Coastal Hydrology for the Mission-Aransas Estuary

February 22, 2011

Bays & Estuaries Program Surface Water Resources Division Texas Water Development Board 1700 N. Congress Avenue Austin, Texas 78711

Technical Authors Caimee Schoenbaechler, M.E.M. Carla G. Guthrie, Ph.D.

> Technical Contributor Qingguang Lu, P.E.

Purpose

This technical memo documents the procedure for estimating combined freshwater inflow data for the Mission-Aransas Estuary and the specifics related to producing hydrology dataset versions #TWDB201001 and #TWDB201004 for this estuary.

Introduction

The goal of the Texas Water Development Board (TWDB) Coastal Hydrology program is to provide estimates of historical freshwater inflows into Texas bays and estuaries to support environmental and water planning studies. The earliest freshwater inflow estimates were compiled in a series of reports published by the Texas Department of Water Resources between 1980 and 1983. Monthly inflows to the seven major estuaries in Texas for the period 1941-1976 were estimated in those studies, with estimates for the Mission-Aransas Estuary published in Chapter 4 of LP-108, *Nueces and Mission-Aransas Estuaries: A Study of the Influence of Freshwater Inflows* (TDWR 1981, available on the TWDB website or upon request).

Inflow records for each estuary have been updated periodically since then in support of ongoing research and planning studies both within and external to TWDB. Additionally, subsequent updates are provided in daily as well as monthly format. This report covers the most recent update of freshwater inflow estimates for the Mission-Aransas Estuary and extends the hydrology through 2009. Therefore, complete hydrology is available for this estuary for 1941-2009, with daily estimates of inflows available only after 1977.

Estimates of Combined Freshwater Inflows

Estimates of hydrology for the areas draining to the Mission-Aransas Estuary include gaged and ungaged portions of the Mission and Aransas river basins, as well as other small coastal basins. The combination of *Gaged Inflows* + *Ungaged Inflows* + *Return Flows* - *Diversions* below the last gage station provide for estimates of **Combined Freshwater Inflow** to the estuary. The **Freshwater Inflow Balance** then consists of **Combined Inflows** + **Precipitation** on the estuary – **Evaporation** from the estuary. Although inflow estimates are updated on an ongoing basis, there are two distinct periods of estimation. Before 1977,

inflow estimates are available only in monthly intervals. Starting in 1977 and thereafter, inflow estimates became available on a daily basis.

1941-1976 Period of Record

This period of record uses measurements from U.S. Geological Survey (USGS) stream gages along with rainfall-runoff estimates from a water yield model to determine flows in gaged and ungaged watersheds (TDWR 1981). In these early estimates of coastal hydrology, flows in ungaged areas were adjusted for known agricultural, municipal, and industrial return flows obtained from the Texas Department of Water Resources or equivalent agency (TDWR 1981). However, LP-108 does not clearly document the treatment of diversion data when estimating combined inflows to the estuary. Data on inflows to the Mission-Aransas Estuary for the 1941-1976 period is available as monthly or annual estimates.

1977-2009 Period of Record

This period of record uses measurements from USGS stream gages along with rainfall-runoff estimates from the Texas Rainfall-Runoff (TxRR) model, adjusted for known diversion and return flows obtained from the TCEQ (or equivalent agency), the South Texas Water Master, and the TWDB Irrigation Water Use estimates. In some cases, diversion and return data may be obtained through other entities, such as in the TWDB report on *Coastal Hydrology for the Guadalupe Estuary* (Guthrie and Lu 2010) where recent diversion and return data were obtained from HDR Inc. Data on inflows to the Mission-Aransas Estuary for the 1977-2009 period is available as daily, monthly, or annual estimates.

Gaged Watersheds

Four USGS stream gages have been used to develop the gaged inflow component of combined inflows to the Mission-Aransas Estuary. The gage location at the Mission River at Refugio has been utilized since 1939. Table 1 lists these USGS stream gages and the corresponding period of record utilized in estimating combined inflows. Approved USGS stream gage data was available through November 2009 and was provisional for December 2009.

Table 1. USGS stream gages used to develop the gaged inflow component of combined inflows to the Mission-Aransas Estuary. Gage number, location, and period of record utilized in estimating inflows are shown.

Estuary	Gage Station Number	Gage Location	Utilized Period of Record	
Mission-Aransas	08189800	Chiltipin Creek at Sinton	1970-1991	
	08189700	Aransas River near Skidmore	1964-present	
	08189500	Mission River at Refugio	1939-present	
	08189200	Copano Creek near Refugio	1970-present	

Ungaged Watersheds

The number of ungaged watersheds for which ungaged inflows are estimated has changed through time as USGS gages become available or unavailable. Figures 1-3 show watershed boundaries for the ungaged watersheds during the period from 1941 to present. Major differences in watersheds occur as

watersheds #20125 and #20030 transitioned from ungaged to gaged in 1970, and as watershed #20030 transitioned back to ungaged in 1991 (Figures 1-3). Also, watershed #20010 was divided into two watersheds, #20012 and #20014, in 1977 (Figure 2).

The ungaged inflow component of combined inflows is estimated using a rainfall-runoff model. Before 1977, stream flows in ungaged watersheds were obtained using a *water yield model* which required daily precipitation, Soil Conservation Service average curve numbers, and soil depletion index (TDWR 1981). This water yield model provided for monthly estimates of ungaged inflows – not daily. TWDB does not have daily estimates of ungaged inflows for the period prior to 1977.

Since 1977, however, TWDB has used the Texas Rainfall-Runoff (TxRR) model to estimate daily stream flows in ungaged watersheds. This model is conceptually similar to the Agricultural Research Service (ARS) rainfall-runoff model which is based on the Soil Conservation Service's curve number method to estimate direct runoff from a precipitation event. TxRR, however, has three key differences: (1) use of a simpler and more straightforward mathematics, (2) introduction of 12 monthly depletion factors, instead of single depletion factor used in the ARS Model, and (3) introduction of a base flow component into the model. TxRR has been used to estimate daily stream flows from over 50 coastal ungaged watersheds as a part of the Bays & Estuaries Coastal Hydrology Program to study the effect of freshwater inflows to Texas bays and estuaries.

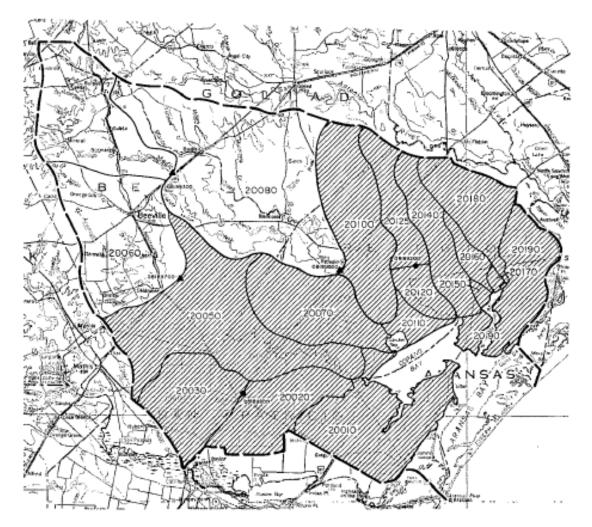


Figure 1. Ungaged watershed delineation used to determine ungaged inflows to the Mission-Aransas Estuary from 1941 to 1970. From 1970 to 1976, watersheds #20125 (upper right) and #20030 (lower left) transitioned from ungaged to gaged watersheds as shown in Figure 2. Triangles represent USGS Streamflow Gages. Ungaged watersheds are identified by cross-hatching.

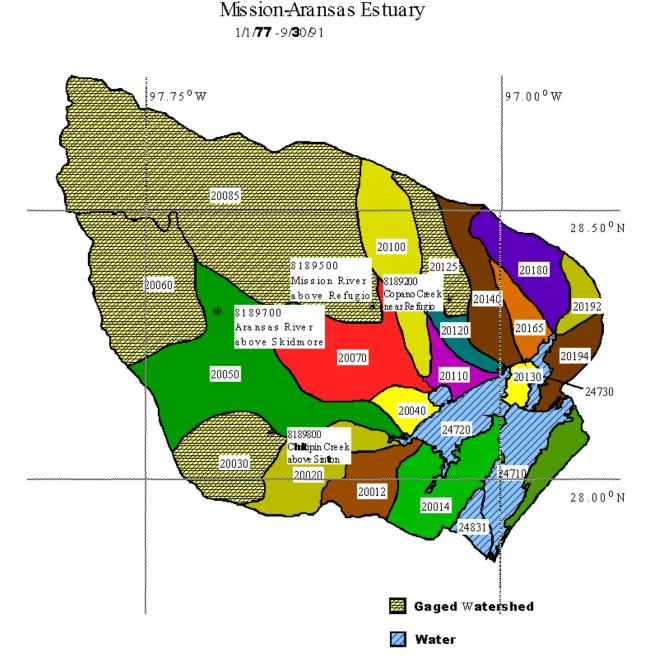


Figure 2. Ungaged watershed delineation used by TxRR to determine ungaged inflows to the Mission-Aransas Estuary from 1977 to 1991. Gaged watersheds are identified by yellow cross-hatching. Watershed numbers changed when watershed# 20010 (lower right, see Figure 1) was split into two watersheds, #20012 and #20014, and ungaged watersheds #20125 and #20030 transitioned to gaged watersheds in 1970.

Mission-Aransas Estuary

10/1/91- Present

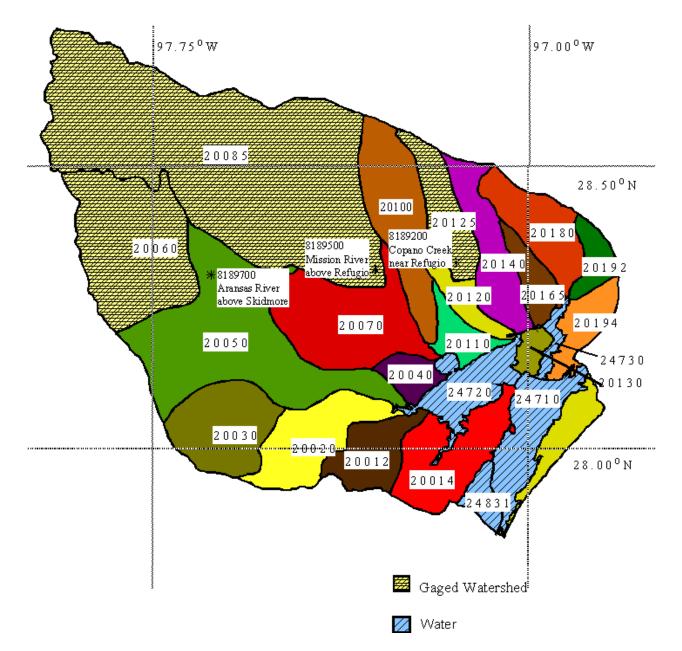


Figure 3. Ungaged watershed delineation used in TxRR to determine ungaged flows to the Mission-Aransas Estuary from 1991 to Present. Gaged watersheds are identified by yellow cross-hatching. Watershed #20030 (lower left) transitioned back to an ungaged watershed in 1991.

Diversion and Return Points

The major discharge permits and dischargers providing return flows to the Mission-Aransas Estuary are listed in Table 2, with locations shown in Figure 4. Although the TWDB coastal hydrology database includes several small diversions in the 1980's (Appendix A), owners of these diversion permits are unknown at this time.

able 2. Major discharge permits in the Mission-Aransas basin below the lowest USGS streamga								
	National Pollutant Discharge Elimination System Number	OWNER						
	TX0022152	City Of Rockport						
	TX0024562	City Of Sinton						
	TX0025135	City Of Odem						
	TX0027472	City Of Taft						
	TX0032492	Town Of Refugio						
	TX0032638	Town Of Woodsboro						
RETURN	TX0047007	City Of Beeville						
FLOWS	TX0054780	Pettus Mud						
	TX0102920	Texas Dept Of Transportation						
	TX0110361	City Of Sinton						
	TX0113859	City Of Beeville						
	TX0116157	Town Of Bayside						
	TX0119407	Skidmore WSC						
	TX0119563	St Paul WSC						
	TX0119601	Tynan WSC						
	TX0123871	Holiday Beach WSC						

Table 2. Major discharge permits in the Mission-Aransas basin below the lowest USGS streamgages.

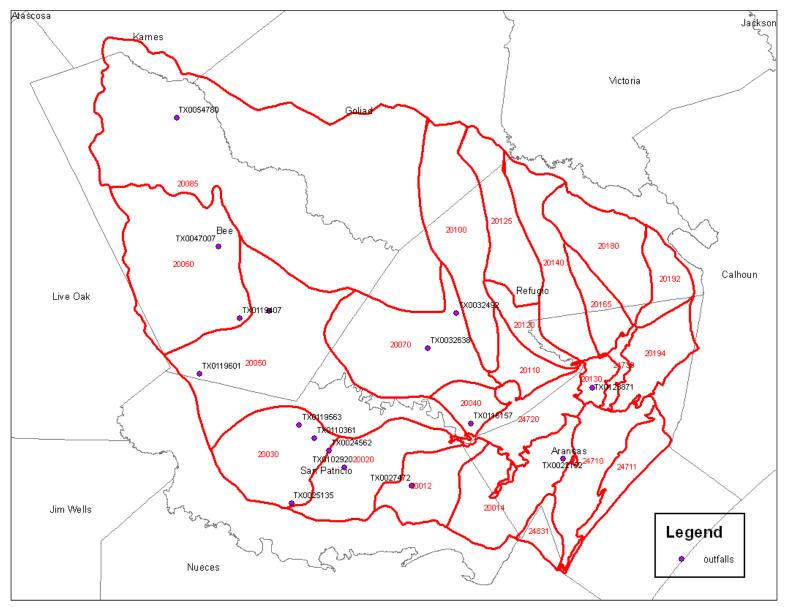


Figure 4. Location of discharge permits in the Mission – Aransas River basins

Estimates of Freshwater Inflow Balance

Total Freshwater Inflow to the estuary may include estimates of *Combined Freshwater Inflow* to the estuary + Precipitation on the estuary. The *Freshwater Inflow Balance*, then, considers the effect of Evaporation from the estuary. Due to limitations on estimates of evaporation throughout the period of record, estimates of the freshwater inflow balance are available only in monthly intervals.

Precipitation and Evaporation

Direct precipitation onto the surface of the Mission-Aransas Estuary was calculated using Thiessenweighted precipitation techniques as described in LP-108 (TDWR 1981). Station based rainfall data were obtained from the National Weather Service (NWS) and processed using Arc/Info Macro Language (AML). Figure 5 shows the Thiessen polygons that were built over the rainfall stations to calculate watershed rainfall.

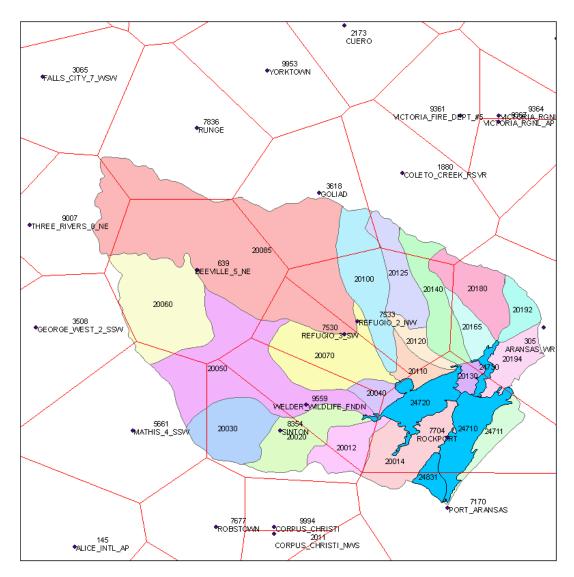


Figure 5: Rainfall stations (\blacklozenge) and Thiessen polygons (red lines) used to estimate direct precipitation onto the Mission-Aransas Estuary.

Evaporation was calculated for the surface area of the bay using TWDB and NWS pan evaporation data to estimate evaporation rates. Bay watersheds used to calculate evaporation include watershed #24720, #24730, and #24710 which are located within quadrangles 910, 911, 1010, and 1011 (Figure 6). The total water evaporated from this watershed is calculated by multiplying the watershed area by the evaporation rates obtained from the TWDB. Evaporation rates were determined with a GIS based program, *ThEvap*, using TWDB and NWS pan evaporation data. The *ThEvap* program replaced an older program, *WD0300*, previously run by the Texas Department of Water Resources (http://midgewater.twdb.state.tx.us/Evaporation/evap.html).

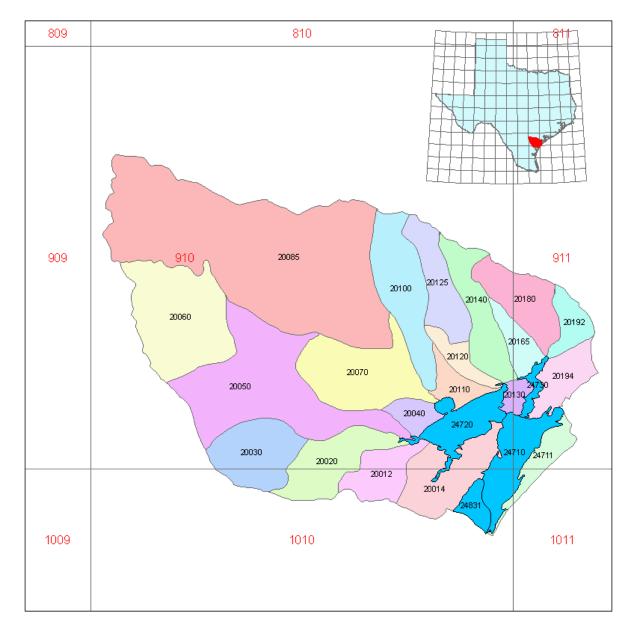


Figure 6. TWDB evaporation quadrangles used to estimate evaporation for the Mission-Aransas Estuary. Quadrangles 910, 911, 1010, and 1011 are used to estimate evaporation from the Mission-Aransas Estuary segments #24720, #24730, #24710, and #24831.

Hydrology: Version #TWDB201001

TWDB coastal hydrology version #TWDB201001 for the Mission-Aransas Estuary included gaged and ungaged inflows through December 2008. There were no diversion permits found for the period 1941 through 1976 or in the raw diversion data obtained from the South Texas Water Master (STWM) for the period from 1989 through October 2005. Although the TWDB coastal hydrology database includes a few diversions in the 1980's, the permit owners are unknown at this time. Industrial and municipal return flow data was obtained from the Texas Department of Water Resources (TDWR) self-reporting system from 1941 through 1976 and from TCEQ for the period from 1977 to 2007. Additional return flow data was obtained from TWDB's agricultural return flow estimates through December 2005.

Hydrology: Version #TWDB201004

TWDB coastal hydrology version #TWDB201004 for the Mission-Aransas Estuary extended the gaged data through November 2009 and used provisional data for December 2009. Ungaged inflows were updated from coastal hydrology version #TWDB201001 using approved daily precipitation data from the National Weather Service through November 2009, with provisional data for December 2009. Diversions were the same as in version #TWDB201001, but additional data from the STWM extended the dataset to 2009. Return flows were the same as in version #TWDB201001 and additional data obtained from TCEQ was updated through December 2009, and agricultural return flows data obtained from TWDB were extended to December 2007. Figure 7 displays the combined freshwater inflow to the Mission-Aransas Estuary as calculated by this version.

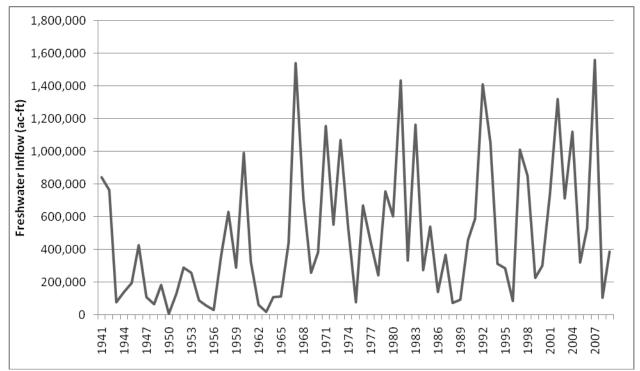


Figure 7: Combined freshwater inflow to the Mission-Aransas Estuary as calculated for version #TWDB201004.

Conclusion

Version #TWDB201004 of coastal hydrology for the Mission-Aransas Estuary is the most up-to-date data set representing not only combined freshwater inflows but also the individual components of inflows (*i.e.*, gaged flows, ungaged flows, diversions, return flows) for this estuary. Appendix A summarizes recent updates, by version, to hydrology for the Mission-Aransas Estuary. Appendix B lists the annual combined freshwater inflow along with the four components, as well as estimates for evaporation and precipitation on the estuary and the total freshwater inflow balance of the Mission-Aransas Estuary. Appendix C lists summary statistics for the inflow components over the 1941 through 2009 period.

Over the period from 1941 to 2009, gaged inflow from the Mission and Aransas Rivers accounted for approximately 29 percent of combined inflow, while ungaged flows accounted for nearly 70 percent of combined inflow. In general, net diversions accounted for only a small percent of the combined freshwater inflow to the estuary. In the Mission and Aransas river basins, annual average diversions total 0.02 percent of combined freshwater inflows, and annual average return flows total 0.94 percent of inflows. The difference then between diversions and returns accounts for 0.92 percent of the total combined freshwater inflow to the estuary. Nonetheless, it is still important to obtain the best data to allow for the most accurate representation of coastal hydrology and total freshwater inflows to the Mission-Aransas Estuary. Average combined surface inflow to the Mission-Aransas Estuary over the study period was approximately 490,000 acre-feet per year and the median surface inflow was approximately 366,000 acre-feet per year.

Finally, when considering total freshwater inflow balance, evaporation from and precipitation onto the surface of the estuary also must be considered. In 24 out of 69 years, there is a negative freshwater inflow balance, which indicates that evaporation exceeded precipitation and combined inflow to the estuary during periods of extreme drought. During the study period, annual average evaporation was approximately 583,000 acre-feet, while annual average precipitation was 373,000 acre-feet over the surface of the Mission-Aransas estuary. Surface evaporation from the Mission-Aransas estuary, when compared to both combined freshwater inflow and precipitation input, was 68% of the freshwater inflow balance. For the 1941 through 2009 period, the average freshwater inflow balance for the Mission-Aransas estuary was approximately 280,000 acre-feet per year. However, as Appendix B shows, wide variations from the mean freshwater inflow balance occur as a result of drought and flood conditions.

Literature Cited

- TDWR. 1981. *Nueces and Mission-Aransas Estuaries: A study of the influence of freshwater inflows*. LP-108. Texas Department of Water Resources, Austin, Texas.
- Guthrie, C.G. and Q.Lu. 2010. Coastal Hydrology for the Guadalupe Estuary: Updated Hydrology with Emphasis on Diversion and Return Flow Data for 2000-2009. Texas Water Development Board, Austin, Texas.

Estuary	Version	Date Range	Gaged Flows	Ungaged Flows	Diversions	Return Flows	Creation Date
	TWDB201001	1941-2008	1941-2008	1941-2005 1941-2008 STWM 1989-10/2005		1941-2007 TDWR 1941-1976 TCEQ 1977-2007 TWDB 1977-2005 (Agricultural)	01/2010
Mission-	TWDB201002	Dataset does n	ot exist.				
Aransas	TWDB201003	Dataset does n	ot exist.				
	TWDB201004	1941-2009	1941-2009, provisional 12/09	1941-2009, Precipitation data provisional for 12/09	1941-2009 STWM 1989-2009	1941-2009 TDWR 1941-1976 TCEQ 1977-2009 TWDB 1977-2007 (Agricultural)	09/2010

Appendix A: Record of Coastal Hydrology Versions Developed by the TWDB Bays & Estuaries Program

Appendix B: Annual Hydrology for the Mission-Aransas Estuary, Version #TWDB201004. Included are estimates of
gaged and ungaged (modeled) inflows, diversions and return flows, combined surface inflow to the estuary, as well
as evaporation and direct precipitation on the estuary and the total freshwater balance of the estuary. All values
are in units of acre-feet.

Year	Gage	Model	Diversion	Return	Surface Inflow	Evaporation	Precipitation	Freshwater Balance
1941	219,803	623,229	0	0	843,032	457,000	473,435	859,467
1942	262,749	501,053	0	0	763,802	448,000	404,849	720,651
1943	35,025	41,629	0	0	76,654	543,000	263,866	-202,480
1944	48,814	89,152	0	0	137,966	476,000	344,836	6,802
1945	36,359	157,883	0	0	194,242	533,000	336,261	-2,497
1946	83,160	344,549	0	0	427,709	487,000	447,713	388,422
1947	59,378	48,831	0	0	108,209	506,000	291,490	-106,301
1948	5,681	60,294	0	0	65,975	534,000	282,917	-185,108
1949	33,262	148,509	0	0	181,771	503,000	385,797	64,568
1950	2,677	4,826	0	0	7,503	571,000	158,128	-405,369
1951	28,230	105,086	0	0	133,316	581,000	294,349	-153,335
1952	102,799	185,744	0	0	288,543	580,000	276,249	-15,208
1953	38,274	217,717	0	0	255,991	553,000	315,304	18,295
1954	4,431	82,384	0	0	86,815	628,000	203,855	-337,330
1955	3,875	53,053	0	0	56,928	742,000	224,809	-460,263
1956	8,078	14,428	0	7,000	29,506	705,000	215,285	-460,209
1957	111,735	251,719	0	7,000	370,454	600,000	377,223	147,677
1958	144,141	479,856	0	7,000	630,997	467,000	432,473	596,470
1959	45,931	232,007	0	9,000	286,938	599,000	434,378	122,316
1960	156,612	823,953	0	9,000	989,565	582,000	558,215	965,780
1961	58,922	256,306	0	9,000	324,228	542,000	347,694	129,922
1962	36,622	15,304	0	9,000	60,926	667,000	261,960	-344,114
1963	4,613	2,365	0	11,000	17,978	627,000	198,138	-410,884
1964	11,985	83,785	0	11,000	106,770	600,000	261,963	-231,267
1965	48,267	54,631	0	11,000	113,898	560,000	305,780	-140,322
1966	105,499	326,999	0	11,000	443,498	515,000	326,737	255,235
1967	526,022	1,005,120	0	11,000	1,542,142	609,000	482,007	1,415,149
1968	122,031	579,369	0	13,000	714,400	506,000	488,676	697,076
1969	72,212	174,141	0	13,000	259,353	630,000	372,460	1,813
1970	73,723	293,522	0	14,000	381,245	591,000	405,801	196,046
1971	575,207	567,252	0	14,000	1,156,459	603,000	421,042	974,501
1972	248,755	288,225	0	14,000	550,980	524,000	406,753	433,733
1973	475,001	582,150	0	14,000	1,071,151	530,000	492,486	1,033,637
1974	157,347	361,301	0	14,000	532,648	582,000	442,001	392,649
1975	43,335	23,898	0	11,000	78,233	565,000	308,000	-178,767
1976	313,240	341,599	0	13,000	667,839	554,000	468,000	581,839
1977	141,904	302,670	0	2,663	447,237	674,051	364,231	137,417

					Surface			Freshwater
Year	Gage	Model	Diversion	Return	Inflow	Evaporation	Precipitation	Balance
1978	115,249	122,594	0	2,480	240,323	645,303	354,312	-50,668
1979	196,633	557,621	0	2,739	756,993	614,076	547,375	690,292
1980	165,705	434,414	0	1,658	601,777	707,112	349,314	243,979
1981	471,440	961,019	36	2,208	1,434,631	623,658	601,028	1,412,001
1982	139,482	190,128	45	1,952	331,517	688,483	266,682	-90,284
1983	261,437	898,610	0	2,265	1,162,312	651,548	505,662	1,016,426
1984	67,245	204,064	37	2,444	273,716	749,864	290,438	-185,710
1985	126,505	410,152	32	2,665	539,290	640,568	427,902	326,624
1986	45,745	92,422	23	2,306	140,450	746,956	350,598	-255,908
1987	151,820	217,186	5,804	2,390	365,592	719,175	382,596	29,013
1988	15,841	56,553	18	2,018	74,394	634,645	259,838	-300,413
1989	3,286	87,246	17	1,852	92,367	548,174	236,132	-219,675
1990	214,070	242,522	0	1,892	458,484	572,299	317,046	203,231
1991	162,806	423,751	0	2,117	588,674	565,512	546,972	570,134
1992	355,862	1,053,362	0	2,781	1,412,005	500,689	425,136	1,336,452
1993	255,049	796,805	0	2,394	1,054,248	602,660	397,677	849,265
1994	103,393	205,842	0	1,977	311,212	497,784	296,538	109,966
1995	32,895	247,815	0	3,789	284,499	521,476	377,707	140,730
1996	28,553	51,518	0	3,778	83,849	556,577	192,953	-279,775
1997	299,426	708,101	0	4,065	1,011,592	554,661	538,646	995,577
1998	301,923	543,970	0	3,941	849,834	591,382	428,117	686,569
1999	36,633	186,141	0	3,298	226,072	551,579	465,546	140,039
2000	24,042	273,549	0	2,567	300,158	671,170	381,441	10,429
2001	385 <i>,</i> 955	357,397	0	2,099	745,451	583,517	323,714	485,648
2002	225,341	1,093,435	0	2,590	1,321,366	563,826	530,126	1,287,666
2003	106,469	602,926	0	3,104	712,499	472,284	387,971	628,186
2004	413,158	705,719	0	3,098	1,121,975	468,820	594,562	1,247,717
2005	124,984	192,852	0	2,315	320,151	622,738	264,702	-37,885
2006	62,250	467,072	0	2,305	531,627	625,456	522,172	428,343
2007	395,194	1,161,317	0	3,226	1,559,737	528,791	528,811	1,559,757
2008	14,358	87,450	0	2,364	104,172	634,300	228,710	-301,418
2009	120,827	263,185	0	2,394	386,406	586,431	343,597	143,572

*Surface Inflow = Gage + Model - Diversion + Return **Freshwater Balance = Surface Inflow - Evaporation+ Precipitation

	Gage	Model	Diversion	Return	Surface	Evaporation	Precipitation	Freshwater
					Inflow*			Balance**
MIN	2,677	2,365	0	0	7,503	448,000	158,128	-460,263
5%ile	4,504	18,742	0	0	58,527	470,206	208,427	-380,867
10%ile	11,204	50,981	0	0	76,202	495,627	234,648	-300,614
25%ile	36,622	92,422	0	1,892	137,966	533,000	291,490	-140,322
MEDIAN	105,499	251,719	0	2,567	365,592	581,000	372,460	140,039
MEAN	143,033	342,337	87	4,605	489,888	582,834	373,032	280,085
75%ile	214,070	501,053	0	9,000	714,400	627,000	442,001	628,186
90%ile	361,881	802,235	17	13,000	1,128,872	676,937	529,074	1,019,868
95%ile	448,127	987,480	34	14,000	1,375,749	714,350	547,214	1,316,938
MAX	575,207	1,161,317	5,804	14,000	1,559,737	749,864	601,028	1,559,757
TOTAL All Years	9,869,275	23,621,277	6,012	317,734	33,802,274	40,215,565	25,739,182	19,325,891
% of Total Surface								
Inflow	29.20	69.88	0.02	0.94	100	-	-	-

Appendix C: Summary statistics for annual freshwater inflow (in acre-feet) over the 1941-2009 period for the Mission-Aransas Estuary, Version #TWDB201004.