TEXAS WATER DEVELOPMENT BOARD

REPORT 96

A STATISTICAL STUDY OF THE DEPTH OF PRECIPITABLE WATER IN WESTERN TEXAS AND EASTERN NEW MEXICO

By
Samuel Erick Baker

Texas A\&M University

TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman
Marvin Shurbet, Vice Chairman
Robert B. Gilmore
Milton T. Potts
Groner A. Pitts
W. E. Tinsley

Howard B. Boswell, Executive Director

Abstract

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

Published and distributed
by the
Texas Water Development Board
Post Office Box 12386
Austin, Texas 78711

FOREWORD

Recent experiments in the field of weather modification indicate that it may be possible under favorable conditions to increase precipitation in arid areas by 10 to 20 percent over that which is normally expected. In addition to increasing the available water supply, weather modification may eventually make possible the amelioration of the effects of severe weather such as hail storms and tornados.

An important consideration in planning a weather modification operation is the distribution, both in space and time, of precipitable water. The depth of water which would result if all the water vapor in the air column above a given point could be converted to liquid is defined as precipitable water.

This study was contracted for by the Texas Water Development Board in order to provide information on the available moisture in the atmosphere over western Texas and eastern New Mexico. We believe that the information contained in this report will be of value and interest, not only to prospective weather modifiers, but to all citizens concerned with increasing the supply of water available from the atmosphere in the more arid regions of Texas.

Texas Water Development Board
C. R. Baskin

Chief Engineer

PREFACE

The search for sources of water for western Texas and eastern New Mexico has led to a study of the water that is available in the atmosphere. Any program designed to make use of this water must start with a thorough knowledge of the amount of precipitable water in the atmosphere. This study is an attempt to find a frequency distribution which will describe the depth of precipitable water in the atmosphere at a given time and from this to compute the probability that a given depth of precipitable water will exist at any time during the year.

The financial support for this project was provided by the Texas Water Development Board through an interagency contract with Texas A\&M University, Project 02-55-143.

This study was conducted under the guidance of Dr. Robert A. Clark and Professor John F. Griffiths of Texas A\&M University. The final manuscript was reviewed by Dr. Vance E. Moyer, Dr. Robert C. Runnels, and Dr. Edward A. Hiler, all from Texas A\&M University.

TABLE OF CONTENTS

Page
ABSTRACT 1
I. INTRODUCTION 3
II. REDUCTION OF THE DATA 8
III. COMPUTATION OF BASIC STATISTICS 12
IV. TESTING THE DATA FOR NORMALITY 17
V. PROBABLE DEPTH OF PRECIPITABLE WATER 35
VI. DISTRIBUTION OF THE ANNUAL SERIES 38
VII. SUMMARY AND CONCLUSIONS 43
REFERENCES 45
APPENDICES
A. Dates Represented by Pentads 51
B. Probable Depth of Precipitable Water 55
C. Plot of Annual Series 74
AMA Annual Series 75
BGS Annual Series 76
ELP Annual Series 77
SAT Annual Series 78
ABO Annual Series 79
TABLES

1. Range of values within which the value of kurtosis will be found 95 times out of 100 for a sample drawn from a normal population (Brooks and Carruthers, 1953). 18
2. The results of tests for normality on the Cornu ratio, skewness, and kurtosis 19
3. The number of pentads for which the log-normal distribution was considered suitable. 22
4. Results of tests for adjusted normality 23

A Statistical Study of the Depth of Precipitable Water in Western Texas and Eastern New Mexico

Total depth of precipitable water for five stations in western Texas and eastern New Mexico is studied to determine a frequency distribution which will describe this climatic element. A conclusion evolving from the study is that a normal distribution adjusted for skewness and kurtosis may be used to describe adequately the frequency distribution presented by the observed depths of precipitable water grouped by pentads. An annual series of the yearly maximum depth of precipitable water from each of the five stations is plotted vs the recurrence interval. A Gumbel distribution is fitted to each annual series providing a means of determining the return periods of extreme depths of precipitable water.

CHAPTER I

INTRODUCTION

In recent years, the problem of adequate water supplies in western Texas and eastern New Mexico has become one of primary concern. The low water table of the High Plains region and the dwindling ground-water resources elsewhere in the area have brought about the realization that other water sources must be found and utilized. One possible source of the needed water is the a tmosphere.

The total amount of water vapor in the atmosphere at a given time is known as the precipitable water. By definition, precipitable water is the depth of water that would be accumulated on a flat, level surface of unit area if all of the water vapor in a column of the atmosphere were condensed and precipitated. The importance of this atmospheric element is indicated by Solot (1939), viz., "one of the most significant quantities in hydrometeorological studies is $W p$, the depth of precipitable water in a column of air."

It can be shown that the months of greatest rainfall are also months of greatest precipitable water (see Fig. 1). Fig. 1 is a plot of long-term, mean precipitation and mean depth of precipitable water at El Paso vs the time of year. The mean monthly amounts of

The citations on the following pages follow the style of the Journal of Applied Meteorology.

FIG. I. PRECIPITABLE WATER AND PRECIPITATION VS TIME OF YEAR (EL PASO).
precipitable water shown in this figure were taken from Shands (1949), who computed the seasonal distribution of the mean precipitable water for selected stations in the United States. The monthly values of the long-term, mean precipitation were obtained from the "Texas Climatological Annual Summary."

In a study by Huff (1963) of precipitation in central Illinois, it was shown that about 17% of the available precipitable water is precipitated by summer storms and 15% by winter storms. The highest percentage of available moisture (precipitable water) is precipitated in the spring, and the lowest in late summer and winter.

Compared to other areas of meteorology, relatively little has been written with regard to precipitable water. Shands (1949) and Reitan (1960a, 1960b) have discussed the mean monthly values of precipitable water at various stations in the United States. Benwell (1965) and Ananthakrishnan et al. (1964) discussed the estimation and variation of precipitable water over the North Atlantic and India, respectively. The importance of mass transfer to the depth of precipitable water over a given place was discussed by Benton et al. (1950). Several recent articles have been written describing studies of the transfer of water vapor (Meyers, 1965; Benton and Estoque, 1954; Rasmusson, 1967; Bannon, 1961; Starr and Peixoto, 1958; Starr et aZ., 1965).. Penn and Kunkle (1963) have investigated the interlevel relationships of the mixing ratio at various levels in the atmosphere.

A review of the literature reveals a dearth of information and research pertaining to the frequency distribution of precipitable water. Frequency distributions have been suggested for other climatic elements such as rainfall, wind speed, temperature, cloud amount, atmospheric pressure, and humidity. A more complete knowledge of the frequency distribution of the depth of precipitable water would contribute to a better understanding of the available moisture in the atmosphere,

In this study the depth of precipitable water, as measured twice daily by radiosonde soundings, was investigated with the intent of finding a frequency distribution which would describe the magnitude of this variable in the atmosphere. A knowledge of this distribution will be of benefit in future attempts to obtain water from the atmosphere by weather modification.

In most hydrological research, extreme values of the climatic elements and their return periods are considered. This is necessary because extreme values of the elements involved dictate the safe limits on structure and system design. However, when considering precipitable water, a knowledge of the most probable depth that will be encountered at a given time is more pertinent than the extreme value that may occur in any given number of years. The extreme values of precipitable water are of interest, nevertheless, from the standpoint of knowing how much moisture has been available in the past and may be available in the future. A knowledge of the distribution of these extreme values and of their return periods,
however, gives no clue as to when they might occur. In order for the depth of precipitable water to be used in a program designed to utilize this moisture as a water source (such as a cloud seeding program), the most probable depth available at any given time should be known. It is with this purpose in mind that this research has been conducted.

CHAPTER II

REDUCTION OF THE DATA

In order to study the depth of precipitable water in the area of interest (western Texas and eastern New Mexico), precipitable water data from five stations were selected. The five stations and their periods of record are:

1. Amarillo, Texas; July 1952-May 1965
2. Big Spring-Midland, Texas; July 1949-May 1965
3. El Paso, Texas; January 1946-March 1965
4. San Antonio, Texas; January 1946-December 1964
5. Albuquerque, New Mexico; January 1946-December 1964

Fig. 2 is a sectional map showing the location of the five stations. It can be seen from Fig. 2 that these stations are so located as to afford good coverage in the area of interest. The data consist of tabulations of twice-daily computations of the total precipitable water in the atmosphere. These tabulations were procured from the National Weather Records Center, Asheville, North Carolina.

The tabulations are copies of computer-output pages from a program owned by the National Weather Records Center that converts pressure and specific humidity in 50-mb layers into depth of precipitable water in inches. The depth of precipitable water (Wp) in a layer from $n-1$ to n is given by

$$
W p=0.0002\left(p_{n-1}-p_{n}\right)\left(q_{n-1}+q_{n}\right) \text {, }
$$

FIG. 2. LOCATION OF STATIONS.
where

$$
\begin{aligned}
q & =622 \frac{e}{p}, \\
e & =e_{s} R H \\
P & =\text { pressure in millibars, } \\
e & =\text { actual vapor pressure in millibars, } \\
R H & =\text { relative humidity, } \\
e_{S} & =\text { saturation vapor pressure in millibars, } \\
q & =\text { specific humidity in gm/kg. }
\end{aligned}
$$

Values of Wp from individual $50-\mathrm{mb}$ layers are added to give the depth of precipitable water for thicker layers, e.g., surface to 850 mb .

The input parameters were obtained from twice-daily radiosonde soundings at each station. Times of the soundings prior to June 1957 were $0300 Z$ and $1500 Z$ (Z denotes Greenwich mean time). After June 1957, the soundings were made at 0000 Z and 1200Z. A11 data at each station were considered to come from the same population with no differentiation being made between those prior to and after June of 1957. The data from each month are contained on two sheets, one sheet for each sounding time. Listed on each sheet are the surface pressure in millibars, the actual surface vapor pressure in millibars, and Wp for five layers. The five layers are: surface to 850 mb , surface to 700 mb , surface to 500 mb , surface to 400 mb , and the layer from the surface to 150 mb above the surface.

Huff (1963) states that 78% of the precipitable water is
concentrated below $10,000 \mathrm{ft}$. Solot (1939), in his computations of the precipitable water in a column of air, assumed no precipitable water above 5 km . On the basis of these conclusions and for purposes of this study, the depth of precipitable water from the surface to 400 mb (approximately $24,000 \mathrm{ft}$ or 7.3 km) was considered representative of the total precipitable water in a column of air. No consideration was given to the vertical distribution of the precipitable water.

In past studies of precipitable water (Reitan, 1960a, 1960b; Meyers, 1965; Shands, 1949), the monthly mean values were considered. A monthly mean value frequently has little meaning in terms of the depth that might be encountered on a specific day, as the depth of precipitable water can vary greatly over a 24 -hour period (Benwell, 1965). Therefore a shorter time interval was needed for computations of statistical measures when the depth of precipitable water is used for weather modification or assessment of the moisture field at a given time.

For this reason as well as for convenience in handling the data, it was decided to treat the data by pentads (5-day groups). The data for February 29 were neglected so that the data from one year could be grouped in 73 pentads. The pentads were chosen so that pentad one represents the period from 1 January through 5 January, pentad two represents from 6 January through 10 January, etc. Appendix A lists the dates represented by the individual pentads.

COMPUTATION OF BASIC STATISTICS

Initially two programs were written to process the data and to yield basic statistics for preliminary analysis. A third program was written later to generate a theoretical distribution; it is discussed in Chapter IV. All programs were written in Fortran IV language for use with the Watfor compiler on the IBM 360-65 computer located at Texas A\&M University. The programs handle the data from one station during each run.

The first program, named Basic, consisted of three parts: Basic I, Basic II, and Basic III. Basic I yielded the primary statistics of the number in the sample (N), the arthmetic mean (\bar{X}), the sum of the absolute values of deviations from the mean $\left(\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|\right)$, and the numerators of the second, third, and fourth moments $\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}, \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}, \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}\right]$.

The method of computation of the Basic I statistics was as follows. Individual values of $W p\left(x_{j}\right)$ were read into a threedimensional array. These individual values then were added and counted to yield a value of N and Σx_{i} for each pentad. The value of the arithmetic mean (\bar{X}) was obtained by dividing Σx_{i} by N, i.e.,

$$
\begin{equation*}
\bar{x}=\frac{\Sigma x_{i}}{N} . \tag{1}
\end{equation*}
$$

The other Basic I statistics were computed by subtracting \bar{X} from the individual values of Wp, i.e.,

$$
\begin{equation*}
d x_{i}=x_{i}-\bar{x} \tag{2}
\end{equation*}
$$

where $d x_{j}$ is the deviation from the mean for a value of Wp. The absolute values of $d x_{i}$ then were added to obtain $\Sigma\left|x_{i}-\bar{x}\right|$. The numerators of the second, third, and fourth moments are given by expressions (3), (4), and (5), respectively, viz.,

$$
\begin{align*}
& \Sigma\left(x_{i}-\bar{x}\right)^{2}, \tag{3}\\
& \Sigma\left(x_{i}-\bar{x}\right)^{3}, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\Sigma\left(x_{i}-\bar{x}\right)^{4} \tag{5}
\end{equation*}
$$

Basic II yielded the secondary statistics of the square root of $N(\sqrt{N})$, the variance $\left(s^{2}\right)$, the standard deviation (s), the mean deviation (|e|), the coefficient of variation $\left(C_{v}\right)$, the standard error of the mean (s.e. \bar{x}), the Cornu ratio, the skewness $\left(\gamma_{1}\right)$, and the kurtosis $\left(r_{2}\right)$. These secondary statistics were computed from the primary statistics by the following relationships:

$$
\begin{gather*}
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N-1}, \tag{6}\\
s=\sqrt{s^{2}}, \tag{7}
\end{gather*}
$$

$$
\begin{gather*}
|e|=\frac{\sum\left|x_{i}-\bar{x}\right|}{N}, \tag{8}\\
C_{v}=\frac{s}{\bar{X}} 100 \begin{array}{c}
\text { (expressed in } \\
\text { percent) }
\end{array}, \tag{9}\\
\text { s.e. } \bar{X}=\frac{s}{\sqrt{N}}, \tag{10}\\
\text { Cornu ratio }=\frac{|e|}{s}, \tag{11}\\
\gamma_{1}=\frac{\sum\left(x_{i}-\bar{X}\right)^{2}}{N} \\
s^{3} \tag{12}
\end{gather*},
$$

and

$$
\begin{equation*}
r_{2}=\left(\frac{\frac{\Sigma\left(x_{j}-\bar{x}\right)^{4}}{N}}{s^{4}}\right)-3 . \tag{13}
\end{equation*}
$$

The Basic program yielded 73 sets of statistics, one set for each of the 73 pentads in a year. Basic III was written to yield statistics needed in a check for the suitability of the log-normal distribution and will be described in Chapter IV.

The second program, named Freq, yielded the maximum value of $W p$, the minimum value of $W p$, the range of $W p$, and the observed frequency distribution. In Freq, as in Basic, the data were read into a three-dimensional array. The maximum and minimum values were found by setting a maximum register and a minimum register equal to
the first value of $W p$ in each pentad. A comparison of all values in each pentad with the value in the register then was made. If a value of Wp was found to be greater than the value in the maximum register, it replaced the value in the maximum register, and the comparison continued until all values representing that pentad were considered. This procedure leaves the largest value of Wp for that pentad in the maximum register. The minimum was found in a similar manner by replacing the register value with a smaller value when one was encountered. The range of values of Wp for the pentad then was found by subtracting the minimum from the maximum.

The frequency distribution presented by the data of each pentad was computed by the second part of the Freq program. A class interval of 0.05 in . was used in grouping the data. The Freq program, using the $0.05-i n$. class interval, counted the number of values of Wp which fell in each interval from 0 to 3 in . This was accomplished by comparing each value of $W p$ in a pentad with the top limit of each interval starting at 0.05 in . and continuing to 3.00 in., if necessary, by increments of 0.05 in . The first case in which the observed value was less than or equal to the value of the top of the class interval thus defined the top of the class interval in which the observed value belonged. Each time a value of $W p$ was placed in an interval by this procedure the frequency of that interval was increased by one, thus defining the observed frequency distribution of the values of $W p$ from the pentad under consideration. As in the Basic program, Freq computed the frequency
distribution, maximum $W p$, minimum $W p$, and the range of the data from each pentad, and printed out 73 sets of results for each station.

The two programs, Basic and Freq, were capable of treating the data from several pentads grouped together as a single population. This was done so that pentads with similar means and standard deviations could be treated as a single population thus describing a longer period of time than 5 days with a single set of statistics in the event that such treatment should prove feasible.

CHAPTER IV

TESTING THE DATA FOR NORMALITY

This study was based on the hypothesis that the data fit some form of the normal frequency distribution. In order to test this hypothesis, it was decided to check the data for normality.

There are two distinct types of error that are possible in statistical decision:

Type I: rejecting the hypothesis when it is true.
Type II: accepting the hypothesis when it is false.
The significance level indicates the probability of making a Type I error (Guilford, 1965). This means that with a significance level of 0.05 (5\%) there is one chance in twenty of rejecting the hypothesis when it is true. With a significance level of 0.01 (1\%) there is one chance in a hundred of making a Type I error. As the chances for a Type I error are reduced, however, the chances for a Type II error are increased (Guilford, 1965). The inverse relationship of the probabilities of making a Type I or Type II error is not a simple one, and a choice must be made as to the significance level which will give an acceptable value to each probability. In statistical work with meteorological data, the generally adopted significance levels are the 5% and 1% levels (Brooks and Carruthers, 1953). These levels give a small chance of making a Type I error while still giving a statistically acceptable chance of making a Type II error. The 5\% significance level is obviously preferable
in terms of not accepting a false hypothesis (making the Type II error).

The basic form of the normal distribution is referred to as the Gaussian distribution. In order to test the data for normality, with respect to the Gaussian distribution, three criteria were chosen at the 5% level of significance. The first criterion was that the value of the Cornu ratio be between 0.77 and 0.83 . The second criterion required that the value of the skewness $\left(\gamma_{1}\right)$ be

$$
\pm 1.96 \times \text { s.e. } \gamma_{1},
$$

where

$$
\begin{equation*}
\text { s.e. } \gamma_{1}=\sqrt{\frac{6}{N}} \text {. } \tag{14}
\end{equation*}
$$

The third criterion for normality at the 5% significance level required that the value of kurtosis $\left(\gamma_{2}\right)$ fall between the limits shown in Table 1.

Table 1. Range of values within which the value of kurtosis will be found 95 times out of 100 for a sample drawn from a normal population (Brooks and Carruthers, 1953).

		Sample size (N)		
100	125	150	175	200
-0.73	-0.67	-0.62	-0.59	-0.55
+1.06	+0.95	+0.88	+0.81	+0.81

The 73 Cornu ratio values for each station were checked against the first criterion. If the first criterion was met, checks of the skewness and kurtosis against the second and the third criteria were made. Table 2 shows the results of the three tests for Gaussian normality. The data were not examined further for Gaussian normality unless all three criteria were met.

Table 2. The results of tests for normality on the Cornu ratio, skewness, and kurtosis.

	Number of pentads passing:			
Station	Cornu	Cornu, skewness, and kurtosis	Cornu, skewness, and positive kurtosis	
AMA	47	14	2	
BGS	51	17	2	
ELP	35	12	1	
SAT	30	19	3	
ABQ	44	5	0	
Total	207	67	8	

In order for statistical tests to be meaningful, they should be independent. The three tests (Cornu, skewness, and kurtosis) that were run on the data are independent unless the kurtosis is negative. In this case, the Cornu and kurtosis are not independent and the data cannot be considered to have come from a normal population.

It can be seen from Table 2 that only eight out of a possible 365 pentads meet the three criteria for normality with a positive value of kurtosis. The 83 pentads not accounted for in Table 2 did not pass any of the three tests. With only eight pentads passing the three independent tests it was decided not to test the data further for normality. In the event that the data from eight pentads were indeed drawn from normally distributed populations, this would not be significant in view of the possibility that data from the other 358 pentads were not drawn from normal populations.

An attempt was made to determine if data for a given station could be grouped into consecutive pentads (those having similar means and standard deviations) and then treated as if they were all drawn from a single population. The statistics (Basic I \& II) computed from these combined data were found to be more divergent from a normal distribution than the statistics from the individual pentads. It was concluded that grouping was not feasible and that the data should be treated by individual pentads.

Since the values of precipitable water were shown not to fit the Gaussian or normal distribution, the next step was to check for suitability of the "log-normal" distribution. Basic III was written to perform this check by a method outlined by Brooks and Carruthers (1953, p. 102). This method requires that the kurtosis obtained from the data be compared to a theoretical kurtosis computed from

$$
\begin{equation*}
r_{2 t}=w^{2}\left[\gamma_{1}^{2}+2\left(3 w^{2}+8\right)\right] \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\left[\frac{\frac{1}{2} \gamma_{1}}{}+\sqrt{\frac{1}{4} \gamma_{1}{ }^{2}+1}\right]^{1 / 3}+\left[\frac{1}{2} \gamma_{1}-\sqrt{\frac{1}{4} \gamma_{1}{ }^{2}}+1\right]^{1 / 3} \tag{16}
\end{equation*}
$$

and γ_{1} equals the observed skewness.
A further check of w was made by computing a theoretical value of skewness (γ_{1}) from

$$
\begin{equation*}
\gamma_{1 t}=w^{3}+3 w . \tag{17}
\end{equation*}
$$

If the value of $\gamma_{1 t}$, from Eq. (17), was not equal to the observed skewness $\left(\gamma_{1}\right)$ (both values rounded to the second decimal point), the value of w was incorrect. The values of $\gamma_{2 t}$ computed by Basic III were listed with the observed values of kurtosis (γ_{2}).

In order for the log-normal to be a suitable distribution for describing the data, the two values of kurtosis (observed and theoretical) should be approximately equal. Table 3 shows the results of the check for log-normal suitability.

Only 13 of a possible 365 pentads passed the test for lognormal suitability and there was no evident grouping as to time of year. It was concluded that the log-normal distribution could not be considered suitable for describing the frequency distribution of precipitable water.

After rejection of the log-normal distribution it was decided to test the data for suitability of the adjusted normal distribution. The adjusted normal distribution (Brooks \& Carruthers, 1953) is a

Table 3. The number of pentads for which the log-normal distribution was considered suitable.

Station	Number of pentads	Pentad numbers
AMA	3	$3,40,52$
BGS	3	$15,70,72$
ELP	3	$37,40,43$
SAT	1	37
ABQ	$\underline{3}$	$15,19,64$
Total	13	

derivation of the normal distribution in which adjustment is made for skewness and kurtosis that are out of range for the normal distribution. For the adjusted normal distribution to be able to describe a frequency distribution presented from sample data, the observed distribution cannot vary greatly from normal. The criteria used in checking for adjusted normality were a Cornu ratio value between 0.75 and 0.85 (the 1% significance level) and a " t " value of less than three for skewness and kurtosis.

The " t " values for the skewness and kurtosis were computed using the following relationship:

$$
\mathrm{t}=\frac{\text { sample statistic }- \text { population statistic }}{\text { standard error of the numerator }} .
$$

Since the skewness and kurtosis of a normal population are both equal to zero, the separate relationships can be expressed by

$$
\begin{equation*}
t(\text { for skewness })=\frac{\gamma_{1}}{\sqrt{\frac{6}{N}}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
t(\text { for kurtosis })=\frac{\gamma_{2}}{2 \sqrt{\frac{6}{N}}} . \tag{19}
\end{equation*}
$$

Results of checking the data against the adjusted normal criteria are shown in Table 4.

Table 4. Results of tests for adjusted normality.

Station	Number of pentads meeting criteria All year	22 to 59
AMA	31	27
BGS	37	34
ELP	26	26
SAT	45	30
ABQ	24	24

Of the 365 possible, 163 pentads met the criteria for adjusted normality. It is interesting to note that 141 of these 163 are between pentads 22 and 59. These pentads represent the period between the 16 th of April and the 22nd of October.

On the basis of the above results, a decision was made to attempt to fit the observed frequency distribution for each pentad to a theoretically generated normal distribution, adjusted for the observed skewness and kurtosis. This theoretical distribution was determined by the observed mean and standard deviation for each pentad. This method of adjustment consists of computing the area (A) under the normal curve to the left of an ordinate x distance from the mean. The area A is found by entering Appendix II of the text by Brooks and Carruthers (1953, hereafter referred to as B \& C) with the ratio $\frac{x}{s}$, where s is the standard deviation. The adjustment for skewness is accomplished by entering Appendix III of B \& C with the value of $\frac{x}{s}$ and obtaining a correction factor B. Multiplying B times the skewness yields an adjustment which then is added to A. An adjustment for kurtosis is found in a similar manner by obtaining a correction factor C from Appendix IV of $B \& C$ that is multiplied by the kurtosis. This adjustment then is added to the sum of A and the adjustment for skewness. For the purposes of fitting the theoretical distribution to the observed distribution, the ordinates were chosen at the limits of the class intervals used in Freq. Thus an adjusted area $\left(A_{L}\right)$ to the left of each class limit was obtained by

$$
\begin{equation*}
A_{L}=\left(A+B \gamma_{1}+C_{\gamma_{2}}\right) \frac{N}{1000} \tag{20}
\end{equation*}
$$

Since Appendices I, II, and III of B\&C are based on a total
frequency of 1000 , the adjusted area (A_{L}) must be multiplied by $\frac{N}{1000}$ to give an area proportional to the observed sample size. The difference between A_{L} for the upper limit of the class interval and A_{L} for the lower limit is the theoretical frequency for that class interval.

A third computer program, named Ajnor, was written to generate the theoretical normal distribution adjusted for skewness and kurtosis. Ajnor computed the theoretical distribution according to the method outlined above. Appendix I of $B \& C$ was placed on punched cards and read into the computer as a table. Values of A were computed by "table lookup" for corresponding values of $\frac{x}{s}$. The values of B and C were computed by

$$
\begin{equation*}
B=\frac{s y}{6}\left[1-\left(\frac{x}{s}\right)^{2}\right] \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\frac{s y}{24} \cdot \frac{x}{s}\left[3-\left(\left.\frac{x}{s}\right|^{2}\right]\right. \tag{22}
\end{equation*}
$$

where y equals the vertical coordinate of the normal curve at $\frac{x}{s}$ expressed by

$$
\begin{equation*}
y=\frac{N}{s \sqrt{2 \pi}} \cdot e^{-\frac{x^{2}}{2 s^{2}}} \tag{23}
\end{equation*}
$$

The values of A, B, and C were then combined by Eq. (20). Each successive value of A_{L} was subtracted from the previous one to find
the theoretical frequency in the interval between. The theoretical frequencies were generated for intervals bounded by successive $0.05-\mathrm{in}$. increments from 0 to 3 in . The theoretical and observed distributions for each pentad then were listed together for easy comparison.

The goodness of fit of the observed distribution then was tested using a chi-square (x^{2}) test. The chi-square test is the significance test generally used for meteorological data ($B \& C$, 1953). Values of chi-square are calculated by

$$
\begin{equation*}
x^{2}=\Sigma \frac{(0-E)^{2}}{E}, \tag{24}
\end{equation*}
$$

where 0 is the observed frequency for an interval and E is the theoretical frequency. A value of chi-square computed from Eq. (24) was compared with a value of chi-square for the desired significance level taken from Appendix V of B \& C for the appropriate number of degrees of freedom. The number of degrees of freedom is found by subtracting four from the number of class intervals in which the theoretical frequency is five or more. Four is subtracted because there are four statistics used in generating the theoretical distribution, i.e., the mean, standard deviation, skewness, and kurtosis.

A null hypothesis was used in determining the results of the chi-square test. The null hypothesis was the assumption that the
differences between the expected (theoretical) and observed values of frequency were small enough to be the result of chance (sampling error). If the null hypothesis was supported, the theoretical distribution was considered descriptive of the population from which the sample was drawn. In interpreting the test, the null hypothesis was supported if the chi-square value computed from Eq. (24) was less than or equal to the tabulated value of chisquare at the 5% significance level. If the computed value of chi-square was between the 5% and 1% significance values in Appendix V of $B \& C$, the test was considered inconclusive. In the event that the computed value was greater than the tabulated value at the 1% significance level, the null hypothesis was not supported. Results of the chi-square test for the goodness of fit of the precipitable water data to an adjusted normal distribution are given in Table 5.

The results of the chi-square test show that out of 365 possible cases, 198 (52.2\%) support the null hypothesis, 97 (26.6%) do not support the null hypothesis, and 70 (19.2\%) are inconclusive. When the period from 16 April to 22 October is considered, 190 cases, 130 (68.4\%) support the null hypothesis, 29 (15.3\%) do not support the null hypothesis, and 31 (16.3\%) are inconclusive. With so many inconclusive cases, it was decided to make another test for goodness of fit to supplement the chi-square test.

The Kolmogorov-Smirnow (K-S) test was used to test further the

Table 5. Results of the chi-square test for goodness of fit of a normal distribution adjusted for skewness and kurtosis to the observed distribution.

Station	Number of pentads supporting or not supporting the null hypothesis, for the entire year		
	Supporting	Inconclusive	Not supporting
AMA	46	11	16
BGS	42	8	23
ELP	34	14	25
SAT	38	15	20
ABQ	38	22	13
Tota 1	198	70	97
	..., for the period between pentads 22 and 59 (16 April to 22 October)		
AMA	24	7	7
BGS	31	2	5
ELP	23	9	6
SAT	28	6	4
ABQ	24	7	7
Total	130	31	29

goodness of fit of the normal distribution adjusted for skewness and kurtosis. According to Lilliefors (1967) and Guilford (1965), the $K-S$ test is a more powerful test than the chi-square. In order to check for goodness of fit by the K-S test, the difference (D) between the cumulative theoretical frequency and the cumulative observed frequency in each interval is found. The largest of these differences ($D_{\max }$) then is compared to a critical value in order to determine whether the null hypothesis is supported. If $D_{\text {max }}$ is smaller than the critical value, the null hypothesis is supported; if larger, the null hypothesis is rejected. Lilliefors (1967) states that the conventional method of computing the critical value of D, for a case where the mean and variance are estimated from the sample, results in the $K-S$ test being much too conservative, i.e., the chance for a Type II error is too great to be acceptable. A new equation for computing the critical value for various significance levels was given by Lilliefors (1967). The critical value at the 5% significance level (D.05) is found by

$$
\begin{equation*}
D_{.05}=\frac{0.886}{\sqrt{N}} \tag{25}
\end{equation*}
$$

A routine was written and added to Ajnor to compute D. 05 from Eq. (25). The value of $D_{\max }$ was found by computing a value of D for each interval and by comparing them to find the largest. The individual values of D were computed from (Guilford, 1965)

$$
\begin{equation*}
D=\left(C p_{0}-C p_{e}\right), \tag{26}
\end{equation*}
$$

where $C p_{0}$ is the cumulative probability for the observed distribution and Cp_{e} is the cumulative probability for the theoretical distribution. The cumulative probabilities are found by dividing the cumulative frequencies (Cf) by the sample size (N).

Table 6 presents the results of the K-S test as applied to the data. From Table 6, it can be seen that 310 out of 365 cases (85%) support the null hypothesis. When the period from 16 April to 22 October is considered, 172 cases out of 190 cases (90.5%) support the null hypothesis.

Table 7 is presented as a comparison between the chi-square and K-S tests. It can be seen that of the 97 pentads that failed the chi-square test, 57 (59\%) passed the K-S test. Of the 70 pentads resulting in an inconclusive chi-square test, 57 (81%) passed the K-S test and 13 (19\%) failed the K-S test. Out of 198 pentads passing the chi-square test, only two failed the K-S test. Thus it appears that the K-S test, even with Lilliefors' criteria (Eq. 25), is more conservative than the chi-square test.

A third test developed by Riedwyl (Speed and Smith, 1968) was investigated to see if it might be used to test the goodness of fit. The Riedwyl test consists of computing values of $D(E q .26)$, summing the values of D^{2}, and multiplying this sum by the square of the number in the sample $\left(N^{2}\right)$. The number so computed is checked

Table 6. Results of the Kolmogorov-Smirnov test for goodness of fit of a normal distribution adjusted for skewness and kurtosis to the observed distribution.

Station	Number of pentads supporting the null hypothesis, entire year considered
AMA	64
BGS	58
ELP	60
SAT	59
ABQ	310
Total	69
AMA for the period between pentads 22 and 59	
BGS	34
ELP	35
SAT	33
ABQ	35
Total	35

Table 7. Comparison of the chi-square and $K=S$ tests.

	chi-square	Pass	Fail	Inc.	Inc.	Pass	Fail
Station	K-S	Fail	Pass	Pass	Fail	Pass	Fail
AMA	0	9	9	2	46	7	
BGS	0	10	6	2	42	13	
ELP	0	15	11	3	34	10	
SAT	1	11	11	4	37	9	
ABQ	1	12	20	2	37	1	
Total	-	-	-	-	-	-	

against a critical value, at the 5% level of significance, which is obtained from Table 4 of Speed and Smith (1968). As the critical values are computed only for sample sizes up to 45, it was necessary to extrapolate a plot of the critical values vs sample size in order to apply the test to the data. It was found that all pentads would pass the Reidwyl test using the critical values from the extrapolated curve. The Riedwyl test was therefore not used to test the data for goodness of fit because it was not possible to get meaningful results for large sample sizes using presently available tabulations of critical values.

Before reaching a definite conclusion about the suitability
of the adjusted normal distribution to describe the frequency distribution of the depth of precipitable water, it was decided to investigate the binomial and Poisson distributions to see if they might be suitable.

The binomial distribution was not suitable as it is most applicable for describing the probability of occurrence or nonoccurrence of discrete events, i.e., rain days and frost days. The Poisson distribution is a special case of the binomial distribution which may be modified to describe the distribution of a continuous variable such as depth of precipitable water. For the Poisson distribution to be useful in describing the distribution of a variable, the variance of the sample must be approximately equal to the mean. A check of the data revealed that in almost all cases the mean was an order of magnitude larger than the variance and in no case was the difference less than a factor of five. The Poisson distribution, therefore, was not suitable for describing the distribution of the depth of precipitable water.

In view of the results of the chi-square (Table 5) and Kolmogorov-Smirnov (Table 6) tests, it was concluded that the normal distribution adjusted for skewness and kurtosis is suitable for describing the distribution of the depth of precipitable water in western Texas and eastern New Mexico. Although the test results were good enough to use the adjusted normal
distribution to describe precipitable water for the entire year, the results were particularly good for the period from 16 April to 22 October.

In Chapter V, a method is presented whereby the adjusted normal distribution may be used to determine the probability of having a given depth of precipitable water in the atmosphere.

CHAPTER V

PROBABLE DEPTH OF PRECIPITABLE WATER

It was shown in Chapter IV that the depth of precipitable water, grouped by pentads, may be described by a normal distribution adjusted for skewness and kurtosis. From the normal distribution adjusted for skewness and kurtosis, the probability of a given depth of precipitable water in the atmosphere may be determined.

A probability routine was written to be used with Ajnor that would yield the probability of the depth of precipitable water being equal to or greater than any value from 0.05 to 3.00 in . The Ajnor probability routine computes the cumulative probability in each interval by dividing the theoretical frequencies for each interval by the sum of the theoretical frequencies for all intervals and adding this probability to the cumulative probability of the preceding interval. The probability that the depth of precipitable water, as represented by the interval, will be equaled or exceeded is then computed by subtracting the cumulative probability for the interval from one. This yields the integer percent probability that a given depth of precipitable water will be equaled or exceeded during the pentad. Presenting the data in this manner thus affords an idea of the minimum depth of precipitable water that may be encountered during a given pentad.

Appendix B is a tabulation of the percent probability that a given depth or greater depth of precipitable water will be present
in the atmosphere during any of the 73 pentads throughout the year.

One example of the use of Appendix B is shown in Fig. 3, This figure was constructed by plotting the probability that a given depth of precipitable water would be equaled or exceeded vs the pentad. This type of plot is prepared easily from Appendix B and affords a method of determining quickly the exceedance probability of a given depth of precipitable water throughout the year.

FIG. 3. PROBABILITY THAT A DEPTH OF ONE IN. OF PRECIPITABLE WATER WILL BE EQUALED OR EXCEEDED vs TIME OF YEAR (SAN ANTONIO).

CHAPTER VI

dISTRIBUTION OF THE ANNUAL SERIES

An investigation of the distribution of the annual extreme values of depth of precipitable water was conducted in order to determine the maximum annual values and the probable return periods of these extremes. A knowledge of these extreme values and their return periods is useful for storm adjustment in the preparation of inflow design flood analyses. The return period, according to Linsley et al. (1958), is used to signify the average number of years within which a given depth of precipitable water will be equaled or exceeded.

A program was written to determine the maximum depth of precipitable water for each year. The largest value was found by placing the first value of depth of precipitable water in a register and comparing every other value during the year with the register value. If a value was encountered which was larger than the register value, it replaced the register value and the comparison continued until the largest value for the year was in the register.

The annual series thus obtained was analyzed by a method used by Gumbel (1954) and described by Linsley et al. (1958). This method consists of arranging the annual series in descending order from largest to smallest. Each value in the annual series is given a rank value (m). The largest value has a rank value of one, the next largest a rank value of two and so on to the smallest value in
the series which has a rank value equal to n (the number of years in the series). The return period (T_{r}) of each value in the annual series is computed from

$$
\begin{equation*}
T_{r}=\frac{n+1}{m} \tag{27}
\end{equation*}
$$

The values of T_{r} then are plotted vs the depth of precipitable water on extremal probability paper developed by Gumbel (1954).

A plot of the annual series vs return period is shown for El Paso in Fig. 4. The annual series plot revealed that a straight line could be fitted to the data. This indicated that it is possible to describe the return period of a given depth by the Gumbel distribution.

The Gumbel distribution was fitted to the data by calculating a theoretical value of the return period (Tr_{t}) for two values of depth of precipitable water $\left(X_{1}\right.$ and $\left.X_{2}\right)$. The theoretical value of the return period was given by

$$
\begin{equation*}
T r_{t}=\frac{1}{1-P}, \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
P=e^{-e^{-y}} \tag{29}
\end{equation*}
$$

and e is the base of natural logarithms. The reduced variate was found from

$$
\begin{equation*}
y=a\left(x_{i}-X_{f}\right), \tag{30}
\end{equation*}
$$

FIG.4. A PLOT OF DEPTH OF PRECIPITABLE WATER vS RETURN PERIOD FOR EL PASO, TEXAS.
where

$$
\begin{equation*}
a=\frac{\sigma_{n}}{\sigma_{x}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{f}=\bar{X}-\sigma_{x} \frac{\bar{Y}_{n}}{\sigma_{n}} \tag{32}
\end{equation*}
$$

The theoretical quantities σ_{n} and \bar{Y}_{n} are functions of n only. For the annual series considered in this study, these quantities are:

$$
\begin{equation*}
\sigma_{n}=1.06 \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{y}_{n}=0.52 . \tag{34}
\end{equation*}
$$

The observed quantities σ_{x} and \bar{X} are the standard deviation and arithmetic mean of the annual series, respectively.

The two values of Tr_{t} calculated using Eq. (28) were plotted vs the corresponding values of X_{1} and X_{2}, and a straight line was drawn through these points. This line represents the return period vs depth of precipitable water according to the Gumbel distribution.

It can be seen (Fig. 4) that the Gumbel distribution line is a very good fit to the data. It is apparent that the annual maximum values of depth of precipitable water are distributed according to the Gumbel distribution. Appendix C is a plot of the return period
vs depth of precipitable water for each of the five stations in the study. In each case, the line was fitted by a Gumbel distribution to the observed annual series.

CHAPTER VII

SUMMARY AND CONCLUSIONS

The total depth of precipitable water in the atmosphere was studied for five stations in the western Texas and eastern New Mexico area. The purpose of the study was to determine if the frequency distribution of the depth of precipitable water in this area could be described by some form of the normal distribution.

It was found that the basic form of the normal distribution and the log-normal form did not adequately describe the distribution of the data. The chi-square and Kolmogorov-Smirnov tests were used to determine goodness of fit of the observed distribution to a frequency distribution theoretically generated by adjusting the normal distribution for skewness and kurtosis. It was found that the observed distribution could be described by the normal distribution adjusted for skewness and kurtosis within statistically acceptable limits.

A study was made of the maximum value of depth of precipitable water from each year. This annual series was plotted on extremal probability paper. A line was fitted to this plot of the annual series using the Gumbel distribution. The results revealed that the return periods of extreme values of the depth of precipitable water may be determined using the Gumbel distribution.

Appendix B may be used to determine the probability of a given depth of precipitable water in the atmosphere at a station
for any 5-day period during the year. The dates corresponding to any pentad may be found in Appendix A.

Appendix C may be used to determine the return period of an extreme value of the depth of precipitable water for any of the five stations.

REFERENCES

Ananthakrishnan, R., M. M. Selvam and R. Chellappa, 1965: Seasonal variation of precipitable water vapor in the atmosphere over India. Indian Journal of Meteorology and Geophysics, 16, 371-384.

Bannon, J. K., 1961: Flux of water vapor due to the mean winds and the convergence of this flux over the Northern Hemisphere in January and July. Royal Meteorological Society, Quarterly Journal, 87, 502-512.

Benton, G. S., R. T. Blackburn and V. O. Snead, 1950: The role of the atmosphere in the hydrologic cycle. Transactions of the American Geophysical Union, 31, 61-73.
___ and M. A. Estoque, 1954: Water vapor transfer over the North American continent. Journal of Meteorology, 11, 462-477.

Benwell, G. R. R., 1965: The estimation and variability of precipitable water. The Meteorological Magazine, 94, 319-327.

Brooks, C. E. P. and N. Carruthers, 1953: Handbook of Statistical Methods in Meteorology. London, Her Majesty's Stationery Office, 412 pp.

Guilford, J. P., 1965: Fundamental Statistics in Psychology and Education, 4th Edition. McGraw-Hill Book Company, 605 pp.

Gumbel, E. J., 1954: Statistical theory of extreme values and some practical applications. National Bureau of Standards (U.S.), Applied Mathematics Series, 33.

Huff, F. A., 1963: Atmospheric moisture-precipitation relations. A.S.C.E. Hydraulics Division Journal, 89, 39-110.

Lilliefors, H. W., 1967: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Joumal of the American Statistical Association, 62, 399-402.

Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, 1958: Hydrology For Engineers. McGraw-Hill Book Company, 340 pp .

Meyers, V. A., 1965: Moisture and easterly moisture transport at Trinidad. Monthly Weather Review, 93, 369-375.

Penn, S. and B. Kunke1, 1963: On the prediction and variability of water vapor. Journal of Applied Meteorology, 2, 44-48.

Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part 1. Characteristics of the water vapor flux field. Monthly Weather Review, 95, 403-426.

Reitan, C. H., 1960a: Mean monthly values of precipitable water over the United States, 1946-56. Monthly Weather Review, 88, 25-35. , 1960b: Distribution of precipitable water vapor over the Continental United States. Bulletin of the American MeteoroZogical Society, 41, 79-87.

Shands, A. L., 1949: Mean precipitable water in the United States. Technical Paper No. 10, U.S. Weather Bureau.

Solot, S. B., 1939: Computation of depth of precipitable water in a column of air. Monthly Weather Review, 67, 100-103.

Speed, F. M. and W. B. Smith, 1968: Goodness of fit with unknown parameters. Institute of Statistics, Texas A\&M University, Technical Report No. 10, College Station, Texas, 1-13.

Starr, V. P. and J. P. Peixoto, 1958: On the global balance of water vapor and the hydrology of deserts. Tellus, 10, 189-194.
- and A. R. Crisi, 1965: Hemispheric water balance for the IGY. TeIIUs, 17, 463-472.

APPENDICES

APPENDIX A
 Dates Represented by Pentads

Pentad	Dates
1	1 January - 5 January
2	6 January - 10 January
3	11 January - 15 January
4	16 January - 20 January
5	21 January - 25 January
6	26 January - 30 January
7	31 January - 4 February
8	5 February - 9 February
9	10 February - 14 February
10	15 February - 19 February
11	20 February - 24 February
12	25 February - 1 March
13	2 March - 6 March
14	7 March - 11 March
15	12 March - 16 March
16	17 March - 21 March
17	22 March - 26 March
18	27 March - 31 March
19	1 April - 5 April
20	6 April - 10 April
21	11 April - 15 April

16 April	- 20 April
21 April	- 25 April
26 April	- 30 April
1 May	- 5 May
6 May	- 10 May
11 May	- 15 May
16 May	- 21 May
21 May	- 25 May
26 May	- 30 May
31 May	- 4 June
5 June	- 9 June
10 June	- 14 June
15 June	- 19 June
20 June	- 24 June
25 June	- 29 June
30 June	- 4 July
5 July	- 9 July
10 July	- 14 July
15 July	- 19 July
20 July	- 24 July
25 July	- 29 July
30 July	- 3 August
4 August	- 8 August
9 August	- 13 August

	August		August
19	August	- 23	August
24	August	- 28	August
29	Augus t	-	September
3	September	- 7	September
8	September	- 12	September
13	September	- 17	September
18	September	- 22	September
23	September	- 27	September
28	September	- 2	October
3	October	- 7	Oc tober
8	October	- 12	October
13	October	- 17	October
18	October	- 22	October
23	October	- 27	October
28	October	- 1	November
2	November	- 6	November
7	November	- 11	November
12	November	- 16	November
17	November	- 21	November
22	November	- 26	November
27	November	- 1	December
2	December	- 6	December
7	December	- 11	December

73

12 December - 16 December
17 December - 21 December
22 December - 26 December
27 December - 31 December

APPENDIX B

Probable Depth of Precipitable Water
The probability (in percent), based on a normal distribution adjusted for skewness and kurtosis, that the depth of precipitable water will be equaled or exceeded during the pentad.

Depth of Precipitable Water (in.)
$\begin{array}{llllllllll}0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25\end{array}$ Pentad 1

AMA	84	22	9	0	0	0	0	0	0	0
BGS	87	55	14	7	1	0	0	0	0	0
ELP	91	38	7	0	0	0	0	0	0	0
SAT	94	82	49	22	8	1	0	0	0	0
ABQ	71	17	0	0	0	0	0	0	0	0

Pentad 2

AMA	82	30	3	0	0	0	0	0	0	0
BGS	90	50	9	0	0	0	0	0	0	0
ELP	87	45	9	0	0	0	0	0	0	0
SAT	94	83	56	30	10	1	0	0	0	0
ABQ	75	19	0	0	0	0	0	0	0	0

Pentad 3

AMA	82	29	4	0	0	0	0	0	0	0
BGS	87	56	15	4	0	0	0	0	0	0
ELP	85	50	10	1	0	0	0	0	0	0
SAT	92	82	59	35	16	4	0	0	0	0
ABQ	75	28	1	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 4

AMA	80	20	0	0	0	0	0	0	0	0
BGS	93	45	7	0	0	0	0	0	0	0
ELP	91	31	6	0	0	0	0	0	0	0
SAT	95	82	50	21	5	0	0	0	0	0
ABQ	79	14	1	0	0	0	0	0	0	0

Pentad 5

AMA	83	22	2	0	0	0	0	0	0	0
BGS	95	50	7	1	0	0	0	0	0	0
ELP	90	37	4	0	0	0	0	0	0	0
SAT	94	83	55	27	10	1	0	0	0	0
ABQ	84	18	1	0	0	0	0	0	0	0

Pentad 6

AMA	87	33	1	0	0	0	0	0	0	0
BGS	93	52	9	1	0	0	0	0	0	0
ELP	89	32	1	0	0	0	0	0	0	0
SAT	97	88	60	30	9	1	0	0	0	0
ABQ	79	17	0	0	0	0	0	0	0	0

Pentad 7

AMA	94	42	2	0	0	0	0	0	0	0
BGS	93	58	10	1	0	0	0	0	0	0
ELP	91	33	2	0	0	0	0	0	0	0
SAT	94	84	57	30	12	2	0	0	0	0
ABQ	77	12	0	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 8

AMA	94	44	6	0	0	0	0	0	0	0
BGS	94	57	9	2	0	0	0	0	0	0
ELP	91	35	6	0	0	0	0	0	0	0
SAT	93	81	51	25	9	1	0	0	0	0
ABQ	83	19	1	0	0	0	0	0	0	0

।
Pentad 9

AMA	86	37	5	0	0	0	0	0	0	0
BGS	89	56	12	1	0	0	0	0	0	0
ELP	84	37	7	0	0	0	0	0	0	0
SAT	94	84	56	29	11	2	0	0	0	0
ABQ	79	24	2	0	0	0	0	0	0	0

Pentad 10

AMA	90	38	4	0	0	0	0	0	0	0
BGS	90	55	11	1.	0	0	0	0	0	0
ELP	85	27	7	0	0	0	0	0	0	0
SAT	96	87	60	31	9	1	0	0	0	0
ABQ	78	13	1	0	0	0	0	0	0	0

Pentad 11

AMA	83	39	3	0	0	0	0	0	0	0
BGS	85	55	14	1	0	0	0	0	0	0
ELP	79	35	6	0	0	0	0	0	0	0
SAT	97	90	67	38	14	2	0	0	0	0
ABQ	77	25	1	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 12

AMA	87	20	2	0	0	0	0	0	0	0
BGS	89	46	9	1	0	0	0	0	0	0
ELP	83	26	5	0	0	0	0	0	0	0
SAT	95	86	58	29	10	1	0	0	0	0
ABQ	76	21	1	0	0	0	0	0	0	0

Pentad 13

AMA	82	22	0	0	0	0	0	0	0	0
BGS	99	42	7	3	0	0	0	0	0	0
ELP	86	30	1	0	0	0	0	0	0	0
SAT	96	88	62	32	11	1	0	0	0	0
ABQ	76	15	0	0	0	0	0	0	0	0

Pentad 14

AMA	87	32	4	0	0	0	0	0	0	0
BGS	89	59	16	4	0	0	0	0	0	0
ELP	82	42	8	1	0	0	0	0	0	0
SAT	97	90	65	35	13	3	0	0	0	0
ABQ	76	19	1	0	0	0	0	0	0	0

Pentad 15

AMA	88	29	2	0	0	0	0	0	0	0
BGS	92	52	8	1	0	0	0	0	0	0
ELP	88	21	1	0	0	0	0	0	0	0
SAT	96	86	59	32	11	1	0	0	0	0
ABQ	75	12	0	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 16

AMA	93	51	5	0	0	0	0	0	0	0
BGS	94	58	9	2	0	0	0	0	0	0
ELP	87	38	5	0	0	0	0	0	0	0
SAT	96	88	61	33	13	3	0	0	0	0
ABQ	80	23	0	0	0	0	0	0	0	0

Pentad 17

AMA	95	54	8	1	0	0	0	0	0	0
BGS	93	59	10	1	0	0	0	0	0	0
ELP	86	34	5	0	0	0	0	0	0	0
SAT	97	89	62	31	12	2	0	0	0	0
ABQ	85	22	1	0	0	0	0	0	0	0

Pentad 18

AMA	91	52	5	0	0	0	0	0	0	0
BGS	94	64	12	3	0	0	0	0	0	0
ELP	93	39	3	0	0	0	0	0	0	0
SAT	98	94	71	37	11	1	0	0	0	0
ABQ	85	22	2	0	0	0	0	0	0	0

Pentad 19

AMA	93	61	11	1	0	0	0	0	0	0
BGS	96	67	13	2	0	0	0	0	0	0
ELP	95	38	3	0	0	0	0	0	0	0
SAT	98	93	74	46	20	4	0	0	0	0
ABQ	88	26	1	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 20

AMA	97	68	9	0	0	0	0	0	0	0
BGS	98	75	15	2	0	0	0	0	0	0
ELP	94	47	3	0	0	0	0	0	0	0
SAT	98	96	79	51	24	6	0	0	0	0
ABQ	91	43	3	0	0	0	0	0	0	0

Pentad 21

AMA	94	64	13	1	0	0	0	0	0	0
BGS	93	74	27	6	1	0	0	0	0	0
ELP	88	48	8	1	0	0	0	0	0	0
SAT	98	93	75	49	24	6	0	0	0	0
ABQ	85	28	3	0	0	0	0	0	0	0

Pentad 22

AMA	94	64	13	1	0	0	0	0	0	0
BGS	97	83	42	11	1	0	0	0	0	0
ELP	95	59	10	1	0	0	0	0	0	0
SAT	99	97	86	61	31	9	1	0	0	0
ABQ	87	35	3	0	0	0	0	0	0	0

Pentad 23

AMA	95	67	16	2	0	0	0	0	0	0
BGS	98	89	38	7	0	0	0	0	0	0
ELP	92	60	12	1	0	0	0	0	0	0
SAT	100	99	95	80	48	17	2	0	0	0
ABQ	90	48	3	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 24

AMA	96	76	26	4	0	0	0	0	0	0
BGS	96	84	45	14	1	0	0	0	0	0
ELP	93	58	7	0	0	0	0	0	0	0
SAT	99	98	92	78	53	25	6	0	0	0
ABQ	95	54	5	0	0	0	0	0	0	0

Pentad 25

AMA	98	86	43	13	2	0	0	0	0	0
BGS	98	87	49	15	1	0	0	0	0	0
ELP	95	61	10	0	0	0	0	0	0	0
SAT	99	98	92	75	47	19	3	0	0	0
ABQ	95	55	4	0	0	0	0	0	0	0

Pentad 26

AMA	97	87	46	11	0	0	0	0	0	0
BGS	98	93	62	25	5	0	0	0	0	0
ELP	97	75	16	3	0	0	0	0	0	0
SAT	100	99	94	80	55	27	6	0	0	0
ABQ	94	64	11	1	0	0	0	0	0	0

Pentad 27

AMA	98	89	54	16	1	0	0	0	0	0
BGS	98	95	71	33	6	0	0	0	0	0
ELP	97	74	18	2	0	0	0	0	0	0
SAT	100	99	96	84	60	30	8	1	0	0
ABQ	97	68	7	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 28

AMA	99	95	69	26	1	0	0	0	0	0
BGS	98	94	74	40	10	0	0	0	0	0
ELP	96	74	25	3	0	0	0	0	0	0
SAT	100	99	97	89	68	36	9	1	0	0
ABQ	97	74	15	1	0	0	0	0	0	0

Pentad 29

AMA	97	91	66	30	5	0	0	0	0	0
BGS	99	96	77	41	10	0	0	0	0	0
ELP	97	80	33	6	0	0	0	0	0	0
SAT	100	99	98	94	79	39	8	1	0	0
ABQ	97	79	24	1	0	0	0	0	0	0

Pentad 30

AMA	98	92	64	29	6	0	0	0	0	0
BGS	98	96	81	47	14	2	0	0	0	0
ELP	96	79	35	8	1	0	0	0	0	0
SAT	100	100	99	96	80	44	10	0	0	0
ABQ	95	74	24	1	0	0	0	0	0	0

Pentad 31

AMA	100	99	87	50	10	0	0	0	0	0
BGS	100	99	95	69	26	2	0	0	0	0
ELP	97	85	46	16	2	0	0	0	0	0
SAT	100	100	99	92	68	34	9	1	0	0
ABQ	97	80	27	3	0	0	0	0	0	0

$\begin{array}{llllllllll}0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25\end{array}$
Pentad 32

AMA	99	97	85	51	9	0	0	0	0	0
BGS	100	99	96	72	25	2	0	0	0	0
ELP	97	82	38	11	2	0	0	0	0	0
SAT	100	100	99	98	86	48	10	0	0	0
ABQ	96	78	28	4	0	0	0	0	0	0

Pentad 33

AMA	99	97	84	53	18	1	0	0	0	0
BGS	100	99	98	80	40	10	1	0	0	0
ELP	98	94	70	33	9	1	0	0	0	0
SAT	100	100	99	98	91	60	22	4	0	0
ABQ	98	86	45	12	1	0	0	0	0	0

Pentad 34

AMA	100	99	92	66	27	3	0	0	0	0
BGS	100	99	97	75	34	10	1	0	0	0
ELP	98	92	67	35	11	1	0	0	0	0
SAT	100	100	100	99	92	66	32	10	1	0
ABQ	98	89	52	17	1	0	0	0	0	0

Pentad 35

AMA	100	99	92	62	24	2	0	0	0	0
BGS	100	99	97	81	41	10	1	0	0	0
ELP	99	97	75	35	8	1	0	0	0	0
SAT	100	100	99	98	92	72	41	13	1	0
ABQ	97	87	50	15	1	0	0	0	0	0

$0.10 \quad 0.25$
0.50
0.75
1.00
$1.25 \quad 1.50$
$1.75 \quad 2.00$
2.25

Pentad 36

AMA	100	99	95	67	25	3	0	0	0	0
BGS	100	99	98	83	45	13	1	0	0	0
ELP	99	98	87	48	12	1	0	0	0	0
SAT	100	100	100	99	95	73	36	10	1	0
ABQ	99	93	47	8	0	0	0	0	0	0

Pentad 37

AMA	100	99	97	81	43	7	0	0	0	0
BGS	100	100	99	91	56	18	1	0	0	0
ELP	100	99	95	75	26	1	0	0	0	0
SAT	100	100	100	99	97	80	42	9	1	0
ABQ	99	97	78	36	4	0	0	0	0	0

Pentad 38

AMA	100	99	97	85	54	17	1	0	0	0
BGS	100	99	98	90	63	25	3	0	0	0
ELP	100	99	97	84	49	13	1	0	0	0
SAT	100	100	100	99	93	71	32	5	0	0
ABQ	100	99	92	62	15	0	0	0	0	0

Pentad 39

AMA	100	99	98	81	41	9	0	0	0	0
BGS	100	99	98	88	58	25	4	0	0	0
ELP	100	99	98	85	45	8	0	0	0	0
SAT	100	100	100	99	94	76	44	14	1	0
ABQ	99	98	89	56	16	1	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 40

AMA	100	99	96	85	47	9	0	0	0	0
BGS	100	100	99	93	66	25	3	0	0	0
ELP	100	99	98	86	44	5	0	0	0	0
SAT	100	100	100	99	95	79	45	12	1	0
ABQ	100	99	95	63	13	0	0	0	0	0

Pentad 41

AMA	100	100	99	90	52	13	1	0	0	0
BGS	100	100	99	96	70	29	3	0	0	0
ELP	100	99	97	82	49	13	1	0	0	0
SAT	100	100	100	99	95	77	42	11	1	0
ABQ	100	99	94	65	15	0	0	0	0	0

Pentad 42

AMA	100	100	99	88	44	8	0	0	0	0
BGS	100	100	99	93	66	31	7	0	0	0
ELP	100	99	98	87	55	15	1	0	0	0
SAT	100	100	100	99	96	76	35	7	0	0
ABQ	100	99	98	73	16	0	0	0	0	0

Pentad 43

AMA	100	99	97	93	66	10	0	0	0	0
BGS	100	100	99	97	76	27	1	0	0	0
ELP	100	99	98	91	59	9	0	0	0	0
SAT	100	100	100	99	95	75	40	11	1	0
ABQ	100	99	98	79	24	1	0	0	0	0

0.10
0.25
0.50
$0.75 \quad 1.00 \quad 1.25 \quad 1.50$
$1.75 \quad 2.00$
2.25

Pentad 44

AMA	100	99	97	87	55	17	1	0	0	0
BGS	100	100	99	93	63	19	1	0	0	0
ELP	100	99	97	85	46	9	0	0	0	0
SAT	100	100	100	99	95	71	30	5	0	0
ABQ	100	99	94	71	26	1	0	0	0	0

Pentad 45

AMA	100	99	98	87	52	11	0	0	0	0
BGS	100	100	99	92	61	23	3	0	0	0
ELP	100	99	98	88	44	5	0	0	0	0
SAT	100	100	100	99	97	76	36	6	0	0
ABQ	100	99	96	73	19	0	0	0	0	0

Pentad 46

AMA	100	100	99	90	54	15	1	0	0	0
BGS	100	100	99	96	68	27	3	0	0	0
ELP	100	99	98	88	49	7	0	0	0	0
SAT	100	100	100	99	98	80	42	10	1	0
ABQ	100	99	96	75	19	0	0	0	0	0

Pentad 47

AMA	100	99	98	82	49	17	1	0	0	0
BGS	100	100	99	92	67	32	7	0	0	0
ELP	100	99	97	86	54	15	1	0	0	0
SAT	100	100	100	99	93	76	50	20	2	0
ABQ	99	98	91	66	22	1	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 48

AMA	100	99	97	78	36	6	0	0	0	0
BGS	100	99	98	84	53	18	2	0	0	0
ELP	100	99	96	76	37	8	1	0	0	0
SAT	100	100	99	97	90	72	47	20	4	0
ABQ	99	98	88	54	14	1	0	0	0	0

Pentad 49

AMA	100	99	90	65	33	9	0	0	0	0
BGS	100	99	97	84	56	22	3	0	0	0
ELP	99	98	92	71	36	7	0	0	0	0
SAT	100	100	99	98	94	78	42	10	1	0
ABQ	99	97	81	39	6	0	0	0	0	0

Pentad 50

AMA	100	99	92	58	20	3	0	0	0	0
BGS	100	99	96	80	47	14	1	0	0	0
ELP	99	98	88	58	24	3	0	0	0	0
SAT	100	100	99	96	88	69	38	11	1	0
ABQ	99	96	73	33	5	0	0	0	0	0

Pentad 51

AMA	99	97	85	27	6	0	0	0	0	0
BGS	100	99	92	74	49	23	5	0	0	0
ELP	99	98	86	62	32	9	1	0	0	0
SAT	100	99	98	95	88	73	50	23	5	0
ABQ	98	94	71	35	7	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 52

AMA	99	98	81	42	12	2	0	0	0	0
BGS	99	98	88	62	33	11	1	0	0	0
ELP	98	96	75	42	16	4	0	0	0	0
SAT	100	99	98	94	82	60	35	13	2	0
ABQ	98	89	54	18	3	0	0	0	0	0

Pentad 53

AMA	100	99	85	42	10	1	0	0	0	0
BGS	100	99	91	67	34	11	1	0	0	0
ELP	99	98	79	44	14	1	0	0	0	0
SAT	100	99	98	94	79	58	34	15	3	0
ABQ	98	89	54	20	3	0	0	0	0	0

Pentad 54

AMA	99	95	75	41	14	1	0	0	0	0
BGS	99	98	88	63	32	11	1	0	0	0
ELP	99	95	72	39	13	2	0	0	0	0
SAT	100	99	96	87	73	54	32	14	4	0
ABQ	98	88	48	14	1	0	0	0	0	0

Pentad 55

AMA	99	97	63	17	5	1	0	0	0	0
BGS	99	96	77	44	19	6	1	0	0	0
ELP	99	96	70	30	8	1	0	0	0	0
SAT	99	97	90	75	56	36	19	8	1	0
ABQ	99	92	45	6	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 56

AMA	95	82	48	20	8	4	0	0	0	0
BGS	98	92	73	47	25	9	1	0	0	0
ELP	97	88	59	28	11	2	0	0	0	0
SAT	99	98	93	81	63	41	22	7	1	0
ABQ	97	82	34	7	1	0	0	0	0	0

Pentad 57

AMA	98	84	35	9	2	0	0	0	0	0
BGS	98	88	57	26	10	2	0	0	0	0
ELP	98	86	40	11	1	0	0	0	0	0
SAT	97	96	87	70	51	31	15	4	1	0
ABQ	97	76	14	3	0	0	0	0	0	0

Pentad 58

AMA	99	89	47	13	1	0	0	0	0	0
BGS	99	94	64	26	6	0	0	0	0	0
ELP	98	89	49	13	1	0	0	0	0	0
SAT	98	97	87	68	44	24	9	1	0	0
ABQ	97	74	16	1	0	0	0	0	0	0

Pentad 59

AMA	95	80	36	11	2	0	0	0	0	0
BGS	99	91	61	28	9	1	0	0	0	0
ELP	98	86	41	9	1	0	0	0	0	0
SAT	98	97	86	66	44	24	9	2	0	0
ABQ	96	72	17	1	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 60

AMA	99	84	22	3	0	0	0	0	0	0
BGS	99	90	52	18	4	0	0	0	0	0
ELP	98	83	24	3	0	0	0	0	0	0
SAT	98	96	84	63	40	21	8	1	0	0
ABQ	96	61	6	0	0	0	0	0	0	0

Pentad 61

AMA	98	81	25	3	0	0	0	0	0	0
BGS	98	88	47	14	2	0	0	0	0	0
ELP	98	84	24	6	1	0	0	0	0	0
SAT	97	95	83	63	41	20	6	1	0	0
ABQ	95	63	9	0	0	0	0	0	0	0

Pentad 62

AMA	96	75	16	4	0	0	0	0	0	0
BGS	97	81	30	9	2	0	0	0	0	0
ELP	96	64	10	1	0	0	0	0	0	0
SAT	97	93	76	52	30	14	4	1	0	0
ABQ	93	45	2	0	0	0	0	0	0	0

Pentad 63

AMA	95	60	5	0	0	0	0	0	0	0
BGS	97	76	20	2	0	0	0	0	0	0
ELP	96	55	8	1	0	0	0	0	0	0
SAT	97	91	65	32	12	3	0	0	0	0
ABQ	91	23	3	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 64				0	0	0	0	0	0	
AMA	96	62	8	3	0	0	0	0	0	0
BGS	97	77	17	5	0	0	0	0	0	0
ELP	96	63	10	1	0	0	0	0	0	0
SAT	98	94	79	57	34	14	3	0	0	0
ABQ	93	39	3	0	0	0	0	0	0	0

Pentad 65

AMA	90	41	5	0	0	0	0	0	0	0
BGS	95	68	15	2	0	0	0	0	0	0
ELP	90	46	3	0	0	0	0	0	0	0
SAT	97	92	72	44	21	6	1	0	0	0
ABQ	90	19	1	0	0	0	0	0	0	0

Pentad 66

AMA	93	43	2	0	0	0	0	0	0	0
BGS	97	65	11	4	0	0	0	0	0	0
ELP	95	54	4	0	0	0	0	0	0	0
SAT	96	87	64	39	19	6	1	0	0	0
ABQ	94	19	1	0	0	0	0	0	0	0

Pentad 67

AMA	88	44	1	0	0	0	0	0	0	0
BGS	94	60	10	1	0	0	0	0	0	0
ELP	92	47	8	1	0	0	0	0	0	0
SAT	96	86	57	28	9	1	0	0	0	0
ABQ	84	21	1	0	0	0	0	0	0	0

$$
\begin{array}{llllllllll}
0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25
\end{array}
$$

Pentad 68

AMA	88	41	6	0	0	0	0	0	0	0
BGS	93	60	11	2	0	0	0	0	0	0
ELP	92	51	6	0	0	0	0	0	0	0
SAT	95	86	60	33	14	3	0	0	0	0
ABQ	80	26	1	0	0	0	0	0	0	0

Pentad 69

AMA	88	42	3	0	0	0	0	0	0	0
BGS	91	61	14	1	0	0	0	0	0	0
ELP	91	51	7	0	0	0	0	0	0	0
SAT	94	86	62	36	17	6	1	0	0	0
ABQ	81	19	0	0	0	0	0	0	0	0

Pentad 70

AMA	87	31	3	0	0	0	0	0	0	0
BGS	98	50	8	0	0	0	0	0	0	0
ELP	97	43	8	1	0	0	0	0	0	0
SAT	97	87	49	16	7	4	1	0	0	0
ABQ	77	19	0	0	0	0	0	0	0	0

Pentad 71

AMA	94	34	5	0	0	0	0	0	0	0
BGS	95	60	8	0	0	0	0	0	0	0
ELP	90	40	7	0	0	0	0	0	0	0
SAT	96	87	59	28	10	2	0	0	0	0
ABQ	93	10	1	0	0	0	0	0	0	0

	0.10	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
Pentad 72										
AMA	89	26	1	0	0	0	0	0	0	0
BGS	95	48	6	0	0	0	0	0	0	0
ELP	90	35	8	0	0	0	0	0	0	0
SAT	96	86	51	21	7	1	0	0	0	0
ABQ	79	21	1	0	0	0	0	0	0	0
Pentad	73									
AMA	85	25	1	0	0	0	0	0	0	0
BGS	93	48	8	1	0	0	0	0	0	0
ELP	90	27	8	0	0	0	0	0	0	0
SAT	94	82	52	25	8	1	0	0	0	0
ABQ	79	14	1	0	0	0	0	0	0	0

> APPENDIX C
> Plot of Annual Series

The five graphs that follow represent the Gumbel distribution applied to the annual series of each station. The return period for a given amount of depth of precipitable water may be found at the intersection of the Gumbel distribution line with the value of the depth.

