states including Colorado, Oregon, Washington, California, Florida and Arizona. On average across all cities surveyed 58 percent of single family residential water use was for outdoor activities. In cities with climates comparable to large metropolitan areas of Texas, the average was 40 percent.¹² Earlier findings of the U.S. Water Resources Council showed a

¹⁰ Ideally, one would want to estimate demand functions for each individual utility in the state. However, this would require an enormous amount of time and resources. For planning purposes, we believe the values generated from aggregate data are more than sufficient.

15

¹¹ In Texas, state law requires retail and wholesale water providers to prepare and submit plans to the Texas Commission on Environmental Quality (TCEQ). Plans must specify demand management measures for use during drought including curtailment of "non-essential water uses." Non-essential uses include, but are not limited to, landscape irrigation and water for swimming pools or fountains. For further information see the Texas Environmental Quality Code §288.20.

¹² See, Mayer, P.W., DeOreo, W.B., Opitz, E.M., Kiefer, J.C., Davis, W., Dziegielewski, D., Nelson, J.O. "Residential End Uses of Water." Research sponsored by the American Water Works Association and completed by Aquacraft, Inc. and Planning and Management Consultants, Ltd. (PMCL@CDM).

national average of 33 percent. Similarly, the United States Environmental Protection Agency (USEPA) estimated that landscape watering accounts for 32 percent of total residential and commercial water use on annual basis.¹³ A study conducted for the California Urban Water Agencies (CUWA) calculated average annual values ranging from 25 to 35 percent.¹⁴ Unfortunately, there does not appear to be any comprehensive research that has estimated non-agricultural outdoor water use in Texas. As an approximation, an average annual value of 30 percent based on the above references was selected to serve as a rough estimate in this study.

3) As shortages approach 100 percent values become immense and theoretically infinite at 100 percent because at that point death would result, and willingness to pay for water is immeasurable. Thus, as shortages approach 80 percent of monthly consumption, we assume that households and non-water intensive commercial businesses (those that use water only for drinking and sanitation would have water delivered by tanker truck or commercial water delivery companies. Based on reports from water companies throughout the state, we estimate that the cost of trucking in water is around \$21,000 to \$27,000 per acre-feet assuming a hauling distance of between 20 to 60 miles. This is not an unreasonable assumption. The practice was widespread during the 1950s drought and recently during droughts in this decade. For example, in 2000 at the heels of three consecutive drought years Electra - a small town in North Texas - was down to its last 45 days worth of reservoir water when rain replenished the lake, and the city was able to refurbish old wells to provide supplemental groundwater. At the time, residents were forced to limit water use to 1,000 gallons per person per month - less than half of what most people use - and many were having water delivered to their homes by private contractors. ¹⁵ In 2003 citizens of Ballinger, Texas, were also faced with a dwindling water supply due to prolonged drought. After three years of drought, Lake Ballinger, which supplies water to more than 4,300 residents in Ballinger and to 600 residents in nearby Rowena, was almost dry. Each day, people lined up to get water from a well in nearby City Park. Trucks hauling trailers outfitted with large plastic and metal tanks hauled water to and from City Park to Ballinger. 16

¹³ U.S. Environmental Protection Agency. *"Cleaner Water through Conservation."* USEPA Report no. 841-B-95-002. April, 1995.

¹⁴ Planning and Management Consultants, Ltd. "Evaluating Urban Water Conservation Programs: A Procedures Manual." Prepared for the California Urban Water Agencies. February 1992.

¹⁵ Zewe, C. "Tap Threatens to Run Dry in Texas Town." July 11, 2000. CNN Cable News Network.

¹⁶ Associated Press, "Ballinger Scrambles to Finish Pipeline before Lake Dries Up." May 19, 2003.

Table 6: Economic Losses Associated with Domestic Water Shortages in Communities with Populations Exceeding 100,000 people Water shortages as a No. of gallons No of gallons percentage of total **Economic loss Economic loss** remaining per remaining per person monthly household (per acre-foot) (per gallon) household per day per day demands 1% \$0.00005 278 93 \$748 5% 89 \$0.0002 266 \$812 10% 252 84 \$900 \$0.0005 15% 238 79 \$999 \$0.0008 20% 224 75 \$1,110 \$0.0012 25% 210 70 \$1,235 \$0.0015 30%^a 196 65 \$1,699 \$0.0020 35% 182 61 \$3,825 \$0.0085 40% 168 56 \$4,181 \$0.0096 45% 154 \$4,603 \$0.011 51 50% 140 47 \$5,109 \$0.012 55% 126 42 \$5,727 \$0.014 60% 37 \$6,500 \$0.017 112 65% 98 \$7,493 \$0.02 33 70% 84 28 \$8,818 \$0.02 75% 70 23 \$10,672 \$0.03 80% 56 19 \$13,454 \$0.04 \$0.05 (\$0.07)^b 85% 42 14 \$18,091 (\$24,000)^b 90% 28 9 \$27,363 (\$24,000) \$0.08 (\$0.07) 95% 5 \$55,182 (\$24,000) \$0.17 (\$0.07) 14 99% 3 0.9 \$277,728 (\$24,000) \$0.85 (\$0.07) 99.9% 1 0.5 \$2,781,377 (\$24,000) \$8.53 (\$0.07) 100% 0 0 Infinite (\$24,000)Infinite (\$0.07)

^a The first 30 percent of needs are assumed to be restrictions of outdoor water use; when needs reach 30 percent of total demands all outdoor water uses would be restricted. Needs greater than 30 percent include indoor use

^b As shortages approach 100 percent the value approaches infinity assuming there are not alternatives available; however, we assume that communities would begin to have water delivered by tanker truck at an estimated cost of \$24,000 per acre-foot when shortages breached 85 percent.

Commercial Businesses

Effects of water shortages on commercial sectors were estimated in a fashion similar to other business sectors meaning that water shortages would affect the ability of these businesses to operate. This is particularly true for "water intensive" commercial sectors that are need large amounts of water (in addition to potable and sanitary water) to provide their services. These include:

- car-washes,
- laundry and cleaning facilities,
- sports and recreation clubs and facilities including race tracks,
- amusement and recreation services,
- hospitals and medical facilities,
- hotels and lodging places, and
- eating and drinking establishments.

A key assumption is that commercial operations would not be affected until water shortages were at least 50 percent of total municipal demand. In other words, we assume that residential water consumers would reduce water use including all non-essential uses before businesses were affected.

An example will illustrate the breakdown of municipal water needs and the overall approach to estimating impacts of municipal needs. Assume City A experiences an unexpected shortage of 50 acrefeet per year when their demands are 200 acre-feet per year. Thus, shortages are only 25 percent of total municipal use and residents of City A could eliminate needs by restricting landscape irrigation. City B, on the other hand, has a deficit of 150 acre-feet in 2020 and a projected demand of 200 acre-feet. Thus, total shortages are 75 percent of total demand. Emergency outdoor and some indoor conservation measures could eliminate 50 acre-feet of projected needs, yet 50 acre-feet would still remain. To eliminate" the remaining 50 acre-feet water intensive commercial businesses would have to curtail operations or shut down completely.

Three other areas were considered when analyzing municipal water shortages: 1) lost revenues to water utilities, 2) losses to the horticultural and landscaping industries stemming for reduction in water available for landscape irrigation, and 3) lost revenues and related economic impacts associated with reduced water related recreation.

Water Utility Revenues

Estimating lost water utility revenues was straightforward. We relied on annual data from the "Water and Wastewater Rate Survey" published annually by the Texas Municipal League to calculate an average value per acre-foot for water and sewer. For water revenues, average retail water and sewer rates multiplied by total water needs served as a proxy. For lost wastewater, total unmet needs were adjusted for return flow factor of 0.60 and multiplied by average sewer rates for the region. Needs reported as "county-other" were excluded under the presumption that these consist primarily of self-supplied water uses. In addition, 15 percent of water demand and needs are considered non-billed or "unaccountable" water that comprises things such as leakages and water for municipal government functions (e.g., fire departments). Lost tax receipts are based on current rates for the "miscellaneous gross receipts tax, "which the state collects from utilities located in most incorporated cities or towns in Texas. We do not include lost water utility revenues when aggregating impacts of municipal water shortages to regional and state levels to prevent double counting.

Horticultural and Landscaping Industry

The horticultural and landscaping industry, also referred to as the "green Industry," consists of businesses that produce, distribute and provide services associated with ornamental plants, landscape and garden supplies and equipment. Horticultural industries often face big losses during drought. For example, the recent drought in the Southeast affecting the Carolinas and Georgia horticultural and landscaping businesses had a harsh year. Plant sales were down, plant mortality increased, and watering costs increased. Many businesses were forced to close locations, lay off employees, and even file for bankruptcy. University of Georgia economists put statewide losses for the industry at around \$3.2 billion during the 3-year drought that ended in 2008. Municipal restrictions on outdoor watering play a significant role. During drought, water restrictions coupled with persistent heat has a psychological effect on homeowners that reduces demands for landscaping products and services. Simply put, people were afraid to spend any money on new plants and landscaping.

In Texas, there do not appear to be readily available studies that analyze the economic effects of water shortages on the industry. However, authors of this report believe negative impacts do and would result in restricting landscape irrigation to municipal water consumers. The difficulty in measuring them is two-fold. First, as noted above, data and research for these types of impacts that focus on Texas are limited; and second, economic data provided by IMPLAN do not disaggregate different sectors of the green industry to a level that would allow for meaningful and defensible analysis.¹⁸

Recreational Impacts

Recreational businesses often suffer when water levels and flows in rivers, springs and reservoirs fall significantly during drought. During droughts, many boat docks and lake beaches are forced to close, leading to big losses for lakeside business owners and local communities. Communities adjacent to popular river and stream destinations such as Comal Springs and the Guadalupe River also see their business plummet when springs and rivers dry up. Although there are many examples of businesses that have suffered due to drought, dollar figures for drought-related losses to the recreation and tourism industry are not readily available, and very difficult to measure without extensive local surveys. Thus, while they are important, economic impacts are not measured in this study.

Table 7 summarizes impacts of municipal water shortages at differing levels of magnitude, and shows the ranges of economic costs or losses per acre-foot of shortage for each level.

¹⁷ Williams, D. "Georgia landscapers eye rebound from Southeast drought." Atlanta Business Chronicle, Friday, June 19, 2009

¹⁸ Economic impact analyses prepared by the TWDB for 2006 regional water plans did include estimates for the horticultural industry. However, year 2000 and prior IMPLAN data were disaggregated to a finer level. In the current dataset (2006), the sector previously listed as "Landscaping and Horticultural Services" (IMPLAN Sector 27) is aggregated into "Services to Buildings and Dwellings" (IMPLAN Sector 458).

Table 7: Impacts of N	Table 7: Impacts of Municipal Water Shortages at Different Magnitudes of Shortages							
Water shortages as percent of total municipal demands	Impacts	Economic costs per acre-foot*						
0-30%	✓ Lost water utility revenues ✓ Restricted landscape irrigation and non- essential water uses	\$730 - \$2,040						
30-50%	 ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use 	\$2,040 - \$10,970						
>50%	 ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use ✓ Restriction or elimination of commercial water use ✓ Importing water by tanker truck 	\$10,970 - varies						
	*Figures are rounded	,						

1.1.4 Industrial Water User Groups

Manufacturing

Impacts to manufacturing were estimated by distributing water shortages among industrial sectors at the county level. For example, if a planning group estimates that during a drought of record water supplies in County A would only meet 50 percent of total annual demands for manufactures in the county, we reduced output for each sector by 50 percent. Since projected manufacturing demands are based on TWDB Water Uses Survey data for each county, we only include IMPLAN sectors represented in the TWBD survey database. Some sectors in IMPLAN databases are not part of the TWDB database given that they use relatively small amounts of water - primarily for on-site sanitation and potable purposes. To maintain consistency between IMPLAN and TWDB databases, Standard Industrial Classification (SIC) codes both databases were cross referenced in county with shortages. Non-matches were excluded when calculating direct impacts.

Mining

The process of mining is very similar to that of manufacturing. We assume that within a given county, shortages would apply equally to relevant mining sectors, and IMPLAN sectors are cross referenced with TWDB data to ensure consistency.

In Texas, oil and gas extraction and sand and gravel (aggregates) operations are the primary mining industries that rely on large volumes of water. For sand and gravel, estimated output reductions are straightforward; however, oil and gas is more complicated for a number of reasons. IMPLAN does not necessarily report the physical extraction of minerals by geographic local, but rather the sales revenues reported by a particular corporation.

For example, at the state level revenues for IMPLAN sector 19 (oil and gas extraction) and sector 27 (drilling oil and gas wells) totals \$257 billion. Of this, nearly \$85 billion is attributed to Harris County. However, only a very small fraction (less than one percent) of actual production takes place in the county. To measure actual potential losses in well head capacity due to water shortages, we relied on county level production data from the Texas Railroad Commission (TRC) and average well-head market prices for crude and gas to estimate lost revenues in a given county. After which, we used to IMPLAN ratios to estimate resultant losses in income and employment.

Other considerations with respect to mining include:

- 1) Petroleum and gas extraction industry only uses water in significant amounts for secondary recovery. Known in the industry as enhanced or water flood extraction, secondary recovery involves pumping water down injection wells to increase underground pressure thereby pushing oil or gas into other wells. IMPLAN output numbers do not distinguish between secondary and non-secondary recovery. To account for the discrepancy, county-level TRC data that show the proportion of barrels produced using secondary methods were used to adjust IMPLAN data to reflect only the portion of sales attributed to secondary recovery.
- 2) A substantial portion of output from mining operations goes directly to businesses that are classified as manufacturing in our schema. Thus, multipliers measuring backward linkages for a given manufacturer might include impacts to a supplying mining operation. Care was taken not to double count in such situations if both a mining operation and a manufacturer were reported as having water shortages.

Steam-electric

At minimum without adequate cooling water, power plants cannot safely operate. As water availability falls below projected demands, water levels in lakes and rivers that provide cooling water would also decline. Low water levels could affect raw water intakes and outfalls at electrical generating units in several ways. For one, power plants are regulated by thermal emission guidelines that specify the maximum amount of heat that can go back into a river or lake via discharged cooling water. Low water levels could result in permit compliance issues due to reduced dilution and dispersion of heat and subsequent impacts on aquatic biota near outfalls. However, the primary concern would be a loss of head (i.e., pressure) over intake structures that would decrease flows through intake tunnels. This would affect safety related pumps, increase operating costs and/or result in sustained shut-downs. Assuming plants did shutdown, they would not be able to generate electricity.

¹⁹ Section 316 (b) of the Clean Water Act requires that thermal wastewater discharges do not harm fish and other wildlife.

Among all water use categories steam-electric is unique and cautions are needed when applying methods used in this study. Measured changes to an economy using input-output models stem directly from changes in sales revenues. In the case of water shortages, one assumes that businesses will suffer lost output if process water is in short supply. For power generation facilities this is true as well. However, the electric services sector in IMPLAN represents a corporate entity that may own and operate several electrical generating units in a given region. If one unit became inoperable due to water shortages, plants in other areas or generation facilities that do not rely heavily on water such as gas powered turbines might be able to compensate for lost generating capacity. Utilities could also offset lost production via purchases on the spot market.²⁰ Thus, depending upon the severity of the shortages and conditions at a given electrical generating unit, energy supplies for local and regional communities could be maintained. But in general, without enough cooling water, utilities would have to throttle back plant operations, forcing them to buy or generate more costly power to meet customer demands.

Measuring impacts end users of electricity is not part of this study as it would require extensive local and regional level analysis of energy production and demand. To maintain consistency with other water user groups, impacts of steam-electric water shortages are measured in terms of lost revenues (and hence income) and jobs associated with shutting down electrical generating units.

1.2 Social Impacts of Water Shortages

As the name implies, the effects of water shortages can be social or economic. Distinctions between the two are both semantic and analytical in nature – more so analytic in the sense that social impacts are harder to quantify. Nevertheless, social effects associated with drought and water shortages are closely tied to economic impacts. For example, they might include:

- demographic effects such as changes in population,
- disruptions in institutional settings including activity in schools and government,
- conflicts between water users such as farmers and urban consumers,
- health-related low-flow problems (e.g., cross-connection contamination, diminished sewage flows, increased pollutant concentrations),
- mental and physical stress (e.g., anxiety, depression, domestic violence),
- public safety issues from forest and range fires and reduced fire fighting capability,
- increased disease caused by wildlife concentrations,
- loss of aesthetic and property values, and
- reduced recreational opportunities.²¹

²⁰ Today, most utilities participate in large interstate "power pools" and can buy or sell electricity "on the grid" from other utilities or power marketers. Thus, assuming power was available to buy, and assuming that no contractual or physical limitations were in place such as transmission constraints; utilities could offset lost power that resulted from waters shortages with purchases via the power grid.

²¹ Based on information from the website of the National Drought Mitigation Center at the University of Nebraska Lincoln. Available online at: http://www.drought.unl.edu/risk/impacts.htm. See also, Vanclay, F. "Social Impact Assessment." in Petts, J. (ed) International Handbook of Environmental Impact Assessment. 1999.

Social impacts measured in this study focus strictly on demographic effects including changes in population and school enrollment. Methods are based on demographic projection models developed by the Texas State Data Center and used by the TWDB for state and regional water planning. Basically, the social impact model uses results from the economic component of the study and assesses how changes in labor demand would affect migration patterns in a region. Declines in labor demand as measured using adjusted IMPLAN data are assumed to affect net economic migration in a given regional water planning area. Employment losses are adjusted to reflect the notion that some people would not relocate but would seek employment in the region and/or public assistance and wait for conditions to improve. Changes in school enrollment are simply the proportion of lost population between the ages of 5 and 17.

2. Results

Section 2 presents the results of the analysis at the regional level. Included are baseline economic data for each water use category, and estimated economics impacts of water shortages for water user groups with reported deficits. According to the 2011 *South Central Texas Regional Water Plan*, during severe drought irrigation, municipal, manufacturing, mining and steam-electric water user groups would experience water shortages in the absence of new water management strategies.

2.1 Overview of Regional Economy

On an annual basis, the South Central Texas economy generates \$82 billion in gross state product for Texas (\$76 billion in income and \$6 billion worth of business taxes) and supports 1,163,680 jobs (Table 8). Generating about \$11 billion worth of income per year manufacturing is the primary base economic sector in the region. However, while municipal sectors also generate substantial amounts of income and are major employers. However, while municipal sectors are the largest employer and source of wealth, many businesses that make up the municipal category such as restaurants and retail stores are non-basic industries meaning they exist to provide services to people who work would in base industries such as manufacturing, agriculture and mining. In other words, without base industries such agriculture, many municipal jobs in the region would not exist.

-

²² Base industries are those that supply markets outside of the region. These industries are crucial to the local economy and are called the economic base of a region. Appendix A shows how IMPLAN's 529 sectors were allocated to water use category, and shows economic data for each sector.

Table 8: The South Central Texas Regional Economy by Water User Group (\$millions)*							
Water Use Category	Total sales	Intermediate sales	Final sales	Jobs	Income	Business taxes	
Irrigation	\$266.54	\$47.35	\$219.07	4,110	\$174.18	\$3.23	
Livestock	\$889.48	\$644.74	\$244.74	13,506	\$134.69	\$14.13	
Manufacturing	\$35,019.65	\$4,677.32	\$30,342.33	134,359	\$11,132.59	\$268.65	
Mining	\$3,841.83	\$2,060.19	\$1,781.64	9,733	\$2,355.49	\$194.87	
Steam-electric	\$534.13	\$150.26	\$383.87	1,312	\$370.93	\$63.26	
Municipal	\$104,098.04	\$30,414.34	\$73,683.69	1,000,660	\$61,736.55	\$5,406.62	
Regional total	\$144,649.67	\$37,994.20	\$106,655.34	1,163,680	\$75,904.43	\$5,950.76	

^a Appendix 1 displays data for individual IMPLAN sectors that make up each water use category. Based on data from the Texas Water Development Board, and year 2006 data from the Minnesota IMPLAN Group, Inc.

2.2 Impacts of Agricultural Water Shortages

According to the 2011 South Central Texas Regional Water Plan, during severe drought the counties of Atascosa, Medina and Zavala would experiences shortages of irrigation water. Shortages range from about 1 to 76 percent of annual irrigation demands over the planning horizon, and farmers would be short 68,465 acre-feet in 2010 and 41,782 in 2060. Shortages would reduce gross state product (income plus state and local business taxes) by an estimated \$45 million per year in 2010 to \$33 million in 2060.

Table 9: Economic Impacts of Water Shortages for Irrigation Water User Groups (\$millions)						
Decade	Lost income from reduced crop production ^a	Lost state and local tax revenues from reduced crop production	Lost jobs from reduced crop production			
2010	\$43.32	\$2.16	545			
2020	\$40.63	\$2.03	511			
2030	\$38.04	\$1.90	478			
2040	\$35.55	\$1.77	447			
2050	\$33.17	\$1.66	416			
2060	\$31.13	\$1.55	391			

^{*}Changes to income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.3 Impacts of Municipal Water Shortages

Water shortages are projected to occur in a significant number of communities in the region. At the regional level, the estimated economic value of domestic water shortages totals \$715 million in 2010 and \$2,823 million in 2060 (Table 100). Due to curtailment of commercial business activity operation, municipal shortages would reduce gross state product (income plus taxes) by an estimated \$53 million in 2020 and \$3,780 million in 2060.

	Table 10: Economi	c Impacts of Water Sh	ortages for Municipal V	Vater User Groups (\$m	nillions)
Decade	Monetary value of domestic water shortages	Lost income from reduced commercial business activity*	Lost state and local taxes from reduced commercial business activity	Lost jobs from reduced commercial business activity	Lost water utility revenues
2010	\$715.54	\$42.91	\$5.67	1,067	\$149.36
2020	\$1,479.80	\$1,417.03	\$7.66	1,512	\$212.55
2030	\$1,331.33	\$1,909.07	\$82.41	17,808	\$276.64
2040	\$1,805.79	\$2,547.77	\$111.92	24,229	\$340.64
2050	\$2,426.71	\$3,197.28	\$134.26	29,081	\$402.51
2060	\$2,823.29	\$3,621.31	\$157.25	34,108	\$468.01

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.4 Impacts of Manufacturing Water Shortages

Manufacturing water shortages in the region are projected to occur in Bexar, Calhoun, Comal and Victoria counties. In 2010, the planning group estimates that these manufacturers would be short about 6,539 acre-feet; and by 2060, this figure increases to nearly 43,072 acre-feet. Shortages of these magnitudes would reduce gross state product (income plus taxes) by an estimated \$179 million in 2010 and \$2,080 million in 2060 (Table 11).

Table 11: Economic Impacts of Water Shortages for Manufacturing Water User Groups (\$m					
Decade	Lost state and local business tax Lost income due to reduced revenues due to reduced manufacturing output manufacturing output		Lost jobs due to reduced manufacturing output		
2010	\$146.77	\$22.22	8,274		
2020	\$324.94	\$52.44	11,956		
2030	\$496.18	\$81.52	15,436		
2040	\$948.36	\$159.05	23,170		
2050	\$1,451.00	\$245.34	31,553		
2060	\$1,777.09	\$301.91	38,187		

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.5 Impacts of Mining Water Shortages

Mining water shortages in Region L are projected to occur in Bexar, Comal and Hays counties and would primarily affect aggregates operations (e.g., sand and gravel producers). Combined shortages for each county would result in estimated losses in gross state product totaling \$3 million dollars in 2010, and about \$7 million 2060 (Table 12).

Table 12: Economic Impacts of Water Shortages for Mining Water User Groups (\$millions)						
Decade	Lost income due to reduced mining output	Lost state and local business tax revenues due to reduced mining output	Lost jobs due to reduced mining output			
2010	\$2.67	\$0.14	27			
2020	\$3.12	\$0.17	31			
2030	\$4.64	\$0.34	53			
2040	\$5.01	\$0.37	57			
2050	\$6.44	\$0.48	72			
2060	\$6.81	\$0.51	77			

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.6 Impacts of Steam-electric Water Shortages

Water shortages for electrical generating units are projected to occur in Atascosa and Victoria counties, and would result in estimated losses of gross state product totaling \$72 million in 2020, and \$4,011 million 2060 (Table 13).

	Table 13: Economic Impacts of Water Shortages for Steam-electric Water User Groups (\$millions)						
Decade	Lost income due to reduced electrical generation						
2010	\$63.17	\$9.07	215				
2020	\$3,493.56	\$501.45	5,938				
2030	\$3,495.55	\$501.73	5,941				
2040	\$3,497.61	\$502.03	5,945				
2050	\$3,503.90	\$502.93	5,963				
2060	\$3,507.77	\$503.49	5,973				

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.7 Social Impacts of Water Shortages

As discussed previously, estimated social impacts focus on changes in population and school enrollment in the region. In 2010, estimated population losses total 12,886 with corresponding reductions in school enrollment of 3,635 students (Table 14). In 2060, population in the region would decline by 54,411 and school enrollment would fall by 10,064.

Table 14: Social Impacts of Water Shortages (2010-2060)					
Year	Population Losses	Declines in School Enrollment			
2010	12,886	3,635			
2020	43,823	12,433			
2030	58,402	15,470			
2040	74,857	13,835			
2050	86,896	16,049			
2060	54,411	10,064			

2.8 Distribution of Impacts by Major River Basin

Administrative rules require that impacts are presented by both planning region and major river basin. To meet rule requirements, impacts were allocated among basins based on the distribution of water shortages in relevant basins. For example, if 50 percent of water shortages in River Basin A and 50 percent occur in River Basin B, then impacts were split equally among the two basins. Table 15 displays the results.

Table 15: Distribution of Impacts by Major River Basin (2010-2060)								
River Basin	2010	2020	2030	2040	2050	2060		
Colorado	<1%	<1%	<1%	<1%	<1%	<1%		
Colorado-Lavaca	<1%	<1%	<1%	<1%	<1%	<1%		
Guadalupe	7%	27%	27%	29%	30%	32%		
Nueces	37%	22%	19%	16%	14%	12%		
San Antonio	57%	51%	55%	57%	57%	58%		

Appendix 1: Economic Data for Individual IMPLAN Sectors

Water Use Category	IMPLAN Sector	IMPLAN Code	Total Sales	Intermediate Sales	Final Sales	Jobs	Income	Business Taxes
Irrigation	Oilseeds	1	\$0.36	\$0.01	\$0.34	10	\$0.19	\$0.01
Irrigation	Grains	2	\$25.64	\$4.34	\$21.30	1,145	\$11.80	\$0.46
Irrigation	Vegetable and melons	3	\$178.72	\$11.67	\$167.05	2,122	\$131.27	\$1.68
Irrigation	Tree nuts	4	\$10.65	\$6.75	\$3.82	154	\$7.37	\$0.26
Irrigation	Fruits	5	\$8.48	\$1.24	\$7.18	172	\$4.82	\$0.18
Irrigation	Cotton	8	\$17.60	\$0.29	\$17.34	212	\$6.48	\$0.16
	All other crops	10	\$25.09	\$23.05	\$2.04	295	\$12.25	\$0.48
	Total irrigation		\$266.54	\$47.35	\$219.07	4,110	\$174.18	\$3.23
Livestock	Cattle ranching and farming	11	\$605.58	\$419.90	\$185.67	10,638	\$47.84	\$12.73
Livestock	Poultry and egg production	12	\$247.53	\$194.00	\$53.53	834	\$83.31	\$0.84
Livestock	Animal production- except cattle and poultry	13	\$36.37	\$30.84	\$5.53	2,034	\$3.54	\$0.56
	Total livestock	-	\$889.48	\$644.74	\$244.74	13,506	\$134.69	\$14.13
	Total agriculture	-	\$1,156.02	\$692.09	\$463.81	17,616	\$308.87	\$17.36

		IMPLAN		Intermediate				Business
Water Use Category	IMPLAN Sector	Code	Total Sales	Sales	Final Sales	Jobs	Income	Taxes
Mining	Oil and gas extraction	19	\$1,996.63	\$1,854.24	\$142.38	3,290	\$1,148.96	\$120.59
Mining	Support activities for oil and gas operations	28	\$1,026.56	\$142.59	\$883.98	4,522	\$930.58	\$42.34
Mining	Drilling oil and gas wells	27	\$577.01	\$2.88	\$574.13	997	\$150.15	\$19.80
Mining	Sand- gravel- clay- and refractory mining	25	\$92.43	\$9.76	\$82.67	537	\$54.54	\$2.53
Mining	Coal mining	20	\$64.63	\$24.22	\$40.41	207	\$23.55	\$7.12
Mining	Stone mining and quarrying	24	\$44.53	\$4.58	\$39.95	149	\$26.40	\$0.27
Mining	Gold- silver- and other metal ore mining	23	\$39.13	\$21.85	\$17.27	27	\$20.87	\$2.20
Mining	Other nonmetallic mineral mining	26	\$0.58	\$0.06	\$0.52	3	\$0.26	\$0.02
Mining	Support activities for other mining	29	\$0.33	\$0.00	\$0.33	1	\$0.19	\$0.00
	Total mining		\$534.13	\$150.26	\$383.87	1,312	\$370.93	\$63.26
Steam-electric	Power generation and supply	30	\$3,841.83	\$2,060.19	\$1,781.64	9,733	\$2,355.49	\$194.87

W	In any Court	IMPLAN	Tatal Cala	Intermediate	Et al Calas		•	Business
Water Use Category	IMPLAN Sector	Code	Total Sales	Sales	Final Sales	Jobs	Income	Taxes
Manufacturing	New residential 1-unit structures- all	33	\$3,607.93	\$0.00	\$3,607.92	23,970	\$1,220.47	\$19.21
Manufacturing	Plastics material and resin manufacturing	152	\$2,571.32	\$101.83	\$2,469.49	1,813	\$469.87	\$15.37
Manufacturing	Petroleum refineries	142	\$2,362.74	\$878.23	\$1,484.51	141	\$1,068.08	\$39.12
Manufacturing	Commercial and institutional buildings	38	\$2,045.58	\$0.00	\$2,045.58	20,895	\$1,045.42	\$12.89
Manufacturing	Automobile and light truck manufacturing	344	\$1,659.11	\$1.77	\$1,657.33	1,127	\$209.81	\$5.74
Manufacturing	Pharmaceutical and medicine manufacturing	160	\$1,302.79	\$238.08	\$1,064.71	1,218	\$457.37	\$10.82
Manufacturing	Aircraft manufacturing	351	\$1,231.30	\$62.64	\$1,168.65	2,422	\$220.90	\$3.78
Manufacturing	Alumina refining	208	\$1,119.35	\$50.99	\$1,068.35	1,268	\$238.82	\$20.42
Manufacturing	Soft drink and ice manufacturing	85	\$1,048.19	\$58.55	\$989.64	1,643	\$163.97	\$7.26
Manufacturing	Other new construction	41	\$893.86	\$0.00	\$893.86	9,585	\$484.91	\$3.82
Manufacturing	Iron and steel mills	203	\$811.22	\$58.43	\$752.78	873	\$210.18	\$7.81
Manufacturing	Motor vehicle parts manufacturing	350	\$759.01	\$61.03	\$697.98	2,009	\$196.86	\$3.17
Manufacturing	Meat processed from carcasses	68	\$596.94	\$176.11	\$420.83	1,360	\$66.29	\$3.43
Manufacturing	New residential additions and alterations-all	35	\$514.58	\$0.00	\$514.58	2,855	\$193.43	\$2.73
Manufacturing	Wood kitchen cabinet and countertop manufacturing	362	\$480.41	\$374.24	\$106.18	3,866	\$209.65	\$3.47
Manufacturing	AC- refrigeration- and forced air heating	278	\$459.38	\$0.00	\$459.38	1,443	\$100.71	\$2.64
Manufacturing	Highway- street- bridge- and tunnel construct	39	\$439.94	\$0.00	\$439.94	4,046	\$223.89	\$2.85
Manufacturing	Pesticide and other agricultural chemical man	159	\$415.02	\$69.54	\$345.48	200	\$162.38	\$2.85
Manufacturing	Bread and bakery product- except frozen- manufacturing	73	\$411.42	\$91.87	\$319.55	2,551	\$182.21	\$2.93
Manufacturing	New multifamily housing structures- all	34	\$396.64	\$0.00	\$396.64	3,482	\$188.50	\$1.09
Manufacturing	Cement manufacturing	191	\$394.93	\$1.06	\$393.87	407	\$201.94	\$4.12
Manufacturing	Other basic organic chemical manufacturing	151	\$348.82	\$65.03	\$283.78	302	\$54.93	\$2.20
Manufacturing	Aircraft engine and engine parts manufacturing	352	\$344.04	\$94.27	\$249.77	910	\$71.12	\$1.01
Manufacturing	Other animal food manufacturing	47	\$331.48	\$39.98	\$291.50	465	\$29.31	\$2.24
Manufacturing	Water- sewer- and pipeline construction	40	\$319.41	\$0.00	\$319.41	2,649	\$143.64	\$2.08
Manufacturing	Ready-mix concrete manufacturing	192	\$316.77	\$1.54	\$315.23	1,003	\$121.49	\$3.30
Manufacturing	All other manufacturing	-	\$9,837.48	\$2,252.12	\$7,585.36	41,856	\$3,196.44	\$82.30
Manufacturing	Total manufacturing	-	\$35,019.65	\$4,677.32	\$30,342.33	134,359	\$11,132.59	\$268.65

Water Use Category	IMPLAN Sector	IMPLAN Code	Total Sales	Intermediate Sales	Final Sales	Jobs	Income	Business Taxes
Municipal	Owner-occupied dwellings	509	\$6,426.35	\$0.00	\$6,426.35	0	\$4,978.29	\$759.88
Municipal	Wholesale trade	390	\$6,141.21	\$2,940.19	\$3,201.02	36,563	\$3,233.08	\$908.45
Municipal	Real estate	431	\$5,071.02	\$2,007.38	\$3,063.64	27,385	\$2,934.53	\$624.25
Municipal	Insurance carriers	427	\$4,588.64	\$1,338.03	\$3,250.60	16,586	\$1,813.63	\$225.94
Municipal	Monetary authorities and depository credit in	430	\$4,297.56	\$1,415.42	\$2,882.14	17,925	\$3,017.82	\$54.97
Municipal	Food services and drinking places	481	\$4,044.01	\$516.41	\$3,527.59	80,052	\$1,729.17	\$202.02
Municipal	State & Local Education	503	\$3,973.22	\$0.00	\$3,973.22	92,541	\$3,973.22	\$0.00
Municipal	Federal Military	505	\$3,676.66	\$0.01	\$3,676.66	34,658	\$3,676.66	\$0.00
Municipal	Offices of physicians- dentists- and other he	465	\$3,582.61	\$0.00	\$3,582.61	29,480	\$2,549.08	\$22.39
Municipal	Telecommunications	422	\$3,560.49	\$1,222.96	\$2,337.52	7,129	\$1,623.90	\$270.70
Municipal	Hospitals	467	\$2,687.75	\$0.00	\$2,687.74	22,732	\$1,461.31	\$18.67
Municipal	Motor vehicle and parts dealers	401	\$2,090.72	\$227.34	\$1,863.37	18,289	\$1,083.57	\$306.77
Municipal	State & Local Non-Education	504	\$1,971.28	\$0.00	\$1,971.28	34,133	\$1,971.28	\$0.00
Municipal	Pipeline transportation	396	\$1,964.70	\$859.23	\$1,105.47	1,251	\$835.12	\$178.13
Municipal	Truck transportation	394	\$1,909.79	\$1,034.09	\$875.69	17,671	\$734.47	\$16.89
Municipal	Federal Non-Military	506	\$1,666.73	\$0.01	\$1,666.72	9,364	\$1,666.72	\$0.00
Municipal	Management of companies and enterprises	451	\$1,665.00	\$1,565.78	\$99.22	7,815	\$1,007.27	\$16.08
Municipal	Architectural and engineering services	439	\$1,580.82	\$996.49	\$584.33	12,844	\$849.85	\$7.03
Municipal	Hotels and motels- including casino hotels	479	\$1,427.17	\$735.24	\$691.93	14,042	\$790.79	\$135.39
Municipal	General merchandise stores	410	\$1,257.83	\$132.57	\$1,125.26	21,584	\$579.77	\$184.49
Municipal	Other State and local government enterprises	499	\$1,216.82	\$396.23	\$820.59	5,493	\$477.38	\$0.16
Municipal	Legal services	437	\$1,201.39	\$762.47	\$438.92	9,070	\$760.65	\$23.62
Municipal	Other ambulatory health care services	466	\$1,165.44	\$75.80	\$1,089.64	8,243	\$566.52	\$8.44
Municipal	Food and beverage stores	405	\$1,124.71	\$150.37	\$974.34	18,856	\$578.36	\$126.75
Municipal	Funds- trusts- and other financial vehicles	429	\$1,119.37	\$21.23	\$1,098.14	3,732	\$246.75	\$9.89
Municipal	Securities- commodity contracts- investments	426	\$1,110.71	\$737.61	\$373.10	9,095	\$411.31	\$12.11
Municipal	All other municipal		\$29,595.50	\$11,187.27	\$18,408.23	409,988	\$15,779.81	\$1,260.4
Manufacturing	Total		\$100,117.50	\$28,322.13	\$71,795.32	966,521	\$59,330.31	\$5,373.5

Appendix 2: Impacts by Water User Group

	2010	2020	2030	2040	2050	2060
Atascosa County	2010	2020	2030	2040	2030	2000
Reduced income from lost crop production	\$1.13	\$0.88	\$0.63	\$0.40	\$0.17	\$0.05
Reduced business taxes from lost crop production	\$0.05	\$0.04	\$0.03	\$0.02	\$0.01	\$0.00
Reduced jobs from lost crop production	13	10	7	5	2	1
Medina County						
Reduced income from lost crop production	\$1.29	\$0.98	\$0.68	\$0.39	\$0.11	\$0.00
Reduced business taxes from lost crop production	\$0.07	\$0.05	\$0.03	\$0.02	\$0.01	\$0.00
Reduced jobs from lost crop production	19	14	10	6	2	0
Zavala County						
Reduced income from lost crop production	\$40.90	\$38.77	\$36.73	\$34.77	\$32.89	\$31.08
Reduced business taxes from lost crop production	\$2.04	\$1.94	\$1.83	\$1.74	\$1.64	\$1.55
Reduced jobs from lost crop production	513	487	461	436	413	390

יי	Manufacturing (\$millions)					
	2010	2020	2030	2040	2050	2060
Bexar County						
Reduced income from lost manufacturing	\$32.89	\$119.92	\$202.26	\$566.31	\$708.72	\$863.34
Reduced business taxes from lost manufacturing	\$5.67	\$20.68	\$34.87	\$97.64	\$122.19	\$148.85
Reduced jobs from lost crop livestock manufacturing	501	1,826	3,080	8,624	10,793	13,148
Calhoun County						
Reduced income from lost manufacturing	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$7.27
Reduced business taxes from lost manufacturing	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$2.12
Reduced jobs from lost crop livestock manufacturing	0	0	0	0	0	755
Comal County						
Reduced income from lost manufacturing	\$113.88	\$132.15	\$148.60	\$164.59	\$178.32	\$197.62
Reduced business taxes from lost manufacturing	\$16.55	\$19.21	\$21.60	\$23.92	\$25.92	\$28.72
Reduced jobs from lost crop livestock manufacturing	7,773	9,020	10,143	11,234	12,171	13,488
Victoria County						
Reduced income from lost manufacturing	\$0.00	\$72.87	\$145.32	\$217.45	\$563.96	\$708.86
Reduced business taxes from lost manufacturing	\$0.00	\$12.56	\$25.06	\$37.49	\$97.23	\$122.22
Reduced jobs from lost crop livestock manufacturing	0	1,110	2,213	3,312	8,588	10,795

	Mining (\$millions)					
	2010	2020	2030	2040	2050	2060
Bexar County						
Reduced income from lost mining output	\$0.00	\$0.00	\$1.25	\$1.38	\$1.52	\$1.65
Reduced business taxes from lost mining output	\$0.00	\$0.00	\$0.15	\$0.17	\$0.19	\$0.20
Reduced jobs from lost mining output	0	0	18	20	22	24
Comal County						
Reduced income from lost mining output	\$0.44	\$0.64	\$0.76	\$0.87	\$2.15	\$2.36
Reduced business taxes from lost mining output	\$0.03	\$0.05	\$0.05	\$0.06	\$0.15	\$0.17
Reduced jobs from lost mining output	5	7	8	9	22	24
Hays County						
Reduced income from lost mining output	\$2.23	\$2.48	\$2.64	\$2.75	\$2.78	\$2.80
Reduced business taxes from lost mining output	\$0.11	\$0.12	\$0.13	\$0.14	\$0.14	\$0.14
Reduced jobs from lost mining output	22	25	26	27	28	28

Steam	-electric (\$millions)					
	2010	2020	2030	2040	2050	2060
Atascosa County		•	•	•	•	•
Reduced income from lost electrical generation	\$1.78	\$0.00	\$0.00	\$0.00	\$4.10	\$6.39
Reduced business taxes from lost electrical generation	\$0.26	\$0.00	\$0.00	\$0.00	\$0.59	\$0.92
Reduced jobs from lost electrical generation	6	0	0	0	14	22
Victoria County						
Reduced income from lost electrical generation	\$61.39	\$3,493.56	\$3,495.55	\$3,497.61	\$3,499.80	\$3,501.38
Reduced business taxes from lost electrical generation	\$8.81	\$501.45	\$501.73	\$502.03	\$502.34	\$502.57
Reduced jobs from lost electrical generation	209	5938	5941	5945	5949	5951

Munic	cipal (\$millions)					
	2010	2020	2030	2040	2050	2060
Alamo Heights			· ·			·
Monetary value of domestic water shortages	\$0.96	\$1.06	\$1.07	\$1.06	\$1.08	\$1.12
Lost utility revenues	\$1.06	\$1.18	\$1.18	\$1.17	\$1.20	\$1.24
Aqua WSC						
Monetary value of domestic water shortages	\$0.10	\$1.68	\$4.04	\$3.70	\$4.53	\$5.42
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.17	\$0.23	\$0.30
Lost jobs due to reduced commercial business activity	0	0	0	7	9	12
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.03	\$0.04	\$0.05
Lost utility revenues	\$0.10	\$0.24	\$0.35	\$0.48	\$0.59	\$0.72
Atascosa Rural WSC						
Monetary value of domestic water shortages	\$9.49	\$11.95	\$15.32	\$17.74	\$19.56	\$21.76
Lost income from reduced commercial business activity	\$2.11	\$3.07	\$3.92	\$4.63	\$5.24	\$5.87
Lost jobs due to reduced commercial business activity	47	68	87	103	117	131
Lost state and local taxes from reduced commercial business activity	\$0.22	\$0.33	\$0.42	\$0.49	\$0.56	\$0.62
Lost utility revenues	\$0.98	\$1.29	\$1.56	\$1.79	\$1.99	\$2.19
Benton City WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.23	\$0.64	\$3.12	\$3.92
Lost utility revenues	\$0.00	\$0.00	\$0.36	\$0.83	\$1.28	\$1.63
Bexar Met Water District						
Monetary value of domestic water shortages	\$29.85	\$43.51	\$52.16	\$59.71	\$68.58	\$82.71
Lost income from reduced commercial business activity	\$8.43	\$13.75	\$19.10	\$23.71	\$28.77	\$34.02
Lost jobs due to reduced commercial business activity	136	222	308	382	464	548
Lost state and local taxes from reduced commercial business activity	\$0.76	\$1.24	\$1.72	\$2.13	\$2.59	\$3.06
Lost utility revenues	\$7.23	\$8.43	\$9.92	\$10.75	\$11.88	\$13.15

Mu	nicipal (cont.)					
	2010	2020	2030	2040	2050	2060
Boerne		•	•	•	•	•
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.25
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.50
Bulverde City						
Monetary value of domestic water shortages	\$6.31	\$24.37	\$39.17	\$59.32	\$75.71	\$93.29
Lost income from reduced commercial business activity	\$2.26	\$5.50	\$9.19	\$12.86	\$16.68	\$20.77
Lost jobs due to reduced commercial business activity	91	221	369	517	671	835
Lost state and local taxes from reduced commercial business activity	\$0.32	\$0.78	\$1.31	\$1.83	\$2.38	\$2.96
Lost utility revenues	\$1.17	\$2.41	\$3.83	\$5.23	\$6.69	\$8.26
Canyon Lake WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.11	\$3.17	\$25.78	\$47.65
Lost utility revenues	\$0.00	\$0.00	\$0.23	\$3.95	\$8.03	\$12.17
Castle Hills						
Monetary value of domestic water shortages	\$0.12	\$0.10	\$0.08	\$0.07	\$0.05	\$0.05
Lost utility revenues	\$0.19	\$0.16	\$0.14	\$0.11	\$0.09	\$0.09
Castroville						
Monetary value of domestic water shortages	\$3.63	\$4.28	\$5.55	\$8.93	\$9.88	\$10.75
Lost income from reduced commercial business activity	\$0.94	\$1.41	\$1.84	\$2.22	\$2.68	\$3.08
Lost jobs due to reduced commercial business activity	22	33	43	51	61	70
Lost state and local taxes from reduced commercial business activity	\$0.79	\$1.17	\$1.54	\$1.86	\$2.19	\$2.51
Lost utility revenues	\$0.58	\$0.71	\$0.82	\$0.93	\$1.03	\$1.14
Converse						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.12	\$0.51	\$0.92	\$1.57
Lost utility revenues	\$0.00	\$0.00	\$0.24	\$0.81	\$1.29	\$1.74
County Line WSC						
Monetary value of domestic water shortages	\$0.00	\$13.95	\$20.67	\$22.12	\$32.21	\$41.84
Lost income from reduced commercial business activity	\$0.00	\$1.99	\$2.98	\$3.21	\$3.89	\$5.04
Lost jobs due to reduced commercial business activity	0	80	120	129	156	203
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.31	\$0.46	\$0.50	\$0.60	\$0.78
Lost utility revenues	\$0.00	\$1.89	\$2.59	\$2.91	\$3.50	\$4.35

Ми	Municipal (cont.)										
	2010	2020	2030	2040	2050	2060					
County-other (Bexar)		•	•		•						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.11	\$0.37	\$0.67					
County-other (Comal)											
Monetary value of domestic water shortages	\$18.36	\$23.89	\$26.38	\$34.60	\$39.04	\$43.36					
County-other (Kendall)											
Monetary value of domestic water shortages	\$0.23	\$1.11	\$2.47	\$10.95	\$15.73	\$24.74					
County-other (Medina)											
Monetary value of domestic water shortages	\$0.00	\$0.27	\$0.76	\$1.28	\$6.09	\$8.23					
County-other (Victoria)											
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.07	\$0.18	\$0.32					
County-other (Wilson)											
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.03					
Creedmore –Maha WSC											
Monetary value of domestic water shortages	\$1.07	\$2.73	\$4.75	\$5.90	\$7.07	\$8.75					
Lost income from reduced commercial business activity	\$0.00	\$0.38	\$0.58	\$0.79	\$0.99	\$1.21					
Lost jobs due to reduced commercial business activity	0	15	23	32	40	48					
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.06	\$0.09	\$0.12	\$0.15	\$0.19					
Lost utility revenues	\$0.21	\$0.36	\$0.49	\$0.62	\$0.75	\$0.89					
Crystal Clear WSC											
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.67	\$3.07	\$14.98	\$23.52					
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.63					
Lost jobs due to reduced commercial business activity	0	0	0	0	0	25					
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.10					
Lost utility revenues	\$0.00	\$0.00	\$0.79	\$1.78	\$3.05	\$4.30					

	2010	2020	2030	2040	2050	2060
East Central WSC		1 ====				
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.28	\$0.69	\$1.87	\$3.45
Lost utility revenues	\$0.00	\$0.00	\$0.46	\$0.91	\$1.32	\$1.74
East Medina SUD						
Monetary value of domestic water shortages	\$0.00	\$0.11	\$0.27	\$0.44	\$0.64	\$2.59
Lost utility revenues	\$0.00	\$0.19	\$0.38	\$0.54	\$0.71	\$0.88
Floresville						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.15	\$0.50
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.29	\$0.78
Garden Ridge						
Monetary value of domestic water shortages	\$2.54	\$5.97	\$9.83	\$13.42	\$16.68	\$20.57
Lost income from reduced commercial business activity	\$0.00	\$0.58	\$0.92	\$1.27	\$1.62	\$2.01
Lost jobs due to reduced commercial business activity	0	23	37	51	65	81
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.09	\$0.14	\$0.20	\$0.25	\$0.31
Lost utility revenues	\$0.51	\$0.78	\$1.09	\$1.41	\$1.73	\$2.08
Goforth WSC						
Monetary value of domestic water shortages	\$0.00	\$0.02	\$0.56	\$4.64	\$10.05	\$12.53
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$2.58
Lost jobs due to reduced commercial business activity	0	0	0	0	0	104
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.40
Lost utility revenues	\$0.00	\$0.05	\$0.80	\$1.61	\$2.61	\$3.43

	2010	2020	2030	2040	2050	2060
Green Valley WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.68
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1.17
Hill Country Village						
Monetary value of domestic water shortages	\$26.38	\$26.27	\$26.12	\$26.01	\$25.94	\$25.94
Lost income from reduced commercial business activity	\$4.30	\$4.28	\$4.25	\$4.23	\$4.22	\$4.22
Lost jobs due to reduced commercial business activity	136	135	134	134	133	133
Lost state and local taxes from reduced commercial business activity	\$0.61	\$0.61	\$0.61	\$0.60	\$0.60	\$0.60
Lost utility revenues	\$1.45	\$1.44	\$1.43	\$1.43	\$1.42	\$1.42
Hollywood Park						
Monetary value of domestic water shortages	\$40.26	\$41.77	\$43.17	\$44.23	\$45.32	\$46.35
Lost income from reduced commercial business activity	\$8.29	\$8.63	\$8.95	\$9.19	\$9.43	\$9.66
Lost jobs due to reduced commercial business activity	261	272	282	290	297	305
Lost state and local taxes from reduced commercial business activity	\$1.18	\$1.23	\$1.27	\$1.31	\$1.34	\$1.38
Lost utility revenues	\$3.90	\$4.05	\$4.18	\$4.29	\$4.40	\$4.50
Hondo						
Monetary value of domestic water shortages	\$0.41	\$0.87	\$3.91	\$5.25	\$6.88	\$7.95
Lost utility revenues	\$0.57	\$0.96	\$1.33	\$1.63	\$1.95	\$2.25
lourdanton						
Monetary value of domestic water shortages	\$0.16	\$0.27	\$0.35	\$0.54	\$0.62	\$0.69
Lost utility revenues	\$0.22	\$0.34	\$0.45	\$0.53	\$0.61	\$0.67
Karnes City						
Monetary value of domestic water shortages	\$1.64	\$1.83	\$2.46	\$2.65	\$2.77	\$2.87
Lost utility revenues	\$0.36	\$0.40	\$0.44	\$0.48	\$0.50	\$0.52

	2010	2020	2030	2040	2050	2060
Kenedy						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.04	\$0.10	\$0.16
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.07	\$0.17	\$0.23
Kirby						
Monetary value of domestic water shortages	\$1.77	\$1.76	\$1.78	\$1.75	\$1.81	\$1.92
Lost utility revenues	\$0.60	\$0.60	\$0.61	\$0.60	\$0.62	\$0.65
Kyle						
Monetary value of domestic water shortages	\$0.00	\$0.45	\$0.92	\$1.12	\$2.22	\$2.76
Lost utility revenues	\$0.00	\$0.78	\$1.28	\$1.57	\$2.46	\$3.05
Lacoste						
Monetary value of domestic water shortages	\$0.91	\$1.20	\$1.20	\$1.43	\$1.76	\$1.95
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.17	\$0.19	\$0.22	\$0.26
Lost jobs due to reduced commercial business activity	0	0	7	8	9	10
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.03	\$0.03	\$0.03	\$0.04
Lost utility revenues	\$0.18	\$0.22	\$0.25	\$0.27	\$0.30	\$0.33
Lockhart						
Monetary value of domestic water shortages	\$0.00	\$0.33	\$1.23	\$7.43	\$11.27	\$17.68
Lost utility revenues	\$0.00	\$0.58	\$1.54	\$2.53	\$3.51	\$4.52
Luling						
Monetary value of domestic water shortages	\$0.00	\$0.12	\$0.24	\$0.38	\$0.65	\$0.82
Lost utility revenues	\$0.00	\$0.22	\$0.38	\$0.53	\$0.72	\$0.91
Lytle						
Monetary value of domestic water shortages	\$0.32	\$0.39	\$0.45	\$1.44	\$1.54	\$1.63
Lost utility revenues	\$0.28	\$0.30	\$0.32	\$0.33	\$0.35	\$0.37
Marion						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.02	\$0.05	\$0.09	\$0.15
Lost utility revenues	\$0.00	\$0.01	\$0.04	\$0.07	\$0.10	\$0.15

Mu	nicipal (cont.)					
	2010	2020	2030	2040	2050	2060
Martindale WSC						
Monetary value of domestic water shortages	\$0.06	\$0.38	\$0.76	\$1.52	\$2.21	\$2.88
Lost utility revenues	\$0.08	\$0.14	\$0.19	\$0.25	\$0.30	\$0.36
Maxwell WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.09	\$0.43	\$0.74	\$5.25
Lost utility revenues	\$0.00	\$0.00	\$0.15	\$0.49	\$0.94	\$1.36
McCoy WSC						
Monetary value of domestic water shortages	\$0.00	\$0.02	\$0.48	\$1.07	\$1.99	\$5.63
Lost utility revenues	\$0.00	\$0.02	\$0.38	\$0.79	\$1.18	\$1.48
Mountain City						
Monetary value of domestic water shortages	\$0.00	\$0.04	\$0.54	\$1.04	\$2.45	\$3.04
Lost utility revenues	\$0.00	\$0.04	\$0.10	\$0.15	\$0.21	\$0.27
Mustang Ridge						
Monetary value of domestic water shortages	\$0.03	\$0.51	\$0.98	\$1.68	\$2.43	\$3.41
Lost utility revenues	\$0.04	\$0.12	\$0.20	\$0.27	\$0.35	\$0.42
Natalia						
Monetary value of domestic water shortages	\$2.92	\$4.25	\$5.23	\$5.93	\$6.56	\$7.16
Lost income from reduced commercial business activity	\$0.55	\$0.73	\$0.89	\$1.04	\$1.18	\$1.31
Lost jobs due to reduced commercial business activity	17	23	28	33	37	41
Lost state and local taxes from reduced commercial business activity	\$0.08	\$0.10	\$0.13	\$0.15	\$0.17	\$0.19
Lost utility revenues	\$0.38	\$0.47	\$0.55	\$0.62	\$0.69	\$0.76
New Braunfels						
Monetary value of domestic water shortages	\$0.00	\$0.91	\$8.24	\$40.33	\$63.55	\$105.08
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$1.79	\$5.14	\$8.84	\$12.91
Lost jobs due to reduced commercial business activity	0	0	40	114	197	287
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.19	\$0.55	\$0.94	\$1.37
Lost utility revenues	\$0.00	\$1.65	\$7.34	\$12.97	\$18.80	\$25.25

					1	
	2010	2020	2030	2040	2050	2060
Niederwald						
Monetary value of domestic water shortages	\$0.56	\$1.84	\$3.44	\$5.86	\$7.61	\$9.05
Lost utility revenues	\$0.11	\$0.23	\$0.36	\$0.48	\$0.63	\$0.75
Oak Hills WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.41
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.59
Plum Creek Water Co.						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.25	\$2.40	\$3.79
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.35	\$0.82	\$1.18
Point Comfort						
Monetary value of domestic water shortages	\$0.07	\$1.44	\$5.15	\$9.38	\$9.19	\$9.19
Lost utility revenues	\$0.09	\$0.29	\$0.64	\$0.99	\$0.97	\$0.97
Polonia WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.06	\$0.30
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.12	\$0.48
Sabinal						
Monetary value of domestic water shortages	\$0.18	\$0.17	\$0.16	\$0.16	\$0.15	\$0.15
Lost utility revenues	\$0.25	\$0.24	\$0.23	\$0.22	\$0.22	\$0.22
San Antonio						
Monetary value of domestic water shortages	\$505.60	\$1,169.02	\$914.55	\$1,223.47	\$1,613.29	\$1,769.69
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$683.59	\$942.18	\$1,132.44	\$1,322.45
Lost jobs due to reduced commercial business activity	0	0	15,208	20,961	25,194	29,421
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$72.75	\$100.27	\$120.51	\$140.73
Lost utility revenues	\$117.71	\$165.77	\$205.50	\$239.53	\$266.76	\$293.93
San Marcos						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$1.35	\$7.74	\$49.10	\$80.16
Lost utility revenues	\$0.00	\$0.00	\$2.37	\$8.58	\$15.30	\$20.47

Municipal (cont.)						
	2010	2020	2030	2040	2050	2060
Santa Clara						
Monetary value of domestic water shortages	\$0.63	\$2.85	\$6.54	\$11.64	\$15.41	\$19.44
Lost utility revenues	\$0.15	\$0.41	\$0.69	\$0.96	\$1.27	\$1.60
Schertz						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.67	\$3.15
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$1.17	\$4.40
Selma						
Monetary value of domestic water shortages	\$0.00	\$0.56	\$1.54	\$1.52	\$2.01	\$2.63
Lost utility revenues	\$0.00	\$0.71	\$1.51	\$1.50	\$1.48	\$1.49
Shavano Park						
Monetary value of domestic water shortages	\$2.88	\$3.03	\$3.14	\$3.22	\$3.32	\$3.43
Lost utility revenues	\$0.63	\$0.67	\$0.69	\$0.71	\$0.73	\$0.75
SS WSC						
Monetary value of domestic water shortages	\$0.26	\$4.99	\$12.19	\$19.80	\$35.60	\$44.69
Lost utility revenues	\$0.40	\$1.55	\$2.78	\$3.98	\$5.28	\$6.63
Sunko WSC						
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.07
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.14
Universal City						
Monetary value of domestic water shortages	\$0.10	\$0.48	\$0.87	\$0.81	\$0.78	\$0.78
Lost utility revenues	\$0.20	\$0.76	\$1.22	\$1.13	\$1.09	\$1.09
Uvalde						
Monetary value of domestic water shortages	\$28.56	\$28.86	\$29.03	\$29.06	\$29.08	\$29.31
Lost income from reduced commercial business activity	\$16.03	\$16.34	\$16.51	\$16.54	\$16.56	\$16.79
Lost jobs due to reduced commercial business activity	357	364	367	368	368	374
Lost state and local taxes from reduced commercial business activity	\$1.71	\$1.74	\$1.76	\$1.76	\$1.76	\$1.79
Lost utility revenues	\$5.70	\$5.77	\$5.81	\$5.81	\$5.82	\$5.87

	2010	2020	2030	2040	2050	2060
Water Services Inc.		•	•	•	•	•
Monetary value of domestic water shortages	\$21.86	\$27.55	\$33.22	\$38.38	\$43.22	\$48.43
Lost utility revenues	\$1.80	\$2.27	\$2.74	\$3.17	\$3.57	\$4.00
Wimberly						
Monetary value of domestic water shortages	\$0.36	\$2.79	\$5.26	\$7.91	\$14.28	\$17.07
Lost utility revenues	\$0.39	\$0.79	\$1.20	\$1.59	\$2.12	\$2.53
Windcrest						
Monetary value of domestic water shortages	\$0.30	\$0.29	\$0.28	\$0.27	\$0.26	\$0.27
Lost utility revenues	\$0.42	\$0.41	\$0.39	\$0.38	\$0.37	\$0.38
Woodcreek						
Monetary value of domestic water shortages	\$0.03	\$0.19	\$1.46	\$2.51	\$4.41	\$6.19
Lost utility revenues	\$0.05	\$0.18	\$0.32	\$0.45	\$0.63	\$0.77
Woodcreek Utilities Inc.						
Monetary value of domestic water shortages	\$6.33	\$19.35	\$30.50	\$40.34	\$52.42	\$61.92
Lost utility revenues	\$0.90	\$1.69	\$2.52	\$3.33	\$4.32	\$5.11
Yancey WSC						
Monetary value of domestic water shortages	\$0.31	\$0.00	\$0.00	\$7.01	\$8.28	\$9.54
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.96	\$1.26	\$1.55
Lost jobs due to reduced commercial business activity	0	0	0	21	28	34
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$0.10	\$0.13	\$0.16
Lost utility revenues	\$0.42	\$0.78	\$1.11	\$1.41	\$1.69	\$1.95

Appendix F

Texas Commission on Environmental Quality

Model Municipal Water Conservation Plan

Utility Profile and Water Conservation Plan Requirements for Municipal Water Use by Public Water Suppliers

(See following pages of Appendix F)

Web Sites for Information:

http://www.tceq.state.tx.us/assets/public/permitting/forms/10218.pdf

TCEQ

Texas Commission on Environmental Quality

UTILITY PROFILE & WATER CONSERVATION PLAN REQUIREMENTS FOR MUNICIPAL WATER USE BY PUBLIC WATER SUPPLIERS

This form is provided to assist entities in water conservation plan development for municipal water use by a retail public water supplier. Information from this form should be included within a water conservation plan for municipal use. If you need assistance in completing this form or in developing your plan, please contact the conservation staff of the Resource Protection Team in the Water Supply Division at (512) 239-4691.

Nam	e of En	tity:				
Addı	ress &	Zip: _				
Telephone Number:			Fax:			
Forn	ı Comp	oleted By:_				
Title	:	_				
Signa	ature:	_	Date:			
			nber of Person/Department responsible for implementing a cogram:			
			UTILITY PROFILE			
I.	POP	ULATION	N AND CUSTOMER DATA			
	A.	Populat	ion and Service Area Data			
			Attach a copy of your service-area map and, if applicable, a copy of your Certificate of Convenience and Necessity (CCN).			
		2. S	Service area size (square miles):			

		3. Current population of service area:						
		4.	Current popu	ılation ser	ved:			
			a. waterb. wastewate					
		5.	Population se for the previous			6.	Projected pop service area i decades:	ulation for in the following
			Year	Populat	ion		Year	Population
							2010 2020 2030 2040 2050	
		7.	List source/me				ent and projecto	
В.	Activ	e Con	nections					
	1.		ent number of ted as Residenti				hether multi-f	amily service is
		Trea	ted water users:	I	Metered		Not-metered	Total
		Resi	dential					
		Com	mercial	-				
		Indu	strial					
		Othe	er					

TCEQ-10218 (Rev. 11-5-04) Page 2 of 11

	2.	List the net number of new connections per year for most i	recent three years:
		Year	
		Residential	
		Commercial	
		Industrial	
		Other	
С.	High `	Volume Customers	
		List annual water use for the five highest volume customer (indicate if treated or raw water delivery)	rs.
		Customer Use (1,000gal./yr.) Treate	ed/Raw Water
		(1)	
		(2)	
		(3)	
		(4)	
		(5)	
II.	WAT	ΓER USE DATA FOR SERVICE AREA	
	A.	Water Accounting Data	
	1.	Amount of water use for previous five years (in 1,000 gal.) Please indicate: Diverted Water Treated Water	
	Year Januar Februa March	ary ary	

April							
May							
June							
July	a t						
Augus							
Septer Octob							
Nove: Decer							
Decei	iibei .						 -
Total							
point	of a divenent plant	ersion , or fro	from the sour	ce or located).	(e.g., from a ma at a point who	ere raw w	vater enters the
Year	Resider	ntial	Commercial	Industrial	Wholesale	Other	Total Sold
3.	-		five years recor		oss (the difference	ce betweer	n water diverted
	`	,		, , , , ,			
	Year	Amou	nt (gal.)	%			

TCEQ-10218 (Rev. 11-5-04)

4.	Munic	Municipal water use for previous five years:							
	Year	Population	Total Water Dive Pumped for Trea		gal.)				
В.	Proje	cted Water De	emands						
	inforn in the	nation such as j	projected water sup population trends, lear the next ten yeach ch growth.	nistorical wat	er use, and eco	nomic growth			
WAT	ER SU	PPLY SYSTE	M DATA						
A.	Water	r Supply Sour	ces						
List al	l currer	nt water supply	sources and the an	nounts author	ized with each:				
			Source		Amount Autho	rized			
						_ acre-feet _ acre-feet			
В.	Treat	ment and Dist	tribution System						
	1.	Design daily	capacity of system	:	MGD				
	2.	Storage Capa	city: Elevated	MGD,	Ground	MGD			
	3.		ter, do you recycle No If yes,			-			
	4.	Please attach	a description of	the water sys	tem. Include	the number of			

III.

TCEQ-10218 (Rev. 11-5-04) Page 5 of 11

treatment plants, wells, and storage tanks. If possible, include a sketch of the system layout.

IV. WASTEWATER SYSTEM DATA

A.	Wast	Wastewater System Data							
	1.	Design capacity of wastewater treatment plant(s): MGD							
	2.	Is treated effluent used for irrigation on-site, off-site, plant washdown, or chlorination/dechlorination? If yes, approximately gallons per month.							
	3.	3. Briefly describe the wastewater system(s) of the area serviced by the water utility. Describe how treated wastewater is disposed of. Where applicable identify treatment plant(s) with the TCEQ name and number, the operator owner, and, if wastewater is discharged, the receiving stream. If possible attach a sketch or map which locates the plant(s) and discharge points or disposal sites.							
В.	Wast	Wastewater Data for Service Area							
	1.	Percent of water service area served by wastewater system:%							
	2.	Monthly volume treated for previous three years (in 1,000 gallons):							
	Year Janua Febru March April May June July Augus Septes Octob Nover	ary n st mber per mber							
	Total								

TCEQ-10218 (Rev. 11-5-04)

REQUIREMENTS FOR WATER CONSERVATION PLANS FOR MUNICIPAL WATER USE BY PUBLIC WATER SUPPLIERS

In addition to the utility profile, a water conservation plan for municipal use by a public water supplier must include, at a minimum, additional information as required by Title 30, Texas Administrative Code, §288.2. Note: If the water conservation plan does not provide information for each requirement, an explanation must be included as to why the requirement is not applicable.

Specific, Quantified 5 & 10-Year Targets

The water conservation plan must include specific, quantified five-year and ten-year targets for water savings to include goals for water loss programs and goals for *municipal use in gallons per capita per day* (see Appendix A). Note that the goals established by a public water supplier under this subparagraph are not enforceable.

Metering Devices

The water conservation plan must include a statement about the water supplier's metering device(s), within an accuracy of plus or minus 5.0% in order to measure and account for the amount of water diverted from the source of supply.

Universal Metering

The water conservation plan must include and a program for universal metering of both customer and public uses of water, for meter testing and repair, and for periodic meter replacement.

Unaccounted-For Water Use

The water conservation plan must include measures to determine and control unaccounted-for uses of water (for example, periodic visual inspections along distribution lines; annual or monthly audit of the water system to determine illegal connections; abandoned services; etc.).

Continuing Public Education & Information

The water conservation plan must include a description of the program of continuing public education and information regarding water conservation by the water supplier.

Non-Promotional Water Rate Structure

The water supplier must have a water rate structure which is not "promotional," i.e., a rate

TCEQ-10218 (Rev. 11-5-04) Page 7 of 11

structure which is cost-based and which does not encourage the excessive use of water. This rate structure must be listed in the water conservation plan.

Reservoir Systems Operations Plan

The water conservation plan must include a reservoir systems operations plan, if applicable, providing for the coordinated operation of reservoirs owned by the applicant within a common watershed or river basin in order to optimize available water supplies.

Enforcement Procedure & Plan Adoption

The water conservation plan must include a means of implementation and enforcement which shall be evidenced by 1) a copy of the ordinance, resolution, or tariff indicating **official adoption** of the water conservation plan by the water supplier; and 2) a description of the authority by which the water supplier will implement and enforce the conservation plan.

Coordination with the Regional Water Planning Group(s)

The water conservation plan must include documentation of coordination with the regional water planning group(s) for the service area of the public water supplier in order to ensure consistency with the appropriate approved regional water plans.

Example statement to be included v	within the water conservation plan:	
The service area of the	(name of water supplier) is locat	ted within the
(name of regional wa	ter planning area or areas) and	(name o
water supplier) has provided a cop	y of this water conservation plan to the $_$	
(name of regional water planning g	group or groups).	

Additional Requirements:

required of suppliers serving population of 5,000 or more or a projected population of 5,000 or more within ten years)

1. Program for Leak Detection, Repair, and Water Loss Accounting

The plan must include a description of the program of leak detection, repair, and water loss accounting for the water transmission, delivery, and distribution system in order to control unaccounted-for uses of water.

2. Record Management System

The plan must include a record management system to record water pumped, water deliveries, water sales, and water losses which allows for the desegregation of water sales and uses into the following user classes (residential; commercial; public and

TCEQ-10218 (Rev. 11-5-04) Page 8 of 11

institutional; and industrial.

Plan Review and Update

Beginning May 1, 2005, a public water supplier for municipal use shall review and update its water conservation plan, as appropriate, based on an assessment of previous five-year and ten-year targets and any other new or updated information. The public water supplier for municipal use shall review and update the next revision of its water conservation plan not later than May 1, 2009, and every five years after that date to coincide with the regional water planning group. The revised plan must also include an implementation report.

Best Management Practices Guide

On November 2004, the Texas Water Development Board's (TWDB) Report 362 was completed by the Water Conservation Implementation Task Force. Report 362 is the Water Conservation Best Management Practices (BMP) Guide. The BMP Guide is a voluntary list of management practices that water users may implement in addition to the required components of Title 30, Texas Administrative Code, Chapter 288. The BMP Guide is available on the TWDB's website at the link below or by calling (512) 463-7847.

http://www.twdb.state.tx.us/assistance/conservation/TaskForceDocs/WCITFBMPGuide.pdf

TCEQ-10218 (Rev. 11-5-04) Page 9 of 11

Appendix A

Definitions of Commonly Used Terms

Conservation – Those practices, techniques, and technologies that reduce the consumption of water, reduce the loss or waste of water, improve the efficiency in the use of water, or increase the recycling and reuse of water so that a water supply is made available for future or alternative uses.

Industrial use – The use of water in processes designed to convert materials of a lower order of value into forms having greater usability and commercial value, commercial fish production, and the development of power by means other than hydroelectric, but does not include agricultural use.

Irrigation – The agricultural use of water for the irrigation of crops, trees, and pastureland, including, but not limited to, golf courses and parks which do not receive water through a municipal distribution system.

Municipal per capita water use – The sum total of water diverted into a water supply system for residential, commercial, and public and institutional uses divided by actual population served.

Municipal use – The use of potable water within or outside a municipality and its environs whether supplied by a person, privately owned utility, political subdivision, or other entity as well as the use of sewage effluent for certain purposes, including the use of treated water for domestic purposes, fighting fires, sprinkling streets, flushing sewers and drains, watering parks and parkways, and recreational purposes, including public and private swimming pools, the use of potable water in industrial and commercial enterprises supplied by a municipal distribution system without special construction to meet its demands, and for the watering of lawns and family gardens.

Municipal use in gallons per capita per day – The total average daily amount of water diverted or pumped for treatment for potable use by a public water supply system. The calculation is made by dividing the water diverted or pumped for treatment for potable use by population served. Indirect reuse volumes shall be credited against total diversion volumes for the purpose of calculating gallons per capita per day for targets and goals.

Pollution – The alteration of the physical, thermal, chemical, or biological quality of, or the contamination of, any water in the state that renders the water harmful, detrimental, or injurious to humans, animal life, vegetation, or property, or to the public health, safety, or welfare, or impairs the usefulness or the public enjoyment of the water for any lawful or reasonable purpose.

Public water supplier – An individual or entity that supplies water to the public for human consumption.

Regional water planning group – A group established by the Texas Water Development Board to prepare a regional water plan under Texas Water Code, §16.053.

Retail public water supplier – An individual or entity that for compensation supplies water to the public for human consumption. The term does not include an individual or entity that supplies water

TCEQ-10218 (Rev. 11-5-04) Page 10 of 11

to itself or its employees or tenants when that water is not resold to or used by others.

Reuse – The authorized use for one or more beneficial purposes of use of water that remains unconsumed after the water is used for the original purpose of use and before that water is either disposed of or discharged or otherwise allowed to flow into a watercourse, lake, or other body of state-owned water.

Water conservation plan – A strategy or combination of strategies for reducing the volume of water withdrawn from a water supply source, for reducing the loss or waste of water, for maintaining or improving the efficiency in the use of water, for increasing the recycling and reuse of water, and for preventing the pollution of water. A water conservation plan may be a separate document identified as such or may be contained within another water management document(s).

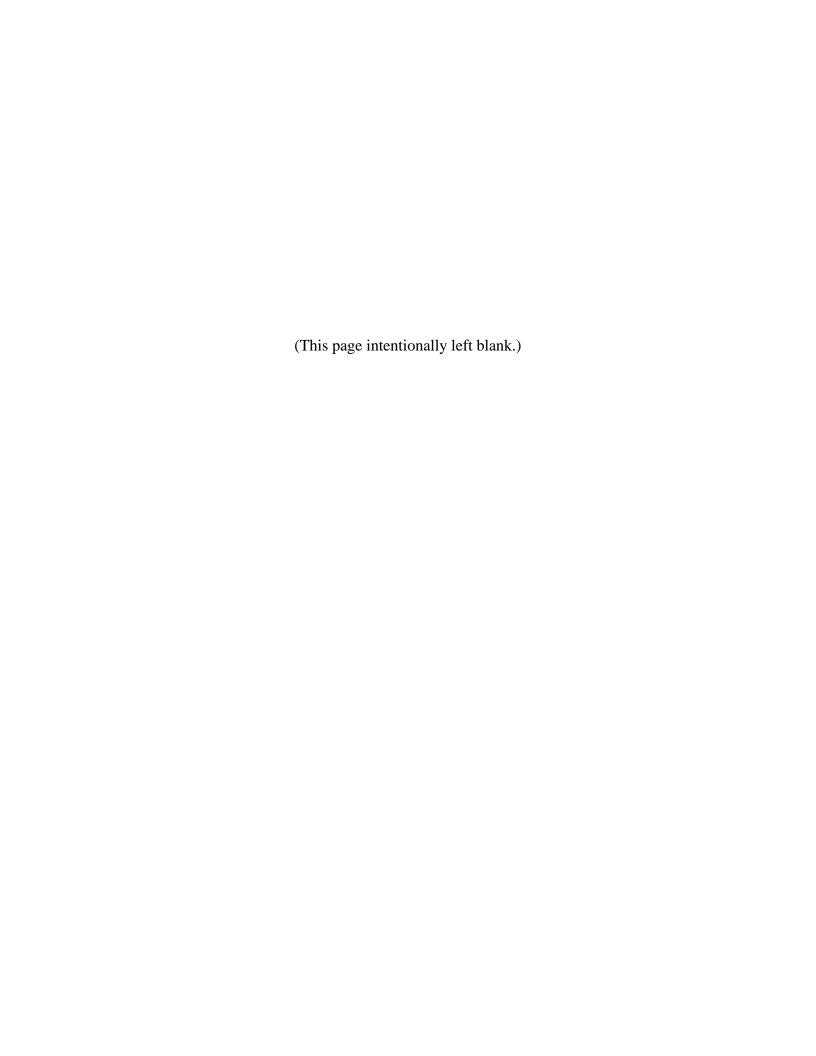
Water loss - The difference between water diverted or treated and water delivered (sold). Water loss can result from:

- 1. inaccurate or incomplete record keeping;
- 2. meter error:
- 3. unmetered uses such as firefighting, line flushing, and water for public buildings and water treatment plants;
- 4. leaks; and
- 5. water theft and unauthorized use.

Wholesale public water supplier – An individual or entity that for compensation supplies water to another for resale to the public for human consumption. The term does not include an individual or entity that supplies water to itself or its employees or tenants as an incident of that employee service or tenancy when that water is not resold to or used by others, or an individual or entity that conveys water to another individual or entity, but does not own the right to the water which is conveyed, whether or not for a delivery fee.

TCEQ-10218 (Rev. 11-5-04) Page 11 of 11

Appendix G


Texas Commission on Environmental Quality

Model Municipal Drought Contingency Plan

Drought Contingency Plan Requirements for Municipal Retail Public Water Suppliers

Web Site for Information:

http://www.tceq.state.tx.us/assets/public/permitting/watersupply/water_rights/20191.pdf

Drought Contingency Plan for a Retail Public Water Supplier

Texas Commission on Environmental Quality

<u>Instructions</u>: The following form is a model of a drought contingency plan for a retail public water supplier. Not all items may apply to your system's situation. This form is supplied for your convenience, but you are not required to use this form to submit your plan to the TCEQ. Submit completed plans to: Water Supply Division MC 160, TCEQ, P.O. Box 13087, Austin TX 78711-3087.

(Name of Utility)
(Address, City, Zip Code)
(CCN#)
(PWS #s)
(Date)

Section I: Declaration of Policy, Purpose, and Intent

In order to conserve the available water supply and protect the integrity of water supply facilities, with particular regard for domestic water use, sanitation, and fire protection, and to protect and preserve public health, welfare, and safety and minimize the adverse impacts of water supply shortage or other water supply emergency conditions, the _______ (name of your water supplier) hereby adopts the following regulations and restrictions on the delivery and consumption of water through an ordinance/or resolution (see Appendix C for an example).

Water uses regulated or prohibited under this Drought Contingency Plan (the Plan) are considered to be non-essential and continuation of such uses during times of water shortage or other emergency water supply condition are deemed to constitute a waste of water which subjects the offender(s) to penalties as defined in Section XI of this Plan.

TCEQ-20191 (Rev. 5-5-05) Page 1 of 18

Section II: Public Involvement Opportunity for the public to provide input into the preparation of the Plan was provided by the (name of your water supplier) by means of (describe methods used to inform the public about the preparation of the plan and provide opportunities for input; for example, scheduling and providing public notice of a public meeting to accept input on the Plan). **Section III: Public Education** (name of your water supplier) will periodically provide the public with information about the Plan, including information about the conditions under which each stage of the Plan is to be initiated or terminated and the drought response measures to be implemented in each stage. This information will be provided by means of (describe methods to be used to provide information to the public about the Plan; for example, public events, press releases or utility bill inserts). **Coordination with Regional Water Planning Groups Section IV:** The service area of the (name of your water supplier) is located within the (name of regional water planning area or areas) and (name of your water supplier) has provided a copy of this Plan to the (name of your regional water planning group or groups). **Section V: Authorization** (designated official; for example, the mayor, city manager, utility director, general manager, etc.), or his/her designee is hereby authorized and directed to implement the applicable provisions of this Plan upon determination that such implementation is necessary to protect public health, safety, and welfare. The , (designated official) or his/her designee, shall have the authority to initiate or terminate drought or other water supply emergency response measures as described in this Plan. **Section VI: Application** The provisions of this Plan shall apply to all persons, customers, and property utilizing water provided

TCEQ-20191 (Rev. 5-5-05) Page 2 of 18

in the Plan include individuals, corporations, partnerships, associations, and all other legal entities.

(name of your water supplier). The terms "person" and "customer" as used

Section VII: Definitions

For the purposes of this Plan, the following definitions shall apply:

<u>Aesthetic water use</u>: water use for ornamental or decorative purposes such as fountains, reflecting pools, and water gardens.

<u>Commercial and institutional water use</u>: water use which is integral to the operations of commercial and non-profit establishments and governmental entities such as retail establishments, hotels and motels, restaurants, and office buildings.

<u>Conservation</u>: those practices, techniques, and technologies that reduce the consumption of water, reduce the loss or waste of water, improve the efficiency in the use of water or increase the recycling and reuse of water so that a supply is conserved and made available for future or alternative uses.

<u>Customer</u>: any person, company, or organization using water supplied by ______ (name of your water supplier).

<u>Domestic water use</u>: water use for personal needs or for household or sanitary purposes such as drinking, bathing, heating, cooking, sanitation, or for cleaning a residence, business, industry, or institution.

<u>Even number address</u>: street addresses, box numbers, or rural postal route numbers ending in 0, 2, 4, 6, or 8 and locations without addresses.

<u>Industrial water use</u>: the use of water in processes designed to convert materials of lower value into forms having greater usability and value.

<u>Landscape irrigation use</u>: water used for the irrigation and maintenance of landscaped areas, whether publicly or privately owned, including residential and commercial lawns, gardens, golf courses, parks, and rights-of-way and medians.

<u>Non-essential water use</u>: water uses that are not essential nor required for the protection of public, health, safety, and welfare, including:

- (a) irrigation of landscape areas, including parks, athletic fields, and golf courses, except otherwise provided under this Plan;
- (b) use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle;
- (c) use of water to wash down any sidewalks, walkways, driveways, parking lots, tennis courts, or other hard-surfaced areas;
- (d) use of water to wash down buildings or structures for purposes other than immediate fire protection;
- (e) flushing gutters or permitting water to run or accumulate in any gutter or street;
- (f) use of water to fill, refill, or add to any indoor or outdoor swimming pools or jacuzzi-type pools;

TCEQ-20191 (Rev. 5-5-05) Page 3 of 18

- (g) use of water in a fountain or pond for aesthetic or scenic purposes except where necessary to support aquatic life;
- (h) failure to repair a controllable leak(s) within a reasonable period after having been given notice directing the repair of such leak(s); and
- (i) use of water from hydrants for construction purposes or any other purposes other than fire fighting.

Odd numbered address: street addresses, box numbers, or rural postal route numbers ending in 1, 3, 5, 7, or 9.

The	(designated official) or his/her designee shall monitor water supply and/or
demand conditions or conditions warrant in are reached.	n a (example: daily, weekly, monthly) basis and shall determine when tiation or termination of each stage of the Plan, that is, when the specified "triggers"
The triggering criteria	a described below are based on
/ trigger levels based	ription of the rationale for the triggering criteria; for example, triggering criteria on a statistical analysis of the vulnerability of the water source under drought of based on known system capacity limits).
Stage 1 Triggers –	MILD Water Shortage Conditions
Requirements for init	iation
Customers shall be re	equested to voluntarily conserve water and adhere to the prescribed restrictions on fined in Section VII–Definitions, when
(describe triggering o	criteria / trigger levels; see examples below).
<u>successive st</u> be defined fo	te examples of the types of triggering criteria that might be used <u>in one or more ages</u> of a drought contingency plan. One or a combination of such criteria must by each drought response stage, but usually <u>not all will apply</u> . Select those to your system:
Example 1:	Annually, beginning on May 1 through September 30.
Example 2:	When the water supply available to the (name of your water supplier) is equal to or less than (acre-feet, percentage of storage, etc.).
Example 3:	When, pursuant to requirements specified in the(name of your

TCEQ-20191 (Rev. 5-5-05) Page 4 of 18

	of your wholesale water supplier), notification is received requesting initiation of Stage 1 of the Drought Contingency Plan.
Example 4:	When flows in the (name of stream or river) are equal to or less thancubic feet per second.
Example 5:	When the static water level in the (name of your water supplier) well(s) is equal to or less than feet above/below mean sea level.
Example 6:	When the specific capacity of the (name of your water supplier) well(s) is equal to or less than percent of the well's original specific capacity.
Example 7:	When total daily water demand equals or exceeds million gallons for consecutive days of million gallons on a single day (example: based on the "safe" operating capacity of water supply facilities).
Example 8:	Continually falling treated water reservoir levels which do not refill above percent overnight (example: based on an evaluation of minimum treated water storage required to avoid system outage).
The public water supp	plier may devise other triggering criteria which are tailored to its system.
	nination ay be rescinded when all of the conditions listed as triggering events have ceased f(e.g. 3) consecutive days.
Stage 2 Triggers - N	MODERATE Water Shortage Conditions
	iation equired to comply with the requirements and restrictions on certain non-essential n Section IX of this Plan when (describe triggering criteria; see
	nination ay be rescinded when all of the conditions listed as triggering events have ceased (example: 3) consecutive days. Upon termination of Stage 2, Stage 1 becomes
Stage 3 Triggers – Sl	EVERE Water Shortage Conditions
	required to comply with the requirements and restrictions on certain non-essential of this Plan when (describe triggering criteria; see examples in

TCEQ-20191 (Rev. 5-5-05) Page 5 of 18

Requirements for termination Stage 3 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days. Upon termination of Stage 3, Stage 2 becomes operative. **Stage 4 Triggers -- CRITICAL Water Shortage Conditions** Requirements for initiation Customers shall be required to comply with the requirements and restrictions on certain non-essential water uses for Stage 4 of this Plan when (describe triggering criteria; see examples in Stage 1). Requirements for termination Stage 4 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days. Upon termination of Stage 4, Stage 3 becomes operative. **Stage 5 Triggers -- EMERGENCY Water Shortage Conditions** Requirements for initiation Customers shall be required to comply with the requirements and restrictions for Stage 5 of this Plan (designated official), or his/her designee, determines that a water supply emergency when exists based on: 1. Major water line breaks, or pump or system failures occur, which cause unprecedented loss of capability to provide water service; or 2. Natural or man-made contamination of the water supply source(s). Requirements for termination Stage 5 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days. **Stage 6 Triggers -- WATER ALLOCATION** Requirements for initiation Customers shall be required to comply with the water allocation plan prescribed in Section IX of this Plan and comply with the requirements and restrictions for Stage 5 of this Plan when (describe triggering criteria, see examples in Stage 1).

Stage 1).

TCEQ-20191 (Rev. 5-5-05) Page 6 of 18

<u>Requirements for termination</u> - Water allocation may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of ____ (example: 3) consecutive days.

Note: The inclusion of WATER ALLOCATION as part of a drought contingency plan may not be required in all cases. For example, for a given water supplier, an analysis of water supply availability under drought of record conditions may indicate that there is essentially no risk of water supply shortage. Hence, a drought contingency plan for such a water supplier might only address facility capacity limitations and emergency conditions (example: supply source contamination and system capacity limitations).

Section IX: Drought Response Stages

The ______ (designated official), or his/her designee, shall monitor water supply and/or demand conditions on a daily basis and, in accordance with the triggering criteria set forth in Section VIII of this Plan, shall determine that a mild, moderate, severe, critical, emergency or water shortage condition exists and shall implement the following notification procedures:

Notification

Notification of the Public:

The _____ (designated official) or his/ her designee shall notify the public by means of:

Examples:

publication in a newspaper of general circulation, direct mail to each customer, public service announcements, signs posted in public places take-home fliers at schools.

Additional Notification:

The _____ (designated official) or his/ her designee shall notify directly, or cause to be notified directly, the following individuals and entities:

Examples:

Mayor / Chairman and members of the City Council / Utility Board

Fire Chief(s)

City and/or County Emergency Management Coordinator(s)

County Judge & Commissioner(s)

State Disaster District / Department of Public Safety

TCEQ (required when mandatory restrictions are imposed)

Major water users

TCEQ-20191 (Rev. 5-5-05) Page 7 of 18

Critical water users, i.e. hospitals

Parks / street superintendents & public facilities managers

Note: The plan should specify direct notice only as appropriate to respective drought stages. **Stage 1 Response -- MILD Water Shortage Conditions Target:** Achieve a voluntary percent reduction in (example: total water use, daily water demand, etc.). Best Management Practices for Supply Management: Describe additional measures, if any, to be implemented directly by (name of your water supplier) to manage limited water supplies and/or reduce water demand. Examples include: reduced or discontinued flushing of water mains, activation and use of an *alternative supply source(s); use of reclaimed water for non-potable purposes.* Voluntary Water Use Restrictions for Reducing Demand: (a) Water customers are requested to voluntarily limit the irrigation of landscaped areas to Sundays and Thursdays for customers with a street address ending in an even number (0, 2, 4, 6 or 8), and Saturdays and Wednesdays for water customers with a street address ending in an odd number (1, 3, 5, 7 or 9), and to irrigate landscapes only between the hours of midnight and 10:00 a.m. and 8:00 p.m to midnight on designated watering days. (b) All operations of the (name of your water supplier) shall adhere to water use restrictions prescribed for Stage 2 of the Plan. (c) Water customers are requested to practice water conservation and to minimize or discontinue water use for non-essential purposes. **Stage 2 Response -- MODERATE Water Shortage Conditions** Target: Achieve a ____ percent reduction in _____ (example: total water use, daily water demand, etc.). Best Management Practices for Supply Management: Describe additional measures, if any, to be implemented directly by (name of your water supplier) to manage limited water supplies and/or reduce water demand.

TCEQ-20191 (Rev. 5-5-05) Page 8 of 18

use of reclaimed water for non-potable purposes.

Examples include: reduced or discontinued flushing of water mains, reduced or discontinued irrigation of public landscaped areas; use of an alternative supply source(s);

Water Use Restrictions for Demand Reduction:

Under threat of penalty for violation, the following water use restrictions shall apply to all persons:

- (a) Irrigation of landscaped areas with hose-end sprinklers or automatic irrigation systems shall be limited to Sundays and Thursdays for customers with a street address ending in an even number (0, 2, 4, 6 or 8), and Saturdays and Wednesdays for water customers with a street address ending in an odd number (1, 3, 5, 7 or 9), and irrigation of landscaped areas is further limited to the hours of 12:00 midnight until 10:00 a.m. and between 8:00 p.m. and 12:00 midnight on designated watering days. However, irrigation of landscaped areas is permitted at anytime if it is by means of a hand-held hose, a faucet filled bucket or watering can of five (5) gallons or less, or drip irrigation system.
- (b) Use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle is prohibited except on designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8:00 p.m. and 12:00 midnight. Such washing, when allowed, shall be done with a hand-held bucket or a hand-held hose equipped with a positive shutoff nozzle for quick rises. Vehicle washing may be done at any time on the immediate premises of a commercial car wash or commercial service station. Further, such washing may be exempted from these regulations if the health, safety, and welfare of the public is contingent upon frequent vehicle cleansing, such as garbage trucks and vehicles used to transport food and perishables.
- (c) Use of water to fill, refill, or add to any indoor or outdoor swimming pools, wading pools, or jacuzzi-type pools is prohibited except on designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight.
- (d) Operation of any ornamental fountain or pond for aesthetic or scenic purposes is prohibited except where necessary to support aquatic life or where such fountains or ponds are equipped with a recirculation system.
- (e) Use of water from hydrants shall be limited to fire fighting, related activities, or other activities necessary to maintain public health, safety, and welfare, except that use of water from designated fire hydrants for construction purposes may be allowed under special permit from the ______ (name of your water supplier).
- (f) Use of water for the irrigation of golf course greens, tees, and fairways is prohibited except on designated watering days between the hours 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight. However, if the golf course utilizes a water source other than that provided by the ______ (name of your water supplier), the facility shall not be subject to these regulations.

TCEQ-20191 (Rev. 5-5-05)
Page 9 of 18

- (g) All restaurants are prohibited from serving water to patrons except upon request of the patron.
- (h) The following uses of water are defined as non-essential and are prohibited:
 - 1. wash down of any sidewalks, walkways, driveways, parking lots, tennis courts, or other hard-surfaced areas;
 - 2. use of water to wash down buildings or structures for purposes other than immediate fire protection;
 - 3. use of water for dust control;
 - 4. flushing gutters or permitting water to run or accumulate in any gutter or street; and
 - 5. failure to repair a controllable leak(s) within a reasonable period after having been given notice directing the repair of such leak(s).

Stage 3 Response -- SEVERE Water Shortage Conditions

<u>Target</u> : Achieve a percent reduction in water demand, etc.).	(example: total water use, daily
Best Management Practices for Supply Managemen	<u>ıt</u> :
Describe additional measures, if any, to be imployed of your water supplier) to manage limited water Examples include: reduced or discontinued flushing irrigation of public landscaped areas; use of reclaimed water for non-potable purposes.	er supplies and/or reduce water demand. ing of water mains, reduced or discontinued

Water Use Restrictions for Demand Reduction:

All requirements of Stage 2 shall remain in effect during Stage 3 except:

- (a) Irrigation of landscaped areas shall be limited to designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight and shall be by means of hand-held hoses, hand-held buckets, drip irrigation, or permanently installed automatic sprinkler system only. The use of hose-end sprinklers is prohibited at all times.
- (b) The watering of golf course tees is prohibited unless the golf course utilizes a water source other than that provided by the ______ (name of your water supplier).
- (c) The use of water for construction purposes from designated fire hydrants under special permit is to be discontinued.

TCEQ-20191 (Rev. 5-5-05) Page 10 of 18

Stage 4 Response -- CRITICAL Water Shortage Conditions

<u>Target</u> : Achieve a percent reduction in water demand, etc.).	(example: total water use, daily
Best Management Practices for Supply Management:	
Describe additional measures, if any, to be implement of your water supplier) to manage limited water sup Examples include: reduced or discontinued flust discontinued irrigation of public landscaped areas; use of reclaimed water for non-potable purposes.	oplies and/or reduce water demand. Thing of water mains, reduced or

<u>Water Use Restrictions for Reducing Demand:</u>. All requirements of Stage 2 and 3 shall remain in effect during Stage 4 except:

- (a) Irrigation of landscaped areas shall be limited to designated watering days between the hours of 6:00 a.m. and 10:00 a.m. and between 8:00 p.m. and 12:00 midnight and shall be by means of hand-held hoses, hand-held buckets, or drip irrigation only. The use of hose-end sprinklers or permanently installed automatic sprinkler systems are prohibited at all times.
- (b) Use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle not occurring on the premises of a commercial car wash and commercial service stations and not in the immediate interest of public health, safety, and welfare is prohibited. Further, such vehicle washing at commercial car washes and commercial service stations shall occur only between the hours of 6:00 a.m. and 10:00 a.m. and between 6:00 p.m. and 10 p.m.
- (c) The filling, refilling, or adding of water to swimming pools, wading pools, and jacuzzitype pools is prohibited.
- (d) Operation of any ornamental fountain or pond for aesthetic or scenic purposes is prohibited except where necessary to support aquatic life or where such fountains or ponds are equipped with a recirculation system.
- (e) No application for new, additional, expanded, or increased-in-size water service connections, meters, service lines, pipeline extensions, mains, or water service facilities of any kind shall be approved, and time limits for approval of such applications are hereby suspended for such time as this drought response stage or a higher-numbered stage shall be in effect.

TCEQ-20191 (Rev. 5-5-05) Page 11 of 18

Stage 5 Response -- EMERGENCY Water Shortage Conditions

	Target: Achieve a p		(example: total was	ter use, daily
	Best Management Practice	es for Supply Manage	ment:	
	of your water supplie Examples include: red	er) to manage limitea uced or discontinued f andscaped areas; us	implemented directly by l water supplies and/or reduce we lushing of water mains, reduced or se of an alternative supply sour	ater demand. discontinued
	Water Use Restrictions for in effect during Stage 5 ex	•	All requirements of Stage 2, 3, and 4	4 shall remain
	(a) Irrigation of landso	caped areas is absolut	ely prohibited.	
	(b) Use of water to was is absolutely prohi	•	motorbike, boat, trailer, airplane or	other vehicle
Stage	6 Response WATER A	LLOCATION		
	_	-	c health, safety, and welfare, the _ ter according to the following wa	ter allocation
	Single-Family Residentia	al Customers		
	The allocation to resident follows:	ial water customers r	esiding in a single-family dwelling	ng shall be as
	Persons p	er Household	Gallons per Month	
	1 0	or 2	6,000	
	3 c	or 4	7,000	
	5 c	or 6	8,000	
	7 c	or 8	9,000	
	9 0	or 10	10,000	
	11	or more	12,000	

TCEQ-20191 (Rev. 5-5-05) Page 12 of 18

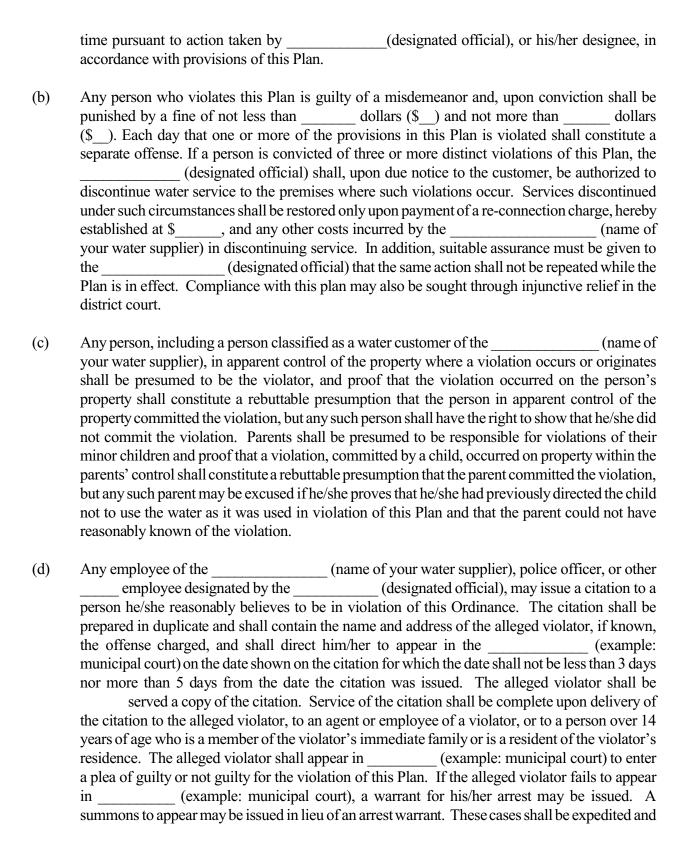
"Household" means the residential premises served by the customer's meter. "Persons per household" includes only those persons currently physically residing at the premises and expected to reside there for the entire billing period. It shall be assumed that a particular customer's household is comprised of two (2) persons unless the customer notifies the (name of your water supplier) of a greater number of persons per household on a form prescribed by the designated official). The (designated official) shall give his/her best effort to see that such forms are mailed, otherwise provided, or made available to every residential customer. If, however, a customer does not receive such a		
form, it shall be the customer's responsibility to go to the (name of your water supplier) offices to complete and sign the form claiming more than two (2) persons per household. New customers may claim more persons per household at the time of applying for water service on the form prescribed by the (designated official). When the number of persons per household increases so as to place the customer in a different allocation category, the customer may notify the (name of water supplier) on such form and the change will be implemented in the next practicable billing period. If the number of persons in a household is reduced, the customer shall notify the (name of your water supplier) in writing within two (2) days. In prescribing the method for claiming more than two (2) persons per household, the (designated official) shall adopt methods to insure the accuracy of the claim. Any person who knowingly, recklessly, or with criminal negligence falsely reports the number of persons in a household or fails to timely notify the (name of your water supplier) of a reduction in the number of person in a household shall be fined not less than \$		
Residential water customers shall pay the following surcharges:		
\$ for the first 1,000 gallons over allocation. \$ for the second 1,000 gallons over allocation. \$ for the third 1,000 gallons over allocation. \$ for each additional 1,000 gallons over allocation.		
Surcharges shall be cumulative.		
Master-Metered Multi-Family Residential Customers		
The allocation to a customer billed from a master meter which jointly measures water to multiple permanent residential dwelling units (example: apartments, mobile homes) shall be allocated 6,000 gallons per month for each dwelling unit. It shall be assumed that such a customer's meter serves two dwelling units unless the customer notifies the (name of your water supplier) of a greater number on a form prescribed by the (designated official). The (designated official) shall give his/her best effort to see that such forms are mailed, otherwise provided, or made available to every such customer. If, however, a customer does not		

TCEQ-20191 (Rev. 5-5-05) Page 13 of 18

receive such a form, it shall be the customer's responsibility to go to the (name
of your water supplier) offices to complete and sign the form claiming more than two (2)
dwellings. A dwelling unit may be claimed under this provision whether it is occupied or not.
New customers may claim more dwelling units at the time of applying for water service on the
form prescribed by the (designated official). If the number of dwelling units served
by a master meter is reduced, the customer shall notify the (name of your water
supplier) in writing within two (2) days. In prescribing the method for claiming more than two
(2) dwelling units, the (designated official) shall adopt methods to insure the accuracy
of the claim. Any person who knowingly, recklessly, or with criminal negligence falsely reports
the number of dwelling units served by a master meter or fails to timely notify the
(name of your water supplier) of a reduction in the number of person in a household shall be fined
not less than \$ Customers billed from a master meter under this provision shall pay
the following monthly surcharges:
\$ for 1,000 gallons over allocation up through 1,000 gallons for
each dwelling unit.
\$, thereafter, for each additional 1,000 gallons over allocation
up through a second 1,000 gallons for each dwelling unit.
\$, thereafter, for each additional 1,000 gallons over allocation
up through a third 1,000 gallons for each dwelling unit.
\$, thereafter for each additional 1,000 gallons over allocation.
Surcharges shall be cumulative.
Commercial Customers
A monthly water allocation shall be established by the (designated official), or
his/her designee, for each nonresidential commercial customer other than an industrial customer
who uses water for processing purposes. The non-residential customer's allocation shall be
approximately (e.g. 75%) percent of the customer's usage for corresponding month's billing
period for the previous 12 months. If the customer's billing history is shorter than 12 months,
the monthly average for the period for which there is a record shall be used for any monthly
period for which no history exists. Provided, however, a customer, percent of whose monthly
usage is less than gallons, shall be allocated gallons. The (designated
official) shall give his/her best effort to see that notice of each non-residential customer's
allocation is mailed to such customer. If, however, a customer does not receive such notice, it
shall be the customer's responsibility to contact the (name of your water supplier)
to determine the allocation. Upon request of the customer or at the initiative of the

TCEQ-20191 (Rev. 5-5-05) Page 14 of 18

(designated official), the allocation may be reduced or increased if, (1) the designated period does not accurately reflect the customer's normal water usage, (2) one nonresidential customer agrees to transfer part of its allocation to another nonresidential customer, or (3) other objective evidence demonstrates that the designated allocation is inaccurate under present conditions. A customer


may appeal an allocation established hereunder to the (designated official or
alternatively, a special water allocation review committee). Nonresidential commercial customers
shall pay the following surcharges:
Customers whose allocation is gallons through gallons per month:
 per thousand gallons for the first 1,000 gallons over allocation. per thousand gallons for the second 1,000 gallons over allocation. per thousand gallons for the third 1,000 gallons over allocation. per thousand gallons for each additional 1,000 gallons over allocation.
Customers whose allocation is gallons per month or more:
 times the block rate for each 1,000 gallons in excess of the allocation up through 5 percent above allocation. times the block rate for each 1,000 gallons from 5 percent through 10 percent above allocation. times the block rate for each 1,000 gallons from 10 percent through 15 percent above allocation. times the block rate for each 1,000 gallons more than 15 percent above allocation.
The surcharges shall be cumulative. As used herein, "block rate" means the charge to the customer per 1,000 gallons at the regular water rate schedule at the level of the customer's allocation.
Industrial Customers
A monthly water allocation shall be established by the (designated official), or his/her designee, for each industrial customer, which uses water for processing purposes. The industrial customer's allocation shall be approximately (example: 90%) percent of the customer's water usage baseline. Ninety (90) days after the initial imposition of the allocation for industrial customers, the industrial customer's allocation shall be further reduced to (example: 85%) percent of the customer's water usage baseline. The industrial customer's water use baseline will be computed on the average water use for the month period ending prior to the date of implementation of Stage 2 of the Plan. If the industrial water customer's billing history is shorter than months, the monthly average for the period for which there is a record shall be used for any monthly period for which no billing history exists. The (designated official) shall give his/her best effort to see that notice of each industrial customer's allocation is mailed to such customer. If, however, a customer does not receive such notice, it shall be the customer's responsibility to contact the (name of your water supplier)

TCEQ-20191 (Rev. 5-5-05) Page 15 of 18

to determine the allocation, and the allocation shall be fully effective notwithstanding the lack of

	receipt of written notice. Upon request of the customer or at the initiative of the (designated official), the allocation may be reduced or increased, (1) if the designated period does not accurately reflect the customer's normal water use because the customer had shutdown a major processing unit for repair or overhaul during the period, (2) the customer has added or is in the process of adding significant additional processing capacity, (3) the customer has shutdown or significantly reduced the production of a major processing unit, (4) the customer has previously implemented significant permanent water conservation measures such that the ability to further reduce water use is limited, (5) the customer agrees to transfer part of its allocation to another industrial customer, or (6) if other objective evidence demonstrates that the designated allocation is inaccurate under present conditions. A customer may appeal an allocation established hereunder to the (designated official or alternatively, a special water allocation review committee). Industrial customers shall pay the following surcharges:
	Customers whose allocation is gallons through gallons per month:
	\$ per thousand gallons for the first 1,000 gallons over allocation. \$ per thousand gallons for the second 1,000 gallons over allocation. \$ per thousand gallons for the third 1,000 gallons over allocation. \$ per thousand gallons for each additional 1,000 gallons over allocation.
	Customers whose allocation is gallons per month or more:
	 times the block rate for each 1,000 gallons in excess of the allocation up through 5 percent above allocation. times the block rate for each 1,000 gallons from 5 percent through 10 percent above allocation. times the block rate for each 1,000 gallons from 10 percent through 15 percent above allocation. times the block rate for each 1,000 gallons more than 15 percent above allocation.
	The surcharges shall be cumulative. As used herein, "block rate" means the charge to the customer per 1,000 gallons at the regular water rate schedule at the level of the customer's allocation.
Section	on X: Enforcement
(a)	No person shall knowingly or intentionally allow the use of water from the (name of your water supplier) for residential, commercial, industrial, agricultural, governmental, or any other purpose in a manner contrary to any provision of this Plan, or in an amount in excess of that permitted by the drought response stage in effect at the

TCEQ-20191 (Rev. 5-5-05) Page 16 of 18

TCEQ-20191 (Rev. 5-5-05) Page 17 of 18

	given preferential setting in (example: municipal court) before all other cases.
Section	on XI: Variances
grant s	(designated official), or his/her designee, may, in writing, grant temporary ace for existing water uses otherwise prohibited under this Plan if it is determined that failure to such variance would cause an emergency condition adversely affecting the health, sanitation, or fire etion for the public or the person requesting such variance and if one or more of the following tions are met:
(a)(b)	Compliance with this Plan cannot be technically accomplished during the duration of the water supply shortage or other condition for which the Plan is in effect. Alternative methods can be implemented which will achieve the same level of reduction in water use.
with t	ns requesting an exemption from the provisions of this Ordinance shall file a petition for variance the (name of your water supplier) within 5 days after the Plan or a particular tresponse stage has been invoked. All petitions for variances shall be reviewed by the (designated official), or his/her designee, and shall include the following:
(a) (b) (c) (d)	Name and address of the petitioner(s). Purpose of water use. Specific provision(s) of the Plan from which the petitioner is requesting relief. Detailed statement as to how the specific provision of the Plan adversely affects the petitioner or what damage or harm will occur to the petitioner or others if petitioner complies with this Ordinance.

Description of the relief requested. (e)

- (f)
- Period of time for which the variance is sought.

 Alternative water use restrictions or other measures the petitioner is taking or proposes to take (g) to meet the intent of this Plan and the compliance date.

Other pertinent information. (h)

TCEQ-20191 (Rev. 5-5-05) Page 18 of 18

Appendix H Endangered, Threatened, or Species of Concern by County

Table H-1. Endangered, Threatened, or Species of Concern

Listed for Atascosa County

		Summary of Habitat	Listing	Entity	Potential	
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County	
		BIRDS				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident	
	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant	
Peregrine Falcon	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant	
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident	
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant	
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant	
	(CRUSTACEANS				
Nueces crayfish	Procambarus nueces	Known only from one tributary to the Nueces River.			Resident	
		MAMMALS				
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident	
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident	
Ocelot	Leopardus pardalis	Found in dense chaparral thickets, and oak mottes.	LE	Е	Resident	
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident	
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident	
		MOLLUSKS				
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident	
PLANTS						
Big red sage	Salvia penstemonoides	Endemic; moist to seasonally wet clay or silt soils in creek beds.			Resident	
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident	

		Summary of Habitat	Listing	Entity	Potential	
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County	
Park's jointweed	Polygonella parksii	Endemic; deep loose sands of Carrizo and similar Eocene formations.			Resident	
Sandhill woollywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian corridors.			Resident	
		REPTILES				
Indigo snake	Drymarchon corais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident	
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident	
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident	
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident	
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident	

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^{\star} -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Atascosa County (Updated 5/7/2009),

Table H-2. Endangered, Threatened, or Species of Concern

Listed for Bexar County

Common Name	Scientific Name	Summary of Habitat	Listing E	Entity	Potential Occurrence				
Common Name	Solonimo Hamo	Preference	USFWS	TPWD	in County				
	AMPHIBIANS								
Cascade Caverns salamander	Eurycea latitans complex	Endemic, subaquatic in Edwards Aquifer Area		Т	Resident				
Comal Blind Salamander	Eurycea tridentifera	Endemic; springs and waters of caves in Bexar County.		Т	Resident				
Texas Salamander	Eurycea neotenes	Endemic; springs, seeps, cave streams, Helotes and Leon Creek drainages in Bexar County			Resident				
		ARACHNIDS							
Braken Bat Cave Meshweaver	Cicurina venii	Karst features in western Bexar County	LE		Resident				
Cokendolpher cave harvestman	Texella cokendolpheri	Karst features in north- central Bexar County	LE		Resident				
Government Canyon Bat Cave Meshweaver	Cicurina vespera	Karst features in northwestern Bexar County	LE		Resident				
Government Canyon Bat Cave Spider	Neoleptoneta microps	Karst features in northwestern Bexar County	LE		Resident				
Madla Cave Meshweaver	Cicurina madla	Karst features in northern Bexar County	LE		Resident				
Robber Baron Cave Meshweaver	Cicurina baronia	Karst features in north- central Bexar County	LE		Resident				
		BIRDS							
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	E	Resident				
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	Е	Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
. orogrino i aloon	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				

		Summary of Habitat	Listing Entity	Potential	
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant
Zone-tailed Hawk	Buteo albonotatus	Arid open country, often near watercourses		Т	Resident
		CRUSTACEANS			
A cave obligate crustacean	Monodella texana	Subaquatic, underground freshwater aquifers			Resident
		FISHES			
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident
Toothless Blindcat	Trogloglanis pattersoni	Troglobitic, blind catfish endemic to the San Antonio Pool of the Edwards Aquifer		Т	Resident
Widemouth Blindcat	Satan eurystomus	Troglobitic, blind catfish endemic to the San Antonio Pool of the Edwards Aquifer.		Т	Resident
		INSECTS			
A Ground Beetle	Rhadine exilis	Karst features in northern Bexar County	LE		Resident
A Ground Beetle	Rhadine infernalis	Karst features in northern and western Bexar County	LE		Resident
Helotes Mold Beetle	Batrisodes venyivi	Karst features in northwestern Bexar County	LE		Resident
Manfreda Giant-skipper	Stallingsia maculosus	Skipper larvae usually feed inside a leaf shelter.			Resident
Rawson's metalmark	Calephelis rawsoni	Moist areas in shaded limestone outcrops			Resident
		MAMMALS			
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Е	Historic resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident
	_	MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident

		Summary of Habitat	Listing Entity Poter		Potential	
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County	
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident	
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident	
Mimic Cavesnail	Phreatodrobia imitata	Subaquatic; only known from two wells penetrating the Edwards Aquifer			Resident	
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident	
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident	
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident	
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident	
	1	PLANTS				
Big red sage	Salvia penstemonoides	Endemic; moist to seasonally wet clay or silt soils in creek beds.			Resident	
Bracted twistflower	Streptanthus bracteatus	Endemic: found in shallow, well-drained gravelly clays and clay loams over limestone.			Resident	
Correll's false dragon- head	Physostegia correllii	Found in wet, silty clay loams on sides of streams and other wet areas.			Resident	
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident	
Hill Country wild-mercury	Argythamnia aphoroides	Endemic: found in grasslands associated with oak woodlands.			Resident	
Park's jointweed	Polygonella parksii	Endemic; deep loose sands of Carrizo and similar Eocene formations.			Resident	
Sandhill woolywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian			Resident	
corridors. REPTILES						
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident	
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident	
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident	

Common Name		Summary of Habitat Listing E	intity	Potential	
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Bexar County (Updated 10/6/2009),

Table H-3. Endangered, Threatened, or Species of Concern

Listed for Caldwell County

		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
		BIRDS		L	
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant
. 3.391110 1 410011	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant
		FISHES		L	
Blue sucker	Cycleptus elongates	Major rivers in Texas.		Т	Resident
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident
		MAMMALS			
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident

		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Shinner's sunflower	Helianthus occidentalis ssp.	Found on prairies on the Coastal Plain.			Resident
Sandhill woolywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian corridors.			Resident
		REPTILES			
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^\star -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Caldwell County (Updated 5/7/2009),

Table H-4. Endangered, Threatened, or Species of Concern

Listed for Calhoun County

Common Name	0.1.40	Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
		AMPHIBIANS			
Black-spotted newt	Notophthalmus meridionalis	Usually found in wet or sometimes wet areas in the Gulf Coastal Plain south of the San Antonio River.		Т	Resident
Sheep frog	Hypopachus variolosus	Found in grassland and savanna; moist sites in arid areas.		Т	Resident
		BIRDS			
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant
Brown pelican	Pelecanus occidentalis	Largely coastal and near shore areas.	DL	Е	Resident
Eskimo curlew	Numenius borealis	Historic, nonbreeding.	LE	Е	Historic Resident
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant
Northern Aplomado Falcon	Falco femoralis septentrionalis	Found in open country, especially savanna and open woodland.	LE	Е	Resident
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant
	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant
Piping plover	Charadrius melodus	Wintering migrant along the Texas Gulf Coast.	LT	Т	Migrant
Reddish Egret	Egretta rufescens	Resident of Texas Gulf coast.		Т	Resident
Snowy Plover	Charadrius alexandrines	Potential migrant, winters along coast			Migrant
Sooty Tern	Sterna fuscata	Usually flies or hovers over water.		Т	Resident
Southeastern Snowy Plover	Charadrius alexandrines tenuirostris	Wintering migrant along the Texas Gulf Coast.			Migrant
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident
White-tailed Hawk	Buteo albicaudatus	Found near the coast on prairies.		Т	Resident

Common Name		Summary of Habitat	Listing Entity		Potential
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant
		FISHES			
American eel	Anguilla rostrata	Coastal waterways below reservoirs to gulf.			Resident
Opossum pipefish	Microphis brachyurus	Adults found in fresh or low salinity waters.		Т	Resident
Smalltooth sawfish	Pristis pectinata	Found in bays, estuaries or river mouths.	LE	E	Resident
		MAMMALS			
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident
Jaguarundi	Herpailurus yaguarondi	Found in thick brushlands near water.	LE	E	Resident
Louisiana black bear	Ursus americanus luteolus	Possible transient.	LT	Т	Transient
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	E	Resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident
West Indian manatee	Trichechus manatus	Gulf and bay systems.	LE	E	Resident
		MOLLUSKS	•	•	
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
		PLANTS			
Threeflower broomweed	Thurovia triflora	Endemic: near coast.			Resident
		REPTILES			
Atlantic hawksbill sea turtle	Eretmochelys imbricate	Found in Gulf and bay systems.	LE	Е	Resident
Green sea turtle	Chelonia mydas	Gulf and bay systems.	LT	Т	Resident
Gulf Saltmarsh snake	Nerodia clarkii	Found on saline flats.			Resident
Kemp's Ridley sea turtle	Lepidochelys kempii	Found in gulf and bay systems.	LE	Е	Resident
Leatherback sea turtle	Dermochelys coriacea	Gulf and bay systems.	LE	Е	Resident
Loggerhead sea turtle	Caretta caretta	Gulf and bay systems for juveniles, ocean for adults.	LT	Т	Resident

Common Name	Scientific Name	Summary of Habitat	Listing Entity		Potential
		Preference	USFWS	TPWD	Occurrence in County
Texas diamondback terrapin	Malaclemys terrapin littoralis	Found in coastal marshes and tidal flats.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas scarlet snake	Cemophora coccinea lineri	Mixed hardwood scrub on sandy soils.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Calhoun County (Updated 12/18/2009),

Table H-5. Endangered, Threatened, or Species of Concern

Listed for Comal County

Common Name	Scientific Name	Summary of Habitat	Listing E	Entity	Potential Occurrence				
	Preference	Preference	USFWS	TPWD	in County				
AMPHIBIANS									
Cascade Caverns salamander	Eurycea latitans complex	Endemic, subaquatic in Edwards Aquifer Area		Т	Resident				
Comal Blind Salamander	Eurycea tridentifera	Endemic; springs and waters of caves in Bexar County.		Т	Resident				
Comal Springs salamander	Eurycea sp. 8	Endemic, found in Comal Springs.			Resident				
Edwards Plateau spring salamander	Eurycea sp. 7	Endemic: found in springs and waters of some caves in the Edwards Plateau.			Resident				
		BIRDS							
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident				
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
	•	CRUSTACEANS		.1					
Ezell's cave amphipod	Stygobromus flagellates	Known only from artesian wells.			Resident				
Long-legged cave amphipod	Stygobromus longipes	Subaquatic crustacean found in streams.			Resident				
Peck's cave amphipod	Stygobromus pecki	Aquatic crustacean collected at Comal Springs and Hueco Springs.	LE	Е	Resident				
		FISHES							
Fountain darter	Etheostoma fonticola	Known only from the San Marcos and Comal Rivers.	LE	Е	Resident				
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident				

		Summary of Habitat Preference	Listing E	Entity	Potential
Common Name	Scientific Name		USFWS	TPWD	Occurrence in County
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident
		INSECTS			
A mayfly	Pseudocentroptiloides morihari	Aquatic larval stage, adults generally found in shoreline vegetation.			Resident
Comal Springs diving beetle	Comaldessus stygius	Known only from the outflow at Comal Springs.			Resident
Comal Springs dryopid beetle	Stygoparnus comalensis	Adults usually found clinging to objects in streams, larvae live in soil or decaying wood.	LE		Resident
Comal Springs riffle beetle	Heterelmis comalensis	Found in Comal and San Marcos Springs.	LE		Resident
Edwards Aquifer diving beetle	Haideoporus texanus	Known from an artesian well in Hays County.			Resident
Rawson's metalmark	Calephelis rawsoni	Moist areas in shaded limestone outcrops			Resident
		MAMMALS			
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Jaguarundi	Herpailurus yaguarondi	Found in thick brushlands near water.	LE	E	Resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Horseshoe liptooth snail	Daedalochila hippocrepis	Terrestrial snail only known from Landa Park in New Braunfels			Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
		PLANTS			

Common Name		Summary of Habitat	Listing E	ntity	Potential
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Bracted twistflower	Streptanthus bracteatus	Endemic: found in shallow, well-drained gravelly clays and clay loams over limestone.			Resident
Canyon mock-orange	Philadelphus ernestii	Endemic: found in shallow well-drained clays in woodlands.			Resident
Comal snakewood	Colubrina stricta	Found in El Paso County, historic in Comal County.			Historic Resident
Hill Country wild-mercury	Argythamnia aphoroides	Endemic; found primarily in grasslands associated with live oak woodlands.			
Texas mock-orange	Philadelphus texensis	Found on limestone outcrops on cliffs and rocky slopes.			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Comal County (Updated 9/24/2009).

Table H-6. Endangered, Threatened, or Species of Concern

Listed for De Witt County

Common Name	Scientific Name	Summary of Habitat	Listing E	Entity	Potential				
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
BIRDS									
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
C .	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident				
White-tailed Hawk	Buteo albicaudatus	Found near the coast on prairies.		Т	Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
		FISHES							
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident				
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident				
		INSECTS							
Leonora's dancer damselfly	Argia leonorae	Found near small streams and seepages.			Resident				
		MAMMALS							
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident				
		MOLLUSKS							

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Shinner's sunflower	Helianthus occidentalis ssp. Plantagineus	Found on prairies on the Coastal Plain			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^\star -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, De Witt County (Updated 5/4/2009),

Table H-7 Endangered, Threatened, or Species of Concern

Listed for Dimmit County

		Summary of Habitat	Listing E	ntity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
BIRDS									
Audubon's Oriole	Icterus graduacauda audubonii	Usually found along water courses in scrub and mesquite.			Resident				
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mexican Hooded Oriole	Icterus cucullatus cucullatus	Found in scrub and mesquite, usually along water courses.			Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
G	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Sennett's Hooded Oriole	Icterus cucullatus sennetti	This species often builds nests of Spanish moss.			Resident				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
		MAMMALS							
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident				
Carrizo Springs pocket gopher	Geomys personatus streckeri	Uses underground burrows in deep sandy soils.			Resident				
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident				
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident				
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Е	Historic resident				
Jaguarundi	Herpailurus yaguarondi	Found in thick brushlands near water.	LE	Е	Resident				
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	E	Resident				
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident				

Common Name		Summary of Habitat	Listing Entity		Potential
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Yuma myotis bat	Myotis yumanensis	Primarily found in desert regions in lowland habitats near open water.			Resident
		PLANTS			
Dimmit sunflower	Helianthus praecox ssp hirtus	Endemic; found in bluestem midgrasslands on loose soils.			Resident
Mexican mud-plantain	Heteranthera Mexicana	Found in wet clayey soils of resacas and ephemeral wetlands in South Texas and margins of playas in the Panhandle.			Resident
Shinner's sunflower	Helianthus occidentalis ssp. Plantagineus	Found on prairies on the Coastal Plain			Resident
		REPTILES			
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident
Reticulate collared lizard	Crotaphytus reticulates	Requires open brushgrasslands; thorn-scrubvegetation.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Dimmit County (Updated 6/25/2009).

Table H-8. Endangered, Threatened, or Species of Concern

Listed for Frio County

Common Name	Scientific Name	Summary of Habitat	Listing E	Entity	Potential Occurrence				
	Prefe	Preference	USFWS	TPWD	in County				
BIRDS									
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
Ü	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
		MAMMALS							
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident				
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident				
Frio pocket gopher	Geomys texensis bakeri	Associated with nearly level Atco soils.			Resident				
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident				
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Е	Historic resident				
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	Е	Resident				
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident				
		PLANTS							
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident				
Sandhill woolywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian corridors.			Resident				
		REPTILES							
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident				

Common Name	Scientific Name	Summary of Habitat	Listing Entity		Potential
		Preference	USFWS	TPWD	Occurrence in County
Reticulate collared lizard	Crotaphytus reticulates	Requires open brush- grasslands; thorn-scrub vegetation.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^{\star} -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Frio County (Updated 6/25/2009),

Table H-9. Endangered, Threatened, or Species of Concern

Listed for Goliad County

	0 1 48 1	Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
AMPHIBIANS									
Black-spotted newt	Notophthalmus meridionalis	Usually found in wet or sometimes wet areas in the Gulf Coastal Plain south of the San Antonio River.		Т	Resident				
Sheep frog	Hypopachus variolosus	Found in grassland and savanna; moist sites in arid areas.		Т	Resident				
		BIRDS							
Attwater's Greater Prairie Chicken	Tympanuchus cupido attwateri	Endemic, within historic range.	LE	Е	Historic				
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
G	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident				
White-tailed Hawk	Buteo albicaudatus	Found near the coast on prairies.		Т	Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
		FISHES							
American eel	Anguilla rostrata	Coastal waterways below reservoirs to gulf.			Resident				
		INSECTS							
Texas asaphomyian tabanid fly	Asaphomyia texensis	Globally historic species.			Resident				

		Summary of Habitat	Listing I	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
		MAMMALS			
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	E	Resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		Т*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		Т*	Resident
		PLANTS			
Coastal gay-feather	Liatris bracteata	Endemic: found in coastal prairie grasslands.			Resident
Runyon's water-willow	Justicia runyonii	Found in margins of and openings within subtropical woodlands or thorn shrublands.			Resident
Shinner's sunflower	Helianthus occidentalis ssp. Plantagineus	Found on prairies on the Coastal Plain			Resident
Welder machaeranthera	Psilactis heterocarpa	Endemic; found in grasslands.			Resident
	T	REPTILES		1	
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Goliad County (Updated 5/4/2009).

Table H-10. Endangered, Threatened, or Species of Concern

Listed for Gonzales County

Common Name	O in title No.	Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
BIRDS									
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident				
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
. 5.591110 1 410011	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
		FISHES							
Blue sucker	Cycleptus elongates	Major rivers in Texas.		Т	Resident				
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident				
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident				
		MAMMALS							
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident				
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident				
		MOLLUSKS							

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		Т*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Palmetto pill snail	Euchemostrema leai cheatumi	Known only from Palmetto State Park.			Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		Т*	Resident
		PLANTS			
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Gonzales County (Updated 5/4/2009).

Table H-11. Endangered, Threatened, or Species of Concern

Listed for Guadalupe County

Common Name	Scientific Name	Summary of Habitat	Listing E	Entity	Potential Occurrence					
Common Name	Scientific Name	Preference	USFWS	TPWD	in County					
BIRDS										
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant					
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident					
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant					
Northern Aplomado Falcon	Falco femoralis septentrionalis	Found in open country, especially savanna and open woodland.	LE	Е	Resident					
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant					
i eregime i alcon	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant					
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident					
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant					
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant					
		FISHES								
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident					
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident					
		INSECTS								
A mayfly	Campsurus decoloratus	Found in Texas and Mexico. Possibly in clay substrates.			Resident					
		MAMMALS								
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident					
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident					
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident					
		MOLLUSKS								

		Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Big red sage	Salvia penstemonoides	Endemic; moist to seasonally wet clay or silt soils in creek beds.			Resident
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident
Park's jointweed	Polygonella parksii	Endemic; deep loose sands of Carrizo and similar Eocene formations.			Resident
Sandhill woolywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian corridors.			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

		Summary of Habitat	Listing E	intity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^\star -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Guadalupe County (Updated 5/7/2009).

Table H-12. Endangered, Threatened, or Species of Concern

Listed for Hays County

	0 1 45 11	Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
AMPHIBIANS									
Blanco blind salamander	Eurycea robusta	Species found in water-filled caverns of the Balcones Aquifer.		Т	Resident				
Blanco River springs salamander	Eurycea pterophila	Found in springs and caves in the Blanco River drainage.			Resident				
San Marcos salamander	Eurycea nana	Found in the headwaters of the San Marcos River and downstream for approx. ½ mile past IH-35.	LT	Т	Resident				
Texas blind salamander	Eurycea rathbuni	Documented from water-filled subterranean caverns along a six mile stretch of the San Marcos Spring fault near San Marcos.	LE	E	Resident				
		ARACHNIDS							
Bandit Cave spider	Cicurina bandida	Small subterranean obligate spider.			Resident				
		BIRDS							
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident				
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	E	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
J	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Zone-tailed Hawk	Buteo albonotatus	Arid open country, often near watercourses		Т	Resident				
		CRUSTACEANS							
A cave obligate crustacean	Monodella texana	Subaquatic, underground freshwater aquifers			Resident				
Balcones Cave amphipod	Stygobromus balconies	Subaquatic, subterranean amphipod.			Resident				

		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Ezell's cave amphipod	Stygobromus flagellates	Known only from artesian wells.			Resident
Texas cave shrimp	Palaemonetes antrorum	Found in subterranean sluggish streams and pools.			Resident
Texas troglobitic water slater	Lireolus smithii	Subaquatic species, subterranean obligate within aquifers.			Resident
		FISHES			
Fountain darter	Etheostoma fonticola	Known only from the San Marcos and Comal Rivers.	LE	Е	Resident
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident
Ironcolor shiner	Notropis chalybaeus	Found in Big Cypress Bayou and Sabine River basins.			Resident
San Marcos gambusia	Gambusia georgei	Extinct endemic formerly known from the upper San Marcos River.	LE	E	Resident
		INSECTS			
A mayfly	Procloeon distinctum	Distinguished by their aquatic larval stage, adults are generally found in shoreline vegetation.			Resident
Comal Springs dryopid beetle	Stygoparnus comalensis	Adults usually found clinging to objects in streams, larvae live in soil or decaying wood.	LE		Resident
Comal Springs riffle beetle	Heterelmis comalensis	Found in Comal and San Marcos Springs.	LE		Resident
Edwards Aquifer diving beetle	Haideoporus texanus	Known from an artesian well in Hays County.			Resident
Flint's net-spinning caddisfly	Cheumatopsyche flinti	Occupies spring habitat.			Resident
Leonora's dancer damselfly	Argia leonorae	Found near small streams and seepages.			Resident
Rawson's metalmark	Calephelis rawsoni	Moist areas in shaded limestone outcrops			Resident
San Marcos saddle-case	Protoptila arca	Known from an artesian well in Hays County.			Resident
Texas austrotinodes caddisfly	Austrotinodes texensis	Endemic to Karst Springs and spring runs of the Edward Plateau region.			Resident
		MAMMALS			
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident

		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Canyon mock-orange	Philadelphus ernestii	Endemic: found in shallow well-drained clays in woodlands.			Resident
Hill Country wild-mercury	Argythamnia aphoroides	Endemic; found primarily in grasslands associated with live oak woodlands.			Resident
Texas wild rice	Zizania texana	Endemic, found in spring-fed river.	LE	Е	Resident
Warnock's coral root	Hexalectric warnockii	Found in leaf litter and humus in oak-juniper woodlands.			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident

_		Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Hays County (Updated 7/16/2009).

Table H-13. Endangered, Threatened, or Species of Concern

Listed for Karnes County

_		Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
AMPHIBIANS									
Sheep frog	Hypopachus variolosus	Found in grassland and savanna; moist sites in arid areas.		Т	Resident				
		BIRDS							
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
Ü	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
		INSECTS							
Manfreda Giant-skipper	Stallingsia maculosus	Skipper larvae usually feed inside a leaf shelter.			Resident				
		MAMMALS							
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident				
		MOLLUSKS							
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident				
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident				
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident				

		Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name Preference	USFWS	TPWD	Occurrence in County	
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Welder machaeranthera	Psilactis heterocarpa	Endemic; found in grasslands.			Resident
		REPTILES			
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Karnes County (Updated 5/4/2009).

Table H-14. Endangered, Threatened, or Species of Concern

Listed for Kendall County

Common Name		Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name Preference	USFWS	TPWD	Occurrence in County					
AMPHIBIANS									
Blanco River springs salamander	Eurycea pterophila	Found in springs and caves in the Blanco River drainage.			Resident				
Cascade Caverns salamander	Eurycea latitans complex	Endemic, subaquatic in Edwards Aquifer Area		Т	Resident				
Comal Blind Salamander	Eurycea tridentifera	Endemic; springs and waters of caves in Bexar County.		Т	Resident				
Texas Salamander	Eurycea neotenes	Endemic; springs, seeps, cave streams, Helotes and Leon Creek drainages in Bexar County			Resident				
		BIRDS							
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant				
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident				
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	Е	Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Zone-tailed Hawk	Buteo albonotatus	Arid open country, often near watercourses		Т	Resident				
		CRUSTACEANS							
Cascade Cave amphipod	Stygobromus dejectus	Subaquatic crustacean which is a subterranean obligate found in pools.			Resident				
Long-legged cave amphipod	Stygobromus longipes	Found in subterranean streams.			Resident				
	.	FISHES							
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident				

		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Guadalupe Darter	Percina sciera apristis	Guadalupe River Basin. Usually found over gravel or gravel and sand raceways of larger streams and rivers.			Resident
Headwater catfish	Ictalurus lupus	Originally found throughout streams of the Edwards Plateau and the Rio Grande Basin.			Resident
		INSECTS			
A mayfly	Allenhyphes michaeli	Found in the Texas Hill Country. Distinguished by an aquatic larval stage, with adults generally found in shoreline vegetation.			Resident
A mayfly	Baetodes alleni	Adults distinguished by aquatic larval stage, adults generally found in shoreline vegetation.			Resident
Rawson's metalmark	Calephelis rawsoni	Moist areas in shaded limestone outcrops			Resident
		MAMMALS			
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Е	Historic resident
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Texas fatmucket	Lampsilis bracteata	Streams and rivers on sand, mud and gravel, Colorado and Guadalupe River basins.		T*	Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			

Common Name		Summary of Habitat	Listing E	ntity	Potential
	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Basin bellflower	Campanula reverchonii	Endemic; found among scattered vegetation on loose gravel and rock outcrops on open slopes.			Resident
Big red sage	Salvia penstemonoides	Endemic; moist to seasonally wet clay or silt soils in creek beds.			Resident
Canyon mock-orange	Philadelphus ernestii	Endemic: found in shallow well-drained clays in woodlands.			Resident
Hill Country wild-mercury	Argythamnia aphoroides	Endemic; found primarily in grasslands associated with live oak woodlands.			
Texas mock-orange	Philadelphus texensis	Found on limestone outcrops on cliffs and rocky slopes.			Resident
		REPTILES			
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Garter Snake	Thamnophis sirtalis annectens	Wet or moist microhabitats			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Kendall County (Updated 5/4/2009).

Table H-15. Endangered, Threatened, or Species of Concern

Listed for LaSalle County

	Scientific Name	Summary of Habitat Preference	Listing Entity		Potential				
Common Name			USFWS	TPWD	Occurrence in County				
BIRDS									
Audubon's Oriole	Icterus graduacauda audubonii	Usually found along water courses in scrub and mesquite.			Resident				
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
C	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Sennett's Hooded Oriole	Icterus cucullatus sennetti	This species often builds nests of Spanish moss.			Resident				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
		MAMMALS							
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident				
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident				
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	E	Historic resident				
Jaguarundi	Herpailurus yaguarondi	Found in thick brushlands near water.	LE	E	Resident				
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	E	Resident				
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident				
		PLANTS							

		Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name	Scientific Name Preference	USFWS	TPWD	Occurrence in County
Kleberg saltbush	Atriplex klebergorum	Endemic; usually occurring in sparsely vegetated saline areas.			Resident
Silvery wild-mercury	Argythamnia argyraea	Endemic; found among shortgrasses in grasslands or open shrublands.			Resident
		REPTILES			
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident
Reticulate collared lizard	Crotaphytus reticulates	Requires open brush- grasslands; thorn-scrub vegetation.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^\star -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, LaSalle County (Updated 6/25/2009).

Table H-16. Endangered, Threatened, or Species of Concern

Listed for Medina County

		Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
AMPHIBIANS									
Valdina Farms sinkhole salamander	Eurycea troglodytes complex	Found in isolated, intermittent pools of subterranean streams and sinkholes within the Edwards Aquifer area.			Resident				
		BIRDS							
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant				
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident				
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	Е	Resident				
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident				
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant				
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant				
	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant				
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident				
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant				
Zone-tailed Hawk	Buteo albonotatus	Arid open country, often near watercourses		Т	Resident				
		CRUSTACEANS							
Ezell's cave amphipod	Stygobromus flagellates	Known only from artesian wells.			Resident				
		FISHES							
Edwards Plateau shiner	Cyprinella lepida	Found in the Edwards Plateau portion of the Nueces Basin.			Resident				
Headwater catfish	Ictalurus lupus	Originally found throughout streams of the Edwards Plateau and the Rio Grande Basin.			Resident				
Nueces roundnose minnow	Dionda serena	Found in the mainstream and tributaries of the Nueces, Frio and Sabinal Rivers.			Resident				

		Summary of Habitat	Listing E	Entity	Potential				
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County				
INSECTS									
Leonora's dancer damselfly	Argia leonorae	Found near small streams and seepages.			Resident				
MAMMALS									
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident				
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident				
Frio pocket gopher	Geomys texensis bakeri	Associated with nearly level Atco soils.			Resident				
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident				
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Е	Historic resident				
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident				
		MOLLUSKS							
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident				
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident				
		PLANTS							
Bracted twistflower	Streptanthus bracteatus	Endemic: found in shallow, well-drained gravelly clays and clay loams over limestone.			Resident				
Sandhill woolywhite	Hymenopappus carrizoanus	Found south of the Guadalupe River and the Balcones Escarpment. Prefers dense riparian			Resident				
		corridors. Found on limestone outcrops			Posidont				
Texas mock-orange	Philadelphus texensis	on cliffs and rocky slopes.			Resident				
		REPTILES							
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident				
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident				
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident				
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident				

	Summary of Habitat	Summary of Habitat	Listing E	ntity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^\star -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Medina County (Updated 6/25/2009).

Table H-17. Endangered, Threatened, or Species of Concern

Listed for Refugio County

	0 1 40 11	Summary of Habitat	Listing E	Entity	Potential					
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County					
	AMPHIBIANS									
Black-spotted newt	Notophthalmus meridionalis	Usually found in wet or sometimes wet areas in the Gulf Coastal Plain south of the San Antonio River.		Т	Resident					
Sheep frog	Hypopachus variolosus	Found in grassland and savanna; moist sites in arid areas.		Т	Resident					
		BIRDS								
Attwater's Greater Prairie Chicken	Tympanuchus cupido attwateri	Endemic, within historic range.	LE	Е	Historic					
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant					
Brown pelican	Pelecanus occidentalis	Largely coastal and near shore areas.	DL	Е	Resident					
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident					
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant					
Northern Aplomado Falcon	Falco femoralis septentrionalis	Found in open country, especially savanna and open woodland.	LE	Е	Resident					
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant					
C .	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant					
Piping plover	Charadrius melodus	Wintering migrant along the Texas Gulf Coast.	LT	Т	Migrant					
Reddish Egret	Egretta rufescens	Resident of Texas Gulf coast.		Т	Resident					
Snowy Plover	Charadrius alexandrines	Potential migrant, winters along coast			Migrant					
Sooty Tern	Sterna fuscata	Usually flies or hovers over water.		Т	Resident					
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident					
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident					
White-tailed Hawk	Buteo albicaudatus	Found near the coast on prairies.		Т	Resident					
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant					

		Summary of Habitat Preference	Listing I	Entity	Potential				
Common Name	Scientific Name		USFWS	TPWD	Occurrence in County				
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant				
	FISHES								
American eel	Anguilla rostrata	Coastal waterways below reservoirs to gulf.			Resident				
Opossum pipefish	Microphis brachyurus	Adults found in fresh or low salinity waters.		Т	Resident				
Smalltooth sawfish	Pristis pectinata	Found in bays, estuaries or river mouths.	LE	Е	Resident				
		MAMMALS							
Louisiana black bear	Ursus americanus luteolus	Possible transient.	LT	Т	Transient				
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	Е	Resident				
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident				
Red Wolf	Canis rufus	Extirpated.	LE	Е	Historic Resident				
West Indian manatee	Trichechus manatus	Gulf and bay systems.	LE	Е	Resident				
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident				
		MOLLUSKS							
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident				
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident				
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident				
		PLANTS							
Black lace cactus	Echinocereus reichenbachii var albertii	Texas endemic found in grasslands, thorn shrublands and mesquite woodlands.	LE	E	Resident				
Coastal gay-feather	Liatris bracteata	Endemic: found in coastal prairie grasslands.			Resident				
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident				
Plains gumweed	Grindelia oolepis	Found on coastal prairies on heavy clay soils.			Resident				
Tharp's rhododon	Rhododon angulatus	Texas endemic found in deep, loose sands in sparsely vegetated areas.			Resident				
Threeflower broomweed	Thurovia triflora	Endemic: near coast.			Resident				
Welder machaeranthera	Psilactis heterocarpa	Endemic; found in grasslands.			Resident				

		Summary of Habitat	Listing Entity		Potential	
Common Name	on Name Scientific Name Preference		USFWS	TPWD	Occurrence in County	
		REPTILES				
Atlantic hawksbill sea turtle	Eretmochelys imbricate	Found in Gulf and bay systems.	LE	Е	Resident	
Green sea turtle	Chelonia mydas	Gulf and bay systems.	LT	Т	Resident	
Gulf Saltmarsh snake	Nerodia clarkii	Found on saline flats.			Resident	
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident	
Kemp's Ridley sea turtle	Lepidochelys kempii	Found in gulf and bay systems.	LE	Е	Resident	
Leatherback sea turtle	Dermochelys coriacea	Gulf and bay systems.	LE	Е	Resident	
Loggerhead sea turtle	Caretta caretta	Gulf and bay systems for juveniles, ocean for adults.	LT	Т	Resident	
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident	
Texas diamondback terrapin	Malaclemys terrapin littoralis	Found in coastal marshes and tidal flats.			Resident	
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident	
Texas scarlet snake	Cemophora coccinea lineri	Found in mixed hardwood scrub on sandy soils.		Т	Resident	
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident	
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident	

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Refugio County (Updated 12/18/2009).

Table H-187. Endangered, Threatened, or Species of Concern

Listed for Uvalde County

	0 1 10 11	Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
		AMPHIBIANS			
Valdina Farms sinkhole salamander	Eurycea troglodytes complex	Found in isolated, intermittent pools of subterranean streams and sinkholes within the Edwards Aquifer area.			Resident
		BIRDS			
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant
Black-capped Vireo	Vireo atricapillus	Oak-juniper woodlands,	LE	Е	Resident
Golden-cheeked Warbler	Dendroica chrysoparia	Juniper-oak woodlands.	LE	Е	Resident
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant
J	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant
Sennett's Hooded Oriole	Icterus cucullatus sennetti	This species often builds nests of Spanish moss.			Resident
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident
Zone-tailed Hawk	Buteo albonotatus	Arid open country, often near watercourses		Т	Resident
		CRUSTACEANS			
A cave obligate crustacean	Monodella texana	Subaquatic, underground freshwater aquifers			Resident
		FISHES			
Blue sucker	Cycleptus elongates	Major rivers in Texas.		Т	Resident
Edwards Plateau shiner	Cyprinella lepida	Found in the Edwards Plateau portion of the Nueces Basin.			Resident
Guadalupe Bass	Micropterus treculi	Endemic to perennial streams of the Edwards Plateau region.			Resident
Headwater catfish	Ictalurus lupus	Originally found throughout streams of the Edwards Plateau and the Rio Grande Basin.			Resident

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Nueces River shiner	Cyprinella sp.2	Edwards Plateau portion of the Nueces Basin in clear, cool, spring-fed headwater creeks.			Resident
Nueces roundnose minnow	Dionda serena	Found in the mainstream and tributaries of the Nueces, Frio and Sabinal Rivers.			Resident
		INSECTS			
A mayfly	Allenhyphes michaeli	Found in the Texas Hill Country. Distinguished by an aquatic larval stage, with adults generally found in shoreline vegetation.			Resident
Coahuila giant skipper	Agathymus remingtoni valverdiensis	Found with the Lechugilla plant in desert hills and thorn forests.			Resident
Leonora's dancer damselfly	Argia leonorae	Found near small streams and seepages.			Resident
Sage sphinx	Sphinx eremitoides	Found in desert, grassland and sandy prairie with sage.			Resident
		MAMMALS			
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident
Frio pocket gopher	Geomys texensis bakeri	Associated with nearly level Atco soils.			Resident
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	E	Historic resident
Jaguarundi	Herpailurus yaguarondi	Found in thick brushlands near water.	LE	Е	Resident
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	E	Resident
Red Wolf	Canis rufus	Extirpated.	Ш	E	Historic Resident
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident
		PLANTS			
Bracted twistflower	Streptanthus bracteatus	Endemic: found in shallow, well-drained gravelly clays and clay loams over limestone.			Resident
Hill Country wild-mercury	Argythamnia aphoroides	Endemic; found primarily in grasslands associated with live oak woodlands.			

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Sabinal prairie-clover	Dalea sabinalis	Texas endemic; found mostly in bluestem-grama grasslands associated with live oak woodlands.			Resident
Springrun whitehead	Shinnersia rivularis	Found in shallow, slow- moving water in spring-fed streams and rivers.			Resident
Texas greasebush	Glossopetalon texense	Texas endemic; found in dry limestone ledges and outcrops.			Resident
Texas largeseed bittercress	Cardamine macrocarpa var texana	Found in seasonally moist, loamy soils in pine-oak woodlands at high elevations.			Resident
Texas mock-orange	Philadelphus texensis	Found on limestone outcrops on cliffs and rocky slopes.			Resident
Tobusch fishhook cactus	Sclerocactus brevihamatus ssp.	Texas endemic; found on shallow, moderately alkaline stony clay and clay loams over limestone.			Resident
		REPTILES			
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident
Reticulate collared lizard	Crotaphytus reticulates	Requires open brushgrasslands; thorn-scrub vegetation.		Т	Resident
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Uvalde County (Updated 6/25/2009).

Table H-19. Endangered, Threatened, or Species of Concern

Listed for Victoria County

	0 1 47 1	Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
AMPHIBIANS					
Black-spotted newt	Notophthalmus meridionalis	Usually found in wet or sometimes wet areas in the Gulf Coastal Plain south of the San Antonio River.		Т	Resident
		BIRDS			
Attwater's Greater Prairie Chicken	Tympanuchus cupido attwateri	Endemic, within historic range.	LE	Е	Historic
Bald eagle	Haliaeetus leucoephalus	Found primarily near rivers and large lakes.	DL	Т	Possible Migrant
Brown pelican	Pelecanus occidentalis	Largely coastal and near shore areas.	DL	E	Resident
Henslow's Sparrow	Ammodramus henslowii	Found in weedy fields or cut- over areas			Resident
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant
J	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant
Reddish Egret	Egretta rufescens	Resident of Texas Gulf coast.		Т	Resident
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident
White-faced Ibis	Plegadis chihi	Prefers freshwater marshes.		Т	Resident
White-tailed Hawk	Buteo albicaudatus	Found near the coast on prairies.		Т	Resident
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant
		FISHES			
American eel	Anguilla rostrata	Coastal waterways below reservoirs to gulf.			Resident
		INSECTS			

Summary of Hah		Summary of Habitat	Listing E	Entity	Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
A mayfly	Tortopus circumfluus	Aquatic larval stage, adults generally found in shoreline vegetation.			Resident
Texas asaphomyian tabanid fly	Asaphomyia texensis	Globally historic species.			Resident
		MAMMALS			
Louisiana black bear	Ursus americanus luteolus	Possible transient.	LT	Т	Transient
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident
		MOLLUSKS			
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.	T*		Resident
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident
		PLANTS			
Shinner's sunflower	Helianthus occidentalis ssp. Plantagineus	Found on prairies on the Coastal Plain			Resident
Welder machaeranthera	Psilactis heterocarpa	Endemic; found in grasslands.			Resident
	T	REPTILES		T	
Cagle's map turtle	Graptemys caglei	Endemic to Guadalupe River System. Found within 30 feet of waters' edge.			Resident
Texas diamondback terrapin	Malaclemys terrapin littoralis	Found in coastal marshes and tidal flats.			Resident
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident

		Summary of Habitat	Listing Entity		Potential
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County
Timber/ Canebrake Rattlesnake	Crotalus horridus	Floodplains, upland pine, deciduous woodlands, riparian zones.		Т	Resident

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

 T^* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Victoria County (Updated 12/18/2009).

Table H-20. Endangered, Threatened, or Species of Concern

Listed for Wilson County

		Summary of Habitat	Listing Entity		Potential		
Common Name	Scientific Name	Preference			Occurrence in County		
BIRDS							
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	Е	Resident		
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant		
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant		
· ·	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant		
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident		
Whooping Crane	Grus americana	Potential migrant	LE	Е	Potential Migrant		
Wood Stork	Mycteria americana	Forages in prairie ponds, ditches, and shallow standing water formerly nested in TX		Т	Migrant		
		INSECTS					
Manfreda Giant-skipper	Stallingsia maculosus	Skipper larvae usually feed inside a leaf shelter.			Resident		
		MAMMALS					
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident		
Plains Spotted Skunk	Spilogale putorius interrupta	Prefers wooded, brushy areas.			Resident		
Red Wolf	Canis rufus	Extirpated.	LE	E	Historic Resident		
		MOLLUSKS					
Creeper (squawfoot)	Strophitus undulates	Small to large streams			Resident		
False spike mussel	Quincuncina mitchelli	Substrates of cobble and mud with water lilies present. Rio Grande, Brazos, Colorado and Guadalupe river basins.		T*	Resident		
Golden orb	Quadrula aurea	Sand and gravel, Guadalupe, San Antonio, and Nueces River basins		T*	Resident		
Pistolgrip	Tritogonia verrucosa	Aquatic, stable substrate. Red through San Antonio river basins.			Resident		

	Salantific Name Summary of Habitat	Listing Entity		Potential		
Common Name	Scientific Name	Preference	USFWS	TPWD	Occurrence in County	
Rock pocketbook	Arcidens confragosus	Mud and sand, Red through Guadalupe River basins.			Resident	
Texas pimpleback	Quadrula petrina	Mud, gravel and sand substrates, Colorado and Guadalupe river basins		T*	Resident	
		PLANTS				
Big red sage	Salvia penstemonoides	Endemic; moist to seasonally wet clay or silt soils in creek beds.			Resident	
Elmendorf's onion	Allium elmendorfii	Endemic, in deep sands			Resident	
Park's jointweed	Polygonella parksii	Endemic; deep loose sands of Carrizo and similar Eocene formations.			Resident	
		REPTILES				
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident	
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident	
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident	
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident	

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Wilson County (Updated 5/4/2009).

Table H-21. Endangered, Threatened, or Species of Concern

Listed for Zavala County

		Summary of Habitat	Listing E	Entity	Potential			
Common Name	Scientific Name	Preference	USFWS TP		Occurrence in County			
	BIRDS							
Baird's Sparrow	Ammodramus bairdii	Found in shortgrass prairie areas. Migratory in the western half of Texas.			Migrant			
Interior least tern	Sterna antillarum athalassos	Nests along sand and gravel bars in braided streams	LE	E	Resident			
Mountain Plover	Charadrius montanus	Non-breeding, shortgrass plains and fields			Nesting/Migrant			
Peregrine Falcon	Falco peregrinus anatum (American)	Resident and local breeder in West Texas. Migrant across the state.	DL	Т	Possible Migrant			
	Falco peregrinus tundrius (Arctic)	Migrant throughout the state.	DL		Possible Migrant			
Sennett's Hooded Oriole	Icterus cucullatus sennetti	This species often builds nests of Spanish moss.			Resident			
Western Burrowing Owl	Athene cunicularia hypugaea	Open grasslands, especially prairie, plains and savanna			Resident			
		MAMMALS						
Black Bear	Ursus americanus	Inhabits bottomland hardwoods	T/SA;NL	Т	Historic Resident			
Carrizo Springs pocket gopher	Geomys personatus streckeri	Uses underground burrows in deep sandy soils.			Resident			
Cave Myotis Bat	Myotis velifer	Roosts colonially in caves, rock crevices			Resident			
Frio pocket gopher	Geomys texensis bakeri	Associated with nearly level Atco soils.			Resident			
Ghost-faced bat	Mormoops megalophylla	Roosts in caves, crevices and buildings			Resident			
Gray wolf	Canis lupus	Extirpated, forests, brushlands or grasslands	LE	Ш	Historic resident			
Ocelot	Leopardus pardalis	Found in dense chaparral thrickets; mesquite-thorn scrub and live oak motts.	LE	Е	Resident			
White-nosed coati	Nasua narica	Found in woodlands, riparian corridors and canyons. Mostly transients from Mexico.		Т	Resident			
		REPTILES						
Indigo snake	Drymarchon carais	Found south of the Guadalupe river and Balcones Escarpment.		Т	Resident			
Reticulate collared lizard	Crotaphytus reticulates	Requires open brush- grasslands; thorn-scrub vegetation.		Т	Resident			

		Summary of Habitat	Listing Entity		Potential	
Common Name	Scientific Name	D. C.		TPWD	Occurrence in County	
Spot-tailed earless lizard	Holbrookia lacerata	Moderately open prairie- brushland.			Resident	
Texas Horned Lizard	Phrynosoma cornutum	Varied, sparsely vegetated uplands.		Т	Resident	
Texas Tortoise	Gopherus berlandieri	Open brush w/ grass understory.		Т	Resident	

LE/LT -- Federally Listed Endangered/Threatened

DL, PDL -- Federally Delisted/proposed for delisting

T/SA -- Listed as Threatened by similarity of appearance

E, T -- State listed Endangered/Threatened

T* -- in the process of being listed as Threatened by State

C -- Species of Concern

Blank -- Not yet listed by TPWD or USFWS, but considered rare

Source: TPWD, Annotated County List of Rare Species, Zavala County (Updated 6/25/2009).

(This page intentionally left blank.)

Appendix I Recommendation of Stream Segments Having Unique Ecological Value for Legislative Designation

Appendix I Recommendation of Stream Segments Having Unique Ecological Value for Legislative Designation

I.1 Legislative Authority, Texas Water Development Board Guidance, and Recommendations

The Texas Legislature has the authority to designate a river or stream segment as having unique ecological value. Authority for such designation is found in Texas Water Code subsection §16.051. State Water Plan: Drought, Conservation, Development, and Management; Effect of Plan. The designation of a stream segment as having unique ecological value solely means that a state agency or political subdivision of the state may not finance the actual construction of a reservoir in a specific river or stream segment designated by the legislature.

The Texas Water Development Board (TWDB) Regional Water Planning Guidelines (Title 30, Part 10, Chapter 357, Rule 357.8) also address the topic of ecologically unique river and stream segments. These guidelines state that regional water planning groups may include in adopted regional water plans recommendations for all or parts of any river or stream segment of unique ecological value located within their regional water planning area.

Proposals developed for the purpose of recommending river or stream segments for designation as having unique ecological value are required to address certain specific criteria for each identified segment. The recommendation of a river or stream segment as being of unique ecological value is based upon one or more of the following five criteria:

- Biological Function stream segments which display significant overall habitat value including both quantity and quality considering the degree of biodiversity, age, and uniqueness observed and including terrestrial, wetland, aquatic, or estuarine habitats.
- Hydrologic Function stream segments which are fringed by habitats that perform valuable hydrologic functions relating to water quality, flood attenuation, flow stabilization, or groundwater recharge and discharge.
- Riparian Conservation Areas stream segments which are fringed by significant areas in public ownership including state and federal refuges, wildlife management areas, preserves, parks, mitigation areas, or other areas held by governmental organizations for conservation purposes, or stream segments which are fringed by other areas managed for conservation purposes under a governmentally approved conservation plan.
- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value stream segments or spring resources that are significant due to unique or critical habitats and exceptional aquatic life uses dependent or associated with high water quality.

Threatened or Endangered Species/Unique Communities – sites along streams where water development projects would have significant detrimental effects on state or federally listed threatened and endangered species, and sites along streams significant due to the presence of unique, exemplary, or unusually extensive natural communities.

The South Central Texas Regional Water Planning Group (Region L) conditionally recommends to the Texas Legislature that, in accordance with Subsection 16.051 of the Texas Water Code, it designate the following five stream segments in Region L (Figure 1) as having unique ecological value:

- The Nueces River from the northern boundary of Region L downstream to United States Geological Survey (USGS) gauge # 08190000 at Laguna (within Texas Commission on Environmental Quality (TCEQ) classified stream segment 2112);
- The Frio River from the northern boundary of Region L downstream to USGS gauge #08195000 at Concan (within TCEQ classified stream segment 2113);
- The Sabinal River from the northern boundary of Region L downstream to the State Highway 187 crossing located approximately 2.7 miles upstream of USGS gauge #08198000 near Sabinal (within TCEQ classified stream segment 2111);
- The San Marcos River extending from IH 35 up to a point 0.4 miles upstream of Loop 82 in San Marcos (within TCEQ classified stream segment 1814); and
- The Comal River extending from the confluence with the Guadalupe River upstream to Klingemann Street in New Braunfels (TCEQ classified stream segment 1811).

The South Central Texas Regional Water Planning Group further notes that the recommendation of these stream segments for designation as having unique ecological value is not intended to affect the repair, rehabilitation, or replacement of existing dams and reservoirs.

I.2 Conditions

Because the consequences of such designations by the Legislature are not well understood, these recommendations are conditioned upon legislation providing for these designations containing the following clarifying provisions or substantially similar provisions approved by Region L:

- A provision affirming that the only constraint that may result from these ecologically unique stream segment designations is that constraint described in Subsection 16.051(f) Water Code which prohibits a state agency or political subdivision of the state from financing the construction of a reservoir in a designated stream segment.
- A provision stating that the constraint described in Subsection 16.051(f) Water Code does not apply to the construction, operation, maintenance, or replacement of any new or existing weir, diversion, flood control, drainage, water supply, or recreation facility located within the city limits of San Marcos or New Braunfels.

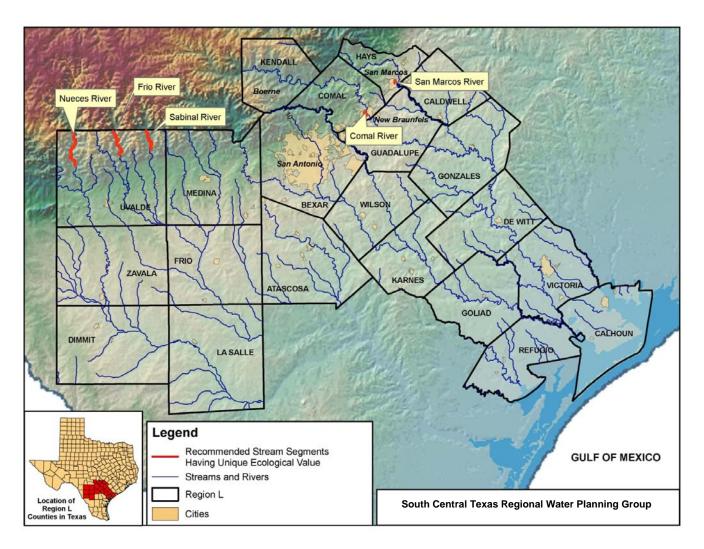


Figure 1. Conditionally Recommended Unique Stream Segments

- A provision stating that the constraint described in Subsection 16.051(f) Water Code does not apply to a weir, diversion, flood control, drainage, water supply, or recreation facility currently owned by a political subdivision.
- A provision stating that these designations will not constrain the permitting, financing, construction, operation, maintenance, or replacement of any water management strategy recommended, or designated as an alternative, to meet projected needs for additional water supply in the 2011 Regional Water Plan for Region L.
- A provision affirming that these designations are not related to the "wild and scenic" federal program or to any similar initiative that could result in "buffer zones," inadvertent takings, or overreaching regulation.
- A provision stating that all affected landowners shall retain all existing legal private property rights.

 A provision recognizing that the unique ecological value of the designated segments is due, in part, to the conscientious, voluntary stewardship of many landowners on the adjoining properties.

I.3 Committee and Process

On February 7, 2008, a subcommittee of the South Central Texas Regional Water Planning Group (SCTRWPG) was formed to consider the potential recommendation of selected stream segments within Region L for legislative designation as having "unique ecological value." It was the understanding of this subcommittee that such designation "solely means that a state agency or political subdivision of the state may not finance the actual construction of a reservoir in a specific river or stream segment designated by the legislature (TWC16.051)." This subcommittee was comprised of SCTRWPG members Con Mims (Chair), Evelyn Bonavita, Donna Balin, Iliana Peña, and David Langford, with additional technical support provided by Cindy Loeffler of the Texas Parks & Wildlife Department (TPWD) and Sam Vaugh of HDR Engineering, Inc. (HDR).

Discussions among the subcommittee members and others led to initial selection of the five (5) stream segments described above for further consideration by the SCTRWPG as having unique ecological value. The subcommittee further noted that the potential recommendation of these stream segments for designation was not intended to affect the repair, rehabilitation, or replacement of existing dams and reservoirs. Subcommittee discussions, the initial selection of stream segments, and documentation of the process were reviewed by the Staff Workgroup on April 23, 2009. On May 7, 2009, the subcommittee reported the initial selection of stream segments for further consideration to the SCTRWPG. The SCTRWPG acted by consensus to pursue further consideration of the initial selection of stream segments and directed HDR to compile documentation in the form of a draft recommendation package to support designation.

Components of the draft recommendation package were reviewed with the Staff Workgroup on July 23, 2009 and discussed by the SCTRWPG on August 6, 2009 and November 5, 2009. A draft recommendation package, refined in accordance with SCTRWPG comments, was transmitted to TPWD on December 24, 2009 for their review and development of a written evaluation within 30 days of receipt. TPWD comments were received on January ____, 2010 and the recommendation package was refined as necessary.

In accordance with TWDB guidance, the assessment of cumulative effects of regional water plan implementation in Section 7 of the 2011 South Central Texas Regional Water Plan

includes information specifically relevant to the stream segments recommended for legislative designation.

Subject to action of the SCTRWPG in February 2010, recommendation of stream segments for legislative designation may be included in the Initially Prepared 2011 South Central Texas Regional Water Plan (IPP).

Subject to action of the SCTRWPG in August 2010 (with due consideration of relevant public comments on the IPP), recommendation of stream segments for legislative designation may be included in the adopted 2011 South Central Texas Regional Water Plan.

Upon TWDB approval of the 2011 South Central Texas Regional Water Plan (expected during or prior to January 2011), it will be included in the 2012 State Water Plan to be adopted by the TWDB in January 2012. Hence, potential legislative designation of recommended stream segments of unique ecological value, within Region L and elsewhere across the state, would likely follow TWDB adoption of the 2012 State Water Plan.

I.4 Documentation by Stream Segment

Information used to support the criteria selected for the five segments recommended for unique ecological value designation was acquired from a number of sources. The Nueces, Frio, and Sabinal River segments recommended within Region L are listed in The Nationwide Rivers Inventory (NRI) prepared by the National Park Service (NPS, 1995). This inventory lists more than 3,400 free-flowing river segments in the United States that are believed to possess one or more "outstandingly remarkable" natural or cultural values judged to be of more than local or regional significance. All federal agencies must seek to avoid or mitigate actions that would adversely affect one or more NRI segments based on a 1979 Presidential directive, and related Council on Environmental Quality procedures. Statewide river assessments and federal agencies involved with stream-related projects use the NRI as a source of important information. The inventory can provide the location of the nearest naturally- functioning system which might serve as a reference for monitoring activities for any group concerned with ecosystem management. Restoration efforts on a similar section of river can utilize the NRI as a source for lists of plant and animal species required for restoration efforts. It also provides a listing of free-flowing, relatively undisturbed river segments for the use of recreationalists.

All of the recommended segments lie within areas contributing to or below springs emanating from the Edwards Aquifer. This aquifer is divided into three main zones: the

contributing zone, the recharge zone, and the artesian zone (Eckhardt, 2009). The contributing zone is sometimes called the drainage area or the catchment area. Within this area, water falls on the land surface then runs off into streams or infiltrates into aquifers found under the Edwards Plateau. This runoff from the land surface, in addition to water table springs feed streams that flow over relatively impermeable limestones until they reach the Edwards Aquifer Recharge zone (Eckhardt, 2009). The recharge zone includes an area where large quantities of water flow into the aquifer facilitated by the presence of highly faulted and fractured Edwards limestone outcrops at the land surface. Water from the recharge zone is then moved by gravity into the artesian zone where it is trapped by rock formations. Water stored in the aquifer creates pressure gradients that sustain artesian wells and springs within the area. Major examples of this include Comal and San Marcos Springs, the two largest in Texas.

High water quality, and high or exceptional aquatic life values, the criteria for which are specified in the Texas Surface Water Quality Standards are present in all five recommended segments. The Texas Surface Water Quality Standards establish explicit goals for the quality of streams, lakes, and bays throughout the state. These standards are developed to maintain the quality of surface waters in Texas so that these waters support public health and enjoyment and protect aquatic life, consistent with the sustainable economic development of the state.

Table 1 presents the criteria met by each of the five recommended segments of unique ecological value in Region L.

Table 1.
Criteria for Unique Ecological Value and
Stream Segments Recommended for Designation in Region L

Criteria	Nueces River	Frio River	Sabinal River	San Marcos River	Comal River
Biological Function	✓	✓	✓	✓	✓
Hydrologic Function	✓	✓	✓	✓	✓
Riparian Conservation Areas		✓		✓	✓
High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value	✓	✓	✓	✓	✓
Threatened or Endangered Species/Unique Communities	✓	✓	✓	✓	✓

[✓] Indicates criteria listed from the Texas Water Development Board Regional Water Planning Guidelines met by each segment recommended for designation.

I.4.1 Nueces River

The Nueces River begins in northwestern Real County and flows south, where it joins its West Fork northwest of Uvalde in Uvalde County. From this confluence the river flows south approximately 357 miles providing freshwater inflows to Nueces Bay and ultimately Corpus Christi Bay. The upper section of the Nueces River is considered to be one of the more aesthetically pleasing stream segments in the state (Belisle, 1974). The East Fork of the Nueces River rises from springs in the Edwards Plateau, and its clear water flows through scenic limestone canyons (Brune, 1981). Historically, many springs could be found along the banks of the Nueces River. However, springs are currently only found in the bottom of the river channel (Brune, 1981). Several spring-fed tributaries, most importantly the Frio River, help to ensure that some flow is present in the Nueces River, although it is often shallow (Belisle, 1974). Water in the Nueces River sinks into gravels in the river bottom as it crosses the Balcones Fault Zone and reappears through several springs in other local creeks and rivers such as Spring Creek and the Leona River (Brune, 1981).

The Edwards Plateau portion of the Nueces River has banks lined with characteristic larger trees including pecan (*Carya illinoensis*), oak (*Quercus* sp.), sycamore (*Platanus occidentalis*), and cedar-elm (*Ulmus crassifolia*). These areas give way to other species such as sagebrush (*Artimesia* sp.), mesquite (*Prosopis glandulosa*), and cacti (*Opuntia* spp.) as the river enters the South Texas Brush Country. The riparian woodlands provide important nesting, migration, and wintering habitat for a variety of birds. Green herons, spotted sandpipers, green kingfishers, turkey vultures and others live in the river corridor (NPS, 1995). River banks within this area are commonly lined with ferns, sedges, switch grass, cardinal lobelia, frog fruit, and water cress. The aquatic and riparian habitats associated with the Nueces River support a diverse assemblage of invertebrates, fish, birds, and plants characteristic of the Edwards Plateau.

This recommended river segment includes that portion of the Nueces River which runs from the northern boundary of Region L at the junction of the Edwards, Real, and Uvalde County borders downstream to USGS gauge # 08190000 at Laguna (within TCEQ classified stream segment 2112), a length of approximately 19 river miles (Exhibit 1).

The recommendation of this segment of the Nueces River as having unique ecological value is based upon the following criteria:

 Biological Function - This segment is included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable fish and wildlife values (NPS, 1995). (Photo #1 & Exhibit 1)

- Hydrologic Function Numerous springs along and within the Nueces River provide valuable hydrologic functions relating to the discharge of the Edwards-Trinity (Plateau) Aquifer, and flow within the river provides recharge to the Edwards Balcones Fault Zone Aquifer as it crosses the outcrop portion (Brune, 1981). The recommended segment of the Nueces River is located over the Edwards Aquifer Contributing Zone. Within this area water falls on the land surface then runs off into streams or infiltrates into aquifers found under the Edwards Plateau (Eckhardt, 2009). Northeast of Montell, surface flow of the river may cease as underflow continues to feed nearby Candelaria Springs, the site of an ancient Indian village and the Spanish Mission Nuestra Senora de la Candelaria (Brune, 1981). (Photo #2 & Exhibit 1)
- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value This segment of the Nueces River is classified in the high aquatic life use category by the Texas Commission on Environmental Quality as its attributes include highly diverse habitat, regionally expected species assemblage, presence of sensitive species, high diversity and species richness, and/or balanced to slightly imbalanced trophic structure (TCEQ, 2000). The entire segment offers high aesthetic value. It has been recommended by the National Park Service for inclusion in the proposed Texas Natural Rivers System, and is described by that organization as the "purest, cleanest stretch of stream this size in Texas" (NPS, 1995). Often canoeable, portions of this segment have numerous rapids, including geologic oddities such as "pin-ball rapids," and the banks are lined with oaks and pecans (NPS, 1995). (Photo #3 & Exhibit 1)
- Threatened or Endangered Species/Unique Communities This portion of the Nueces River is a significant segment due to the presence of one state threatened species, and several species of concern (SOC) as listed by Texas Parks and Wildlife Department (TPWD). The state threatened blue sucker (*Cycleptus elongatus*) may potentially occur within Uvalde County. In addition, the Edwards Plateau shiner (*Cyprinella lepida*), Nueces roundnose minnow (*Dionda serena*), Nueces River shiner (*Cyprinella* sp. 2), and Guadalupe bass (*Micropterus treculi*), all SOC, may also occur within this segment. TPWD reports that the numerous springs along the Nueces River and its tributaries provide habitat for an undescribed species of salamander that belongs to the *Eurycea troglodytes* complex (TPWD, 2009). (Photo #4 & Exhibit 1).

Photo #1 - Nueces River

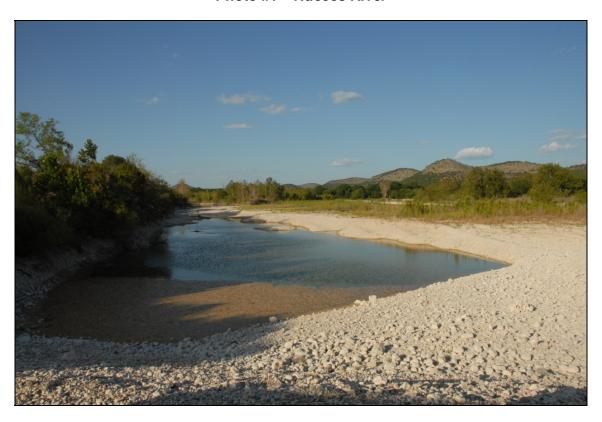


Photo #2 - Nueces River

Photo #3 - Nueces River

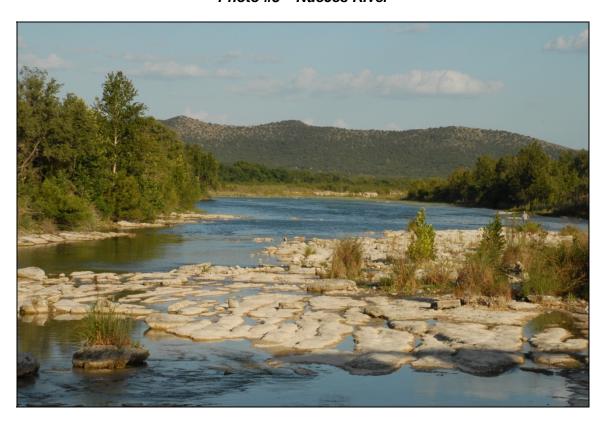


Photo #4 - Nueces River

I.4.2 Frio River

The Frio River begins in northeast Real County and flows south and southeast for about 250 miles traversing Uvalde, Medina, Frio, La Salle, McMullen, and Live Oak counties. The Frio River empties into the Nueces River, ultimately contributing freshwater inflow to Nueces and Corpus Christi Bays. Springs that form the Frio River issue from a 3,000-acre ranch north of Leakey, while numerous spring-fed tributaries contribute to its flow (Brune, 1981). The river crosses the Edwards Aquifer recharge zone in central Uvalde County where it disappears into alluvial cobbles and gravels (Brune 1981).

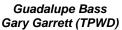
The river passes through limestone formed canyons lined with mesquite (*Prosopis glandulosa*), Texas red bud (*Cercis canadensis*), Ashe juniper (*Juniperus ashei*), lacey oak (*Quercus laceyi*), Texas madrone (*Arbutus xalapensis*), and cedar elm (*Ulmus crassifolia*). River banks are bounded by numerous species including bald cypress (*Taxodium distichum*), pecan (*Carya illinoensis*), sycamore (*Platanus occidentalis*), willow (*Salix nigra*), and Spanish oak (*Quercus buckleyi*) (Belisle, 1974). Considered to be one of top 10 rivers in the state, it is a very popular recreational river for canoeing, tubing, fishing, and wildlife viewing, with the majority of its recreational use occurring around Garner State Park (NPS, 1995). Many shallow rapids exist in the narrow upper section of the river; however water levels generally support recreational activities throughout much of its course (Belisle, 1974).

This segment is important to TPWD stocking experiments involving Guadalupe bass (*Micropterus treculi*) as it is downstream of areas where pure strain Guadalupe bass were stocked in large numbers in an attempt to purify existing hybrid populations (TPWD, 2005).

The aquatic and riparian habitats associated with this segment support an exceptionally diverse assemblage of invertebrates, fish, birds, and plants characteristic of the Edwards Plateau. The riparian woodlands also provide important nesting, migration, and wintering habitat for a variety of birds.

The recommended segment of the Frio River includes that portion of the river from the northern boundary of Region L in Uvalde County downstream to USGS gauge #08195000 at Concan, a distance of approximately 15 miles (within TCEQ classified stream segment 2113) (Exhibit 2).

The unique ecological value of this segment of the Frio River is based upon the following criteria:



 Biological Function - This segment is included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable wildlife value (NPS, 1995). It has also been recommended by the National Park Service for inclusion in the proposed Texas Natural Rivers System (NPS, 1995). (Photo #5 & Exhibit 2)

- Hydrologic Function Numerous springs located along the Frio River provide a valuable hydrologic function relating to the discharge of the Edwards-Trinity (Plateau) Aquifer, and flow within the river provides recharge as it crosses the outcrop portion of the Edwards Balcones Fault Zone Aquifer (Brune, 1981). This recommended segment of the Frio River is located over the Edwards Aquifer Contributing Zone. The Contributing Zone is sometimes called the drainage area or the catchment area. Within this area, water falls on the land surface then runs off into streams or infiltrates into aquifers found under the Edwards Plateau. This runoff from the land surface, in addition to water table springs, feed streams that flow over relatively impermeable limestones until they reach the Edwards Aquifer Recharge zone (Eckhardt, 2009). Near the Uvalde/Real County line, Cold Springs discharge from the Glen Rose limestone on the east side of the Frio River. An Indian village once was located here as evidenced by middens, projectile points, and metates (Brune, 1981). (Photo #6 & Exhibit 2)
- Riparian Conservation Area- This recommended segment includes the 1,419.8-acre Garner State Park (TPWD, 2005). TPWD biologists have identified approximately forty-nine species of herpetofauna, forty-four species of mammals, and over 200 species of birds with ranges that include the park (Handbook of Texas Online). The park has an abundance of White-tailed and Axis deer, Rio Grande Turkey, Mourning Dove, Eastern Bluebirds, Golden-cheeked Warblers, Black Rocks Squirrels, Fox Squirrels, Raccoons, and many other animal species (TPWD, 2005). Widespread riparian habitat found within this area provide important habitat for numerous wildlife species. (Photo #7 & Exhibit 2)
- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value This segment of the Frio River is listed by the Texas Commission on Environmental Quality as having exceptional aquatic life use (TCEQ, 2000). An exceptional aquatic life use classification indicates attributes including outstanding natural habitat variability, exceptional or unusual species assemblage, abundant sensitive species, exceptionally high diversity, exceptionally high species richness, and/or balanced trophic structure. This segment is included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable scenery and recreation values (NPS, 1995). (Photo #8 & Exhibit 2)
- Threatened or Endangered Species/Unique Communities This river segment is important due to the possible presence of one state threatened species, and several SOC as listed by TPWD. The state threatened blue sucker (*Cycleptus elongatus*) may potentially occur within Uvalde County. In addition, the Edwards Plateau shiner (*Cyprinella lepida*), Nueces roundnose minnow (*Dionda serena*), Nueces River shiner (*Cyprinella* sp. 2), and Guadalupe bass (*Micropterus treculi*), all SOC, may also occur within this segment. There also exist numerous springs along the Frio River and its tributaries which TPWD reports provide habitat for an undescribed species of salamander that belongs to the *Eurycea troglodytes* complex (TPWD, 2009). (Photo #9 & Exhibit 2).

Plateau shiner Chad Norris (TPWD)

Nueces roundnose minnow Chad Norris (TPWD)

Photo #5 - Frio River

Photo #6 - Frio River (Cold Springs)

Photo #7 – Frio River (Garner State Park)

Photo #8 – Frio River



Photo #9 – Frio River

I.4.3 Sabinal River

The spring-fed Sabinal River begins near Vanderpool in western Bandera County and flows south for approximately 58 miles into Uvalde County where it merges with the Frio River in the southeastern part of the county. The upper portion of the Sabinal River rises from the Edwards Plateau and flows through Hill Country canyons with walls up to 300 feet tall before entering the South Texas Brush Country (Belisle, 1974). Large bald cypress (*Taxodium distichum*) are interspersed along the banks of the river, along with green ash (*Fraxinus pennsylvanica*), black willow (*Salix nigra*), pecan (*Carya illinoensis*), and sycamore (*Platanus occidentalis*) among other trees. The aquatic and riparian habitats associated with this segment support a diverse assemblage of invertebrates, fish, birds, and plants characteristic of the Edwards Plateau.

The Sabinal River crosses both the Contributing Zone and Recharge Zone of the Edwards Aquifer in northeastern Uvalde County. Like the Nueces River, the Frio River, and other streams to the northwest, the Sabinal River loses water when crossing the Balcones Fault Zone (Brune, 1981). Some of this lost water reappears in the Sabinal River at Sabinal Springs west of the city of Sabinal (Brune, 1981). The Sabinal River was included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable values in scenery, recreation, geology, wildlife, and other values (NPS, 1995).

This segment is important to TPWD stocking experiments involving Guadalupe bass (*Micropterus treculi*) as it is downstream of areas where pure strain Guadalupe bass were stocked in large numbers in an attempt to purify existing hybrid populations (TPWD, 2005).

The segment of the Sabinal River recommended for designation as having unique ecological value includes that portion of the river from the northern boundary of Region L downstream to the State Highway 187 crossing located approximately 2.7 miles upstream of USGS gauge #08198000 near Sabinal, a distance of approximately 12 miles (within TCEQ classified stream segment 2111) (Exhibit 3).

The unique ecological value of this segment of the Sabinal River is based upon the following criteria:

• Biological Function - This segment is included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable wildlife values (NPS, 1995). It has also been recommended by the National Park Service for inclusion in the proposed Texas Natural Rivers System (NPS, 1995). (Photo #10 & Exhibit 3)

• Hydrologic Function - Numerous springs located along the Sabinal River provide a valuable hydrologic function relating to the discharge of the Edwards-Trinity (Plateau) Aquifer, and flow within the river provides recharge as it crosses the outcrop portion of the Edwards Balcones Fault Zone Aquifer (Brune, 1981). This recommended segment of the Sabinal River is located over the Edwards Aquifer Contributing Zone. The Contributing Zone is sometimes called the drainage area or the catchment area. Within this area, water falls on the land surface then runs off into streams or infiltrates into aquifers found under the Edwards Plateau. This runoff from the land surface, in addition to water table springs, feed streams that flow over relatively impermeable limestones until they reach the Edwards Aquifer Recharge zone (Eckhardt, 2009). Ware Springs reportedly issue from Leona gravels in a small draw east of the Sabinal River just below Utopia (Brune, 1981). (Photo #11 & Exhibit 3)

- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value This segment of the Sabinal River is classified in the high aquatic life use category by the Texas Commission on Environmental Quality as its attributes include highly diverse habitat, regionally expected species assemblage, presence of sensitive species, high diversity and species richness, and/or balanced to slightly imbalanced trophic structure (TCEQ, 2000). This segment of the Sabinal River is also included in the National Park Service Nationwide Rivers Inventory for outstandingly remarkable scenery and recreation values (NPS, 1995). (Photo #12 & Exhibit 3)
- Threatened or Endangered Species/Unique Communities This river segment is significant due to the possible presence of one state threatened species, and several SOC as listed by TPWD. The state threatened blue sucker (*Cycleptus elongatus*) may occur within Uvalde County. In addition, the Edwards Plateau shiner (*Cyprinella lepida*), Nueces roundnose minnow (*Dionda serena*), Nueces River shiner (*Cyprinella* sp. 2), and Guadalupe bass (*Micropterus treculi*), all SOC, may also occur within this segment. TPWD reports that springs along the Sabinal River and its tributaries provide habitat for an undescribed species of salamander that belongs to the *Eurycea troglodytes* complex (TPWD, 2009). (Photo #13 & Exhibit 3).

Photo #10 - Sabinal River

Photo #11 – Sabinal River

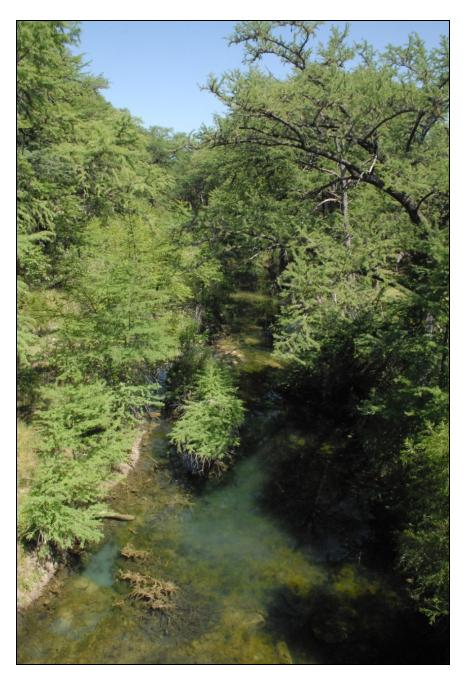


Photo #12 – Sabinal River

Photo #13 - Sabinal River

I.4.4 San Marcos River

The San Marcos River is formed by several major springs in the City of San Marcos and flows for approximately 80 miles before joining the Guadalupe River southwest of Gonzales. San Marcos Springs is the second largest spring system in Texas and has historically exhibited the greatest dependability and stability of any spring system in the southwestern Unites States (Brune, 1981) (USFWS, 1996). The San Marcos River is rated as the number one recreational river in the state, and the number two scenic river (NPS, 1995). In addition, a segment of the river was previously recommended as a Scenic Waterway (NPS, 1995). This area is heavily used by canoeists, kayakers, and tubers (NPS, 1995).

An estimated 200 springs issue from three large fissures and numerous smaller openings in the bottom of Spring Lake located at the head of the San Marcos River (Brune, 1981). The springs receive local recharge where the Blanco River, Guadalupe River, Sink Creek, Purgatory Creek, York Creek, and Alligator Creek cross the Balcones Fault Zone, but the majority of flow comes from the Edwards Aquifer to the west-southwest (Brune, 1981).

The Upper San Marcos River contains many shallow riffles with gravel and gravel/sand substrate that alternate with deep pools containing silt substrates. Like the Comal River system, the upper San Marcos River has one of the greatest known diversities of aquatic organisms in the southwestern United States (USFWS, 1996). The unique habitats and relatively constant thermal environment provided by these spring systems support many endemic species. It is the only known location of several species, such as the San Marcos salamander (*Eurycea nana*) and Texas wild rice (*Zizania texana*) (USFWS, 1996).

The segment of the San Marcos River recommended for designation as having unique ecological value includes that portion of the river extending from IH 35 up to a point 0.4 miles upstream of Loop 82 in San Marcos, a distance of approximately two miles (part of TCEQ classified stream segment 1814) (Exhibit 4).

The unique ecological value of this segment of the San Marcos River is based upon the following criteria:

- Biological Function This segment of the San Marcos River contains significant overall habitat value based on the degree of biodiversity, age, and uniqueness observed in the aquatic habitat (USFWS, 1996). (Photo # 14 & Exhibit 4)
- Hydrologic Function This recommended segment provides valuable hydrologic functions relating to groundwater discharge of the Edwards Aquifer (Brune, 1981). In terms of average annual discharge, San Marcos Springs are the second largest in Texas. (Photo #15 & Exhibit 4)
- Riparian Conservation Area This recommended segment includes several city and Texas State University parks. (Photo #16 & Exhibit 4)
- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value Information provided by the Texas Commission on Environmental Quality, classifies this segment as having exceptional aquatic life use attributes (TCEQ, 2000). An exceptional aquatic life use classification indicates attributes including outstanding natural habitat variability, exceptional or unusual species assemblage, abundant sensitive species, exceptionally high diversity, exceptionally high species richness, and/or balanced trophic structure. (Photo #17 & Exhibit 4)
- Threatened or Endangered Species/Unique Communities This segment of the San Marcos river is unique due to presence of three species which are listed as both federal and state endangered, the fountain darter (*Etheostoma fonticola*), Texas blind salamander (*Eurycea rathbuni*), and Texas wild rice (*Zizania texana*) (USFWS, 1996). Two additional species are also listed as present within this area, the San Marcos salamander (*Eurycea nana*) which is federal and state listed as threatened, and the American eel (*Anguilla rostrata*) which is considered by TPWD as a SOC (USFWS, 1996). Recently, the Comal Springs riffle beetle (*Heterelmis comalensis*), a species federally listed as endangered and a state SOC, which was once thought to only inhabit Comal Springs, was collected from spring orifices on the banks of Spring Lake at the head of the San Marcos River. (Photo #18 & Exhibit 4)

Photo #14 - San Marcos River

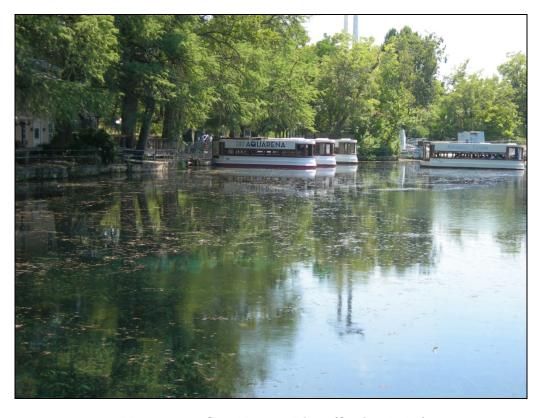


Photo #15 – San Marcos River (Spring Lake)

Photo #16 - San Marcos River (Wildlife Habitat Park)

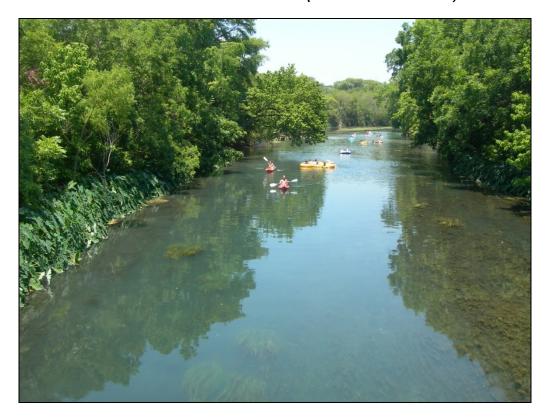


Photo #17 - San Marcos River

Photo #18 - San Marcos River

I.4.5 Comal River

The Comal River is formed by the largest spring system in Texas, located about one mile northwest of New Braunfels, and flows southeast into the Guadalupe River (Brune, 1981). It is the shortest river in Texas, at only two and one half miles, and the shortest river in the U.S. carrying an equivalent amount of water (Belisle, 1974). In addition to providing municipal water supply, the Comal River supports a regional recreation and tourism industry and provides critical habitat for four federally endangered species.

Spring waters that flow up from the Edwards Aquifer create a thermally constant environment that supports one of the greatest known diversities of organisms of any aquatic ecosystem in the southwestern United States (USFWS, 1996). Because many of the plants and animals within this community depend upon the springs, most of this flora and fauna could disappear if the springs were to fail.

The Comal River, as recommended for designation as having unique ecological value, extends from the confluence with the Guadalupe River upstream to Klingemann Street in New

Braunfels, a distance of approximately three miles (TCEQ classified stream segment 1811) (Exhibit 5).

The unique ecological value of the Comal River is based upon the following criteria:

- Biological Function The Comal River displays significant overall habitat value in both quantity and quality considering the degree of biodiversity and uniqueness observed in the aquatic habitat (USFWS, 1996). (Photo #19 & Exhibit 5)
- Hydrologic Function The Comal River provides valuable hydrologic function relating to groundwater discharge of the Edwards Aquifer, as it is the largest spring system in the state (Brune, 1981). (Photo # 20 & Exhibit 5)
- Riparian Conservation Area Landa Park and Prince Solms Park, popular recreation areas, are adjacent to the Comal River. (Photo # 21 & Exhibit 5)
- High Water Quality/Exceptional or High Aquatic Life Use/High Aesthetic Value This segment includes the presence of unique habitats dependent on or associated
 with high water quality (USFWS, 1996). In addition, it is listed by the Texas
 Commission on Environmental Quality as having high aquatic life use attributes
 (TCEQ, 2000). High aquatic life use attributes include highly diverse habitat,
 regionally expected species assemblage, presence of sensitive species, high diversity
 and species richness, and/or balanced to slightly imbalanced trophic structure. (Photo
 #22 & Exhibit 5)
- Threatened or Endangered Species/Unique Communities The Comal River provides habitat for eight species with a federal or state listing as endangered, threatened, or a SOC. The fountain darter (Etheostoma fonticola) and Peck's Cave amphipod (Stygobromus peckii) are both species which are federal and state listed as endangered. Two species, the Comal Springs riffle beetle (Heterelmis comalensis) and Comal Springs dryopid beetle (Stygoparnus comalensis) are federally listed as endangered and considered SOC by the TPWD. Three species, the Comal Springs diving beetle (Comaldessus stygius), Comal Springs salamander (Eurycea sp. 8), and Edwards Aquifer diving beetle (Haideoporus texanus) are considered SOC by TPWD (USFWS, 1996). (Photo #23 & Exhibit 5)

Photo #19 - Comal River (Spring Run #1)

Photo #20 - Comal River (Comal Springs)

Photo #21 – Comal River (Landa Lake)

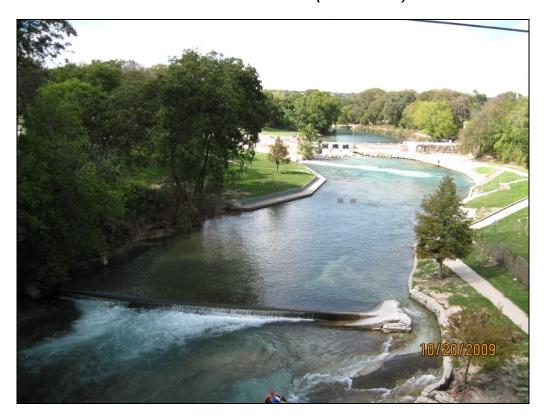


Photo #22 - Comal River

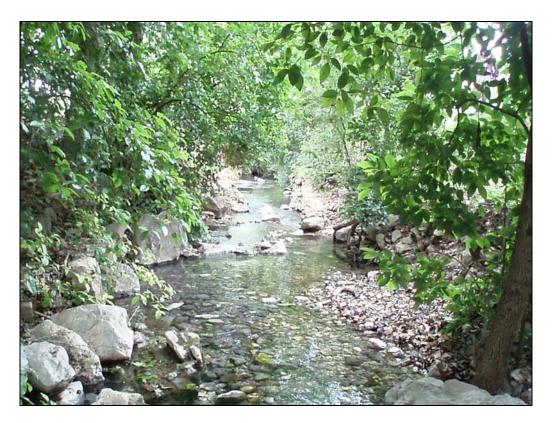


Photo #23 – Comal River (Spring Run #2)

Bibliography

Belisle, H. J. (1974). An analysis of Texas waterways: a report on the physical characteristics of rivers, streams, and bayous in Texas. Austin, Texas: Texas Agricultural and Extension Service, Dept. of Agricultural Communications.

- Brune, G. (1981). Springs of Texas: Volume 1. Fort Worth, Texas: Branch-Smith.
- Eckhardt, G. (2009). *Introduction to the Edwards Aquifer*. Retrieved October 12, 2009, from The Edwards Aquifer Website: http://www.edwardsaquifer.net/intro.html
- Handbook of Texas Online. (n.d.). *Garner State Park*. Retrieved October 13, 2009, from Handbook of Texas Online: http://www.tshaonline.org/handbook/online/articles/GG/gkg5.html
- NPS. (1995). *The nationwide rivers inventory*. Retrieved October 12, 2009, from National Park Service, Conservation and Outdoor Recreation: http://www.ncrc.nps.gov/rtca/nri/states/tx.html
- NPS. (1995). *The nationwide rivers inventory*. Retrieved October 12, 2009, from National Park Service, Conservation and Outdoor Recreation: http://www.ncrc.nps.gov/rtca/nri/states/tx.html
- TCEQ. (2000). *Texas Surface Water Quality Standards*. Austin, Texas: Texas Commission on Environmental Quality.
- TPWD. (2009). C. Norris, Personal Communication. Austin, Texas: Texas Parks and Wildlife Department.
- TPWD. (2005). C. Norris, D. Moulton, A. El-Hage, & D. Bradsby, *Ecologically Significant River & Stream Segments of Region L (South Central) Regional Water Planning Area*. Austin, Texas: Coastal Fisheries Division: Water Resources Branch, Texas Parks and Wildlife Department.
- TPWD. (2005). *Garner State Park*. Retrieved October 13, 2009, from Garner State Park: http://www.tpwd.state.tx.us/spdest/findadest/parks/garner/
- USFWS. (1996). San Marcos and Comal Springs and Associated Aquatic Ecosystems (RevisedO Recovery Plan. Albuquerque, New Mexico: U.S. Fish and Wildlife Service.

(This page intentionally left blank.)

Exhibits

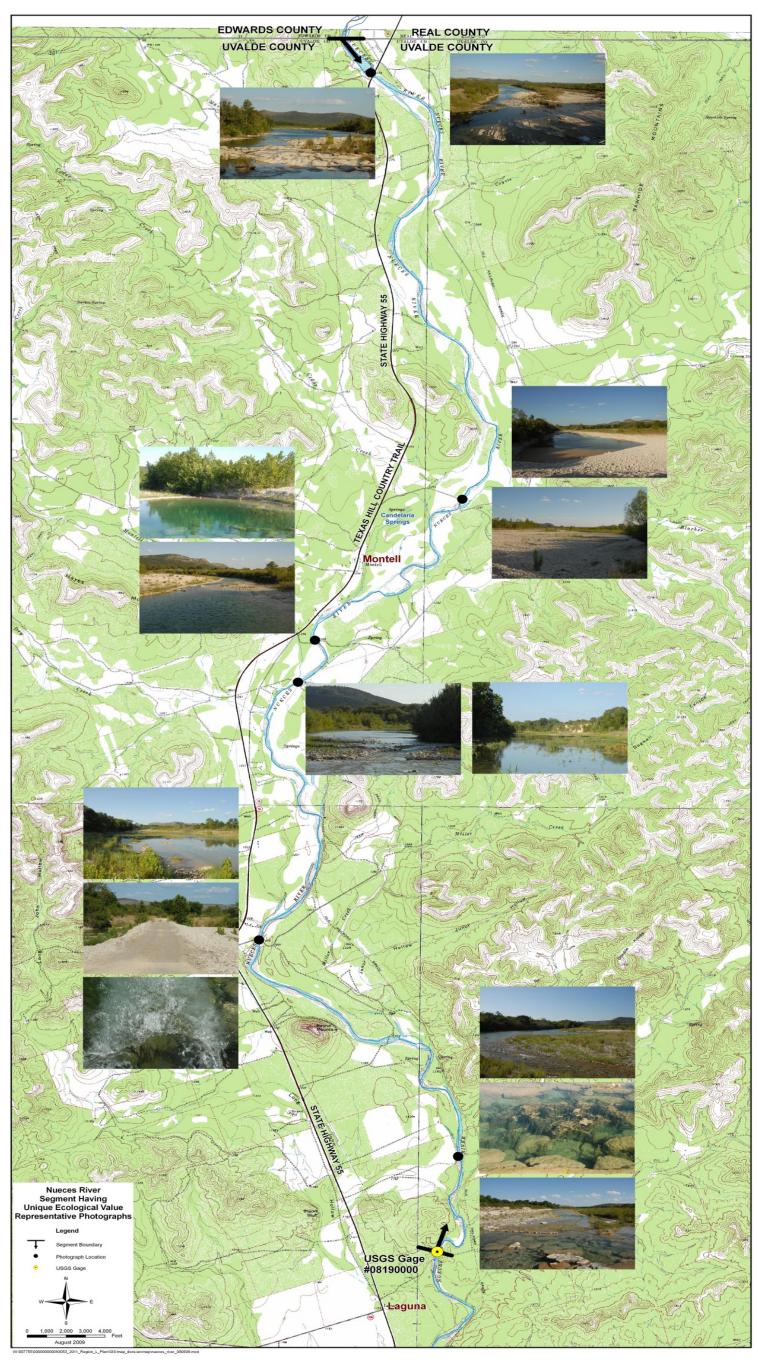


Exhibit 1

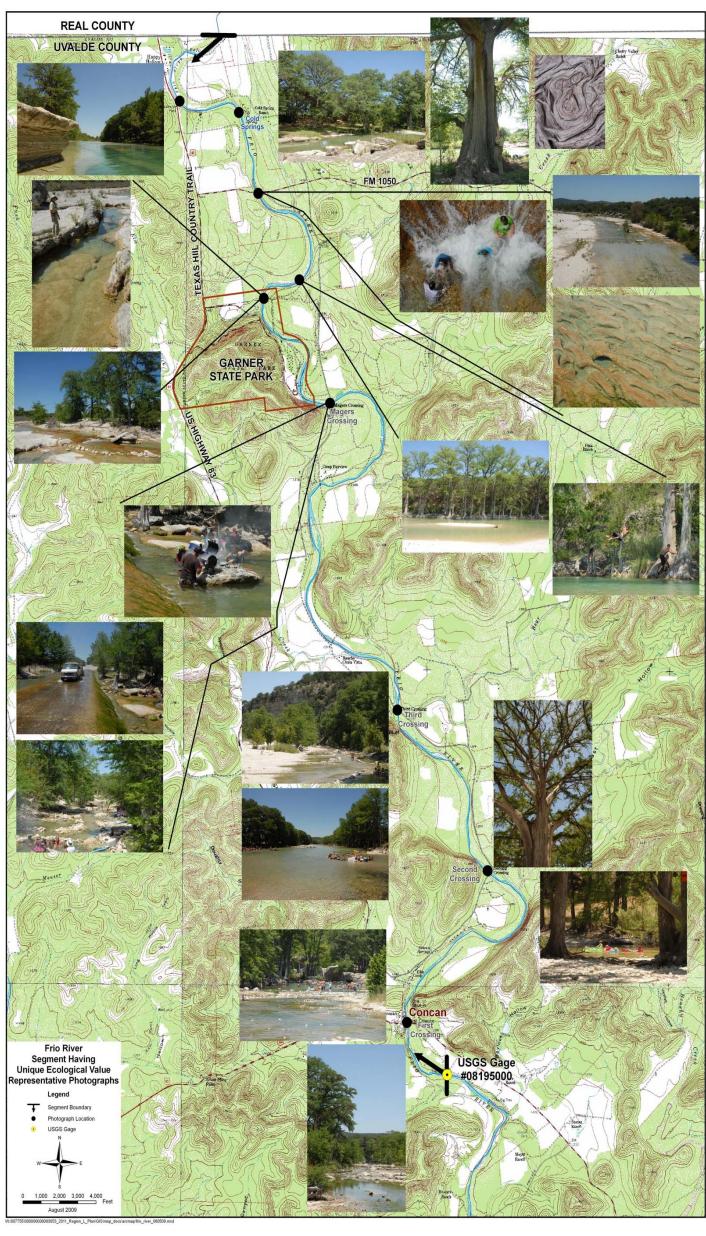


Exhibit 2

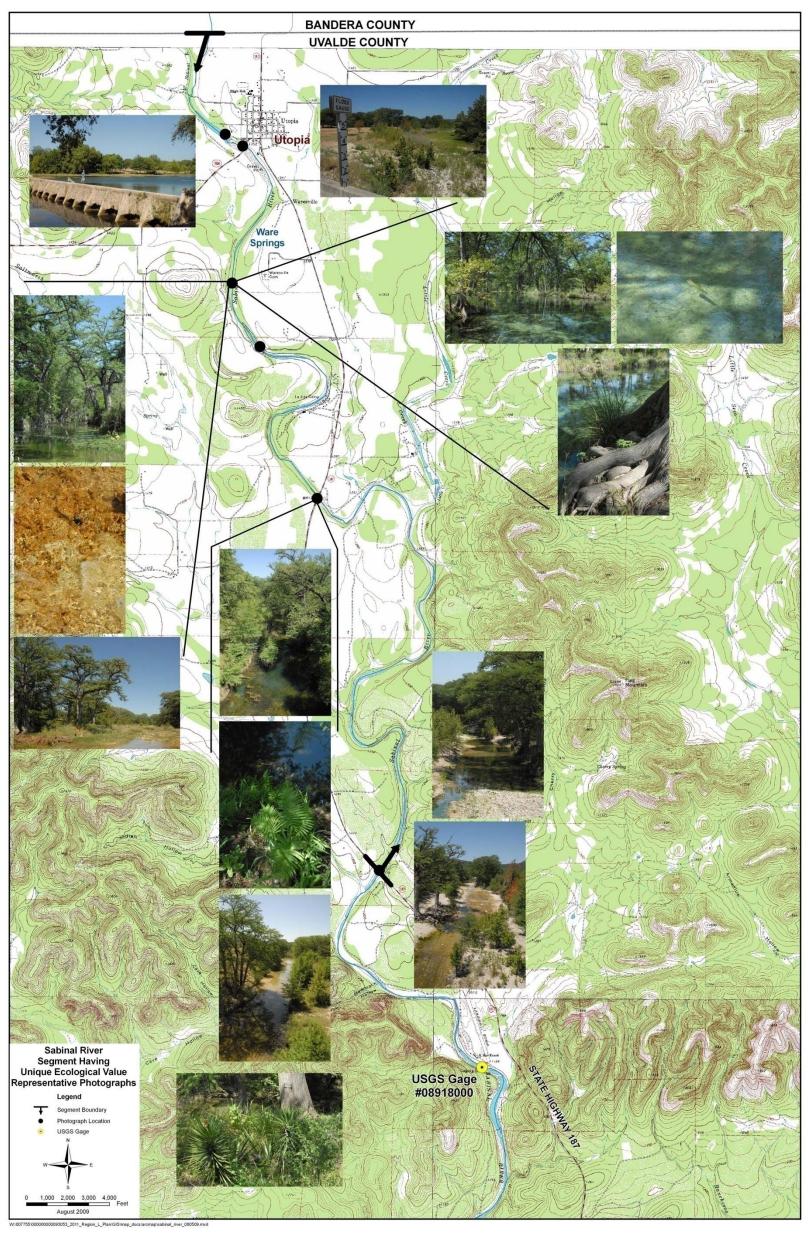


Exhibit 3

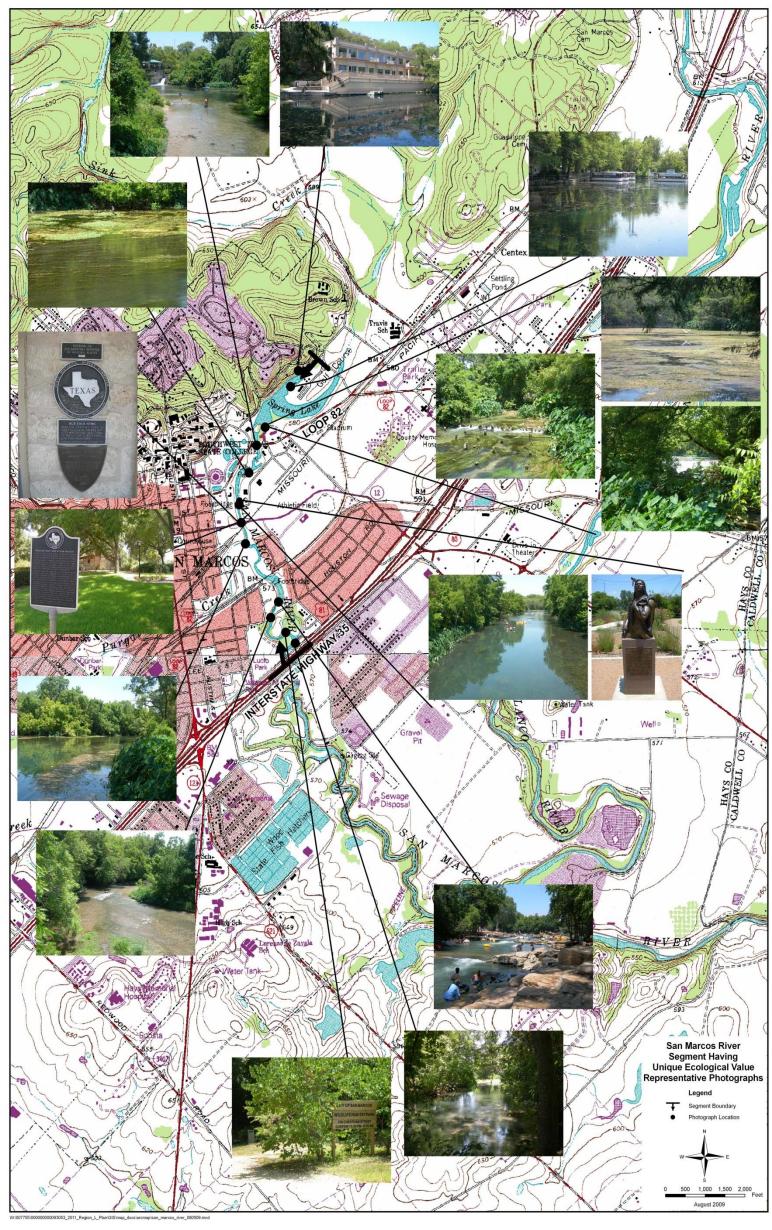


Exhibit 4

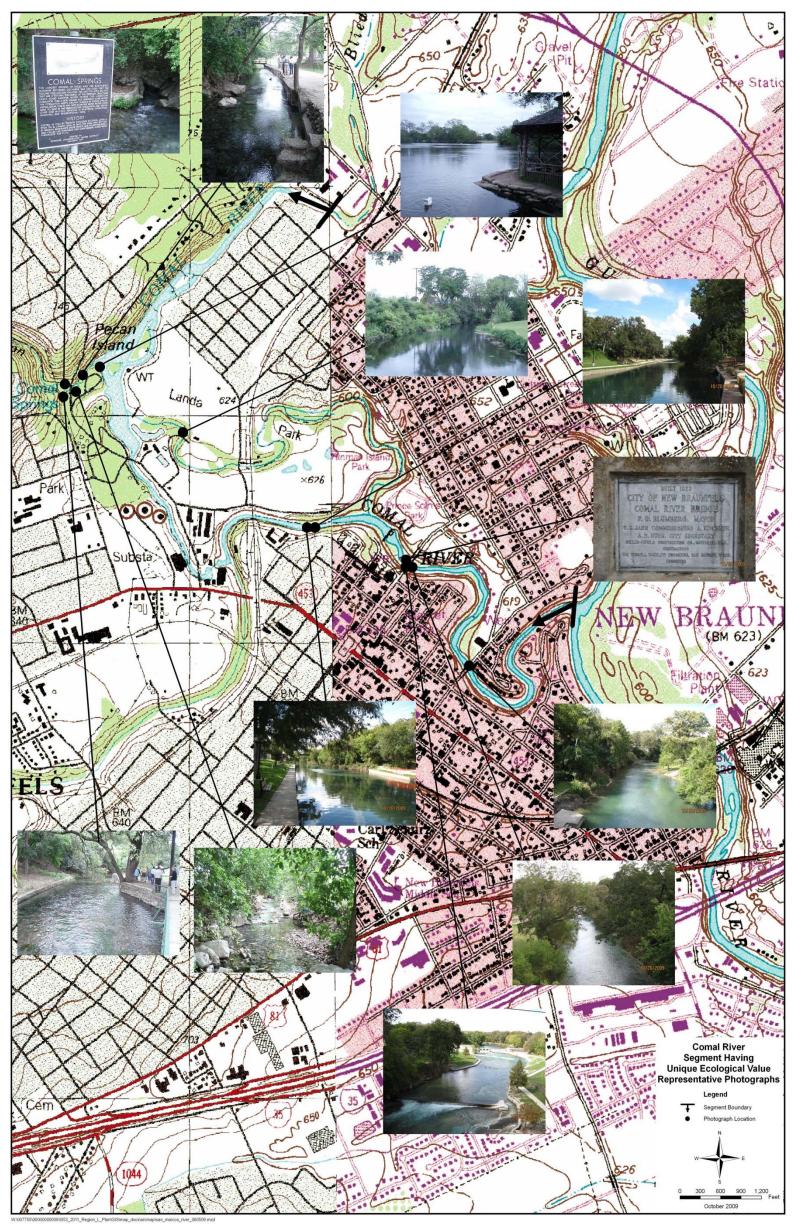


Exhibit 5

(This page intentionally left blank.)