## TEXAS WATER DEVELOPMENT BOARD

17

5

È

1Ô

è

REPORT 71

# RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE COLORADO RIVER BASIN, TEXAS

Bу

Donald K. Leifeste and Myra W. Lansford

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

March 1968

#### TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman Groner A. Pitts W. E. Tinsley

3

Howard B. Boswell, Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

> Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

> > ii

# TABLE OF CONTENTS

æ

ð,

U)

ė

c

ė-

|                                                                                 | Page |
|---------------------------------------------------------------------------------|------|
| ABSTRACT                                                                        | 1    |
| INTRODUCTION                                                                    | 3    |
| COLORADO RIVER DRAINAGE BASIN                                                   | 5    |
| General Description                                                             | 5    |
| Population and Municipalities                                                   | 6    |
| Agricultural and Industrial Development                                         | 6    |
| Development of Surface-Water Resources                                          | 6    |
| CHEMICAL QUALITY OF THE WATER                                                   | 13   |
| Chemical-Quality Records                                                        | 13   |
| Streamflow Records                                                              | 15   |
| Environmental Factors and Their Effects on the Chemical<br>Quality of the Water | 15   |
| Geology                                                                         | 15   |
| Streamflow                                                                      | 16   |
| Activities of Man                                                               | 19   |
| Relation of Quality of Water to Use                                             | 26   |
| Domestic Supply                                                                 | 26   |
| Industrial Use                                                                  | 28   |
| Irrigation                                                                      | 30   |
| Geographic Variations in Water Quality                                          | 32   |
| Dissolved Solids                                                                | 32   |
| Hardness                                                                        | 32   |
| Chloride                                                                        | 33   |

iii

# TABLE OF CONTENTS (Cont'd.)

-

s.

\*

ų,

5

|                                                                                                      | Page |
|------------------------------------------------------------------------------------------------------|------|
| Other Constituents                                                                                   | 33   |
| Water Quality in Reservoirs                                                                          | 34   |
| Lake J. B. Thomas                                                                                    | 34   |
| Lake Colorado City and Champion Creek Reservoir                                                      | 34   |
| Robert Lee Reservoir                                                                                 | 34   |
| Oak Creek Reservoir                                                                                  | 34   |
| Twin Buttes Reservoir                                                                                | 34   |
| Lake Nasworthy                                                                                       | 34   |
| San Angelo Reservoir                                                                                 | 34   |
| Coleman Reservoir                                                                                    | 34   |
| Hords Creek Reservoir                                                                                | 35   |
| Brownwood Reservoir                                                                                  | 35   |
| Brady Creek Reservoir                                                                                | 35   |
| Lake Buchanan, Inks Lake, Lake Lyndon B. Johnson,<br>Marble Falls Lake, Lake Travis, and Lake Austin | 35   |
| Decker Lake                                                                                          | 35   |
| Lake Bastrop                                                                                         | 35   |
| Eagle Lake                                                                                           | 35   |
| Water Quality at Potential Reservoir Sites                                                           | 35   |
| Stacy                                                                                                | 35   |
| Upper Pecan Bayou                                                                                    | 36   |
| Brownwood Reservoir (Enlargement)                                                                    | 36   |
| San Saba                                                                                             | 36   |
| Mason                                                                                                | 36   |
| Pedernales                                                                                           | 36   |
| Columbus Bend                                                                                        | 36   |

iv

# TABLE OF CONTENTS (Cont'd.)

¢

ð

Ç.

è

6

ē;

| Matagorda                                 | 36 |
|-------------------------------------------|----|
| Problems Needing Additional Investigation | 36 |
| REFERENCES                                | 39 |

## TABLES

| 1. | Reservoirs with capacities of 5,000 acre-feet or more in the<br>Colorado River basin                               | 10 |
|----|--------------------------------------------------------------------------------------------------------------------|----|
| 2. | Source and significance of dissolved mineral constituents and properties of water                                  | 27 |
| 3. | Water-quality tolerances for industrial applications                                                               | 29 |
| 4. | Index of surface-water records in the Colorado River basin                                                         | 43 |
| 5. | Summary of chemical analyses at daily stations on streams in the Colorado River basin                              | 50 |
| 6. | Chemical analyses of streams and reservoirs in the Colorado<br>River basin for locations other than daily stations | 66 |
|    |                                                                                                                    |    |

# FIGURES

| 1. | Index Map of Texas Showing River Basins and Coastal Areas                                                                                          | 4  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Map Showing Precipitation and Runoff                                                                                                               | 7  |
| 3. | Graph Showing Average Annual Runoff, Drainage Area, and<br>1960 Population of Major River Basins in Texas, as Per-<br>centages of State Totals     | 9  |
| 4. | Map Showing Major Reservoirs Existing and Under Construction,<br>and Potential Reservoir Sites                                                     | 11 |
| 5. | Map Showing Geology and Chemical Composition of Surface Water                                                                                      | 17 |
| 6. | Specific Conductance-Discharge Hydrograph for Colorado River<br>Near Cuthbert, October 17-21, November 8-9, 1965, and April<br>23-May 1, 1966      | 20 |
| 7. | Duration Curves for Dissolved Solids and Water Discharge for<br>Colorado River Near San Saba and Colorado River at Wharton,<br>Water Years 1948–65 | 21 |
| 8. | Map Showing Oil and Gas Fields                                                                                                                     | 23 |

# TABLE OF CONTENTS (Cont'd.)

21

\*

'n.

|     |                                                                                   | Page |
|-----|-----------------------------------------------------------------------------------|------|
| 9.  | Diagram for Classification of Irrigation Waters                                   | 31   |
| 10. | Map Showing Location of Streamflow and Chemical-<br>Quality Data-Collection Sites | 79   |
| 11. | Map Showing Dissolved-Solids Concentration of<br>Surface Water                    | 81   |
| 12. | Map Showing Hardness of Surface Water                                             | 83   |
| 13. | Map Showing Chloride Concentration of Surface Water                               | 85   |

# RECONNAISSANCE OF THE CHEMICAL QUALITY

#### OF SURFACE WATERS OF

THE COLORADO RIVER BASIN, TEXAS

#### ABSTRACT

The natural runoff in most of the Colorado River basin is of good chemical quality and is suitable for most municipal, industrial, and agricultural purposes.

The kinds and quantities of minerals dissolved in surface water of the basin are related to the geology of the area and to rainfall and streamflow characteristics, but the quality of the water in the Colorado River below Lake J. B. Thomas is influenced also by oil-field brines.

Most of the tributary streams yield surface water averaging less than 250 ppm (parts per million) in dissolved-solids content, but the saline inflow in the upper basin keeps the average concentration in the main stem above 250 ppm throughout its length. The discharge weighted-average concentrations of the Colorado River near San Saba and at Wharton for the period 1958-65 are 295 ppm and 255 ppm, respectively.

Surface water of the basin generally ranges from moderately hard (61 to 120 ppm) to very hard (over 180 ppm). From Lake J. B. Thomas to the mouth of Pecan Bayou, the Colorado River and most of its tributaries contain very hard water. Downstream from Pecan Bayou the water of the basin is hard.

The chloride concentration in surface water of the basin ranges from less than 50 ppm to several thousand ppm. In the upper basin where brines are reaching the streams, chloride concentrations of several thousand ppm are common. Most of the remainder of the basin yields water averaging less than 50 ppm, but the saline inflow in the upper basin keeps the average concentration in the main stem above 50 ppm all the way to Austin. Higher concentrations are found in the South Concho River and in the headwater reaches of Pecan Bayou probably because of oil-field operations.

All the major water-supply reservoirs contain water of acceptable quality for most uses. The quality of the water that will be stored in Robert Lee Reservoir will depend on the success of the upstream salt-water alleviation program. Water available for storage at potential reservoir sites is of good quality; the dissolved-solids concentration is usually less than 350 ppm.



# RECONNAISSANCE OF THE CHEMICAL QUALITY

c,

#### OF SURFACE WATERS OF

THE COLORADO RIVER BASIN, TEXAS

#### INTRODUCTION

The investigation of the chemical quality of the surface waters of the Colorado River basin, Texas, is part of a statewide reconnaissance. Each major river basin in the State is being studied, and reports presenting the results of the studies and summaries of available chemical-quality data are being prepared. River basins on which reports have been completed and the area covered by this report are shown in Figure 1.

The purpose of this report is to present the available information on the water quality of the Colorado River basin that will further the proper development, control, and use of the water resources of the area. In the study, the following items were considered: the nature and amounts of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine the water quality; the amount and probable source of the salt discharged by the streams; and the suitability of the water for domestic supply, industrial use, and irrigation.

A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with other Federal and local agencies. This network has been inadequate to inventory completely the chemical quality of the surface waters of the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and the Texas Water Development Board was begun in September 1961. In this study, samples for chemical analyses were collected periodically at numerous sites throughout Texas so that some quality-of-water information would be available where water-development projects are likely to be built. These data aid in the delineation of areas having water-quality problems and in the identification of probable sources of pollution, thus indicating areas where more detailed investigations are needed.

During the period September 1961 to September 1965, water-quality data were collected for the principal streams, the major reservoirs, a number of potential reservoir sites, and many tributaries in the Colorado River basin.

Agencies that have cooperated in the collection of chemical-quality and streamflow data include the U.S. Army Corps of Engineers, the Brown County Water Improvement District No. 1, the Colorado River Municipal Water District, the Lower Colorado River Authority, the Texas Electric Service Company, the Texas State Department of Health, and the cities of Austin, Brady, and San Angelo.

- 3 -



- 4 -

### COLORADO RIVER DRAINAGE BASIN

### General Description

As measured by length and drainage area, the Colorado is the largest river that is wholly in Texas. The basin extends into eastern New Mexico, but the part of the basin there does not contribute to the river flow. The Colorado River rises in north-central Dawson County near Lamesa, on the southern High Plains, and flows southeastward to Matagorda Bay, on the middle Gulf Coast. The Texas part of the basin, which includes all or part of 50 counties, is about 500 miles long and varies in width from 7 miles in southern Colorado County to 160 miles in the Brown-McCulloch County area. The average width is about 80 miles. The area of the basin in Texas is 39,890 square miles, or 15.2 percent of the area of Texas.

The elevation at the point of origin of the Colorado River is about 3,000 feet above mean sea level. The river flows through a rolling, generally prairie terrain to the vicinity of San Saba County where it enters the rugged Hill Country of Central Texas. It then flows through a series of canyons, crosses the Balcones Escarpment at Austin, and continues across the Coastal Plain to the Gulf.

The principal tributaries, in downstream order, are: The Concho River, Pecan Bayou, and the San Saba, Llano, and Pedernales Rivers. All except Pecan Bayou are spring-fed, perennial streams that begin in the Edwards Plateau.

The average annual precipitation ranges from a minimum of 13 inches in the upper part of the drainage area to a maximum of 43 inches at the mouth of the river. The average for the basin in Texas is 28 inches. Average monthly precipitation at three U.S. Weather Bureau stations and annual precipitation for the period 1931-65 at one station are shown in Figure 2.

Runoff is defined as that part of the precipitation appearing in surface streams, and is the same as streamflow unaffected by artificial storage or diversion (Langbein and Iseri, 1960, p. 17). Temperature, seasonal distribution of rainfall, storm intensity, infiltration rates, and types and density of vegetation affect the amount of runoff from a drainage basin.

The average annual runoff in the Colorado River basin ranges from a maximum of 6.6 inches (350 acre-feet per square mile) near the mouth of the river to less than 1.0 inch (53 acre-feet per square mile) west of an approximate north-south line through San Angelo. The runoff decreases more or less uniformly from east to west along with the decrease in rainfall. The runoff varies widely from year to year and between periods of wet and dry years.

Annual runoff, expressed as mean discharge in cubic feet per second and as inches per year, is shown in Figure 2 for the gaging station Colorado River at Columbus for the period 1940-65. The contributing drainage area at the station is 29,170 square miles. Runoff ranged from 0.44 to 3.86 inches per year and averaged 1.37 inches during the 26-year period of record.

- 5 -

#### Population and Municipalities

The population of the Colorado River basin in 1965 was about 850,000, which was about 8 percent of the total population of the State. Less than one-fourth of the people in the basin live on farms. Austin is the largest city in the basin, with a 1965 population of about 240,000. San Angelo, Midland, and Odessa are other cities that have more than 50,000 inhabitants. Twelve other cities had 1965 populations of more than 5,000.

### Agricultural and Industrial Development

The basin's economic base is oil production and agriculture. The western part of the basin has a heavy concentration of oil fields and petrochemical industries. Ranching and farming throughout the basin support a wool industry, cottonseed oil plants, cattle marketing operations, textile plants, creameries, and other industries. Miscellaneous light manufacturing includes aircraft and boat fabrication. The chief crops are cotton, wheat, grain sorghum, vegetables, and sugar beets. State and Federal offices, The University of Texas, tourism, and recreation on the Highland Lakes contribute substantially to the Austin area's economy.

#### Development of Surface-Water Resources

The Colorado River basin contributes about 6 percent of the State's total runoff (Figure 3). Runoff increases from west to east with the increase in rainfall, and the quantity of surface water available for development differs widely between the upper and lower ends of the basin. In the High Plains the only surface water available is the small quantity periodically salvageable from playas.

The Texas Water Development Board reported that 1,258,000 acre-feet of water was used in the Colorado River basin in 1960. Of this amount only 173,300 acre-feet was from surface-water sources. Municipal and industrial use of surface water was 83,400 acre-feet. Surface water supplements groundwater supplies for some cities and provides the total supply for others. Cities using surface water impounded in the Colorado River basin include Colorado City, Big Spring, Odessa, Snyder, Sweetwater, San Angelo, Brady, Coleman, Brownwood, and Austin.

In 1964, 89,900 acre-feet of surface water was used for irrigation. In the middle part of the basin about 40,000 acre-feet of surface water was diverted from the Colorado and its tributaries to irrigate cotton, peanuts, pastures, hay, and feed crops. In the coastal rice area 40,000 acre-feet of surface water was diverted for irrigation.

The Colorado River basin has 21 major reservoirs existing or under construction as of December 31, 1966, with capacities ranging from 8,640 to 1,950,000 acre-feet. Table 1 lists these reservoirs and gives their capacities and uses. Several of the reservoirs in the upper part of the basin were built by cities or by water districts to supply water for local municipal and industrial use. Twin Buttes Reservoir was constructed by the U.S. Bureau of Reclamation for flood control, conservation storage, recreation, and irrigation. San Angelo Reservoir was constructed by the U.S. Army Corps of Engineers

- 6 -



2 5

3

3

- 9 -

25 10

#### Table 1.--Reservoirs with capacities of 5,000 acre-feet or more in the Colorado River basin

|                        |                            |                                   | , . ,                                         |                                                  | , ,            |                       |  |
|------------------------|----------------------------|-----------------------------------|-----------------------------------------------|--------------------------------------------------|----------------|-----------------------|--|
| Reservoir              | Year<br>operation<br>began | Stream                            | a/Total<br>storage<br>capacity<br>(acre-feet) | Owner                                            | County         | Use                   |  |
| Lake J. B. Thomas      | 1952                       | Colorado River                    | 203,600                                       | Colorado River Municipal Water<br>District       | Borden, Scurry | M, I, R               |  |
| Lake Colorado City     | 1949                       | Morgan Creek                      | 31,600                                        | Texas Electric Service Company                   | Mitchell       | м, і                  |  |
| Champion Creek         | 1959                       | Champion Creek                    | 42,500                                        | do                                               | do             | м, і                  |  |
| Robert Lee             | *                          | Colorado Ríver                    | 520,000                                       | Colorado River Municipal Water<br>District       | Coke           | м, і                  |  |
| Oak Creek              | 1952                       | Oak Creek                         | 39,360                                        | City of Sweetwater                               | do             | м, і                  |  |
| Twin Buttes            | 1962                       | Middle and South<br>Concho Rivers | 640,600                                       | U.S. Government                                  | Tom Green      | M, I, Ir,<br>R, FC    |  |
| Lake Nasworthy         | 1948                       | South Concho River                | 12,390                                        | City of San Angelo                               | do             | M, I, Ir, R           |  |
| San Angelo             | 1952                       | North Concho River                | 396,400                                       | U.S. Government                                  | do             | M, I, Ir,<br>R, FC    |  |
| Hords Creek            | 1948                       | Hords Creek                       | 8,640                                         | do                                               | Coleman        | M, I, FC              |  |
| Coleman                | 1966                       | Jim Ned Creek                     | 40,000                                        | do                                               | do             | м, і                  |  |
| Brownwood              | 1933                       | Pecan Bayou                       | 143,400                                       | Brown County Water Improvement<br>District No. l | Brown          | M, I, Ir              |  |
| Brady Creek            | 1963                       | Brady Creek                       | 30,430                                        | City of Brady                                    | McCulloch      | м, і                  |  |
| Lake Buchanan          | 1938                       | Colorado River                    | 992,000                                       | Lower Colorado River Authority                   | Llano, Burnet  | M, I, Ir,<br>P, R     |  |
| Inks Lake              | 1938                       | do                                | 17,500                                        | do                                               | do             | P, R                  |  |
| Lake Lyndon B. Johnson | 1951                       | do                                | 145,200                                       | do                                               | do             | P, R                  |  |
| Marble Falls Lake      | 1951                       | do                                | 8,760                                         | do                                               | do             | P, R                  |  |
| Lake Travis            | 1942                       | do                                | 1,950,000                                     | do                                               | Travis         | M, I, Ir, R,<br>P, FC |  |
| Lake Austin            | 1939                       | do                                | 21,000                                        | do                                               | do             | M, R, P               |  |
| Decker Lake            | *                          | Decker Greek                      | 33,940                                        | City of Austin                                   | do             | I, R                  |  |
| Lake Bastrop           | 1964                       | Spicer Creek                      | 16,590                                        | Lower Colorado River Authority                   | Bastrop        | Ir                    |  |
| Eagle Lake             | 1900                       | Colorado River<br>(off channel)   | 9,600                                         | Lakeside Irrigation Company                      | Colorado       | Ir                    |  |

# The purpose for which the impounded water is used is indicated by the following symbols: M, municipal; I, industrial; Ir, irrigation; Mi, mining; R, recreation; P, hydroelectric power; FC, flood control

ni.

疥

5

æ

\* Under construction as of December 31, 1966. a Total capacity is that capacity below the lowest uncontrolled outlet or spillway (in some cases top of gates) and is based on the most recent reservoir survey available.

primarily for flood control and municipal supply. The six Lower Colorado River Authority lakes--Buchanan, Inks, Lyndon B. Johnson, Marble Falls, Travis, and Austin--are operated as a unit for generating hydroelectric power. Buchanan provides conservation storage, and Travis provides both conservation storage and flood control. Lake Bastrop, owned by the Lower Colorado River Authority, provides cooling water for a steam-electric generating plant.

Projects under construction in the Colorado River basin include Robert Lee Reservoir for additional municipal and industrial supply for the cities of Big Spring, Odessa, Snyder, and Midland; and Decker Lake to provide cooling water for a new steam-electric generating plant near Austin.

Figure 4 shows locations of the existing reservoirs, the two reservoirs under construction, and a number of potential dam sites which have been considered by various agencies.

The Soil Conservation Service of the U.S. Department of Agriculture was authorized by the Flood Control Act of 1936 to investigate and prescribe measures for runoff and water-flow retardation and soil-erosion prevention. As of September 30, 1966, 207 upstream floodwater-retarding structures had been built under this program in the Colorado River basin. These structures partly control flow from 1,180 square miles. Nineteen of the reservoirs are in the Cummings Creek subbasin in Fayette and Lee Counties in the lower part of the basin. The remaining 188 structures are in Callahan, Coke, Runnels, Menard, Schleicher, McCulloch, Coleman, and Brown Counties in the northwestern and north-central part of the basin.

#### CHEMICAL QUALITY OF THE WATER

#### Chemical-Quality Records

The U.S. Geological Survey has been collecting quality-of-water data in the Colorado River basin since 1944 when a daily-sampling station was established on the Colorado River at Wharton. Currently (1966), eleven dailysampling stations are in operation. In addition to collecting daily samples for chemical analyses, the Geological Survey has operated a continuously recording conductivity meter on the Colorado River near Cuthbert since March 1965.

Collection of chemical-quality data for this reconnaissance began in 1961 and continued through September 1965. Samples were collected periodically from most of the principal tributary streams and reservoirs. Numerous miscellaneous samples have been collected by the Geological Survey since 1941, and the results of the analyses of these samples have been included in this report. Most of the sampling for this study was done at gaging stations. When sampling was done at other sites, discharge measurements were usually made when the samples were collected.

The periods of record of all data-collection sites are shown on Table 4 and the locations are shown on Figure 10. The chemical-quality data for the daily stations are summarized in Table 5, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in reports of the Texas Water Development Board. (See table in the list of references.) Results of all the periodic and miscellaneous analyses are given in Table 6. The Texas State Department of Health makes available to the U.S. Geological Survey the data collected in its statewide stream-sampling program, which includes the periodic determination of pH, biochemical oxygen demand, total solids, dissolved oxygen, chloride, chlorine demand, and sulfate at 26 locations in the Colorado River basin. The data-collection sites of the Texas State Department of Health are listed in the following table. Most of them are at Geological Survey gaging stations and the numbers refer to locations on Figure 10.

ю.

| Location No. | State Department of Health data-collection site |
|--------------|-------------------------------------------------|
| 9            | Colorado River at Colorado City                 |
|              | Beals Creek at FR 821 near Big Spring           |
| 25           | Colorado River at Robert Lee                    |
| 30           | Colorado River at Ballinger                     |
| 36           | South Concho River at Christoval                |
| 38           | Middle Concho River near Tankersley             |
| 53           | North Concho River near Carlsbad                |
| 58           | Concho River near San Angelo                    |
| 59           | Concho River near Paint Rock                    |
| 62           | Colorado River at Winchell                      |
| 80           | Pecan Bayou at Brownwood                        |
| 84           | San Saba River at Menard                        |
| 89           | San Saba River at San Saba                      |
| 91           | Colorado River near San Saba                    |
|              | Colorado River near San Saba                    |
| 96           | Llano River near Junction                       |
| 99           | Llano River at Llano                            |
| 103          | Pedernales River near Johnson City              |
|              | Colorado River below Mansfield Dam              |
| 114          | Colorado River at Austin                        |
| 122          | Colorado River at Bastrop                       |

(Continued on next page)

- 14 -

| Location No. | State Department of Health data-collection site      |
|--------------|------------------------------------------------------|
| 125          | Colorado River at Smithville                         |
| 130          | Colorado River at Columbus                           |
| 133          | Colorado River at Wharton                            |
| 134          | Colorado River near Bay City                         |
|              | Colorado River at Matagorda above Intracoastal Canal |

#### Streamflow Records

Streamflow records in the Colorado River basin date from 1894, when the U.S. Geological Survey began collecting gage-height records of the Colorado River at the dam above Austin. The daily flow of the Colorado River at Austin has been measured continuously since 1898. More than 40 years of continuous discharge records are available for several stations on the main stem of the Colorado River, and records for more than 20 years are available for many of the principal tributaries. In 1966 the Geological Survey operated 57 streamflow stations, 12 reservoir-content stations, 13 low-flow partial-record stations, and 19 crest-stage partial-record stations. During this reconnais-sance, discharge measurements were made at other sites where water samples were collected for chemical analysis.

The periods of record for all the streamflow stations are given in Table 4 and the locations are shown on Figure 10. Records of discharge and stage of streams and contents and stages of lakes or reservoirs from 1898 to 1960 have been published in the annual series of U.S. Geological Survey Water-Supply Papers. (See table in the list of references.) Beginning with the 1961 water year, streamflow records have been released by the Geological Survey in annual state reports (U.S. Geological Survey, 1961, 1962, 1963, 1964b, 1965, 1966). Summaries of discharge records giving monthly and annual totals have been published (Texas Board of Water Engineers, 1958; U.S. Geological Survey, 1960, 1964a).

### Environmental Factors and Their Effects on the Chemical Quality of the Water

Many environmental factors determine the chemical quality of a water, the most important of which are geology, patterns and characteristics of streamflow, and the activities of man.

#### Geology

When industrial and municipal influences are small, the chemical character of a river water is dependent primarily upon the composition of the geologic formations that are traversed and the time that the water is in contact with the rocks.

The amount of soluble minerals in rocks and soils is decreased by leaching. In arid or semiarid regions, most soils and the rocks from which they originated are incompletely leached and still contain large quantities of readily soluble material. Conversely, in areas of high rainfall, the mantle rock and residual soil contain relatively small amounts of readily soluble minerals. In the Colorado River basin, where the average annual precipitation varies from less than 13 inches in the northwestern part to over 42 inches near the coast, the amount of leaching varies geographically. Partly because of this, the dissolved-solids content of surface runoff and of ground-water inflow to streams is greatest in the western part of the basin and decreases toward the coast.

Figure 5 shows the geochemical character and ionic concentration of some surface waters in the Colorado River basin. The total ionic concentration in equivalents per million is equal to twice the length of either the vertical or horizontal axis. If the major part of the quadrilateral is in the lower left quarter, sulfate or chloride predominate among the anions, and sodium or potassium among the cations. If the major part is in the upper right quarter, calcium or magnesium, and carbonate or bicarbonate, are predominant.

Headwaters of the Colorado River rise primarily on the Dockum Group of Triassic age, which is composed of sand and shale. Water from this area, represented by the water stored in Lake J. B. Thomas, is generally dilute, of a mixed type, and has sodium and bicarbonate as its principal ions. Downstream from Lake J. B. Thomas, the Colorado River traverses sediments of Permian age composed of sand, shale, limestone, anhydrite, and salt. This is an area of saline inflow that degrades much of the water of the upper basin.

Inflow from small tributaries dilutes the water in the main stem by the time it reaches Ballinger, but sodium and chloride are still the predominant ions. Salinity is further decreased between the chemical-quality stations at Ballinger and near San Saba due to inflow from three major tributaries. Two of these, the Concho and San Saba Rivers, rise on Cretaceous rocks composed mainly of limestone, shale, sand, and silt. Runoff from these formations is generally of the calcium bicarbonate type and is dilute. Pecan Bayou primarily drains rocks of Pennsylvanian age, which are composed of marine sand, shale, and limestone. The water contributed by Pecan Bayou is of a mixed type and is low in dissolved solids. The inflow from these tributaries dilutes the main stem to a dissolved-solids content less than 300 ppm (parts per million); calcium and bicarbonate are the predominant ions.

Downstream from San Saba the tributaries that influence the chemical quality of the Colorado River are the Llano and Pedernales Rivers, which enter the main stem in the chain of Highland Lakes above Austin. Both of these streams drain a limestone terrain and contribute water saturated or nearly saturated with calcium and bicarbonate.

No major tributaries enter the Colorado River downstream from Austin, and most of the flow in the river is maintained by releases from the Highland Lakes. The quality of the water is uniform from Austin to the mouth. The water usually contains about 250 ppm of dissolved solids and is calcium bicarbonate in type.

#### Streamflow [Variable]

The patterns and characteristics of streamflow usually affect the chemical character of water in streams. In most streams where the flow is not regulated by upstream reservoirs, the concentrations of dissolved-mineral constituents vary inversely with the flow of the stream. The base flow, or sustained low

- 16 -

flow, of a stream is predominantly water that has entered the stream from the ground-water reservoir. Usually this water has been in contact with rocks and soils for a sufficient time to dissolve part of their soluble minerals. At high stages most of the flow of a stream consists of surface runoff that has been in contact with rocks and soils for only a short time. Therefore, the dissolved-solids concentration of the stream is usually lowest during periods of high flow. This relationship is applicable in the upper Colorado River basin, but in the central portion of the basin where streams drain a limestone terrain, dissolved-solids concentrations vary only slightly with changes in discharge. In the lower part of the basin, streamflow is sustained by releases from the Highland Lakes, and tributary inflow is not sufficient to affect greatly the quality of the main stem.

Although the dissolved-solids concentration of the upper Colorado River is related in a general way to water discharge, the dissolved-solids concentration of the water cannot be estimated from streamflow data. The first increased streamflow resulting from a particular rain is usually more saline than an equal discharge that occurs later. Tributary inflow may also contribute significantly to streamflow but not be dilute enough to affect the concentration of the flow in the main stem. Figure 6 is a plot of electrical conductance of the water and discharge of the Colorado River near Cuthbert. Conductance is a measure of the total concentration of ions in water and can be directly related to dissolved-solids content. The general inverse relation of discharge to concentration of dissolved solids is well shown in Figure 6A, which shows a short duration rise following a period of no flow. Figure 6B shows a short duration rise following a period of low flow. The initial decrease in conductance is caused by local runoff; the sharp increase in conductance while the discharge was still increasing is the flushing out effect of the runoff from upstream. Figure 6C is a plot of an extended runoff event. The flushing out effect is again obvious. Discharge varies considerably during this rise but the conductance remains fairly uniform after the first 24 hours.

Duration curves of dissolved solids and water discharge for the Colorado River near San Saba and Colorado River at Wharton are given in Figure 7. The dissolved solids duration curve is a cumulative frequency curve that shows the percent of time during which specified dissolved-solids concentrations were equaled or exceeded during a specified period. The flow-duration curve is a cumulative frequency curve that shows the percent of time that water discharge was equal to or less than a specified discharge. The curves, therefore, show the inverse relation of dissolved-solids concentration to water discharge. For example, the Colorado River near San Saba had a dissolved-solids concentration of more than 285 ppm and flowed at a rate of less than 640 cfs (cubic feet per second) 80 percent of the time, and had a dissolved-solids concentration of more than 750 ppm and a discharge of less than 18 cfs 5 percent of the time, during the period 1948-65.

#### Activities of Man

The activities of man often have a deteriorative effect on the chemical quality of water. Oil-field brine, municipal and industrial wastes, and irrigation return flows increase the concentration of dissolved materials in streams. Evaporation from reservoirs increases the dissolved-solids concentration of the remaining water.



- 20 -



- 21 -

Oil is produced in many areas in the Colorado River basin (Figure 8). Brine is produced in nearly all oil fields and it may, if improperly handled, eventually reach the streams. The composition of oil-field brine varies; but the principal chemical constituents in order of magnitude of their concentration (in ppm) are generally chloride, sodium, calcium, and sulfate. The quality of the water in the Colorado River and Beals Creek in Mitchell, Howard, and Scurry Counties is seriously affected by brines. Investigators in the past have disagreed as to the origin of the brine, but Reed (1961) in a consulting report to the Colorado River Municipal Water District presents convincing evidence that the brines entering the river are directly related to oil-field operations. The purpose of Reed's study was to determine the various sources of salt water present in the Colorado River principally in the area between Lake J. B. Thomas and Colorado City, a distance of about 24 river miles. The study was divided into three parts: first, a detailed study of the geology of the upper 1,000 feet of section with particular emphasis on the nature and structure of the surface beds which provide all the low flow of the Colorado River; second, a study of the ground water adjacent to the Colorado River and its tributaries, including chemical analyses and determinations of the altitude of the water table; and third, a study of U.S. Geological Survey quality and flow data of the Colorado River together with measurements of the thickness of underflow gravel in the river channel. As a result of his study, Reed concluded:

- 1. The probable maximum chloride ion concentration of the Colorado River prior to the development of the oil fields between the present site of Lake J. B. Thomas and Colorado City, Texas, was of the order of 300 to 500 parts per million during periods of maximum evaporation.
- 2. There is no known source of <u>natural</u> inflow of salt water to the river with chlorides significantly higher than 500 parts per million.
- 3. A great percentage of the total mineral content of brines produced with oil in the watershed of the Colorado River does eventually find its way into the Colorado River itself.
- 4. There are an unknown number of abandoned oil wells which were improperly plugged and which are now contributing salt water to the Colorado River and which must be controlled.

An indication of the magnitude of the man-made pollution problem is given by the tremendous volume of salt water produced with oil or gas in the area. The Texas Water Commission and Texas Water Pollution Control Board (1963) compiled an inventory conducted by the Railroad Commission of Texas which showed that approximately 222,400,000 barrels (28,680 acre-feet) of brine was produced in 1961 in the Colorado River basin in Texas. Of this amount, 63.2 percent or 140,650,000 barrels (18,130 acre-feet) was reinjected into the subsurface, with the remaining 10,550 acre-feet being placed in unlined surface pits or dumped directly into surface watercourses. Some of the salt water reinjected into the subsurface also contributed to the problem because of inadequately completed injection wells and improperly plugged abandoned wells and test holes. Robert Lee Reservoir is being built (1966) on the Colorado River downstream from the area of saline inflow. The Colorado River Municipal Water District plans to divert the low flows of the river upstream from the reservoir, and impound only the storm runoff, thereby allowing only the better-quality water to enter the reservoir. Extensive cleanup measures in the oil fields will also be necessary to insure that the water impounded will be satisfactory for municipal use.

Oil-field brines are also causing some deterioration of water quality in the Concho River and Pecan Bayou subbasins.

Municipal use of water tends to increase the concentration of dissolved solids in a stream system. The depletion of flow by diversion and consumptive use, the loss of water because of increased evaporation, and the disposal of municipal wastes into a stream result in higher average concentrations of dissolved solids in the remaining water. The municipal use of water in the Colorado River basin has not caused significant changes in water quality, but the disposal of municipal and industrial wastes has degraded the quality of the water of the Colorado River immediately downstream from Austin.

The waste load carried by a stream can also have significant effects on the water impounded in downstream reservoirs. Connell (1964) was especially concerned about the increasing phosphate in Texas reservoirs and the potential phosphate loading of many of the projected reservoirs. He lists the principal source of phosphate as municipal and industrial waste water, but also says surface runoff may contribute significantly to the phosphate content of streams and reservoirs, from leaching and erosion of mineral phosphate from soil, decay of vegetation and animal wastes, and use of phosphate fertilizers and phosphorus-containing insecticides. Dr. Connell lists the following serious quality threats caused by phosphate loading of projected reservoirs:

> First, production of excessive biological activity and associated odors and tastes rendering the water difficult and expensive to purify for domestic use. Second, promotion of heavy algal bloom and subsequent oxygenconsuming decay of organic matter sufficient to kill fish and to render water undesirable for recreation activities. Third, production of sufficient organic matter--"slimy soupy growth"--to render water difficult and expensive to process, distribute and use for industrial purposes. Fourth, very objectionable calcium phosphate scaling in cooling and boiler water uses.

Algal blooms may be promoted by as small amounts as 0.05 to 0.1 ppm of inorganic phosphate, or 0.2 to 0.6 ppm of inorganic plus organic phosphate (phosphate expressed in equivalent  $PO_4$ ). Other factors favoring development of algal bloom are presence of essential nutrients, quiescence, clear water, and abundant sunlight. These conditions will frequently be attained in many reservoirs.

Connell (1966) reports phosphate concentrations as high as 0.3 to 0.4 ppm in the Colorado River at Wharton and Bay City. He concludes that 90 percent of this total is attributable to the municipal and industrial waste water from the city of Austin. In reference to the proposed Columbus Bend Reservoir he makes the following statement.

- 25 -

The periodic production and deposition of organic matter through algal growth, and subsequent lifting and transport, have not been of sufficient proportions to produce seriously adverse effects on the current use of the water, i.e. for fishing, boating, and irrigation. But some curtailment of phosphate sources will probably be necessary for adequate protection of the quality of water in Columbus Bend Reservoir.

# Relation of Quality of Water to Use

Quality-of-water studies are usually concerned with determining the suitability of water--judged by the chemical, physical, and biological characteristics--for its proposed use. In the Colorado River basin, surface water is used primarily for municipal and industrial supplies and for irrigation. This report considers only the chemical character of the water and its relationship to the principal uses.

All natural water contains dissolved-mineral matter. Most of this mineral matter in water is dissociated into charged particles, or ions. Principal cations (positive-charged ions) in natural water are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). The principal anions (negative-charged ions) are carbonate (CO<sub>3</sub>), bicarbonate (HCO<sub>3</sub>), sulfate (SO<sub>4</sub>), chloride (C1), fluoride (F), and nitrate (NO<sub>3</sub>). Other constituents and properties are often determined to help define the chemical and physical quality of water. Table 2 lists the constituents and properties commonly determined by the U.S. Geological Survey, and includes a resume of their sources and significance.

### Domestic Supply

Because of differences in individuals, varying amounts of water used, and other factors, the safe limits for mineral constituents in drinking water are difficult to define. The limits usually accepted in the United States are the drinking-water standards established by the United States Public Health Service. Originally established in 1914 to control the quality of water used on interstate carriers for drinking and culinary purposes, these standards have been revised several times. The latest revision was in 1962 (U.S. Public Health Service, 1962). These standards have been accepted by the American Water Works Association and by most of the state departments of public health as minimum standards for all public water supplies.

The maximum concentrations permitted by these standards are given for selected constituents in the table on page 28.

| Table | 2. | Source | and | significance | of | dissolved | mineral | constituents | and | properties | of | water |
|-------|----|--------|-----|--------------|----|-----------|---------|--------------|-----|------------|----|-------|
|-------|----|--------|-----|--------------|----|-----------|---------|--------------|-----|------------|----|-------|

| Constituent<br>or<br>property                | Source or cause                                                                                                                                                                                                                                         | Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silica (SiO <sub>2</sub> )                   | Dissolved from practically all rocks<br>and soils, commonly less than 30 ppm.<br>High concentrations, as much as 100<br>ppm, generally occur in highly alka-<br>line waters.                                                                            | Forms hard scale in pipes and boilers. Carried over in steam of<br>high-pressure boilers to form deposits on blades of turbines.<br>Inhibits deterioration of zeolite-type water softeners.                                                                                                                                                                                                                                                                                                                                                                          |
| Iron (Fe)                                    | Dissolved from practically all rocks<br>and soils. May also be derived from<br>iron pipes, pumps, and other equip-<br>ment. More than l or 2 ppm of iron in<br>surface waters generally indicate<br>acid wastes from mine drainage or<br>other sources. | On exposure to air, iron in ground water oxidizes to reddish-brown<br>precipitate. More than about 0.3 ppm stain laundry and utensils<br>reddish-brown. Objectionable for food processing, textile proces-<br>sing, beverages, ice manufacture, brewing, and other processes. U.S.<br>Public Health Service (1962) drinking-water standards state that iron<br>should not exceed 0.3 ppm. Larger quantities cause unpleasant taste<br>and favor growth of iron bacteria.                                                                                             |
| Calcium (Ca) and<br>Magnesium (Mg)           | Dissolved from practically all soils<br>and rocks, but especially from lime-<br>stone, dolomite, and gypsum. Calcium<br>and magnesium are found in large<br>quantities in some brines. Magnesium<br>is present in large quantities in sea<br>water.     | Cause most of the hardness and scale-forming properties of water;<br>soap consuming (see hardness). Waters low in calcium and magnesium<br>desired in electroplating, tanning, dyeing, and textile manufac-<br>turing.                                                                                                                                                                                                                                                                                                                                               |
| Sodium (Na) and<br>Potassium (K)             | Dissolved from practically all rocks<br>and soils. Found also in ancient<br>brines, sea water, industrial brines,<br>and sewage.                                                                                                                        | Large amounts, in combination with chloride, give a salty taste.<br>Moderate quantities have little effect on the usefulness of water<br>for most purposes. Sodium salts may cause foaming in steam boilers<br>and a high sodium content may limit the use of water for irrigation.                                                                                                                                                                                                                                                                                  |
| Bicarbonate (HCO3)<br>and Carbonate (CO3)    | Action of carbon dioxide in water on<br>carbonate rocks, such as limestone and<br>dolomite.                                                                                                                                                             | Bicarbonate and carbonate produce alkalinity. Bicarbonates of cal-<br>cium and magnesium decompose in steam boilers and hot-water facili-<br>ties to form scale and release corrosive carbon dioxide gas. In<br>combination with calcium and magnesium, cause carbonate hardness.                                                                                                                                                                                                                                                                                    |
| Sulfate (SO4)                                | Dissolved from rocks and soils con-<br>taining gypsum, iron sulfides, and<br>other sulfur compounds. Commonly pre-<br>sent in mine waters and in some indus-<br>trial wastes.                                                                           | Sulfate in water containing calcium forms hard scale in steam<br>boilers. In large amounts, sulfate in combination with other ions<br>gives bitter taste to water. Some calcium sulfate is considered<br>beneficial in the brewing process. U.S. Public Health Service<br>(1962) drinking-water standards recommend that the sulfate content<br>should not exceed 250 ppm.                                                                                                                                                                                           |
| Chloride (Cl)                                | Dissolved from rocks and soils. Pre-<br>sent in sewage and found in large<br>amounts in ancient brines, sea water,<br>and industrial brines.                                                                                                            | In large amounts in combination with sodium, gives salty taste to<br>drinking water. In large quantities, increases the corrosiveness<br>of water. U.S. Public Health Service (1962) drinking-water stan-<br>dards recommend that the chloride content should not exceed 250 ppm.                                                                                                                                                                                                                                                                                    |
| Fluoride (F)                                 | Dissolved in small to minute quanti-<br>ties from most rocks and soils. Added<br>to many waters by fluoridation of<br>municipal supplies.                                                                                                               | Fluoride in drinking water reduces the incidence of tooth decay<br>when the water is consumed during the period of enamel calcifica-<br>tion. However, it may cause mottling of the teeth, depending on<br>the concentration of fluoride, the age of the child, amount of<br>drinking water consumed, and susceptibility of the individual.<br>(Maier, F. J., 1950.)                                                                                                                                                                                                 |
| Nitrate (NO <sub>3</sub> )                   | Decaying organic matter, sewage,<br>fertilizers, and nitrates in soil.                                                                                                                                                                                  | Concentration much greater than the local average may suggest pol-<br>lution, U.S. Public Health Service (1962) drinking-water standards<br>suggest a limit of 45 ppm. Waters of high nitrate content have<br>been reported to be the cause of methemoglobinemia (an often fatal<br>disease in infants) and therefore should not be used in infant<br>feeding. Nitrate has been shown to be helpful in reducing inter-<br>crystalline cracking of boiler steel. It encourages growth of<br>algae and other organisms which produce undersirable tastes and<br>odors. |
| Dissolved solids                             | Chiefly mineral constituents dis-<br>solved from rocks and soils. Includes<br>some water of crystallization.                                                                                                                                            | U.S. Public Health Service (1962) drinking-water standards<br>recommend that waters containing more than 500 ppm dissolved solids<br>not be used if other less mineralized supplies are available.<br>Waters containing more than 1000 ppm dissolved solids are unsuita-<br>ble for many purposes.                                                                                                                                                                                                                                                                   |
| Hardness as CaCO <sub>3</sub>                | In most waters nearly all the hardness<br>is due to calcium and magnesium. All<br>the metallic cations other than the<br>alkali metals also cause hardness.                                                                                             | Consumes soap before a lather will form. Deposits soap curd on<br>bathtubs. Hard water forms scale in boilers, water heaters, and<br>pipes. Hardness equivalent to the bicarbonate and carbonate is<br>called carbonate hardness. Any hardness in excess of this is<br>called noncarbonate hardness. Waters of hardness as much as 60<br>ppm are considered soft; 61 to 120 ppm, moderately hard; 121 to<br>180 ppm, hard; more than 180 ppm, very hard.                                                                                                             |
| Specific conductance<br>(micromhos at 25° C) | Mineral content of the water.                                                                                                                                                                                                                           | Indicates degree of mineralization. Specific conductance is a mea-<br>sure of the capacity of the water to conduct an electric current.<br>Varies with concentration and degree of ionization of the consti-<br>tuents.                                                                                                                                                                                                                                                                                                                                              |
| Hydrogen ion<br>concentration (pH)           | Acids, acid-generating salts, and free<br>carbon dioxide lower the pH. Carbo-<br>nates, bicarbonates, hydroxides, and<br>phosphates, silicates, and borates<br>raise the pH.                                                                            | A pH of 7.0 indicates neutrality of a solution. Values higher than<br>7.0 denote increasing alkalinity; values lower than 7.0 indicate<br>increasing acidity. pH is a measure of the activity of the hydro-<br>gen ions. Corrosiveness of water generally increases with decreas-<br>ing pH. However, excessively alkaline waters may also attack<br>metals.                                                                                                                                                                                                         |

|                  | Maximum             |
|------------------|---------------------|
| Constituents     | concentration (ppm) |
| Sulfate          | 250                 |
| Chloride         | 250                 |
| Nitrate          | 45                  |
| Fluoride         | <u>a</u> / .9       |
| Dissolved solids | 500                 |

a/ Based on temperature records for Austin.

In the Colorado River basin the concentrations of these constituents are generally lower than the maximum concentrations recommended by the U.S. Public Health Service. The exception is the area between Ira and Ballinger in the upper Colorado River basin, where concentrations frequently exceed these recommended limits.

#### Industrial Use

The industrial use of water in the Colorado River basin is primarily as cooling water for steam generators and for the generation of hydroelectric power, but additional industrial development in the basin is expected and surface water will probably be used to meet the demands. The quality requirements vary greatly for almost every industrial application, as indicated by the waterquality tolerances given in Table 3. One requirement of most industries is that concentrations of various constituents of the water remain relatively constant. When concentrations of undesirable substances in water vary, constant monitoring is required, and thus operating expenses are increased.

Hardness is one of the more important properties of water that affects its utility for industrial purposes. Excessive hardness is objectionable because it contributes to the formation of scale in steam boilers, pipes, water heaters, and various other equipment where water is heated, evaporated, or treated with alkaline materials. The accumulation of scale increases costs for fuel, labor, repairs and replacement, and lowers the quality of many wet-processed products. However, some calcium hardness may be desirable because calcium carbonate sometimes forms protective coatings on pipes and other equipment and reduces corrosion.

The corrosive property of water receives considerable attention in industrial water supplies. A high concentration of dissolved solids in a water may be closely associated with the corrosive property of the water, especially if chloride is present in appreciable quantities. Water that contains a large concentration of magnesium chloride may be highly corrosive because the hydrolysis of this salt yields hydrochloric acid.

The surface water of the Colorado River basin is hard and often sufficiently mineralized to require treatment for many industrial uses. However, it usually is satisfactory as cooling water. Table 3.--Water-quality tolerances for industrial applications $\mathcal{Y}$ 

[Allowable limits in parts per million except as indicated]

Gen-eral 2

Na2SO4 to Na2SO3 ratio

ē.

44

e

e?

A, B C

: :

:::

а, с, с,

0 0

: :

: : : :

o | |

1.1 1 д II д

 $\{ \cdot \}$  : : :

1 1 1

111 ł

 $\{ \ | \ | \ |$ ł

| CaSO4                                         | ;;                                    | :::                                                        | 100-200<br>200-500           | ::                             | ::::                                                                                     | : :                                    | :                                | 111                                                                 | ł        | :::                                                                         | 111                                                                                 | 1       |                          |
|-----------------------------------------------|---------------------------------------|------------------------------------------------------------|------------------------------|--------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|--------------------------|
| HO                                            | 11                                    | 50<br>40<br>30                                             | 1.1                          | 11                             | ::::                                                                                     | : :                                    | ł                                | 111                                                                 | 1        | 111                                                                         | 111                                                                                 | 1       |                          |
| нсо3                                          | ::                                    | 20 S                                                       | ::                           | ::                             | ::::                                                                                     | : :                                    | ;                                | :::                                                                 | ;        | : : :                                                                       | :::                                                                                 | ;       |                          |
| ŝ                                             | ::                                    | 200<br>100<br>40                                           | ::                           | ::                             | ::::                                                                                     | ::                                     | ł                                | ;;;;                                                                | ;        | :::                                                                         | :::                                                                                 | ;       |                          |
| <u>F4</u>                                     | ::                                    | :::                                                        | p=1 ==1                      | 1                              | °. I I I                                                                                 | : :                                    | ł                                | :::                                                                 | ł        | :::                                                                         | 111                                                                                 | ;       |                          |
| õ                                             | ::                                    | :::                                                        | 11                           | ;;                             | ::::                                                                                     | : :                                    | :                                | 111                                                                 | ;        | \$ I I                                                                      | :::                                                                                 | ;       |                          |
| si02                                          | 11                                    | 40<br>20                                                   | : :                          | : :                            | ::::                                                                                     | 10                                     | :                                |                                                                     | 1        | 35                                                                          | :::                                                                                 | 1       |                          |
| A1203                                         | ::                                    | 5<br>.5<br>.05                                             | : :                          | : :                            | ::::                                                                                     | ::                                     | ;                                | :::                                                                 | ł        | . 1 3                                                                       | :::                                                                                 | 1       |                          |
| Fe +<br>Mn                                    | 0.5                                   | :::                                                        |                              | 5.5                            |                                                                                          | 5 F                                    | .02                              | 1.0                                                                 |          | .05                                                                         |                                                                                     | .2      |                          |
| Mn                                            | 0.5                                   | :::                                                        | -: -:                        | 5.5                            | 4444                                                                                     | ci ci                                  | .02                              | . 1. 5                                                              | .05      | 50.3                                                                        | .25<br>.25                                                                          | .2      |                          |
| е<br>И                                        | 0.5                                   | :::                                                        |                              |                                | 4494                                                                                     | ~~~                                    | .02                              | 1.0<br>.1                                                           | г.       | 20.05                                                                       | .25                                                                                 | .2      |                          |
| Ca                                            | 11                                    | :::                                                        | 100-200<br>200-500           | ::                             | ::::                                                                                     | ::                                     | :                                | :::                                                                 | 1        | 111                                                                         | : : :                                                                               | :       |                          |
| Total<br>solids                               | ::                                    | 3,000-1,000<br>2,500- 500<br>1,500- 100                    | 500<br>1,000                 | ::                             | 850<br>100                                                                               | 300                                    | 200                              | 300                                                                 | 200      | 100                                                                         | :::                                                                                 | 1       |                          |
| Ηd                                            | ::                                    | 8.04<br>0.54<br>0.4                                        | 6.5-7.0<br>7.0→              | ::                             | 1911                                                                                     | ::                                     | ;                                | ; ; ;                                                               | ;        | 7.8-8.3<br>8.0                                                              |                                                                                     | ;       |                          |
| Alka-<br>linity<br>(as<br>CaCO <sub>3</sub> ) | ::                                    | :::                                                        | 75<br>150                    | ::                             | 2 1 1 1 2                                                                                | 30-50                                  | ;                                | :::                                                                 | ;        | 50<br>                                                                      | :::                                                                                 | ;       |                          |
| Hard-<br>ness                                 | (4)                                   | 75<br>40<br>8                                              | 11                           | 25-75                          | 250<br>                                                                                  | 50                                     | ;                                | 180<br>100<br>100                                                   | 50       | 8<br>55<br>50-135                                                           | 500<br>500                                                                          | 20      |                          |
| Odor                                          | : :                                   | :::                                                        | Low<br>Low                   | Low                            | Low<br>Low                                                                               | ::                                     | 1                                | :::                                                                 | :        |                                                                             | :::                                                                                 | Low     |                          |
| Dis-<br>solved<br>oxygen<br>(m1/1)            | ;;;                                   | 2.0.2                                                      | ::                           | ::                             |                                                                                          | ::                                     | ;                                | 111                                                                 | ł        | :::                                                                         | :::                                                                                 | ;       |                          |
| Color<br>+ 02<br>con-<br>sumed                |                                       | 100<br>50<br>10                                            | ::                           | ::                             | 1   1                                                                                    | 11                                     | ;                                | 111                                                                 | ł        | ::::                                                                        | 111                                                                                 | ;       | on, 1950                 |
| Color                                         |                                       | 600<br>500                                                 | 11                           | : :                            | 9111                                                                                     | s ;                                    | 2                                | 20<br>15<br>10                                                      | 5        | 5<br><br>10-100                                                             | 20<br>5-20<br>70                                                                    | ŝ       | Associati                |
| Tur-<br>bid-<br>ity                           | - 10                                  | 20<br>10                                                   | 10                           | 10                             | 2 2<br>20 -                                                                              | 1-5                                    | 5                                | 50<br>25<br>15                                                      | \$       | 20.3<br>20.3                                                                | u u l                                                                               | 2       | Works                    |
| Lndustry                                      | Air conditioning <u>3</u> /<br>Baking | Boiler feed:<br>0-150 psi<br>150-250 psi<br>250 psi and up | Brewing: 5/<br>Light<br>Dark | Canning:<br>Legumes<br>General | Carbonated bev-<br>crages <u>9</u><br>Confectionary<br>Cooling <u>9</u><br>Food, general | Ice (raw water) <u>9</u><br>Laundering | riasrics, clear,<br>undercolored | Paper and pulp: 10/<br>Groundwood<br>Kraft pulp<br>Soda and sulfite | HL-Grade | Rayon (viscose)<br>pulp:<br>Production<br>Manufacture<br>Tanning <u>L</u> J | Textiles:<br>General<br>Dyeing <u>12</u><br>Wool scouring <u>13</u><br>Corron hand- | age 13/ | <u> M</u> American Water |

- 29 -

2 A --Ho correstences is --to since formation; C--Conformance to Federal drinking-water standards necessary; D--NaCl, 275 ppm. 5 Marcers with signe and hydrogen suffice odors are most unsuitable for air conditioning. 5 Some hordness desained formation; C--Conformance to Federal drinking-water standards necessary; D--NaCl, 275 ppm. 5 Some hordness desained formation; C--Conformance to Federal drinking-water standards necessary; D--NaCl, 275 ppm. 5 Some hordness desained formation; C--Conformance to Federal drinking-water of light-beer quality; whiskey mashing water of dark-beer quality). 5 Mater for distilling must meet the same general requirements as for brewing (gin and spirits mashing water of light-beer quality; whiskey mashing water of dark-beer quality). 5 Mater dorbless, starlie water for syrup and eurobrization. Water consistent in character: Nake quality filtered municipal water not satisfactory for beverages. 7 Mater dorbless is necessary as low value favors investion of success, cassing sticky product. 8 Control of correstences is necessary as is also control of organisms, such as sulfur and iron batteria, which tend to form since. 9 Ga(E003) particulary tronblessone - Mg(E003)2 tends to prevent cracking. Sulfates and chlorides of Ga, Mg, Na should each be less than 300 ppm (white butts). 9 Ga(E003) particulary tronblessone - Mg(E003)2 tends to prevent cracking. Sulfates and chlorides of Ga, Mg, Na should each be less than 300 ppm (white butts). 9 Ga(E003) particulary tronblessone - Mg(E003)2 tends to prevent cracking. Sulfates and chlorides of Ga, Mg, Na should each be less than 300 ppm (white butts). 9 Ga(E003) particulary tronblessone - Mg(E003)2 tends to prevent cracking. Sulfates and chlorides of Ga, Mg, Na should each be less than 300 ppm (white butts). 9 Ga(E003) particulary tronblessone - Mg(E003)2 tends to prevent cracking. Sulfates and chlorides of Ga, Mg, Ma should each be less than 300 ppm (for beverse by chlorine, causing reddish color. 9 Ga(E003) particulary tronblessone - Mg(E003)2

#### Irrigation

The extent to which chemical quality limits the suitability of a water for irrigation depends on such factors as: the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of applying it; the kind of crops grown; and the climate of the region. Because these factors are highly variable, every method of classifying waters for irrigation is somewhat arbitrary.

The most important characteristics in determining the quality of irrigation water, according to the U.S. Salinity Laboratory Staff (1954, p. 69), are: (1) total concentration of soluble salts, (2) relative proportion of sodium to other cations, (3) concentration of boron or other elements that may be toxic, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium.

High concentrations of dissolved salts in irrigation water may cause a buildup of salts in the soil solution, and may make the soil saline. The increased salinity of the soil may drastically reduce crop yields by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. The tendency of irrigation water to cause a high buildup of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard.

High concentrations of sodium relative to the concentrations of calcium and magnesium in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. This adverse effect on soil structure caused by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation:

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}},$$

where the concentrations are expressed in equivalents per million.

The U.S. Salinity Laboratory Staff has prepared a classification for irrigation waters in terms of salinity and sodium hazards. Empirical equations were used in developing a diagram, reproduced in modified form as Figure 9, which uses SAR and specific conductance in classifying irrigation waters. This classification, although embodying both research and field observations, should be used only for general guidance because many additional factors (such as availability of water for leaching, ratio of applied water to precipitation, and crops grown) also affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes-low, medium, high, and very high. The classification range encompasses those waters which can be used for irrigation of most crops on most soils as well as those waters which are usually unsuitable for irrigation.

Representative data from analyses of water from Twin Buttes Reservoir and the percentage of time that the specific conductance exceeded the indicated



đ

- 31 -

value for the Colorado River near San Saba and at Wharton are shown in Figure 9. The data show that the sodium hazard for water of the Colorado River basin is low and that the salinity hazard generally is medium.

In the lower Colorado River basin, great quantities of surface water are used for irrigation of rice and grain sorghums. Surface water of the lower basin is excellent for irrigation of these crops.

#### Geographic Variations in Water Quality

Variations of dissolved solids, hardness, and chloride in the streams in the Colorado River basin are shown in Figures 11, 12, and 13. These values are based on the discharge-weighted average concentrations, as calculated from chemical-quality data. The discharge-weighted average represents approximately the chemical character of the water if all the water passing a point in the stream were impounded in a reservoir, and mixed, with no adjustments for evaporation, rainfall, or chemical changes that might occur during storage. For many of the streams, chemical-quality data are limited, especially data on the chemical quality of flood flows. All the streams will at times have concentrations exceeding those shown, but the averages shown on the maps are indicative of the type of water that would be stored in a reservoir.

# Dissolved Solids

The concentration of dissolved solids in surface water of the Colorado River basin is shown on Figure 11. Water of Lake J. B. Thomas in the upper part of the basin contains slightly more than 250 ppm dissolved solids. Below Lake J. B. Thomas is an area of saline inflow that badly degrades the water of much of the upper basin. Part of the inflow is definitely the result of oil-field operations. Most of the remainder of the basin yields surface water averaging less than 250 ppm in dissolved-solids content, but the effect of the saline inflow keeps the average concentration in the main stem above 250 ppm throughout its length (Figure 11). Higher concentrations are found in Beals Creek and Concho River subbasins because of oil-field operations.

The discharge-weighted average concentrations of dissolved solids of the Colorado River near San Saba and at Wharton for the period 1948-65 were 295 and 255 ppm, respectively. The analyses showing annual maximum and minimum dissolved-solids concentrations and the weighted averages for the stations are shown in Table 5.

Time-weighted averages are usually higher than discharge-weighted averages. The duration curves (Figure 7) for concentration of dissolved solids for the Colorado River near San Saba and at Wharton show that 400 ppm dissolved solids has been equaled or exceeded 50 percent of the time at San Saba and that 280 ppm was equaled or exceeded 50 percent of the time at Wharton.

#### Hardness

Surface water of the Colorado River basin generally is moderately hard (61 to 120 ppm) to very hard (over 180 ppm). Water in Lake J. B. Thomas is moderately hard. From Lake J. B. Thomas to the mouth of Pecan Bayou, the

Colorado River and its major tributaries contain very hard water (Figure 12). Pecan Bayou and most of the downstream tributaries contribute water that is hard (121 to 180 ppm), and the Colorado River contains hard water from the mouth of Pecan Bayou to the coast.

### Chloride

è

The concentration of chloride in surface waters of the Colorado River basin ranges from less than 50 ppm to over 500 ppm (Figure 13). Water of Lake J. B. Thomas contains less than 50 ppm chloride. Below Lake J. B. Thomas, where oilfield brine and some natural saline flow is reaching the streams, chloride concentrations of several thousand ppm are common. Most of the remainder of the basin yields surface water averaging less than 50 ppm chloride, but the effects of the saline inflow in the upper basin keeps the average concentrations are found in the South Concho River and in the upstream portion of Pecan Bayou probably because of oil-field operations.

### Other Constituents

Other constituents of importance in the evaluation of the quality of a water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate.

Most of the streams in the Colorado River basin contain less than 15 ppm silica, and the annual weighted-average concentration of the Colorado River has usually been less than 10 ppm.

Sodium concentrations are generally less than 50 ppm in most of the streams. In those waters having high chloride concentrations, sodium occurs in quantities approximately equivalent to the chloride. It is therefore present in highest concentrations in the Colorado River in the Ira-Colorado City area. The annual weighted-average concentration of the Colorado River at Austin and Wharton is usually less than 50 ppm.

Bicarbonate is the principal anion in water draining rocks of Cretaceous age. The water of the Concho, San Saba, Llano, and Pedernales Rivers has bicarbonate as the principal anion; concentrations generally range between 200 and 300 ppm. In the lower part of the basin, water draining the younger formations contains much smaller concentrations. The weighted-average concentrations of bicarbonate for the 18-year period 1948-65 for the daily sampling stations on the Colorado River near San Saba and at Wharton are 156 ppm and 164 ppm, respectively.

Sulfate concentrations are generally less than 50 ppm in most of the streams in the basin, although higher concentrations are found in the polluted streams. Although concentrations of over 3,000 ppm are not uncommon, the weighted-average concentration for the Colorado River at Colorado City has ranged from 42 to 456 ppm. The weighted-average concentration for the Colorado River has ranged from 16 to 70 ppm near San Saba and 18 to 45 ppm at Wharton. Fluoride concentrations seldom exceed 1.0 ppm and generally range from 0.2 to 0.4 ppm. Nitrate concentrations are generally less than 3.0 ppm in most of the streams in the basin.

#### Water Quality in Reservoirs

The principal reservoirs in the Colorado River basin were sampled during the reconnaissance and the chemical analyses are given in Table 6. Analyses are also available for some of the small reservoirs used for public supply (Sundstrom and others, 1949).

Lake J. B. Thomas.--Lake J. B. Thomas, in the upper Colorado River basin, contains water of good quality. Ten analyses during the period 1953-65 show that the water usually contains about 250 ppm dissolved solids, about 25 ppm chloride, and about 60 ppm sulfate.

Lake Colorado City and Champion Creek Reservoir.--Owned and operated by the Texas Electric Service Company, these reservoirs provide cooling water for a steam-electric plant and the municipal supply for Colorado City. The chemical quality of the water in the two reservoirs is similar, about 300 ppm dissolved solids and about 40 ppm chloride.

<u>Robert Lee Reservoir</u>.--Construction of the dam that will form Robert Lee Reservoir began late in 1966. The reservoir site is on the Colorado River downstream from an area of saline inflow in Mitchell and Scurry Counties. The Colorado River Municipal Water District is building the reservoir, and plans to catch the highly mineralized low flow of the river upstream from the reservoir for use in waterflooding projects in several oil fields in the area. This saltwater alleviation program will greatly improve the quality of the water stored in the reservoir, but the chloride content of the stored water probably will, at times, exceed the limits recommended by the U.S. Public Health Service.

Oak Creek Reservoir.--The quality of the water in Oak Creek Reservoir, though still good, has deteriorated slightly since 1953. An analysis in 1953 showed 1.5 ppm chloride and 127 ppm dissolved solids. The most recent analysis in 1965 showed 29 ppm chloride and 239 ppm dissolved solids.

<u>Twin Buttes Reservoir</u>.--Twin Buttes Reservoir was completed in 1962 but because of drought conditions had not impounded much water during this study. For the period that analyses are available (September 1964 to August 1965) the dissolved-solids content of the water has ranged from about 400 to 700 ppm. The quality of the water in Twin Buttes Reservoir is probably adversely affected by oil-field operations in the South Concho River and Spring Creek drainage areas, but the concentrations measured during this study are higher than can be expected when the reservoir is filled.

Lake Nasworthy.--Lake Nasworthy is just downstream from Twin Buttes Reservoir and most of its inflow is water released or pumped from Twin Buttes. Therefore, the water in Lake Nasworthy is similar in chemical quality to that stored in Twin Buttes Reservoir. Two analyses in 1965 showed 451 and 500 ppm dissolved solids.

San Angelo Reservoir.--San Angelo Reservoir, on the North Concho River, impounds water of very good quality; dissolved-solids content has usually been less than 200 ppm.

<u>Coleman Reservoir</u>.--Coleman Reservoir was not impounding water during this study but the probable quality can be inferred from chemical analyses of Jim Ned Creek (site 71, Table 6). Dissolved-solids content of Jim Ned Creek near Coleman has ranged from 130 to 433 ppm and averaged about 200 ppm. Hords Creek Reservoir.--Hords Creek Reservoir contains water of excellent quality, averaging about 15 ppm chloride and 150 ppm dissolved solids.

<u>Brownwood Reservoir</u>.--The water in Brownwood Reservoir is always of good quality as shown by analyses of samples from the Brown County Water Improvement District No. 1 Canal (site 78, Table 6). The dissolved-solids concentration of water drawn from the lake has ranged from 166 to 241 ppm.

Brady Creek Reservoir.--Brady Creek Reservoir was built to provide a municipal water supply for the city of Brady. The water is of excellent quality, usually containing less than 200 ppm dissolved solids.

Lake Buchanan, Inks Lake, Lake Lyndon B. Johnson, Marble Falls Lake, Lake Travis, and Lake Austin.--As a result of the successive impoundment, the quality of the water in these reservoirs is very similar. The Texas State Department of Health has sampled the outflow from Lake Buchanan and Lake Travis since 1957, and the Geological Survey has sampled the outflow from Lake Austin on a daily basis since October 1947. The analyses show that the water is always of good quality. Calcium and bicarbonate are the predominant ions, and dissolved-solids content is usually between 250 and 350 ppm.

Decker Lake.--Construction of Decker Lake began in 1966 and no water was impounded during this study. The reservoir, when completed, will store water pumped from the Colorado River to be used for cooling at the city of Austin's Decker Creek steam-generating plant. The water will be diverted from the river downstream from the Austin sewage outfall. The dissolved-solids content of the water should range from 250 to 350 ppm, but the organic quality of the water may at times be poor.

Lake Bastrop.--Lake Bastrop is a Colorado River off-channel reservoir that stores cooling water for a Lower Colorado River Authority steam-generating plant. Chemical analyses are not available, but the water is similar to that of the Colorado River passing Austin, which usually contains from 250 to 350 ppm dissolved solids.

Eagle Lake.--Eagle Lake is a Colorado River off-channel reservoir owned by the Lakeside Irrigation Company. During flood flows, water is pumped from the Colorado River and stored until needed for irrigation. An analysis in 1959 showed the water to be of good quality; the dissolved-solids concentration was 176 ppm.

#### Water Quality at Potential Reservoir Sites

One of the purposes of the reconnaissance was to appraise the quality of the water which will be available for storage at potential reservoir sites. Many sites studied by various Federal, State, and local agencies are indicated on Figure 4.

<u>Stacy</u>.--A reservoir on the Colorado River at the Stacy site would impound water from the Colorado and Concho Rivers. The water of the Colorado River impounded at the Stacy site would contain slightly more than 500 ppm dissolved solids.

Upper Pecan Bayou.--A reservoir at the Upper Pecan Bayou site would impound water of good quality; the water would be hard and contain less than 250 ppm dissolved solids.

<u>Brownwood Reservoir (Enlargement)</u>.--The enlargement of Brownwood Reservoir should not cause any change in the quality of the water stored. The water should still be hard and contain less than 250 ppm dissolved solids.

<u>San Saba</u>.--The quality of the water at the San Saba site can be determined from the chemical quality data for the San Saba River at San Saba. The water that would be stored will be very hard but contain less than 250 ppm dissolved solids.

<u>Mason</u>.--The quality of the water that could be impounded at the Mason site on the Llano River can be inferred from analyses of the Llano River at Junction and Llano. The water available for storage is calcium bicarbonate in type and is hard; the dissolved-solids concentration is usually less than 250 ppm.

<u>Pedernales</u>.--According to periodic chemical-quality data for the Pedernales River near Johnson City, water impounded at the Pedernales site would be hard and contain about 250 ppm dissolved solids.

<u>Columbus Bend</u>.--Water available at this site would be very similar in quality to the water sampled at the daily quality station at Wharton where the weighted-average dissolved-solids concentration has ranged from 198 to 328 ppm.

<u>Matagorda</u>.--Water available at the Matagorda site would also be very similar to the water sampled at the daily quality station at Wharton.

### Problems Needing Additional Investigation

This reconnaissance of the chemical quality of the Colorado River basin has shown that the natural runoff of the basin is generally of good chemical quality.

However, saline inflow principally from oil-field operations makes the water in the upper part of the basin unfit for most uses and increases the salt load in the main stem throughout its length. Continuing study will be necessary to evaluate the salt-water alleviation program that is planned for the area above the Robert Lee Reservoir site. Small areas in the Concho River and Pecan Bayou subbasins are slightly polluted with salt water produced with oil or gas.

A potential water-quality hazard exists in the portion of the Colorado River basin that is usually considered noncontributing. In the drainage area of Beals Creek just upstream from Big Spring, natural and oil-field brines are impounded in a depression called Natural Dam Salt Lake (site 19, Table 6). The impounded water may contain more than a hundred thousand ppm of dissolved solids, and the lake bed is covered by a thick layer of deposited salts. Levees have been built as a precaution against overflow. If the lake should overflow the small amount of brine in storage would not cause serious pollution in downstream reservoirs, but many tons of the deposited salt in the lake would be dissolved and carried downstream, thereby greatly increasing the possibility of serious water-quality damage. Organic quality is generally good throughout the basin; however, some concern is being expressed regarding bacterial contamination of the Highland Lakes by septic-tank effluent in areas of housing developments, and by waste discharges from pleasure boats.

Continued municipal and industrial growth in the basin will cause an increase in the waste-disposal burdens of the stream system. Meanwhile, the impoundment of water in upstream reservoirs will cause a reduction of streamflow now utilized for the assimilation of municipal wastes. Consequently, continued municipal and industrial growth will require that wastes be consistently treated to the maximum extent if gross pollution of streams is to be avoided in the future.

Impoundment of water will likewise result in some changes of water quality. Beneficial effects will include: the reduction in turbidity, silica, color, and coliform bacteria; the evening-out of sharp variations in chemical quality; the entrapment of sediment; and a reduction in temperature. On the other hand, detrimental effects of impoundment will include: an increase in the growth of algae; the reduction of dissolved oxygen; and an increase of dissolved solids as a result of evaporation. The continued extensive development of the water resources of the Colorado River basin will necessitate detailed study of the changes in water quality.


American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.

٩.,

a

- Connell, C. H., 1964, Phosphates in Texas river systems and reservoirs: Univ. Texas Medical Branch Research Demonstration Proposal, 16 p.
- \_\_\_\_\_\_1966, Phosphates in Texas rivers Part 1 of 1966 progress reports on biological nutrients in Texas rivers and reservoirs: The Environmental Health Lab., Dept. Preventive Medicine and Public Health, Univ. Texas Medical Branch.

Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: Washington, U.S. Geol. Survey map.

- Hughes, L. S., and Leifeste, D. K., 1964, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: Texas Water Comm. Bull. 6405, 64 p., 2 pls., 12 figs.
- \_\_\_\_\_\_1965, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p., 1 pl., 14 figs.
- —\_\_\_\_\_1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 63 p., 4 pls., 9 figs.
- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p., 2 pls., 11 figs.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geol. Survey Water-Supply Paper 1541-A, p. 1-29.
- Maier, F. J., 1950, Fluoridation of public water supplies: Jour. Am. Water Works Assoc., v. 42, part 1, p. 1120-1132.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p., 10 figs.
- Reed, E. L., 1961, A study of the salt water pollution of the Colorado River, Scurry and Mitchell Counties, Texas: Consultant's report to Colorado River Municipal Water District, Big Spring, Texas, Jan. 1961.
- Sundstrom, R. W., Broadhurst, W. L., and Dwyer, B. C., 1949, Public water supplies in central and north-central Texas: U.S. Geol. Survey Water-Supply Paper 1069, 128 p.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807-A, 503 p., 4 pls.

- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950; Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 1 pl., 2 figs.
- \_\_\_\_\_1961, Surface water records of Texas, 1961: U.S. Geol. Survey open-file rept.

\_\_\_\_\_1962, Surface water records of Texas, 1962: U.S. Geol. Survey open-file rept.

\_\_\_\_\_1963, Surface water records of Texas, 1963: U.S. Geol. Survey open-file rept.

\_\_\_\_\_1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960; Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 1 pl., 2 figs.

\_\_\_\_\_1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.

\_\_\_\_\_\_1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept.

\_\_\_\_\_1965, Surface water records of Texas, 1965: U.S. Geol. Survey open-file rept.

\_\_\_\_\_1966, Surface water records of Texas, 1966: U.S. Geol. Survey open-file rept.

- U.S. Public Health Service, 1962, Public Health Service drinking water standards: U.S. Public Health Service Pub. 956, 61 p., 1 fig.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p.

- 40 -

Quality-of-water records for the Colorado River basin are published in the following U.S. Geological Survey Water-Supply Papers and Texas Water Development Board Reports (including Bulletins formerly published by the Texas Water Commission and Texas Board of Water Engineers):

 $b_{j,2}$ 

đ

a,

| Water<br>year | U.S.G.S.<br>Water-Supply<br>Paper No. | T.W.D.B.<br>Report No. | Water<br>year | U.S.G.S.<br>Water-Supply<br>Paper No. | T.W.D.B.<br>Report No. |
|---------------|---------------------------------------|------------------------|---------------|---------------------------------------|------------------------|
| 1940-45       |                                       | *1938-45               | 1955          | 1402                                  | *1955                  |
| 1946          | 1050                                  | *1946                  | 1956          | 1452                                  | Bull. 5905             |
| 1947          | 1102                                  | *1947                  | 1957          | 1522                                  | Bull. 5915             |
| 1948          | 1133                                  | *1948                  | 1958          | 1573                                  | Bull. 6104             |
| 1949          | 1163                                  | *1949                  | 1959          | 1644                                  | Bull. 6205             |
| 1950          | 1188                                  | *1950                  | 1960          | 1744                                  | Bull. 6215             |
| 1951          | 1199                                  | *1951                  | 1961          | 1884                                  | Bull. 6304             |
| 1952          | 1252                                  | *1952                  | 1962          | 1944                                  | Bull. 6501             |
| 1953          | 1292                                  | *1953                  | 1963          | 1951                                  | Rept. 7                |
| 1954          | 1352                                  | *1954                  |               |                                       |                        |

\* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

- 41 -

| Year | Water-Supply<br>Paper No. | Year | Water-Supply<br>Paper No. | Year | Water-Supply<br>Paper No. |
|------|---------------------------|------|---------------------------|------|---------------------------|
| 1898 | 28                        | 1919 | 508                       | 1940 | 898                       |
| 1899 | 37                        | 1920 | 508                       | 1941 | 928                       |
| 1900 | 50                        | 1921 | 528                       | 1942 | 958                       |
| 1901 | 75                        | 1922 | 548                       | 1943 | 978                       |
| 1902 | 84                        | 1923 | 568                       | 1944 | 1008                      |
| 1903 | 99                        | 1924 | 588                       | 1945 | 1038                      |
| 1904 | 132                       | 1925 | 608                       | 1946 | 1058                      |
| 1905 | 174                       | 1926 | 628                       | 1947 | 1088                      |
| 1906 | 210                       | 1927 | 648                       | 1948 | 1118                      |
| 1907 | 248                       | 1928 | 668                       | 1949 | 1148                      |
| 1908 | 248                       | 1929 | 688                       | 1950 | 1178                      |
| 1909 | 268                       | 1930 | 703                       | 1951 | 1212                      |
| 1910 | 288                       | 1931 | 718                       | 1952 | 1242                      |
| 1911 | 308                       | 1932 | 733                       | 1953 | 1282                      |
| 1912 | 328                       | 1933 | 748                       | 1954 | 1342                      |
| 1913 | 358                       | 1934 | 763                       | 1955 | 1392                      |
| 1914 | 388                       | 1935 | 788                       | 1956 | 1442                      |
| 1915 | 408                       | 1936 | 808                       | 1957 | 1512                      |
| 1916 | 438                       | 1937 | 828                       | 1958 | 1562                      |
| 1917 | 458                       | 1938 | 858                       | 1959 | 1632                      |
| 1918 | 478                       | 1939 | 878                       | 1960 | 1712                      |

The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Colorado River basin, 1898-1960:

Ф

 $p_1$ 

Table 4.---Index of surface-water records in the Colorado River basin

| Refer-        |                                                                                                                        | Drainage                 |                             |                        | Calen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dar Years       |                                        |         |                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------|
| ence<br>no.   | Stream and Location                                                                                                    | Area<br>(sq. miles)      | 01-1061                     | 1911-20                | 1921-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1931-40         | 1941-50                                | 1951-60 | 1961-70                                                                                                              |
| г             | Lake J. B. Thomas near Vincent                                                                                         | 934                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 2                                                                                                                    |
| 7             | Bull Creek near Ira                                                                                                    | 388                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| n             | Bluff Creek near Ira                                                                                                   | 42.6                     |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 4             | Colorado River near Ira                                                                                                | 1027                     |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 2<br>2        | Deep Creek near Snyder                                                                                                 |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 9             | Deep Creek near Dunn                                                                                                   | 188                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 7             | Sulphur Creek near Dunn                                                                                                |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        | 3       |                                                                                                                      |
| 80            | Colorado River near Cuthbert                                                                                           | 1428                     |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 81                                                                                                                   |
| 6             | Colorado River at Colorado City                                                                                        | 1482                     |                             |                        | NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNA<br>NANNNANNNA<br>NANNNA<br>NANNNANNNA<br>NANNNA<br>NANNNANNNA<br>NANNNA<br>NANNNANNNA<br>NANNNANNNA<br>NANNNANNNA<br>NANNNANNNA<br>NANNNANNNNA<br>NANNNNNN |                 |                                        |         |                                                                                                                      |
| 10            | Morgan Creek near Westbrook                                                                                            | 228                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 11            | Graze Creek near Westbrook                                                                                             | 21.2                     |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 12            | Morgan Creek near Colorado City                                                                                        | 262                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 13            | Lake Colorado City near Colorado City                                                                                  | 267                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 2                                                                                                                    |
| 14            | Champion Creek near Colorado City                                                                                      | 158                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         |                                                                                                                      |
| 15            | Champion Creek Reservoir near Colorado City                                                                            | 203                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 1                                                                                                                    |
| 16            | Sulphur Springs Creek near Big Spring                                                                                  |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 2.                                                                                                                   |
| 17            | Calf Creek near Stanton                                                                                                |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 8                                                                                                                    |
| 18            | Buzzard Creek at U.S. Highway 87 near Big Spring                                                                       |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 2                                                                                                                    |
| 19            | Natural Dam Salt Lake near Big Spring                                                                                  |                          |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | ž                                                                                                                    |
| 20            | Beals Creek above Big Spring                                                                                           | 494                      |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                        |         | 23<br>23<br>23<br>23<br>23<br>23<br>23<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 |
| Disch<br>Peri | arge <u>community</u> Gage heights only <u>unitarianterinant</u><br>odic discharge measurements <u>community</u> Daily | Gage he<br>y chemical qu | ights and discharg<br>ality | je medsuremei<br>Perio | nts <u>states</u> dic chemical quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reservoir cont- | ents <u>Earne</u><br>Water temperature |         |                                                                                                                      |

- 43 -

4

e)

41

-c

v

¢,

| Table          |
|----------------|
| 4Index         |
| ٥f             |
| surface-water  |
| records        |
| ĺn             |
| the            |
| Colorado       |
| River          |
| basinContinued |

| urements ANALY Reservoir contents                                                                        | ge heights and discharge measu | 900                             | harge Announce Gage heights only Announcement     | Disch                 |
|----------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|---------------------------------------------------|-----------------------|
|                                                                                                          |                                | 396                             | Spring Creek above Tankersley                     | 40                    |
|                                                                                                          |                                |                                 | Spring Creek Springs near Mertzon                 | 39                    |
|                                                                                                          |                                | 1128                            | Middle Concho River near Tankersley               | 38                    |
|                                                                                                          |                                | 1381                            | Middle Concho River above Tankersley              | 37                    |
|                                                                                                          |                                | 344                             | South Concho River at Christoval                  | 36                    |
|                                                                                                          |                                |                                 | South Concho Irrigation Co.'s canal at Christoval | 35                    |
|                                                                                                          |                                |                                 | Anson Springs near Christoval                     | 34                    |
|                                                                                                          |                                |                                 | Dry Creek near Christoval                         | 33                    |
|                                                                                                          |                                | 471                             | Elm Creek at Ballinger                            | 32                    |
|                                                                                                          |                                |                                 | Lake Winters near Winters                         | 31                    |
|                                                                                                          |                                | 5240                            | Colorado River at Ballinger                       | 30                    |
|                                                                                                          |                                |                                 | Oak Creek near Blackwell                          | 29                    |
|                                                                                                          |                                | 222                             | Oak Creek Reservoir near Blackwell                | 28                    |
|                                                                                                          |                                |                                 | Colorado River near Bronte                        | 27                    |
|                                                                                                          |                                |                                 | Mountain Creek Reservoir at Robert Lee            | 26                    |
|                                                                                                          |                                | 4170                            | Colorado River at Robert Lee                      | 25                    |
|                                                                                                          |                                | 3880                            | Colorado River near Silver                        | 24                    |
|                                                                                                          |                                | 973                             | Beals Creek near Westbrook                        | 23                    |
|                                                                                                          |                                |                                 | Coahoma Draw Tributary near Big Spring            | 22                    |
|                                                                                                          |                                | 515                             | Beals Creek at Big Spring                         | 21                    |
| Calendar         Years           1921-30         1931-40         1941-50         1951-60         1961-70 | 01-1061                        | Drainage<br>Area<br>(sq. miles) | Stream and Location                               | Refer-<br>ence<br>no. |

Periodic discharge measurements Daily chemical quality Periodic chemical quality Water temperature

0

a,

ų,

- 2

 $r_{\rm H}$ 

| Refer      | Ctream and Location                                | Drainage            |                   |                   | Calendar | Years            |         |         |         |   |
|------------|----------------------------------------------------|---------------------|-------------------|-------------------|----------|------------------|---------|---------|---------|---|
| ençe<br>Do | Stream and Location                                | Area<br>(sq. miles) | 01-1061           | 1911-20           | 1921-30  | 1931-40          | 1941-50 | 1951-60 | 1961-70 |   |
| 41         | Dove Creek Springs near Knickerbocker              |                     |                   |                   |          |                  |         |         |         |   |
| 42         | Dove Creek near Knickerbocker                      |                     |                   |                   |          |                  |         |         | í<br>   |   |
| 43         | Dove Creek at Knickerbocker                        | 198                 |                   |                   |          |                  |         | 28      |         |   |
| 44         | Spring Creek near Tankersley                       | 734                 |                   |                   |          |                  |         |         |         |   |
| 45         | Twin Buttes Reservoir near San Angelo              | 2546                |                   |                   |          |                  |         |         |         | _ |
| 46         | Pecan Creek near San Angelo                        | 84.9                |                   |                   |          |                  |         |         |         |   |
| 47         | Tom Green Co. WCID No. 1 Canal near San Angelo     |                     |                   |                   |          |                  |         |         | 1       |   |
| 48         | Lake Nasworthy near San Angelo                     | 2507                |                   |                   |          |                  |         |         | ł       |   |
| 49         | South Concho River at San Angelo                   | 2535                |                   |                   |          |                  |         |         |         |   |
| 50         | Quarry Creek near Sterling City                    |                     |                   |                   |          |                  | 1       |         |         |   |
| 51         | North Concho River at Sterling City                | 539                 |                   |                   |          |                  |         |         |         |   |
| 52         | Broome Creek near Broome                           |                     |                   |                   |          |                  |         |         |         | - |
| 53         | North Concho River near Carlsbad                   | 1144                |                   |                   |          |                  |         |         |         |   |
| 54         | Nolke Station Creek near San Angelo                |                     |                   |                   |          |                  |         |         |         |   |
| 55         | Gravel Pit Creek near San Angelo                   |                     |                   |                   |          |                  |         |         |         |   |
| 56         | San Angelo Reservoir at San Angelo                 | 1383                |                   |                   |          |                  |         |         | 2       |   |
| 57         | North Concho River at San Angelo                   | 1402                |                   |                   |          |                  |         |         |         |   |
| 58         | Concho River near San Angelo                       | 4097                |                   |                   |          |                  |         |         |         | - |
| 59         | Concho River near Paint Rock                       | 5132                |                   |                   |          |                  |         |         |         |   |
| 60         | Mukewater Creek Subwatershed No. 9 near Trickham   | 4.02                |                   |                   |          |                  |         |         |         |   |
| Disch      | rrge communications Gage heights only municipation | Gage                | heights and disch | arge measurements |          | Reservoir conten | s       |         | -       |   |

Periodic chemical quality management Water temperature

Daily chemical quality

Periodic discharge measurements

Table 4.---Index of surface-water records in the Colorado River basin---Continued

 $q^{*}$ 

¢

÷

4

Ŀ

~

- 45 -

Table 4.---Index of surface-water records in the Colorado River basin---Continued

| Refer       |                                                                   | Drainage                 |                                         |                                                                                             | Calendar          | Years         |                                       |                                            |  |
|-------------|-------------------------------------------------------------------|--------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------|---------------------------------------|--------------------------------------------|--|
| ence<br>no. | Stream and Location                                               | Area<br>(sq. miles)      | 01-1061                                 | 911-20                                                                                      | 1921-30           | 1931-40       | 1941-50                               | 1951-60 1961-70                            |  |
| 61          | Mukewater Creek at Trickham                                       | 70.0                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 62          | Colorado River at Winchell (Milburn)                              | 12680                    |                                         |                                                                                             |                   | 33927         |                                       |                                            |  |
| 63          | Deep Creek Subwatershed No. 1 near Placid                         |                          |                                         |                                                                                             |                   |               |                                       | 2                                          |  |
| 64          | Deep Creek Subwatershed No. 2 near Placid                         |                          |                                         |                                                                                             |                   |               |                                       | 2                                          |  |
| 65          | Deep Creek Subwatershed No. 3 near Placid                         | 3.42                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 99          | Deep Creek Subwatershed No. 4 near Placid                         |                          |                                         |                                                                                             |                   |               |                                       | <u> </u>                                   |  |
| 67          | Deep Creek Subwatershed No. 5 near Placid                         |                          |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 68          | i Deep Creek near Mercury                                         | 43.9                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 69          | Deep Creek Subwatershed No. 8 (Dry Prong Deep Creek) near Mercury | 4.32                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 70          | Dry Prong Deep Creek near Mercury                                 | 8.31                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 71          | Jim Ned Creek near Coleman                                        | 333                      | · · · · · · · · · · · · · · · · · · ·   |                                                                                             |                   |               |                                       |                                            |  |
| 72          | Hords Creek Reservoir near Valera                                 | 48                       |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 73          | Hords Creek near Valera                                           | 53                       |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 74          | i Hords Creek at Coleman                                          | 107                      |                                         |                                                                                             |                   | 2             | ×                                     |                                            |  |
| 76          | ) North Fork Pecan Bayou near Clyde                               |                          |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 76          | ) Pecan Bayou at Burkett                                          |                          |                                         |                                                                                             |                   |               |                                       | S #                                        |  |
| 17          | Pecan Bayou at FM Road 2559 near Brownwood                        |                          |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 78          | i Brown Co. WID No. 1 Canal near Brownwood                        |                          |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 52          | Brownwood Reservoir near Brownwood                                | 1535                     |                                         |                                                                                             |                   |               |                                       |                                            |  |
| 8(          | ) Pecan Bayou at Brownwood                                        | 1614                     |                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                   |               |                                       |                                            |  |
| Disc<br>Per | harge community Gage heights only community Dai                   | Gage I<br>ily chemical q | heights and discharge m<br>wality means | easurements<br>Periodic c                                                                   | hemical quality S | Reservoir con | tents <u>Econom</u><br>Water temperat | ure (2000000000000000000000000000000000000 |  |

\$7

ъ

2-

p.

đ

Table 4.--Index of surface-water records in the Colorado River basin--Continued

77

ė

Ŀ

4

£

| Refer       |                                            | Drainage            |                     |                  | Calend             | ar Years         |                   |                                         |         |
|-------------|--------------------------------------------|---------------------|---------------------|------------------|--------------------|------------------|-------------------|-----------------------------------------|---------|
| ence<br>no. | Stream and Location                        | Area<br>(sq. miles) | 01-1061             | 1911-20          | 1921-30            | 1931-40          | 1941-50           | 1951-60                                 | 1961-70 |
| 81          | Pecan Bayou near Goldthwaite               |                     |                     |                  |                    |                  |                   |                                         |         |
| 82          | Springs at Fort McKavett                   |                     |                     |                  |                    |                  |                   |                                         |         |
| 83          | Noyes Canal at Menard                      |                     |                     |                  |                    |                  |                   |                                         |         |
| 84          | San Saba River at Menard                   | 1151                |                     |                  |                    |                  |                   |                                         |         |
| 85          | Brady Creek near Eden                      | 97                  |                     |                  |                    |                  |                   |                                         |         |
| 86          | i Hardin Creek at Eden                     |                     |                     |                  |                    |                  |                   | P.                                      |         |
| 87          | Brady Creek Reservoir near Brady           | 513                 |                     |                  |                    |                  |                   |                                         |         |
| 88          | Brady Creek at Brady                       | 575                 |                     |                  |                    |                  |                   |                                         |         |
| 89          | San Saba River at San Saba                 | 3042                |                     |                  |                    |                  |                   |                                         |         |
| 06          | ) San Saba Springs at San Saba             |                     |                     |                  |                    |                  |                   |                                         |         |
| 16          | Colorado River near San Saba               | 18700               |                     |                  |                    |                  |                   |                                         |         |
| 92          | Buchanan Reservoir near Burnet             | 19350               |                     |                  |                    |                  |                   |                                         | 2       |
| 93          | North Llano River near Junction            | 914                 |                     |                  |                    |                  |                   |                                         |         |
| 94          | South Llano River near Telegraph           |                     |                     |                  |                    |                  |                   |                                         |         |
| 95          | Seven Hundred Springs near Telegraph       |                     |                     |                  |                    |                  |                   |                                         | 2       |
| 96          | Llano River near Junction                  | 1874                |                     |                  |                    |                  |                   |                                         |         |
| 26          | Beaver Creek near Mason                    | 218                 |                     |                  |                    |                  |                   |                                         |         |
| 98          | Llano River near Castell                   | 3747                |                     |                  |                    |                  |                   |                                         |         |
| 66          | Llano River at Llano                       | 4233                |                     |                  |                    |                  |                   |                                         |         |
| 100         | Colorado River at Marble Falls             |                     |                     |                  |                    |                  |                   |                                         |         |
| Disch       | harge annummung Gage heights only annummun | Gage                | e heights and disch | arge measurement |                    | Reservoir conter | its               |                                         |         |
| Per         | iodic discharge measurements               | ly chemical         | quality             | Periodi          | c chemical quality |                  | Vater temperature | 000000000000000000000000000000000000000 |         |

Table 4.--Index of surface-water records in the Colorado River basin--Continued

17

| Refer-      |                                                                       | Drainage            |                           |              | Calenc           | tar Years       |                   |         |         |
|-------------|-----------------------------------------------------------------------|---------------------|---------------------------|--------------|------------------|-----------------|-------------------|---------|---------|
| ence<br>no. | Stream and Location                                                   | Area<br>(sq. miles) | 01-1061                   | 1911-20      | 1921-30          | 1931-40         | 1941-50           | 1951-60 | 1961-70 |
| 101         | Pedernales River at Stonewall                                         | 647                 |                           |              |                  |                 |                   |         |         |
| 102         | Salt Branch at Stonewall                                              |                     |                           |              |                  |                 |                   |         | 8       |
| 103         | Pedernales River near Johnson City                                    | 947                 |                           |              |                  |                 |                   |         |         |
| 104         | Pedernales River near Spicewood                                       | 1294                |                           |              |                  |                 |                   |         |         |
| 105         | Lake Travis near Austin                                               | 26230               |                           |              |                  |                 |                   |         |         |
| 106         | Bull Creek at Doernige Park near Austin                               |                     |                           |              |                  |                 |                   | 2       |         |
| 107         | Lake Austin at Austin                                                 |                     |                           |              |                  |                 |                   |         | Т       |
| 108         | Colorado River at Dam above Austin                                    |                     |                           |              |                  |                 |                   |         |         |
| 109         | Barton Creek at Hays Co. line near Dripping Springs                   |                     |                           |              |                  |                 |                   |         |         |
| 110         | Barton Creek above Barton Springs at Austin                           |                     |                           |              |                  |                 | X                 |         |         |
| 111         | Barton Springs at Austin                                              |                     |                           |              |                  |                 |                   |         |         |
| 112         | Waller Creek at 38th Street at Austin                                 | 2.31                |                           |              |                  |                 |                   |         |         |
| 113         | Waller Creek at 23rd Street at Austin                                 | 4.13                |                           |              |                  |                 |                   |         |         |
| 114         | Colorado River at Austin                                              | 26500 N             |                           |              |                  |                 |                   |         |         |
| 115         | Little Walnut Creek near Austin                                       |                     |                           |              |                  |                 |                   |         |         |
| 116         | Onion Creek near Driftwood                                            |                     |                           |              |                  |                 |                   |         |         |
| 117         | Onion Creek at Buda                                                   |                     |                           |              |                  |                 |                   |         |         |
| 118         | Fox Branch near Oak Hill                                              |                     |                           |              |                  |                 |                   |         |         |
| 119         | Onion Creek near Del Vallc                                            | 337                 |                           |              |                  |                 |                   |         |         |
| 120         | Onion Creek below Del Valle                                           |                     |                           |              |                  |                 |                   |         |         |
| Discl       | iorge <u>communitations</u> Gage heights only <u>animummunitation</u> | Gagi                | e heights and discharge I | neasurements |                  | Reservoir conte | ents              |         |         |
| Per         | iodic discharge measurements                                          | y chemical          | l quality                 | Periodic     | chemical quality |                 | Water temperature | 6       | _       |

•

ę.

,e

ν

- 48 -

¢.

ø

e,

c

es.

Table 4.--Index of surface-water records in the Colorado River basin--Continued

| Refer      |                                                 | Drainage            |             |                |              | Caler                                      | ndar Years     |                 |                            |         |  |
|------------|-------------------------------------------------|---------------------|-------------|----------------|--------------|--------------------------------------------|----------------|-----------------|----------------------------|---------|--|
| ence<br>no | Stream and Location                             | Area<br>(sq. miles) | -1061       | 0              | 911-20       | 1921-30                                    | 1931-40        | 1941-50         | 1951-60                    | 1961–70 |  |
| 121        | Wilbarger Creek near Pflugerville               | 4.61                |             |                |              |                                            |                |                 |                            |         |  |
| 122        | Colorado River at Bastrop                       | 27 500              |             |                |              | 8<br>1101111111111111111111111111111111111 |                |                 |                            |         |  |
| 123        | Cedar Creek near Bastrop                        |                     |             |                |              |                                            |                |                 |                            |         |  |
| 124        | Piney Creek near Bastrop                        |                     |             |                |              |                                            |                |                 |                            |         |  |
| 125        | Colorado River at Smithville                    | 27980               |             |                |              |                                            |                | XX              |                            |         |  |
| 126        | Dry Creek at Buescher Lake near Smithville      | 1.48                |             |                |              |                                            |                |                 |                            |         |  |
| 127        | Colorado River at LaGrange                      | 28530               |             |                |              |                                            |                |                 |                            |         |  |
| 128        | Redgate Creek near Columbus                     | 173                 |             |                |              |                                            |                |                 |                            |         |  |
| 129        | Cummins Creek near Columbus                     |                     |             |                |              |                                            |                |                 | 1                          |         |  |
| 130        | Colorado River at Columbus                      | 29170               |             |                |              |                                            |                |                 |                            |         |  |
| 131        | Colorado River near Eagle Lake                  | 29270               |             |                |              |                                            |                | 3               | 2                          |         |  |
| 132        | Eagle Lake at Eagle Lake                        |                     |             |                |              |                                            |                |                 | 1                          |         |  |
| 133        | Colorado River at Wharton                       | 29480               |             |                |              |                                            |                |                 |                            |         |  |
| 134        | Colorado River near Bay City                    | 29750               |             |                |              |                                            | 3              |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
|            |                                                 |                     |             |                |              |                                            |                |                 |                            |         |  |
| Disch      | torge terrorisments Gage heights only munumment | Gage                | e heights a | nd discharge n | neasurements |                                            | Reservoir cont | ents            |                            |         |  |
| Per        | iodic discharge measurements treet              | ily chemical        | quality I   |                | Periodic     | chemical quality                           |                | Water temperatu | re <u>kooooooooooooooo</u> |         |  |

- 49 -

,

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only; values of other constituents may not be extremes.) Results in parts per million except as indicated

|                      |                                      |          |                                                                | . ~                                                  | m .                                      |                                                     |                         |                                                |                 | 10.10 m m /c                                                                                               |          |                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|----------------------|--------------------------------------|----------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------|------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                      | H                                    |          | 7.6                                                            | - 2.5                                                | 37                                       | · ·                                                 |                         | 8.2                                            | 8.1             |                                                                                                            | _        | 8.2                                                                     | 8.3      | 01014<br>01014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.77<br>5.4.4                                  |
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25° C) |          | 5,510                                                          | 427<br>3,500                                         | 413                                      | 4,450                                               | 236                     | 2,100                                          | 354             | 11,500<br>4,390<br>10,300<br>5,460<br>1,010                                                                |          | 3,960                                                                   | 310      | 2,900<br>3,720<br>632<br>1,880<br>1,880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,710<br>4,100<br>506                          |
| So-                  | adsorp-<br>tion<br>ratio             |          | 11                                                             |                                                      |                                          | 1                                                   | : :                     | 6.2                                            | 1.7             | 37<br>17<br>30<br>16<br>5.3                                                                                |          | 1                                                                       | ł        | 1,3250<br>1,3250<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,425<br>1,42 | 6.8<br>5.4<br>1.8                              |
| Per-                 | cent<br>so-<br>dium                  |          | 39<br>39<br>39                                                 | 49<br>67                                             | 47<br>51                                 | 5                                                   | 12                      | 61                                             | 49              | 87<br>83<br>75<br>69                                                                                       |          | 73                                                                      | 10<br>00 | 41<br>47<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 443<br>433<br>433                              |
| CO,                  | Non-<br>carbon-<br>atc               |          | 381<br>0                                                       | 456 0                                                | 09                                       | , I                                                 | 420                     | 231                                            | 0               | 706<br>382<br>448<br>74                                                                                    |          | 314                                                                     | 2        | 658<br>926<br>360<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,560<br>1,110<br>41                           |
| Hard<br>as Co        | Cal-<br>cium,<br>magne-<br>sium      |          | 438<br>79                                                      | 106<br>584                                           | 110<br>124                               |                                                     |                         | 400                                            | 86              | 782<br>426<br>948<br>708<br>140                                                                            |          | 526                                                                     | 102      | 941<br>1,140<br>552<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,770<br>1,270<br>136                          |
| ds                   | Tons<br>per<br>day                   |          | 3.0                                                            | 21<br>.5                                             | 16<br>6.2                                |                                                     | 48                      | .49                                            | .57             |                                                                                                            |          |                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| solved soli          | Tens<br>per<br>acre-<br>foot         |          | 4.22                                                           | . 30<br>2.92                                         | .34                                      | 1                                                   | 3.01                    | 1.66                                           | -29             | 9.51<br>3.39<br>8.69<br>4.46<br>.73                                                                        |          | 3.18                                                                    | .28      | 2.52<br>3.16<br>.46<br>1.48<br>.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.00<br>3.55<br>.39                            |
| Dis                  | Parts<br>per<br>mil-<br>lion         |          | 3,100                                                          | 206<br>2,150                                         | 248<br>302                               | I                                                   | 2,210                   | 1,220                                          | 210             | $     \begin{array}{c}       6,970\\       6,390\\       3,280\\       3,280\\       537     \end{array} $ |          | 2,340                                                                   | 209      | 1,850<br>2,320<br>337<br>1,090<br>272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $^{3,680}_{2,610}$                             |
| Bo-                  | (B)                                  |          |                                                                |                                                      |                                          |                                                     |                         |                                                |                 |                                                                                                            |          |                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| Ni-                  | trate<br>(NO.)                       |          | 0.00                                                           | 3.6<br>1.0                                           | 2.5<br>1.6                               | ł                                                   | 3.2                     | 3.0<br>3                                       | 4.0             | 16 4.0                                                                                                     | A        | 1.5                                                                     | 5.4      | $1.3 \\ 1.3 \\ 1.8 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                            |
| Fluo-                | ride<br>(F)                          | AR IRA   |                                                                |                                                      |                                          |                                                     |                         |                                                |                 |                                                                                                            | CAR IR   | I                                                                       | 0.3      | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>.</del>                                   |
| Chlo-                | ride<br>(CI)                         | REEK NEA | 1,580<br>11                                                    | 40<br>690                                            | 38<br>09                                 | 980                                                 | 11<br>780               | 378                                            | 36              | 3,790<br>1,450<br>3,520<br>1,620                                                                           | CREEK NI | 930                                                                     | 22       | 570<br>860<br>110<br>375<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,680<br>1,050<br>70                           |
| Sul-                 | fate<br>(SO.)                        | BULL C   | 317<br>17                                                      | 57<br>649                                            | 32<br>46                                 | 1                                                   |                         | 304                                            | 24              | 489<br>334<br>282<br>67                                                                                    | BLUFF    | 423                                                                     | 26       | 478<br>534<br>21<br>211<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 606<br>564<br>43                               |
| Bicar-               | bonate<br>(HCO <sub>3</sub> )        | 2.       | 69<br>114                                                      | 156                                                  | 142<br>144                               | ł                                                   |                         | 207                                            | 108             | 92<br>54<br>317<br>81                                                                                      | з.<br>Э. | 258                                                                     | 116      | 346<br>264<br>233<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 251<br>202<br>116                              |
| Po-                  | tas-<br>sium<br>(K)                  |          | 23<br>23<br>17                                                 | 1 / 2<br>549                                         | 44<br>60                                 | 1                                                   | 1862                    | 286                                            | 37              | 370<br>792<br>100<br>145                                                                                   |          | 562                                                                     | 26       | 297<br>388<br>65<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 562<br>143<br>48                               |
| ŝ                    | dium<br>(Na)                         |          | 1.(                                                            |                                                      |                                          |                                                     |                         |                                                |                 | ณ์ณ์                                                                                                       |          |                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| Mag-                 | ne-<br>sium<br>(Mg)                  |          | 39<br>4.6                                                      | 83 0.4                                               | 4.8                                      |                                                     |                         | 38                                             | 5.2             | 62<br>62<br>68<br>68<br>68<br>7<br>5<br>7                                                                  |          | 55                                                                      | 4.7      | 88<br>109<br>42<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169<br>124<br>6.4                              |
| Cal.                 | (Ca)                                 |          | 111<br>24<br>26                                                | 70<br>6                                              | 36<br>36                                 | 1                                                   | 18                      | 86                                             | 26              | 211<br>225<br>172<br>42                                                                                    |          | 120                                                                     | 33       | 232<br>56<br>152<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 430<br>305<br>44                               |
|                      | Iron<br>(Fe)                         |          |                                                                |                                                      |                                          |                                                     |                         |                                                |                 |                                                                                                            |          |                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|                      | Silica<br>(SiO.)                     |          | 11                                                             | 0.<br>0.<br>0.                                       | 16<br>18                                 | ł                                                   | 7.0                     | 6.2                                            | 11              | 5.2<br>16<br>.5<br>.6<br>6.6                                                                               |          | 17                                                                      | 13       | 15<br>7.5<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13<br>22<br>19                                 |
| Mean                 | dis-<br>charge<br>(cfs)              |          | 0.36<br>110<br>303                                             | 60.                                                  | 24.0<br>7.43                             | .01                                                 | 13.8                    | .15                                            | 1.01            | a.91<br><br>a.10<br>a.72                                                                                   |          | -                                                                       | 1        | a0.06<br>a.03<br>8.65<br>a.1<br>a.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a.01<br>a.02<br>3.49                           |
|                      | Date of collection                   |          | Apr. to Sept., 1950<br>Maximum,<br>Aug. 16-20<br>Mionum, May 2 | Water year 1951<br>Maximum, 1951-<br>May 1-10, 1951- | Multur,<br>July 1-7<br>Weighted average- | Water year 1952<br>Maximum,<br>August 1-31,<br>1952 | Winnmum, Sept.<br>22-28 | Water year 1953<br>Maximum,<br>Mar. 1-31, 1953 | Dec. 18-31,1952 | Oct. 11, 1959<br>Sept. 17, 1964<br>Dec. 21, 1964<br>Jan. 28, 1965<br>May 11, 1965                          |          | Water year 1950<br>Maximum, Aug. 30,<br>Sept. 1, 1950<br>Misimum M. 11- | 13,      | Mar. 24, 1964<br>Apr. 27, 1964<br>May 30, 1964<br>June 2, 1964<br>Scpt. 17, 1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nov. 17, 1964<br>Jan. 28, 1965<br>May 17, 1965 |

a Field estimate

 $\overline{v}$ 

łs-

7.1 6.4 7.8 7.0 7.5 7.7 6.8 7.3 7.0 7.5 6.6 7.8 6.9 7.4 7.1 6.9 Ηd 467  $^{411}_{1,100}$ 50,300 465 1,170 1,7205,340 Specific conduct-ance (micro-mhos at 25° C) 49,900 000 040 900  $^{74}_{7,600}$ 80,200 663 3,260 69,100 53,400 ŀ~ 64.0  $^{2.3}_{20}$ So-dium adsorp-tion ratio 113 5.5 26 3.17.6 95 8.7 18 3.5  $\frac{3.1}{10.4}$ 94 --4.9 60 111 Per-cent so-dium 88 53 86 86 86 88 65 77 88 60 78 8811 87 76 --83 59 Non-carbon-ate 4,970 40 370 3,880 15 45 6,40028 489 3,730 13 850 091 98 365 590 26 209 4,640Hardness as CGCO. ŝ . ດ Cal-cium, magne-5,050158 474 5,650 114 303  $102 \\ 592$ 4,750 $196 \\ 464$ 500 139 581 19.0 3,830 5,990 69 127 960
 101
 140ium ê, e, 52.1 37.2 2.87 428 26.2 1,840 21.4 10.9 12.0 111 762 Tons per day Dissolved solids .35 74.9 .81 5.34 55.3 .33 .99 1.30 93.3 .55 6.22 82.3 .45 2.71 32 54.682.1 N Tons per acre-foot 62. 255 4,990 53,100 592 3,930 57,900
 328
 1,99039,100 65,600 403 4,570 57,900 600 246 725 954 400 234 300 Parts per mil-lion 39, 44, ŝ 2.8 1.5 5.5 2.0 4.0 1.0 2.5 Ł ł Ni-trate (NO.) IRA NEAR  $\left\{ \cdot \right\}$  $\{ \cdot \} \in \{ \cdot \}$ 1 71 141 Fluo-ride (F) ł 1 11  $\{ \ | \ | \ |$ 111 RIVER  $^{69}_{2,640}$ 900 230 060 23,700  $^{428}_{1,740}$ 35,600 139 2,390 31,600 107 1,010 200 20065 260  $^{200}_{74}$ Chlo-ride (Cl) 21, 28, 31, 21, COLORADO 4,08058 310 4,7504,360 37 168 020 27 406 380 23 80 840 95 314 190 34 397  $^{23}_{74}$ Sul-fate (SO.) ŝ ŝ ñ ιŋ, Bicar-bonate (HCO.) 4 172 99 136 130 119 121 69 108 115 129 108 100 98 144 127 92 105 146 119 1136 (K) fas-53 1,670 18,400 159 1,320 19,800 $^{22},600$  $^{96}$  $^{1},520$ 500 60 198 600 53 220 15,100 280 20,000 76 638 ł So-dium (Na) 13, Ë. 22, 573 5.8 23 10 664 5.8 49 4.1 50 00 75 Mag-ne-sium (Mg) 353 500 10 ei 30 389 7. 10 583  $^{10}_{37}$ 475  $1,200 \\ 47 \\ 124$ 955 34 155 440 23 944 28 40 ,120 62 125 510 46 152 320 36 84 Cal-cium (Ca) Iron (Fe) 12 9.7 3.4  $^{4.8}_{16}$ 8.2 3.3 8.0 8.2 7.8 11 9.6 Silica (SiO<sub>i</sub>) 4.9 1.2 8.3 8.3 1.816 0.18 75.7 2.76 .02 268 2.47 .07 2910 43.5  $^{131}_{41.1}$ 296 4.1  $^{.1}_{4.1}$ 366 8.2 Mean dis-charge (cfs) 7 Mater year 1963 Maximum, Apr.19-23, 25-26,1965-Majnimum, May 22-23, 1963 Weighted average-Water year 1965 Maximum, May 1-6, 1965--Minimum, May 14,16 : Weighted average-Water year 1959 Maximum, Mar. 14-25, 1959-----Minimum, June 4-6, 1959------Weighted average-Water year 1961 Maximum, May 1-6, 1961--Minimum, Oct. 19, 1960--Weighted average-Water year 1962 Maximum, Maril2-25,1962 Minimum, June 12-Weighted average-Water year 1964 Maximum, May 1-2, 1964--Minimum, Aug. 27--Weighted average-Apr. 16-30,1960 Minimum, July 5-6-Weighted average-Date of collection Water year 1960 Maximum,

¢\*

ģ

~

*a*,

|                      | Hq                                   |          | 6.8<br>8.0<br>7.7                                                                              |          | ::::                                                                                        | 1                                           |                                                      | ł                                                          |                                                | 7.5                                            |                                                | 6.9                                                             | 7.8                                       | 7.7<br>7.8                                                                                                           | 6.6                                          | 7.7<br>                                     |
|----------------------|--------------------------------------|----------|------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25° C) |          | 37,100<br>358<br>1,330                                                                         |          | 21,300<br>601<br>1,540                                                                      | 20,700                                      | 342<br>1,230                                         | 18,300                                                     | 274<br>916                                     | 21,500                                         | $^{484}_{1,670}$                               | 26,100                                                          | $^{482}_{1,330}$                          | 28,300<br>568<br>3,570                                                                                               | 42,500                                       | 1,140<br>7,620                              |
| So-<br>dium          | adsorp-<br>tion<br>ratio             |          | 0.9<br>4.5                                                                                     |          | 111                                                                                         | ł                                           |                                                      | ł                                                          |                                                | ł                                              | 1 1                                            | ł                                                               | 11                                        |                                                                                                                      | 70                                           | 5.4<br>25                                   |
| Per-                 | so.<br>dium                          |          | 52<br>52<br>52                                                                                 |          | 82<br>57<br>74                                                                              | 83                                          | 46<br>72                                             | 83                                                         | 36<br>69                                       | 83                                             | 68<br>76                                       | 84                                                              | 65<br>74                                  | 83<br>56<br>80                                                                                                       | 85                                           | 69<br>83                                    |
| ress<br>CO.          | Non-<br>carbon-<br>ate               |          | 3,500<br>7<br>82                                                                               |          | 1,910<br>29<br>84                                                                           | 1,800                                       | 0<br>73                                              | 1,570                                                      | 32 0                                           | 1,890                                          | 0.68                                           | 2,300                                                           | 0 09                                      | 2,530<br>239<br>239                                                                                                  | 3,740                                        | 46<br>587                                   |
| Hardr<br>as Co(      | Cal-<br>cium,<br>magne-<br>sium      |          | 3,570<br>130<br>215                                                                            |          | 2,010<br>118<br>182                                                                         | 1,890                                       | 88<br>167                                            | 1,660                                                      | 89<br>128                                      | 1,990                                          | 71<br>188                                      | 2,380                                                           | 75<br>161                                 | 2,610<br>120<br>346                                                                                                  | 3,820                                        | 672                                         |
| 8                    | Tons<br>per<br>day                   |          |                                                                                                |          | 84<br>65                                                                                    | 52,900                                      | 3,630<br>287                                         | 29                                                         | 74<br>228                                      | 9.3                                            | 440<br>163                                     | 50                                                              | 778<br>173                                | 36<br>1,410<br>264                                                                                                   | 8.]                                          | 324<br>56.0                                 |
| olved solid          | Tons<br>per<br>acre-<br>foot         |          | 39.3<br>.29<br>1.03                                                                            |          | 17.5<br>1.15                                                                                | 18.4                                        | . 98                                                 | 15.6                                                       | .70                                            | 18.8                                           | .39                                            | 23.3                                                            | .36                                       | 25.1<br>.45<br>2.77                                                                                                  | 40.8                                         | .78                                         |
| Diss                 | Parts<br>per<br>mil-<br>lion         |          | 28,300<br>215<br>755                                                                           |          | 12,900<br>344<br>847                                                                        | 13,500                                      | 206<br>738                                           | 11,500                                                     | 176<br>532                                     | 13,800                                         | 286<br>948                                     | 17,100                                                          | 264<br>742                                | 18,500<br>332<br>2,040                                                                                               | 30,000                                       | 571<br>4,640                                |
| ġ                    | I (B)                                |          |                                                                                                |          |                                                                                             |                                             |                                                      |                                                            |                                                |                                                |                                                |                                                                 |                                           |                                                                                                                      |                                              |                                             |
| Ni-                  | trate<br>(NO.)                       | IBERT    | 4.2                                                                                            | CITY     | 3.9                                                                                         | 4.0                                         | 1.8                                                  | 3.0                                                        | 2.2                                            | 2                                              | 2.28                                           | ł                                                               | 1.8                                       | 5.5                                                                                                                  | 1                                            | 6.9                                         |
| Fluo-                | ride<br>(F)                          | AR CUTH  |                                                                                                | ORADO    |                                                                                             |                                             |                                                      |                                                            |                                                |                                                |                                                |                                                                 |                                           |                                                                                                                      |                                              |                                             |
| Chlo-                | ride<br>(CI)                         | IVER NE/ | 15,700<br>310<br>310                                                                           | R AT COI | 6,450<br>111<br>360                                                                         | 6,900                                       | 30<br>298                                            | 5,940                                                      | 10<br>182                                      | 7,100                                          | 60<br>408                                      | 8,860                                                           | 60<br>303                                 | 9,570<br>58<br>982                                                                                                   | 15,900                                       | $^{217}_{2,390}$                            |
| Sul-                 | fate<br>(SO,)                        | ORADO R  | 2,040<br>15<br>70                                                                              | DO RIVE  | 1,650<br>97                                                                                 | 1,500                                       | 26<br>85                                             | 1,220                                                      | 30                                             | 1,500                                          | 39<br>114                                      | 1,790                                                           | 35<br>89                                  | 2,000<br>49<br>222                                                                                                   | 2,800                                        | 62<br>456                                   |
| Bicar-               | bonate<br>(HCO.)                     | 8. COI   | 91<br>150<br>163                                                                               | COLOR    | 11 <i>9</i><br>108<br>120                                                                   | 110                                         | 112                                                  | 108                                                        | 113                                            | 121                                            | 116<br>120                                     | 633                                                             | 116<br>123                                | 105<br>167<br>130                                                                                                    | 96                                           | 125<br>104                                  |
| Po-                  | m tas-<br>sium<br>(K)                |          | 310   32<br>24<br>198                                                                          | 9.       | $\frac{4}{71}, \frac{090}{243}$                                                             | 4,370                                       | 35<br>201                                            | 3,720                                                      | 23<br>131                                      | 4,450                                          | 70<br>279                                      | 5,550                                                           | 65<br>214                                 | 6,000<br>71<br>634                                                                                                   | 9,930                                        | $152 \\ 1,500$                              |
| - S                  | uip<br>(N                            |          | 6                                                                                              |          | 10                                                                                          |                                             | <u>в</u> .                                           |                                                            | <u>69</u>                                      |                                                | . 4                                            |                                                                 | 0,                                        | 0,                                                                                                                   |                                              | 2                                           |
| Mag                  | siun<br>(Mg                          |          | 11345                                                                                          |          | 1205                                                                                        | 1 192                                       | 7 12                                                 | 145                                                        | 8 0                                            | 7 195                                          | 69<br>17 30                                    | 2 237                                                           | 13.5                                      | 5<br>2<br>6<br>3<br>0<br>2<br>6<br>0<br>2<br>0<br>2<br>6<br>0<br>2<br>0<br>0<br>2<br>0<br>0<br>2<br>0<br>0<br>2<br>0 | 7 379                                        | 0 56                                        |
| Cal-                 | cium<br>(Ca)                         |          | 862<br>862<br>862                                                                              |          | 467                                                                                         | 44]                                         | 24                                                   | 425                                                        | <u>ର</u> ନ                                     | 477                                            | 810                                            | 26.                                                             | 2 4                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                                           | .06                                          | 13.5                                        |
|                      | (Fe)                                 | -        |                                                                                                |          |                                                                                             |                                             |                                                      |                                                            |                                                |                                                |                                                |                                                                 |                                           |                                                                                                                      |                                              |                                             |
|                      | Silica<br>(SiO.)                     | -        | 13.3                                                                                           |          |                                                                                             | 1                                           |                                                      |                                                            |                                                | 5.8                                            | 121                                            |                                                                 | 10                                        | 2 17.4                                                                                                               |                                              | 7 11                                        |
| Меап                 | dis-<br>charge<br>(cfs)              |          | 3,250.9<br>79.6                                                                                |          | 2.4<br>70.4<br>83.4                                                                         | 1,450                                       | 6,532<br>147                                         | e.                                                         | 156<br>163                                     | ci.                                            | 570<br>63.6                                    | 1.0                                                             | 1,091                                     | 1,576.<br>1,47.9                                                                                                     |                                              | 210                                         |
|                      | Date of collection                   |          | Mar. to Sept. 1965<br>Maximum, Apr.<br>1-12, 25, 1965-<br>Minimum, May 16<br>Weighted average- |          | May to Sept. 1946<br>Maximum, 1946<br>May 9, 1946<br>Minimum, Junc 27-<br>Weighted average- | Water year 1947<br>Maximum,<br>May 10, 1947 | Minimum, may<br>12-14,17, 1947-<br>Weighted average- | Water year 1948<br>Maximum, Apr. 23-28,<br>May 1-15, 1948- | Minimum,<br>Oct. 26, 1947<br>Weighted average- | Water year 1949<br>Maximum,<br>Apr. 11-18,1949 | Minimum,<br>Oct. 11, 1948<br>Weighted average- | Water year 1950<br>Maximum, Mar. 1-9,11<br>-19, Apr.13-15,1350- | Minnum,<br>Sept. 5-9<br>Weighted average- | Water year 1951<br>Maximum, Apr.1-30,<br>May 1-7, 1951<br>Minimum, Aug.23-25<br>Weighted average-                    | Water year 1952<br>Maximum,<br>Mar. 11, 1952 | Minimum,<br>July 16-17<br>Weighted average- |

Þ

Þ

۰,

r,

v

F3

- 52 -

¢

 $\overline{Q}$ 

4

ы

8.0 --2 7.0 7.2 8.0 7.5 7.6 7.4 7.8 7.1 7.77.6 7.3 7.1 Hq 24,100 270 1,140 38,300 728 4,190 552 1,760 346 946 200 Specific conduct-ance (micro-mhos at 25° C) 800 776 090 800 528 670 800 600 972 190 300 687 300 5 с. С 38. 32 ŝ. 4 34 1 28 ള് 27 5.0 70 4.8 18 9.6 50 --7.1 69 4.1 18 1.6 5.8 4.1 16 ഗഗ So-dium adsorp-tion ratio 69 61.00 3 54 64 59 Per-cent so-dium 84 86 82 82 18 18 86 68 83 811 86 47 72 84 67 80 85 85 82 82 85 54 75 3,220 19 278 2,910 72 49 216 16 200 6 54 Non-carbon-ate  $^{14}$ 290 1,620 490 420 38 296 2,750 26 226 Hardness as CaCO. ro. 0, 2 0 2,290 81 153 490 122 382 ,830 560 114 260
 120
 368
 368020  $112 \\ 202$ 390 1,730 $146 \\ 313$ 310 88 130 Cal-cium, magne-sium ev. esî. ŝ e, e 2 86.7 ,461 .6] 192 .080 .81.9 49.9 15.3 828 100 ł  $\infty$ 797 196 115 040 195 468 110  $\frac{080}{244}$ 68. 144 Tons per day 152solids ÷ N -23.2 .20 ..39 .74 .52 39.5 .62 3.50 .41 90.66 75 30.3 <u>т</u> 17.0 2 C) Dissolved Tons per acre-foot 36. 33. 26. 26. 39. 16,900 150 662  $^{302}_{1,010}$ 000 385 010 500 453 570 000  $\frac{900}{443}$ 400 289 954 800 208 500 542 880 Parts per mil-lion 26, 19. Ξ, ē, 2 28. ં 22 24 Bo-Bo-Bo-COLORADO CITY--Continued 1 0.1 2.2 2.2 1 0.1 Ni-trate (NO ) 2.8 1.8.1 111 ł. Fluo-ride (F) 8,900 27 270 15,300 178 1,320  $500 \\ 147 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200$ 46 235 212 922 144 010 800 90 153 100 83 130 800 620 10,100 Chla-ride (Cl) 4. ģ ŝ Ë. \_\_\_\_ 13, 470 45 228 650 18 74 34 30 16 680 1,920 290 33 213 070 500 100 TT $^{28}_{90}$ 50 L73 Sul-fate (SO,) 2 Ļ, 4 e, RIVER Ń 0 ÷ Bicar-bonate (HCO\_) 58 111 87 104 104 77 102 105 100 120 135 117 92 125 127 119 124 122 99 102 119 119 COLORADO Po-tas-(K) 66 305 5,550 --187  $140 \\ 583$ 310  $\begin{array}{c} 020\\ 104\\ 795 \end{array}$ 8,150  $62 \\ 277$ 67.0  $35 \\ 151$ 080 330 99 641 530 121 828 6 g ത്. Ŀ. 6 So-dium (Na) ெ 5.0 24 7.7 318 5.2 31 5.8 348 5.5 29 514 246 --42 11 3.3ιO. Mag-ne-sium (Mg) 14.5 290 260 235 169 288 735 39 100  $36 \\ 54$ 36 30 414 46 86 598 35 374 40 102 656 735 569 Cal-cium (Ca) Iron (Fe) 5.0 13 10 4.8 9.6 8.5 6.7 10 9.3 5.4 9.8 3.9 4.5 3.8 12 10 4.4 Silica (SiO.) 113 122 2.85 2.31 2.5 ,700 11.3 20 .84 2.04,607 ,85.5 0.21 692 14.9 .01 78.8 23.6 977 71.9 338 75.8 2 Mean dis-charge (cfs) ,919163 £50. 20. 3 ч Water year 1957 Maximum Jan 24-31, Feb. 1-6, 1957 Minimum, May 12-14, 17-18-------4, Weighted average-Water year 1958 Naximum, Feb. 1-10, 1958 Minimum, May 28-29, June 3-4------Weighted average-Water year 1360 Masimum, June 9-13, 1360 Minimum, July 7--Weikhted average-Water year 1961 Maximum, 1-15, 1961 Minimum, June 15-17,----Weighted average-Maximum, Apr. 5-26, 1962 Minimum,Sept.5-7- 3 Weighted average-Mar. 8-19, 1954 Minimum, May 12-13, 15, 19, 1954---1 Weighted average-Apr. 1-7, 1953-Minimum, July 2-3, 13-14, 1959----Weighted average-Water year 1953 Maximum, Apr.1-14, 1953-Minimum,Aug.19-22 Weighted average-Date of collection Water year 1954 Maximum, Water year 1959 Maximum Water year 1962

- 53 -

|                                                                                                              | Mean                    |                     | 1    | Cal-             | Mag-                | So-          | Po-                 | Bicar-                        | Sul-               | Chlo-                  | Fluo-       | Ni-               | Bo-        | Dis                          | solved so                    | lids                 | Hard<br>as Co                   | Iness<br>1CO           | Per-                | So-                                       | Specific<br>conduct-                 |                   |
|--------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|------|------------------|---------------------|--------------|---------------------|-------------------------------|--------------------|------------------------|-------------|-------------------|------------|------------------------------|------------------------------|----------------------|---------------------------------|------------------------|---------------------|-------------------------------------------|--------------------------------------|-------------------|
| Date of collection                                                                                           | dis-<br>charge<br>(cfs) | (SiO <sub>2</sub> ) | (Fe) | cium<br>(Ca)     | ne-<br>sium<br>(Mg) | dium<br>(Na) | tas-<br>sium<br>(K) | bonate<br>(HCO <sub>2</sub> ) | fate<br>(SO,)      | ride<br>(Cl)           | ride<br>(F) | trate<br>(NO-)    | ren<br>(B) | Parts<br>per<br>mil-<br>lion | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>magne-<br>sium | Non-<br>carbon-<br>atc | cent<br>so-<br>dium | adsorp-<br>tion<br>ratio                  | ance<br>(micro-<br>mhos at<br>25° C) | pH                |
|                                                                                                              |                         |                     |      |                  |                     | 9.           | COLOR               | RADO RIV                      | ER AT C            | OLORADO                | CITY        | -Contin           | ued        |                              |                              |                      |                                 | L                      |                     |                                           |                                      |                   |
| Water year 1963<br>Maximum,<br>Apr. 1-26,1963-<br>Minimum,May 23<br>Weighted average-                        | 2.3<br>1,650<br>16.8    | 3.1<br>13<br>9.1    |      | 661<br>34<br>146 | 291<br>11<br>51     | 6,:<br>1,:   | 340<br>89<br>120    | 118<br>122<br>126             | 1,250<br>43<br>368 | 10,800<br>123<br>1,790 | 0.5         | 6.1               |            | 19,400<br>380<br>3,550       | 26.8<br>.52<br>4.83          | 120<br>1,690<br>     | 2,850<br>131<br>572             | 2,750<br>31<br>469     | 83<br>60            | $52 \\ 3.4 \\ 18$                         | 28,000<br>714<br>5,670               | 7.1<br>7.6<br>7.2 |
| Water year 1964<br>Maximum, Apr. 1-18,<br>22-25, 1964<br>Minimum.                                            | . 8                     | 7.0                 |      | 680              | 307                 | 7,450        | 24                  | 104                           | 2,130              | 11,900                 |             |                   |            | 22,500                       | 31.0                         |                      | 2,960                           | 2,870                  | 84                  |                                           | 31,100                               | 6.5               |
| Oct. 24, 1963<br>Weighted average-                                                                           | 182     9.1             | $11 \\ 8.1$         |      | 40<br>140        | 9.7<br>48           | 1,           | 108<br>230          | 120<br>107                    | $67 \\ 349$        | $144 \\ 1,960$         | .2          | 5.0               |            | 444<br>3,790                 | ,60<br>5.15                  |                      | $140 \\ 547$                    | 42<br>459              | 63<br>81            | $\begin{array}{c} 4.0\\ 20.4 \end{array}$ | 805<br>6,600                         | 7.6<br>7.0        |
| Water year 1965<br>Maximum,<br>Apr. 1-21, 1965<br>Minimum, May 16<br>Weighted average-                       | .7<br>2,150<br>41.3     | 2.4<br>12<br>9.3    |      | 920<br>50<br>89  | 412<br>4.4<br>22    | 10,600       | 31<br>41<br>179     | $97 \\ 143 \\ 148$            | 2,700<br>41<br>153 | 17,400<br>49<br>758    |             |                   |            | $32,100 \\ 270 \\ 1,580$     | 44.6<br>.37<br>2.15          | <br><br>             | 3,990<br>143<br>310             | 3,910<br>26<br>189     | 85<br>38<br>63      | 1.5<br>8.6                                | $48,300\ 481\ 2,700$                 | 6.9<br>7.4<br>7.3 |
|                                                                                                              |                         |                     |      |                  |                     |              | 1                   | 2. MOR                        | GAN CRE            | EK NEAR                | COLOR       | DO CIT            | Y          |                              |                              |                      |                                 | 1                      |                     |                                           |                                      |                   |
| Water year 1947                                                                                              |                         |                     |      |                  |                     |              |                     |                               |                    |                        |             |                   |            |                              |                              |                      |                                 |                        |                     |                                           |                                      |                   |
| Sept. 10, 1947-<br>Minimum,                                                                                  | 28.0                    |                     |      | 252              | 113                 |              | 62                  | 249                           | 1,090              | 1,000                  |             | 2.0               |            | 3,520                        | 4.54                         |                      | 1,090                           | 890                    | 60                  |                                           | 5,020                                |                   |
| Sept. 11-13<br>Weighted average-                                                                             | 38.0<br>31.2            |                     |      | 26<br>35         | 5.4<br>6.8          |              | 26<br>36            | 99<br>104                     | 38<br>47           | 13<br>40               |             | 5.2<br>3.3        |            | 171<br>238                   | .23<br>.32                   |                      | 87<br>116                       | 6<br>130               | 39<br>41            |                                           | 276<br>387                           |                   |
| Water year 1948<br>Maximum,<br>May 25, 1948<br>Minimum, July 6<br>Weighted average-                          | 7.50<br>6,043<br>34.8   | 13<br>4.0<br>       |      | 265<br>14<br>29  | 101<br>.3<br>4.9    | 1,4          | 10<br>1.4<br>26     | 116<br>32<br>103              | 1,170<br>2<br>33   | 2,000<br>3.0<br>20     |             | 3.5<br>8.2<br>3.8 |            | 5,230<br>72<br>188           | 6.84<br>.10<br>.26           | 102<br>1,170<br>18   | 1,080<br>36<br>92               | 966<br>10<br>8         | 74<br>7<br>38       |                                           | 8,100<br>100<br>306                  |                   |
|                                                                                                              |                         |                     |      |                  |                     |              |                     | 23. В                         | EALS CR            | EEK NEAR               | WEST        | BROOK             |            |                              |                              |                      |                                 |                        |                     |                                           |                                      |                   |
| Water year 1959<br>Maximum, Aug. 18-<br>20, 27-28, 1959<br>Minimum, July 2,<br>12, 1959<br>Weighted average- | 1.34<br>164<br>15.9     | 5.7<br>10<br>8.9    |      | 253<br>24<br>48  | 488<br>5.9<br>29    | 2,1          | 90<br>33<br>53      | 118<br>96<br>117              | 2,030<br>22<br>138 | 3,520<br>37<br>233     |             | <br>1.5<br>2.3    |            | 8,440<br>180<br>680          | 11.6<br>.24<br>.92           | 30.5<br>79.7<br>29.2 | 2,640<br>84<br>239              | 2,540<br>6<br>143      | 63<br>46<br>58      | 18<br>1.5<br>4.3                          | 12,400<br>217<br>1,130               | 6.5<br>7.8        |
| Water year 1960<br>Maximum,<br>May 5-21, 1960-<br>Minimum,<br>Nov. 4, 1959<br>Weighted average-              | 5.02<br>19.0<br>33.7    | 6.9<br>10<br>9.6    |      | 395<br>28<br>44  | 978<br>6.1<br>26    | 3,           | 520<br>14<br>125    | 231<br>106<br>116             | 3,810<br>15<br>117 | 6,030<br>16<br>193     | 1.3         | 2.1               |            | 14,900<br>155<br>585         | 20.5<br>.21<br>.80           | 202<br>7.95<br>53.2  | 5,010<br>95<br>217              | 4,820<br>8<br>122      | 60<br>              | 22<br>3.7                                 | 20,200<br>258<br>942                 | 7.4               |

9 C

77

~

. A 12

¢

ų

ė,

t<sub>io</sub>

2.5 8.1 8.0 7.3 7.1 7.5 7.4 7.3 7.3 7.2 7.6 Hq 7.4 7.8 6,780 219 1,510 9,970 303 830 7,610 393 770 330 Specific conduct-ance (micro-mhos at 25° C) 376 950 8,920 457 1,800 500 322 9,580 10,600 . 10 18 1.6 2.2 16 1.7 2.9  $15 \\ 1.9 \\ 4.8$ 14 .8 4.3 14
 1.4
 2.31.12.4..8 So-dium adsorp-tion ratio 22 29 Per-cent so-dium 44 35 25 69  $64 \\ 51 \\ 51 \\$ 63 23  $^{64}_{44}$ 83 74 Non-carbon-ate 1,870 0 97 1,130 0 189  $^{1,420}_{12}$ 1,34022 173 1,70024 264 840 2035 530 20 Hardness as CaCO, 2 1,300 91 318 127 278 Cal-cium, magne-sium 2,050 75 200 1,7301,890 117 378 620 118 192 904 100 1,440105217 \_ 28.5 6.85 23.1 247 25.0 95.1 4 111 Tons per day 39. 55. 49. 803 178 106  $590 \\ 441$ solids .27 9.52 .34 1.50 6.15 .19 1.24 7.30 .29 .60 8.42 9.11 22.23 8.62 .45 29 Dissolved Fons per acre-foot 6 1,080 6,780 170 481 6,100 253 1,100 ,370 215 439 6,190 6,700 6,340 216 569 180 520 141 915 Parts per mil-lion 4 ດົ Bo-Ba-NEAR WESTBROOK--Continued 3.54 3.5 3.2 2.5 2.0 3.7 2.2 3.2 Ni-trate (NO<sub>3</sub>) ł SILVER 40 0.3 4.9 4 Fluo-ride (F) NEAR - 00 -1,690 7. 302  $^{20}_{446}$  $^{45}_{188}$ 2,40065 403 020 34 123 120 2,50047.0 32 650 34 148 RIVER (Chlo (Cl) ŝ ¢, ŝ 'n 1,740 21 90 1,520 31 238 1,420 36 81 1,15012 204 570 COLORADO 348 26 1,08029 166 32 118 Sul-fate (SO,) CREEK -i Bicar-bonate (HCO.) 79 97 117 212 91 125 236 114 140 212 126 155 238 129 143 BEALS 241 104 112 128 128 129 24. Po-sium (K) 23. 1,690 33 96 37 123 1,500 48 30  $1,130 \\ 17 \\ 210 \\ 210$ 1,340 35 85 2,030 25 1,930 19 291 1,670 So-dium (Na) 5.3 4.9 5 4 4 σ Mag-ne-sium (Mg) 277 6.: 16 364 6. 20 25. 323 8. 49 330 128 38.6 98 121 192 36 50 220 19 47 150 30 46 33 33 70 310 26 65 379 82 82 82 201 32 Cal-Cal (Fe) 7.0 9.2 12 5.0 8.0 4.6 .9  $^{9.4}_{11}$ 0 Silica (SiO<sub>2</sub>) 5.5 7.8 6.4 1.1 101 1,525 11 61.0 12 1.4 362 10.6 5.69 2.73 527 545 35.0 1.0 41.5 6.3 .7 520 37.8 4 Mean dis-charge (cfs) 86. 42. 382 496 Mater year 1961 Maximum, Mar. 11-20,1961 Minimum, Oct.18,19 Weighted average-Water year 1958 Max.mum, 10, 1958 Minimum, 0ct.8-9, 13-14, 1957-----1 Weighted average-Water year 1962 Maximum, 1962-May 1-11, 1962-Minimum, 1-2, 5-8-1 Sept. 1-2, 5-8-1 Weighted average-Mar. 1-31, 1963 Minimum, June 20-Weighted average-Water year 1957 Maximum, 1956 Nov. 3-10, 1956 Minimum, June 1-4, 1957- 7 Weighted average-Water year 1964 Maximum, Apr. 7-30, 1964------Minimum, Sept.12-13 Weighted average-Apr. 1-2, 1965-Minimum, June 12--Weighted average-Date of collection Water year 1963 Maximum. Water year 1965 Maximum, 1964--Water

|                                                                                                                  | Mean                    | e.11.               |      | Cal-            | Mag-                                                                        | So-                | Po-                 | Bicar-              | Sul-               | Chlo-              | Fluo-       | Ni-            | Bo-        | Dis                                               | solved sol                   | ids                | Hard<br>as Co                   | ness<br>rCO            | Per-                | So-<br>dium                                       | Specific<br>conduct-                 |                   |
|------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|------|-----------------|-----------------------------------------------------------------------------|--------------------|---------------------|---------------------|--------------------|--------------------|-------------|----------------|------------|---------------------------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|---------------------------------------------------|--------------------------------------|-------------------|
| Date of collection                                                                                               | dis-<br>charge<br>(cfs) | (SiO <sub>2</sub> ) | (Fe) | cium<br>(Ca)    | ne-<br>sium<br>(Mg)                                                         | dium<br>(Na)       | tas-<br>sium<br>(K) | bonate<br>(HCO_)    | fate<br>(SO.)      | ride<br>(Cl)       | ride<br>(F) | trate<br>(NO_) | ron<br>(B) | Parts<br>per<br>mil-<br>lion                      | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>magne-<br>sium | Non-<br>carbon-<br>ate | cent<br>so-<br>dium | adsorp-<br>tion<br>ratio                          | ance<br>(micro-<br>mhos at<br>25° C) | рН                |
|                                                                                                                  |                         |                     |      |                 |                                                                             |                    | 24.                 | COLORAD             | O RIVER            | NEAR S             | ILVER-      | -Contin        | nued       |                                                   |                              |                    |                                 |                        |                     |                                                   |                                      |                   |
| Water year 1959<br>Maximum, Apr.21-30,<br>May 1, 1959<br>Minimum, June 3<br>Weighted average-<br>Water year 1960 | 0.64<br>118<br>35.7     | 6.8<br>14<br>13     |      | 591<br>49<br>84 | 207<br>11<br>23                                                             | 3,90(<br>49<br>34) | 0<br>9<br>5         | 82<br>154<br>126    | 1,760<br>43<br>189 | 6,310<br>70<br>534 |             |                |            | $12,800 \\ 314 \\ 1,270$                          | 17.5<br>.43<br>1.73          | 22.1<br>100<br>122 | 2,330<br>166<br>304             | 2,260<br>40<br>200     | 78<br>39<br>71      | 35<br>1.6<br>8.6                                  | 18,200<br>568<br>2,120               | 6.9               |
| Maximum,<br>Apr. 15-25,1960<br>Minimum, Aug. 20-<br>Weighted average-                                            | .11<br>335<br>50.8      | $4.3 \\ 14 \\ 12$   |      | 572<br>54<br>71 | 165<br>10<br>20                                                             | 3,300<br>2-<br>268 |                     | $109 \\ 189 \\ 122$ | 1,740<br>25<br>147 | 5,240<br>32<br>415 |             | 1.2            |            | 11,100<br>253<br>1,000                            | $15.2 \\ .34 \\ 1.36$        | 3.30<br>229<br>137 | 2,110 $176$ $259$               | 2,020<br>21<br>159     | 77<br>23<br>69      | 31<br>.8<br>7.2                                   | $16,200 \\ 414 \\ 1,700$             | 7.3               |
| Water year 1961<br>Maximum,<br>May 1-18, 1961-<br>Minimum,                                                       | . 02                    | 4.5                 |      | 693             | 269                                                                         | 4,51               | 0                   | 59                  | 2,360              | 7,180              | 0.5         | 2.5            |            | 15,000                                            | 20.6                         | .81                | 2,840                           | 2,790                  | 78                  | 36                                                | 22,200                               | 6.4               |
| Weighted average-<br>Water year 1962                                                                             | 118<br>159              | 9.6<br>10           |      | 37<br>51        | 6.2<br>12                                                                   | 23<br>160          | 5<br>6              | 98<br>124           | 42<br>87           | 32<br>245          |             | $3.8 \\ 2.7$   |            | 204<br>653                                        | .28<br>.89                   | $65.0 \\ 280$      | $\frac{118}{176}$               | 38<br>75               | 32<br>67            | $1.0 \\ 5.4$                                      | 348<br>1,130                         | 7.8               |
| Maximum,<br>Apr. 29, 1962<br>Minimum,Sept.5-9<br>Weighted average-                                               | 93.0<br>8,356<br>190    | 5.0<br>8.6<br>9.0   |      | 591<br>32<br>43 | $     \begin{array}{r}       174 \\       6.2 \\       11     \end{array} $ | 4,37(<br>37<br>201 | 0<br>7              | 139<br>105<br>118   | 1,510<br>33<br>75  | 7,090<br>45<br>162 |             | 2.0            |            | 13,800<br>228<br>486                              | 18.9<br>.31<br>.66           | 3,470<br>5,140     | $2,190 \\ 105 \\ 152$           | 2,080<br>19<br>56      | 43<br>              | <br>1.6<br>3.1                                    | 20,300<br>392<br>827                 | 7.1<br>7.2<br>7.3 |
| Water year 1963<br>Maximum,<br>Apr. 7-17,1963-<br>Minimum,                                                       | 3.3                     | 6.2                 |      | 517             | 190                                                                         | 2,150              | 16                  | 105                 | 1,550              | 3,580              |             |                |            | 8,060                                             | 11.0                         | 71.8               | 2,070                           | 1,990                  | 69                  | 21                                                | 11,800                               | 7.2               |
| Sept.9-10,12-13<br>Weighted average-                                                                             | 9.3<br>32.3             | 12<br>12            |      | 36<br>113       | 5.9<br>38                                                                   | 489                | 6<br>               | 93<br>125           | 36<br>275          | 38<br>785          | .4<br>      | 2.8            |            | $\begin{smallmatrix}&203\\1,780\end{smallmatrix}$ | .28<br>2.42                  | 5.10<br>           | $\substack{114\\439}$           | $38 \\ 336$            | 33<br>              | 1.1<br>8.8                                        | 354<br>2,980                         | $7.6 \\ 7.4$      |
| Water year 1964<br>Maximum,<br>Mar. 1-18, 1964<br>Minimum,                                                       | .7                      | 3.6                 |      | 378             | 138                                                                         | 2,230              | 0                   | 66                  | 1,160              | 3,610              |             |                |            | 7,550                                             | 10.3                         |                    | 1,510                           | 1,460                  | 76                  |                                                   | 11,600                               | 6.6               |
| Nov. 19, 1963<br>Weighted average-                                                                               | 16.0<br>30.4            | 7.1<br>8.9          |      | 34<br>72        | 6.6<br>18                                                                   | 24<br>262          | 4<br>2              | $107 \\ 126$        | 27<br>137          | $32 \\ 408$        | . 4<br>     | $2.0 \\ 3.8$   |            | 186<br>973                                        | .25<br>1.32                  |                    | $\frac{112}{255}$               | 24<br>151              | 32<br>53            | $1.0 \\ 5.8$                                      | 329<br>1,690                         | 7.4<br>7.1        |
| Maximum,<br>Apr. 6-10, 1965<br>Minimum.                                                                          | 14.6                    | 1.6                 |      | 466             | 174                                                                         | 2,290              | 0                   | 78                  | 1,430              | 3,760              |             |                |            | 8,160                                             | 11.1                         |                    | 1,880                           | 1,810                  | 73                  |                                                   | 12,000                               | 7.1               |
| Nov. 18, 1964<br>Weighted average-                                                                               | 224<br>125              | 5.6<br>9.0          |      | 39<br>61        | 5.5<br>13                                                                   | 26<br>140          | 6<br>0              | $\frac{108}{147}$   | 30<br>87           | $\frac{38}{209}$   |             | 2.5<br>3.7     |            | 290<br>595                                        | .27<br>.81                   |                    | 120<br>205                      | 31<br>84               | 32<br>52            | $\begin{array}{c} 1  .  0 \\ 3  .  6 \end{array}$ | 364<br>1,060                         | 7.5<br>7.4        |
|                                                                                                                  |                         |                     |      |                 |                                                                             |                    | 2                   | 5. COLO             | DRADO RI           | IVER AT            | ROBERT      | LEE            |            |                                                   |                              |                    |                                 |                        |                     |                                                   |                                      |                   |
| Water year 1948<br>Maximum,<br>Feb. 21-25,1948<br>Minimum,                                                       | 4.68                    | 7.6                 |      | 218             | 57                                                                          | 63(                | 0                   | 129                 | 628                | 985                |             | 0.2            |            | 2,730                                             | 3.52                         | 33                 | 778                             | 673                    | 64                  |                                                   | 4,210                                |                   |
| July 6-10 1<br>Weighted average                                                                                  | 1,510<br>  304          | 21<br>14            |      | $30 \\ 44$      | 6.2<br>9.8                                                                  | 39<br>104          | 9<br>4              | 111<br>119          | 42<br>80           | 34<br>138          |             | 2.8<br>2.8     |            | 228<br>475                                        | .31<br>.63                   | 7,150              | 100<br>150                      | 9<br>53                | 46<br>60            |                                                   | 382<br>796                           |                   |

9 E

1 a 1

|                      | Hd                                   |         |                 | ł                                       | 8.3                               | l                           | 7.8                                | 7.9                        | 1 7                                                                | 7.6               |          |
|----------------------|--------------------------------------|---------|-----------------|-----------------------------------------|-----------------------------------|-----------------------------|------------------------------------|----------------------------|--------------------------------------------------------------------|-------------------|----------|
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25° C) |         |                 | 5.310                                   | 297                               | 21.1                        | 6,340                              | 334                        | 1,000<br>8 700                                                     | 511               |          |
| So-                  | adsorp-<br>tion<br>ratio             |         |                 |                                         |                                   |                             |                                    |                            |                                                                    |                   |          |
| Per-                 | so.<br>dium                          |         |                 | 78                                      | 23                                | ŝ                           | 77                                 | 32                         | 7 99<br>9 99                                                       | 46                |          |
| ness<br>cO.          | Non-<br>carbon-<br>ate               |         |                 | 435                                     | 31                                | 0                           | 608                                | 33                         | 1.500                                                              | 36<br>84          |          |
| Hard<br>as Co        | Cal.<br>cium,<br>magne-<br>sium      |         |                 | 554                                     | 113                               | 707                         | 722                                | 107                        | 1.560                                                              | 123<br>246        |          |
| ids                  | Tons<br>per<br>day                   |         |                 | 479                                     | 2,750                             | 707                         | 887                                | 112<br>247                 | 151                                                                | L,230<br>182      |          |
| solved so            | Tons<br>per<br>acre-<br>foot         |         |                 | 4.12                                    | 25                                | -                           | 5.05                               | .79                        | 7.53                                                               | 1.21              |          |
| Dis                  | Parts<br>per<br>mil-<br>lion         |         |                 | 3,030                                   | 186                               |                             | 3,710                              | 202<br>583                 | 5,540                                                              | 294<br>888        |          |
| Bo:                  | (B)                                  | neđ     |                 |                                         |                                   |                             |                                    |                            |                                                                    |                   |          |
| Ni-                  | trate<br>(NO.)                       | Contin  |                 | 0.5                                     | 4.4                               |                             | · 2                                | 1.8                        | 2.0                                                                | 3.0               | NGER     |
| Fluo-                | ride<br>(F)                          | LEE     |                 |                                         |                                   |                             |                                    |                            |                                                                    |                   | BALLI    |
| Chlo.                | ride<br>(Cl)                         | ROBERT  |                 | 1,460                                   | 17<br>131                         |                             | 1,700                              | 31<br>188                  | 2,230                                                              | 66<br>290         | RIVER AT |
| Sul-                 | fate<br>(SO.)                        | IVER AT |                 | 372                                     | 36<br>85                          |                             | 568                                | 37<br>110                  | 1,300                                                              | $^{41}_{153}$     | LORADO   |
| Bicar-               | bonate<br>(HCO.)                     | ORADO F |                 | 146                                     | 100                               |                             | 138                                | 91<br>116                  | 76                                                                 | 197               | 30. CO   |
| Po.                  | tas-<br>sium<br>(K)                  | 25. COI |                 | 925                                     | 16<br>96                          |                             | 100                                | 23<br>135                  | 120                                                                | 49<br>223         |          |
| So-                  | dium<br>(Na)                         |         |                 |                                         |                                   |                             | Ξ.                                 |                            | 1,4                                                                |                   |          |
| Mag-                 | ne-<br>sium<br>(Mg)                  |         |                 | 45                                      | 6.8<br>10                         |                             | 59                                 | 7.3<br>13                  | 116                                                                | 18                |          |
| Cal-                 | cium<br>(Ca)                         |         |                 | 148                                     | 34<br>45                          |                             | 192                                | 31                         | 434                                                                | 28<br>69          |          |
|                      | (Fe)                                 |         |                 |                                         |                                   |                             |                                    |                            |                                                                    |                   |          |
|                      | SIICA<br>(SiO <sub>2</sub> )         |         |                 | 8.0                                     | 21<br>16                          |                             | 23                                 | 13                         | 5.1                                                                | 17                |          |
| Mean                 | dis-<br>charge<br>(cfs)              |         |                 | 58.5                                    | 5,467<br>240                      |                             | 88.5                               | 206<br>157                 | 1.0                                                                | 75.8              |          |
|                      | Date of collection                   |         | Water year 1949 | Maximum,<br>Nov. 7-10,1948-<br>Minimum. | June 8, 1949<br>Weighted average- | Water year 1950<br>Maximum, | May 5-8, 1950<br>Minimum, Aug. 2-4 | 18-22<br>Weighted average- | Water year 1951<br>Maximum,<br>Apr. 1-10,1951-<br>Minimum Tuno 3-4 | Weighted average- |          |

|         | 9 9                                                       | 2 7.4                                               | 00<br>7.4<br>07.2                                                   | 0.0                                               | 9 7.0                                               | 0 7.5                                 | 3 7.1                           | - |
|---------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------|---------------------------------|---|
| _       | 9                                                         | 998                                                 | 10,60<br>24<br>250                                                  | 5,50                                              | 93                                                  | 4,33                                  | 832                             |   |
|         | 1                                                         | 2.8<br>3.1                                          | 22<br>5.9                                                           | 15                                                | 1.3<br>2.8                                          | 9.3                                   | 1.7<br>2.4                      |   |
|         | 60                                                        | 1 23                                                | 73<br>23                                                            | 73                                                | 34<br>45                                            | 09                                    | 38<br>44                        | _ |
|         | 1.290                                                     | 34<br>77                                            | 1,440<br>11<br>283                                                  | 650                                               | 62<br>135                                           | 832                                   | 34<br>87                        |   |
|         | 1,400                                                     | 152<br>194                                          | 1,550<br>97<br>383                                                  | 740                                               | 155<br>228                                          | 940                                   | 161<br>206                      |   |
|         | 39.7                                                      | 2,080                                               | 2,980<br>242<br>220                                                 |                                                   |                                                     | -                                     | 11                              |   |
|         | 5.71                                                      | .52                                                 | 9.38<br>.20<br>1.67                                                 | 4.37                                              | .74                                                 | 3.85                                  | .63                             |   |
|         | 4,200                                                     | 384<br>517                                          | 6,900<br>144<br>1,230                                               | 3,210                                             | 268<br>545                                          | 2,830                                 | 302<br>463                      |   |
| -       |                                                           |                                                     |                                                                     |                                                   |                                                     |                                       |                                 |   |
| LINGER  | 1.5                                                       | 2.8                                                 | 6 6<br>1 6<br>1 6<br>1 6<br>1 6<br>1 6<br>1 6<br>1 6<br>1 6<br>1 6  | 1.0                                               | 3.0                                                 | 2.5                                   | 3.1                             |   |
| AT BAL  |                                                           |                                                     |                                                                     |                                                   |                                                     |                                       |                                 |   |
| RIVER   | 1,680                                                     | 98<br>154                                           | 3,200<br>15<br>488                                                  | 1,590                                             | 62<br>171                                           | 1,130                                 | 58<br>138                       |   |
| DLORADO | 1,000                                                     | 99<br>96                                            | 1,140<br>15<br>235                                                  | 396                                               | 49<br>118                                           | 634                                   | 46<br>79                        |   |
| 30. CC  | 124                                                       | 144<br>142                                          | 129<br>105<br>121                                                   | 110                                               | 114                                                 | 132                                   | 155<br>146                      |   |
|         | 974                                                       | 79<br>110                                           | 1,960<br>13<br>300                                                  | 922                                               | 36<br>107                                           | 655                                   | 45<br>88                        |   |
|         | 124                                                       | 11                                                  | 137<br>4.2<br>30                                                    | 80                                                | 11                                                  | 68                                    | 7.7                             |   |
|         | 355                                                       | 54<br>54                                            | 395<br>32<br>105                                                    | 165                                               | 44<br>64                                            | 265                                   | 52<br>61                        |   |
|         |                                                           |                                                     |                                                                     |                                                   |                                                     |                                       |                                 |   |
|         | 7.8                                                       | 12                                                  | 5.0<br>9.2<br>9.1                                                   | 3.3                                               | 9.9<br>4.0                                          | 11                                    | 11<br>8.0                       |   |
|         | ي.<br>ت                                                   | 2,005<br>177                                        | 160<br>622<br>58.7                                                  | 167                                               | 432<br>60.1                                         | 419                                   | 395<br>198                      |   |
|         | Water year 1962<br>Maximum,<br>May 1-31, 1962<br>Minimum, | Sept. 5-301<br>Weighted average-<br>Water year 1963 | Maximum,<br>May 2-5, 1963<br>Minimum, Aug. 14-<br>Weighted average- | Maximum, 15, 1964-<br>Sept. 15, 1964-<br>Minimum, | Sept. 19-30<br>Weighted average-<br>Water vear 1965 | Maximum,<br>Apr. 27, 1965<br>Minimum, | Apr. 28-29<br>Weighted average- |   |

Ŀ

e.

r

÷.

•••

c,

|                      | Hq                                   |          | 7.6                                            | 7.2                                              | 7.3                                           | 7.5                                          | 8.2                                            | 8.1<br>7.4                                  |          | 1                                              | 11                                               | 7.8                                                 | 7.9                                                     | 8.0                                             | 7.7                                                    | 7.8                                                                                          |
|----------------------|--------------------------------------|----------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------------|----------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25° C) |          | 556                                            | 357<br>494                                       | 636                                           | 257<br>441                                   | 584                                            | 322<br>466                                  |          | 2,570                                          | 281<br>537                                       | 1,920                                               | 315<br>455                                              | 1,890                                           | 345<br>642                                             | 2,030<br>240<br>478                                                                          |
| So-                  | adsorp-<br>tion<br>ratio             |          | 0.4                                            | 44                                               | 1.3                                           | ч <u>е</u> ;                                 | <u>ت</u> .                                     | 4.                                          |          | 1                                              | 11                                               | l                                                   | 11                                                      | ł                                               | 11                                                     |                                                                                              |
| Per-                 | cent<br>so-<br>dium                  |          | <u>م</u>                                       | 15                                               | 29                                            | ۵                                            | 14                                             | 14                                          |          | 09                                             | 20<br>37                                         | 57                                                  | 334                                                     | 67                                              | 33<br>43                                               | 67<br>16<br>37                                                                               |
| 0.0                  | Non-<br>carbon-<br>ate               |          | 18                                             | 15                                               | 13                                            | n o                                          | œ                                              | 14                                          |          | 00<br>00<br>00                                 | 36.8                                             | 260                                                 | 15<br>30                                                | 177                                             | 40 8                                                   | 194<br>3<br>30                                                                               |
| Hardn<br>as CoC      | Cal-<br>cium,<br>magne-<br>sium      |          | 282                                            | $164 \\ 241$                                     | 242                                           | $120 \\ 210$                                 | 284                                            | 145<br>224                                  |          | 522                                            | 112<br>168                                       | 397                                                 | 118<br>151                                              | 292                                             | 113<br>180                                             | 308<br>100<br>146                                                                            |
|                      | Tons<br>per<br>day                   |          | 56.7                                           | 29.0<br>42.0                                     | 3.93                                          |                                              | 1                                              |                                             |          | 250                                            | 728                                              | 823                                                 | 630<br>954                                              | 0.60                                            | 220<br>521                                             | ,570<br>,580<br>442                                                                          |
| lved solid           | Tons<br>per<br>acre-<br>foot         | -        | 0.43                                           | 38                                               | .50                                           | .33                                          | .46                                            | .24                                         |          | 2.08 1,                                        | .24                                              | 1.50                                                | .37 9,                                                  | 1.46 1,                                         | .52                                                    | 1.50 1.19 6                                                                                  |
| Disso                | Parts<br>per<br>mil-<br>lion         | -        | 316                                            | 204<br>281                                       | 364                                           | 146<br>246                                   | 341                                            | 179<br>267                                  |          | 1,670                                          | 176<br>324                                       | 1,100                                               | 189<br>270                                              | 1,070                                           | 209<br>380                                             | 1,220<br>137<br>280                                                                          |
| Bo.                  | n (g)                                |          |                                                |                                                  |                                               |                                              |                                                |                                             |          |                                                |                                                  |                                                     |                                                         |                                                 |                                                        |                                                                                              |
| .:<br>z              | trate<br>(NO.)                       | ABA      | 1.8                                            | 1.5                                              | £.                                            | 3.8                                          | 5.0                                            | 3.8                                         | SABA     | 1.5                                            | 2.9<br>2.9                                       | 2.8                                                 | 3.5<br>4 10                                             | 1.8                                             | 8.5<br>6.4                                             | 3.0<br>3.0<br>2.8                                                                            |
| Fluo-                | ride<br>(F)                          | SAN S.   | 0.3                                            | 1.65                                             | ų                                             |                                              | ¢.                                             | 12                                          | R SAN    | 1                                              |                                                  | 1                                                   |                                                         | ł                                               | 11                                                     |                                                                                              |
| Chlo-                | cI)                                  | IVER AT  | 20                                             | 14<br>20                                         | 54                                            | 3.7<br>14                                    | 20                                             | 10                                          | IVER NEA | 558                                            | 15<br>64                                         | 385                                                 | 22<br>48                                                | 415                                             | 8 8<br>8 73                                            | 463<br>7.0<br>56                                                                             |
| -lus                 | fate<br>(SO.)                        | N SABA B | 16                                             | 14<br>16                                         | 34                                            | 7.6<br>15                                    | 20                                             | 11                                          | ORADO RI | 354                                            | 11                                               | 231                                                 | 16<br>31                                                | 182                                             | 21<br>51                                               | 154<br>9.1<br>32                                                                             |
| Ricar-               | bonate<br>(HCO.)                     | 89. SA)  | 323                                            | $192 \\ 276$                                     | 280                                           | 140<br>245                                   | 336                                            | 172<br>256                                  | 1. COL   | 169                                            | 126<br>161                                       | 167                                                 | 126<br>147                                              | 141                                             | $128 \\ 170$                                           | 139<br>118<br>142                                                                            |
| Po-                  | m tas-<br>sium<br>(K)                |          | 14                                             | 13<br>15                                         | 46                                            | 0   4.0                                      | 21                                             | 11<br>14                                    | 6        | 356                                            | 13<br>47                                         | 242                                                 | 17<br>34                                                | 276                                             | 26<br>63                                               | 286<br>8.6<br>39.6                                                                           |
| 50<br>50             | 7 E (2)                              |          |                                                |                                                  |                                               | б,<br>г                                      |                                                |                                             |          |                                                | 6.9                                              |                                                     | 9.4                                                     |                                                 | 6.5                                                    | 1.2                                                                                          |
| Ma                   | (M siu                               | -        | 31                                             | 51 28                                            | 41 34                                         | 51 20                                        | 71 26                                          | 54 2J                                       | -        | 38 45                                          | 35 35 11                                         | 08                                                  | 45.0                                                    | 86 19                                           | 34<br>49<br>1, (                                       | 43<br>33<br>43<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23 |
| 3                    | C in C                               | -        |                                                |                                                  |                                               |                                              |                                                |                                             |          |                                                |                                                  |                                                     |                                                         |                                                 |                                                        |                                                                                              |
|                      | Iron<br>(Fe)                         | -        |                                                |                                                  |                                               |                                              |                                                |                                             |          |                                                |                                                  |                                                     |                                                         |                                                 |                                                        |                                                                                              |
|                      | Silica<br>(SiO.)                     |          | 12                                             | 11                                               | 16                                            | 10                                           | 13                                             | 8.0                                         |          |                                                | 11                                               | 15                                                  | 11                                                      | 17                                              | 12                                                     | 14<br>15<br>15                                                                               |
| Mean                 | dis-<br>charge<br>(cfs)              |          | 66.5                                           | 52.6<br>52.7                                     | 4.0                                           | 481<br>180                                   | 135                                            | 442<br>249                                  |          | 302                                            | 1,474<br>832                                     | 277                                                 | 18,880<br>1,309                                         | 379                                             | 2,167<br>508                                           | 528<br>17,800<br>585                                                                         |
|                      | Date of collection                   |          | Water year 1963<br>Maximum,<br>Dec. 1-31, 1962 | Minimum,<br>May 8-16, 1963-<br>Weighted average- | Water year 1964<br>Maximum<br>Aug. 2-6, 1964- | Minimum,<br>Sept. 20-29<br>Weighted average- | Water year 1965<br>Maximum,<br>Nov. 1-19,1964- | Minimum,<br>Nov. 20-23<br>Weighted average- |          | Water year 1948<br>Maximum,<br>Oct. 15-19,1947 | Minimum,<br>Sept.11-15,1948<br>Weighted average- | Water year 1949<br>Maximum,Sept.10-<br>13, 17, 1949 | Minimum, Apr.21-23,<br>27-30, 1949<br>Weighted average- | Water year 1950<br>Maximum, Aug.2-3,<br>9, 1950 | Minimum, Sept.11,<br>21-23,25, 27<br>Weighted average- | Water year 1951<br>Maximum, 1951<br>July 9-10, 1951<br>Minimum, May 26<br>Weighted average-  |

÷

κ

 $\mathbf{e}^{\mathbf{i}}$ 

e ,

7.5 7.6 8.1 7.8 7.9 7.8 7.6 7.7 8.2 8.2 7.9 8.1 7.9 8.1 7.7 Hd 2,710 1,840,350 380 536 Specific conduct-ance (micro-mhos at 25° C) 1,220 205 ,010 310 1,130 174 361 234 317 481 060 289 419 253 333 820 D. ΩÎ. -So-dium adsorp-tion ratio 4.7 .6 9.5 1.2 5.6 1.3 3.5 1.1 3.5 25 6.6 .6 3.5 .8 5.5 .8 Per-cent so-51 23 23 51 27 40 71 20 34 53 30 60 25 34 48 32 37 57 14 26 64 21 Non-carbon-ate ° [ 14 1.5 232 $^{10}_{18}$ 279 6 14 232 41 175 29 48 166 220  $^{18}_{28}$ 60 280 Hardness as CaCO. 344 360 91 172 104 Cal-cium, magne-sium 284 83 116 271 118 143 434 78 132 380 114 137 436 332 124 6,4401,850 10,2201,230 543 4,000 504 5,1003,850 376 7,190 330 730 680 070 959 3,980 308 636 661 945 504 274 Fons per day e) 9 Б, solids 1.43 1.11 .31 .43 1.00 1.50 2.07 28 .41 26 86 26 1.62. 14 34 1.50.17 Fons per acre-foot Dissolved 818 227 315 1,0501,100 190 1,5201,100  $149 \\ 204$ 148 304 732 127 184 189 266 633 190 278 102214  $171 \\ 242$ Parts per mil-lion Bo-SABA--Continued 2.0 2.5 3.40 3.8 2.0 2.0 2.0 3°2 4.0 3.4 3.2 2.5 3.5 3.0 2.0 2.2 Ni-trate NO<sub>x</sub>) 1.2 ł 0.2 1 11 ||||ł 1 11 ł 11 1 11 ł Fluo-ride (F) 5.5 SAN 2 ы. 19.3 202 25 56  $16 \\ 29$ 238 48 72 470 16 432 680  $^{18}_{43}$ 352 100 12 57 223 Chlo. (Cl) NEAR 7.4 16 4. . 9. COLORADO RIVER 233 142 14730 30 57 17 29 188 21 261 190 11 38 156 20 40 Sul-fate (SO.) Bicar-bonate (HCO<sub>i</sub>) 258 127 151 188 94 142 180 127 145 191 120 125 156 110 160 207 125 148 145 102 129 137129  $^{6.0}_{21}$ Po-tas-(K) 91. 7. 264425 245 275 15 132 20 32 226 13 140 149 28 45 137 So-dium (Na) 00 (C 90 N 0 P 03 4 g 12.4 11.6 44 5. 34 in a ຕ່ຳດ 4.9 Mag-ne-sium (Mg) 22 21 40 39 27 11  $^{42}_{42}$  $^{39}_{46}$ 74  $^{38}_{44}$ 108 26 88 38 44 102 36 100 29 86 28 97 Cal-Cal | | | 0.14 1 11 1 11 | || 1 11 1 11 ł ł [ ](Fe) 00 ŝ 7.8 Silica (SiO.,) 12 12 13 15 8. 10 10 13.8 13 18 19 25,570 246 6,522 593 92. 35,970 651 1,3407,5505247,264906 22,0301,660 2,04677216,0203,3541,800 180 198161 Mean dis-charge (cfs) 3,640 Water year 1959 Maximum, May 21-23, 30-31, 1959----3 Minimum, Jully 21-31 Weighted average-Water year 1954 Maximum, 1954 Mar. 27-31,1954 Minimum, 0ct. 5-12, 1953 Weighted average-Water year 1955 Naximum, Oct. 2-4, 1954-Minimum, Sept.23-25,1955 Weighted average-Water year 1958 Maximum, 1958----Minimum, Oct 14-18, 24-26, 1957---- 2 Weighted average-Water year 1953 Maximun, July 19, 1953--Minimum, Aug. 22-23, 25-27------Weighted average-Water year 1957 Maximum, Aug. 28-31, Sept. 1-5, 1957 Minimum, July 20-31----- 1 Weighted average-Water year 1956 Maximum, Aug. 21, 24-28, 1956----Minimum, Oct. 1-5, 1955-Weighted average-Minimum, Sept. 11-13---- 3 Weighted average-June 3, 1952--collection Water year 1952 Maximum, é Date

¢,

ų

ŧ.

|                      | Hd                                               |          | 7.8                                            | 7.7                                              | 7.6                                          | 7.3                                            | 7.2                                            | 7.4<br>7.6                                       | 6.9                                        | 7.2                                                 | 7.8<br>7.8<br>7.4                                                                    | 7.7<br>7.7<br>7.0                                                                                    |          | 8.0                                            | 7.1                         |
|----------------------|--------------------------------------------------|----------|------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|-----------------------------|
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25 <sup>-</sup> C) |          | 2,310                                          | 237<br>534                                       | 1,410                                        | 275<br>625                                     | 4,120                                          | 365<br>755                                       | 2,320                                      | 276<br>674                                          | 2,260<br>262<br>475                                                                  | 2,320<br>334<br>530                                                                                  |          | 632                                            | 462                         |
| So.                  | adsorp-<br>tion<br>ratio                         |          | 8.4                                            | .5                                               | 4.5                                          | 1.6                                            | 8.<br>5                                        | 2.0                                              | 1                                          | 1.5                                                 | 10,00                                                                                | 5.6<br>.8<br>1.0                                                                                     |          | 1.8                                            | œ;                          |
| Per-                 | so-<br>dium                                      |          | 69                                             | 33                                               | 57                                           | 36                                             | 59                                             | 30                                               | ł                                          | 21                                                  | 6                                                                                    | 57<br>26<br>26                                                                                       |          | 68<br>3                                        | 24                          |
| s Q                  | Non-<br>carbon-<br>ate                           |          | 194                                            | 3<br>49                                          | 164                                          | 6 8 <u>6</u>                                   | 708                                            | 32                                               | 402                                        | 10<br>71                                            | 212<br>2<br>34                                                                       | 288<br>15<br>41                                                                                      |          | 20                                             | 29                          |
| Hardn<br>as CoO      | Cal-<br>cium,<br>magne-<br>sium                  |          | 338                                            | 91<br>178                                        | 298                                          | 129                                            | 842                                            | $124 \\ 215$                                     | 576                                        | 102<br>206                                          | 355<br>126<br>177                                                                    | 432<br>126<br>192                                                                                    |          | 196                                            | 167                         |
| ę                    | Tons<br>per<br>day                               |          | 216                                            | 13,480<br>1,070                                  | 5,850                                        | 2,400<br>1,030                                 | 1,050                                          | 4,720                                            | 2,560                                      | 1,680                                               | <br>660,                                                                             |                                                                                                      |          |                                                |                             |
| solved soli          | Tons<br>per<br>acre-<br>foot                     |          | 1.77                                           | .18                                              | 11.1                                         | .49                                            | 3.32                                           | . 59                                             | 1.85                                       | .52                                                 | 1.70<br>.20<br>.36                                                                   | 1.58<br>.25<br>.40                                                                                   |          | 0.49                                           | .34                         |
| Dis                  | Parts<br>per<br>mil-<br>lion                     |          | 1,300                                          | 136<br>316                                       | 817                                          | 156<br>357                                     | 2,440                                          | 209<br>440                                       | 1,360                                      | 155<br>384                                          | 1,250<br>149<br>267                                                                  | 1,160<br>184<br>291                                                                                  |          | 361                                            | 252                         |
| Bo-                  | (B)                                              | ued      |                                                |                                                  |                                              |                                                |                                                |                                                  |                                            |                                                     |                                                                                      |                                                                                                      |          |                                                |                             |
| -iz                  | trate<br>(NO.)                                   | Contin   | 1.5                                            | 4.2                                              | 2.2                                          | 2.8                                            | 4.0                                            | 67 59<br>59 59<br>59 59                          | .2                                         | 1.0                                                 | 1.0<br>3.0<br>2.0                                                                    | 2.2                                                                                                  | IN       | 0.5                                            | 1.8                         |
| Fluo-                | ride<br>(F)                                      | SABA     |                                                |                                                  | 0.6                                          |                                                |                                                |                                                  | ł                                          | ŵ l                                                 | 111                                                                                  | 111                                                                                                  | T AUST   | 0.5                                            | e.                          |
| Chlo-                | ride<br>(Cl)                                     | SAR SAN  | 560                                            | 12<br>63                                         | 260                                          | 11<br>84                                       | 1,000                                          | 40<br>114                                        | 490                                        | 21<br>101                                           | 550<br>3.4<br>45                                                                     | 540<br>27<br>54                                                                                      | AUSTIN A | 68                                             | 44                          |
| Sul-                 | fate<br>(SO.)                                    | RIVER NI | 167                                            | 10<br>43                                         | 178                                          | 6.0<br>46                                      | 500                                            | 26<br>70                                         | 289                                        | 13<br>54                                            | 150<br>7.6<br>31                                                                     | 100<br>18<br>34                                                                                      | LAKE     | 46                                             | 27                          |
| Bicar-               | bonate<br>(HCO.)                                 | LORADO   | 176                                            | 108<br>158                                       | 163                                          | 147<br>170                                     | 162                                            | 113<br>168                                       | 212                                        | 112<br>165                                          | 174<br>151<br>174                                                                    | 176<br>135<br>184                                                                                    | 107.     | 178                                            | 169                         |
| Po-                  | tas-<br>sium<br>(K)                              | 91. CO   | 354                                            | 12                                               | 180                                          | 6.2<br>51                                      | 564                                            | 25<br>73                                         | 271                                        | 3.9<br>59                                           | 329<br>6.0<br>29                                                                     | 267<br>20<br>33                                                                                      |          | 58                                             | 3.7                         |
| Ś                    | dium<br>(Na)                                     |          |                                                |                                                  |                                              |                                                |                                                |                                                  |                                            | 13                                                  |                                                                                      |                                                                                                      |          |                                                | 25                          |
| Mag-                 | sium<br>(Mg)                                     |          | 35                                             | 4.0<br>13                                        | 25                                           | 9.0<br>16                                      | 8                                              | 7.2<br>19                                        | 53                                         | 5.4<br>14                                           | 22<br>3.3<br>9.9                                                                     | 28<br>8.8<br>12                                                                                      |          | 21                                             | 14                          |
| Cal.                 | cium<br>(Ca)                                     |          | 78                                             | 30                                               | 78                                           | 37<br>53                                       | 202                                            | 38<br>55                                         | 143                                        | 32<br>59                                            | 106<br>45<br>55                                                                      | 127<br>36<br>57                                                                                      |          | 44                                             | 44                          |
|                      | lron<br>(Fe)                                     |          |                                                |                                                  |                                              |                                                |                                                |                                                  |                                            |                                                     |                                                                                      |                                                                                                      |          |                                                |                             |
|                      | Silica<br>(SiO <sub>2</sub> )                    |          | 18                                             | 12                                               | 13                                           | 14                                             | 11                                             | 13                                               | 0.6                                        | 11<br>9.8                                           | 10<br>6.8<br>8.6                                                                     | 6.2<br>6.4<br>8.4                                                                                    |          | 14                                             | 9.1                         |
| Mean                 | dis-<br>charge<br>(cfs)                          |          | 204                                            | 36,700<br>1,253                                  | 2,650                                        | 5,700<br>1,073                                 | 160                                            | 8,367<br>508                                     | 696                                        | 4,005<br>446                                        | 358<br>24000<br>595                                                                  | 1,670<br>855<br>1,122                                                                                |          |                                                |                             |
|                      | Date of collection                               |          | Water year 1960<br>Maximum,<br>Aur.13-14.1960- | Minimum,<br>Oct. 4-8, 1959-<br>Weighted average- | Water year 1961<br>Maximum,<br>Sept. 6, 1961 | Minimum,<br>Oct. 17, 1960<br>Weighted average- | Water year 1962<br>Maximum,<br>June 24-27,1962 | Minimum,<br>Oct.10-12, 1961<br>Weighted average- | Water year 1963<br>Maximum,<br>May 7, 1963 | Minimum,<br>Oct. 9-16,<br>1962<br>Weighted average- | Water year 1964<br>Maximum,<br>May 23-24,1964<br>Manum, Sept.22<br>Weighted average- | Water year 1965<br>Maximum, 25, 1965-<br>Sept. 25, 1965-<br>Minimum, Jan. 23-25<br>Weighted average- |          | Water year 1965<br>Maximum,<br>Dec. 1-31, 1964 | Minimum, July<br>1-31, 1965 |

14

ē.

 $\overline{v}^{*}$ 

- 60 -

|                 | Hq                                               |         | 0                                            | 5                                                                    |                                                     | 11                                                    | 7.7                                                   | 7.6                                       | 8.0                                            | 7.7                                              | 8.2                                            | 8.0                                              | 8.2                                            | 7.9                                              | 88.2                                                                                      | 7.9<br>8.2                                                                                |
|-----------------|--------------------------------------------------|---------|----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Specific        | conduct-<br>ance<br>(micro-<br>mhos at<br>25° C) |         | 601                                          | 450<br>526                                                           | 515                                                 | 447<br>487                                            | 480                                                   | 456<br>464                                | 529                                            | 462<br>497                                       | 547                                            | 470<br>522                                       | 431                                            | 379<br>384                                       | 477<br>389<br>408                                                                         | 444<br>428<br>431                                                                         |
| Ś               | dium<br>adsorp-<br>tion<br>ratio                 |         |                                              | 11                                                                   | ł                                                   | 11                                                    |                                                       |                                           | ł                                              |                                                  | 2.1                                            | $1.3 \\ 1.5$                                     | œ                                              | 9.7                                              | ىن مۇ مە                                                                                  | 1.0                                                                                       |
|                 | Per-<br>cent<br>so-<br>dium                      |         | ŝ                                            | 32.8                                                                 | 33                                                  | 33                                                    | 31                                                    | 32                                        |                                                | 24                                               | 46                                             | 38                                               | 25                                             | 212                                              | 15<br>27<br>23                                                                            | 30<br>30<br>30                                                                            |
| # d             | Non-<br>carbon-<br>ate                           |         | ŝ                                            | 1 8 9<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8<br>8 8 | 30                                                  | 30                                                    | 29                                                    | 31<br>27                                  | 40                                             | 3 4<br>5                                         | 12                                             | 18<br>26                                         | 20                                             | 18<br>18                                         | 26<br>13                                                                                  | 20<br>16<br>18                                                                            |
| Hardn<br>as CaC | Cal-<br>cium,<br>magne-                          |         | 101                                          | 155                                                                  | 176                                                 | 159<br>1 <b>62</b>                                    | 167                                                   | 167<br>160                                | 166                                            | 168<br>167                                       | 151                                            | 156                                              | 166                                            | 150                                              | 214<br>146<br>162                                                                         | 167<br>149<br>154                                                                         |
| ids             | Tons<br>per<br>day                               |         | ää                                           | 818<br>1,070                                                         | 546                                                 | 647<br>898                                            | 711                                                   | 1,110                                     | 651                                            | 404<br>804                                       | 224                                            | 637<br>596                                       | 192                                            | 1,090                                            | 358<br>1,180<br>600                                                                       | 203<br>1,760<br>867                                                                       |
| solved soli     | Tons<br>per<br>acre-<br>foot                     |         | 44                                           | .35                                                                  | 39                                                  | .35                                                   | .39                                                   | .34                                       | .41                                            | .35                                              | .46                                            | .36                                              | .34                                            | .31                                              | .37                                                                                       | 98.5<br>88.5<br>88.5<br>88.5<br>8                                                         |
| Dis             | Parts<br>per<br>mil-<br>lion                     |         | 200                                          | 254<br>300                                                           | 288                                                 | 255<br>274                                            | 288                                                   | 251<br>270                                | 299                                            | 260<br>282                                       | 340                                            | 262<br>293                                       | 250                                            | 214<br>225                                       | 272<br>224<br>235                                                                         | 262<br>232<br>243                                                                         |
|                 | -98<br>(B)                                       |         |                                              |                                                                      |                                                     |                                                       |                                                       |                                           |                                                |                                                  |                                                |                                                  |                                                |                                                  |                                                                                           |                                                                                           |
|                 | Ni-<br>trate<br>(NO,)                            | IN      | a<br>C                                       | 1.2                                                                  | 1.0                                                 | 1.0                                                   | 1.0                                                   | 1.8<br>1.4                                | ő                                              | $1.2 \\ 1.0$                                     | 1.5                                            | 1.5 1.5                                          | 3.0                                            | 3.2                                              | 3.5<br>2.0<br>1.9                                                                         | 1.2<br>1.0<br>1.0                                                                         |
|                 | Fluo-<br>ride<br>(F)                             | AT AUST |                                              | ; !                                                                  | ł                                                   |                                                       | ri                                                    | 0 <u>0</u>                                | ņ                                              | N. C.                                            | 2                                              |                                                  |                                                | n n                                              | 140                                                                                       | ຕູຕູຕຸ                                                                                    |
|                 | Chlo-<br>ride<br>(Cl)                            | RIVER   | C Y                                          | 45                                                                   | 58                                                  | 47<br>50                                              | 49                                                    | 48<br>48                                  | 67                                             | 40                                               | 70                                             | 47<br>61                                         | 35                                             | 26<br>27                                         | 28<br>28<br>28                                                                            | 42<br>410<br>410                                                                          |
|                 | Sul-<br>fate<br>(SO <sub>i</sub> )               | OLORADO | e<br>r                                       | 27<br>35                                                             | 32                                                  | 30                                                    | 31                                                    | 30                                        | 39                                             | 35                                               | 38                                             | 27<br>35                                         | 20                                             | 17                                               | 20<br>16                                                                                  | 22<br>21<br>22                                                                            |
|                 | Bicar-<br>bonate<br>(HCO,)                       | 114. 0  | 186                                          | 149                                                                  | 179                                                 | 158<br>170                                            | 169                                                   | 166<br>162                                | 154                                            | 164<br>161                                       | 170                                            | 168<br>160                                       | 178                                            | 161<br>164                                       | 230<br>174<br>182                                                                         | 180<br>162<br>167                                                                         |
|                 | ro-<br>tas-<br>sium<br>(K)                       |         | 36<br>36                                     | 27<br>39                                                             | 40                                                  | 31<br>36                                              | 34                                                    | 32<br>34                                  | 88                                             | 25<br>37                                         | 29                                             | 36<br>44                                         | 25                                             | 18<br>19                                         | 17<br>25<br>22                                                                            | 30<br>29<br>31                                                                            |
|                 | So-<br>dium<br>(Na)                              |         |                                              |                                                                      |                                                     |                                                       |                                                       |                                           |                                                |                                                  |                                                |                                                  |                                                |                                                  |                                                                                           |                                                                                           |
| 2               | mag-<br>ne-<br>sium<br>(Mg)                      |         | 16                                           | 14                                                                   | 16                                                  | 15<br>14                                              | 14                                                    | 14<br>14                                  | 16                                             | 16<br>17                                         | 16                                             | 13                                               | 13                                             | 33                                               | 17<br>120<br>120                                                                          | 11                                                                                        |
|                 | Cal-<br>cium<br>(Ca)                             |         | 5                                            | 39<br>40                                                             | 44                                                  | 39<br>42                                              | 44                                                    | 44<br>41                                  | 40                                             | 41<br>39                                         | 34                                             | 41<br>40                                         | 45                                             | 42<br>43                                         | 58<br>45<br>58                                                                            | 445<br>42<br>22<br>22                                                                     |
|                 | Iron<br>(Fe)                                     |         | 0.02                                         |                                                                      | 1                                                   |                                                       | ł                                                     |                                           | .03                                            | 11                                               |                                                | 11                                               |                                                | : :                                              | ::::                                                                                      | 10.11                                                                                     |
|                 | Silica<br>(SiO <sub>2</sub> )                    |         | a                                            | 10                                                                   | 7.2                                                 | 6.6<br>6                                              | 15                                                    | 12                                        | 12                                             | 9.2<br>11                                        | 11                                             | 11                                               | 12                                             | 11                                               | 12<br>12                                                                                  | 9.4<br>7.2<br>8.6                                                                         |
| M               | dis-<br>charge<br>(cfs)                          |         | 1 136                                        | 1,193                                                                | 702                                                 | 939<br>1,214                                          | 914                                                   | 1,643 $1,263$                             | 806                                            | 576<br>1,056                                     | 244                                            | 901<br>754                                       | 284                                            | 1893<br>921                                      | 487<br>1,952<br>945                                                                       | 2,805<br>1,322                                                                            |
|                 | Date of collection                               |         | Water year 1948<br>Maximum,<br>Oct 1-21 1947 | Winimum,<br>Sept. 1-30,1948<br>Weighted average-                     | Water year 1949<br>Maximum,Jan.1-14,<br>17-31, 1949 | Minimum, Oct. 1-4,<br>6-31, 1948<br>Weighted average- | Water year 1950<br>Maximum, Jan. 1 -<br>Feb. 28, 1950 | Minimum,<br>May 1-31<br>Weighted average- | Water year 1951<br>Maximum,<br>Sept. 1-30,1951 | Minimum,<br>Oct. 1-31, 1950<br>Weighted average- | Water year 1952<br>Maximum,<br>Nov. 1-30, 1951 | Minimum,<br>Sept.1-30, 1952<br>Weighted average- | Water year 1953<br>Maximum,<br>Oct. 1-31, 1952 | Minimum,<br>July 1-31, 1953<br>Weighted average- | Water year 1954<br>Maximum,<br>Jan.1-31, 1954-<br>Minimum, May 1-31-<br>Weighted average- | Water year 1955<br>Maximum,<br>Jan.1-31, 1955-<br>Minimum, July 1-31<br>Weighted average- |

1

Table 5.--Summary of chemical analyses at daily stations on streams in the Colorado River basin--Continued

U

\*7

ъ

ę

đ,

•...

| a ł                 | bH                                 |         | c<br>t          | 0               | 3 8.1<br>6                                       | 3 8.1                                          | 4 7.7<br>9                                          | 9<br>8.5                                       | 9 65<br>                                         | 6.7 10                                    | 8.2                                              | 38 7.6                      | 26 7.6                                           | 17 7.6                                         | 73 7.2                                           | 40 7.5                                         | 64 7.2<br>16 7.3                                 | 38 7.6                                         | 61 7.6<br>03 7.2                                 |
|---------------------|------------------------------------|---------|-----------------|-----------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Specific<br>conduct | ance<br>(micro<br>mhos a<br>25° C) |         | ç               | 9<br>F          | 41                                               | 43                                             | 340                                                 | 38                                             | 33                                               | 20                                        | 35                                               | 45                          | ň 4                                              | 5                                              | ৰ ব                                              | ۍ<br>                                          | 4 10                                             | 9                                              | 00                                               |
| So-                 | adsorp-<br>tion<br>ratio           |         | ,<br>-          | 7.1             | .1                                               | 1.0                                            | <u>0</u> 6                                          | 7.                                             |                                                  | ł                                         | 9.8.<br>9.8                                      | 1.1                         | <u>ة.</u><br>ق                                   | .5                                             |                                                  | 1.2                                            | <br>                                             | 1.6                                            | 1.1                                              |
| Per-                | cent<br>so-<br>dium                |         | 6               | 55              | 31                                               | 29                                             | 18<br>28                                            | 22                                             | 203                                              |                                           | 20                                               | 28                          | 29<br>27                                         | 15                                             | 23                                               | 29                                             | 30                                               | 36                                             | - 28                                             |
| neas<br>CO.         | Non-<br>carbon-<br>ate             |         |                 | ΩŢ              | 16                                               | 24                                             | 16<br>12                                            | 21                                             | 12<br>20                                         | 26                                        | 17<br>24                                         | 32                          | 17<br>26                                         | 24                                             | 31                                               | 36                                             | 40                                               | 57                                             | 26.38                                            |
| Hard<br>as Co       | Cal-<br>cium,<br>magne-<br>sium    |         |                 | 146             | 150<br>146                                       | 161                                            | 124<br>124                                          | 156                                            | 132                                              | 175                                       | 164<br>169                                       | 181                         | 120                                              | 238                                            | 186                                              | 194                                            | 172<br>186                                       | 200                                            | 205                                              |
| ds                  | Tons<br>per<br>day                 |         |                 | 1,510           | 587<br>841                                       | 8,640                                          | 2,430<br>2,660                                      | 2,800                                          | 3,250<br>2,540                                   | 2,660                                     | 881<br>1,100                                     | 935                         | $^{4}_{2,340}$                                   | 702                                            | $^{1,700}_{1,860}$                               | 156                                            | 2,090                                            | 1,370                                          | 239<br>964                                       |
| solved soli         | Tons<br>per<br>acre-<br>foot       |         |                 | 0.34            | .31                                              | .35                                            | .25                                                 | .32                                            | .26                                              | .39                                       | .30                                              | .39                         | . 33                                             | .40                                            | .35                                              | .45                                            | .40                                              | .47                                            | .43                                              |
| Dis                 | Parts<br>per<br>mil-<br>lion       |         |                 | 249             | 225<br>234                                       | 259                                            | 184<br>201                                          | 238                                            | 192<br>216                                       | 287                                       | 221<br>249                                       | 286                         | 199<br>246                                       | 297                                            | 258<br>276                                       | 330                                            | 268<br>293                                       | 348                                            | 313<br>338                                       |
| Ro-                 | E (8)                              | hed     |                 |                 |                                                  |                                                |                                                     |                                                |                                                  |                                           |                                                  |                             |                                                  |                                                |                                                  |                                                |                                                  |                                                |                                                  |
| ž                   | trate<br>(NO <sub>s</sub> )        | ontinu  |                 | 0.7             | 1.2                                              | 4.5                                            | 3.2                                                 | 4.4                                            | 4.0<br>3.8                                       |                                           | 2.3                                              | ÷.                          | 2.0<br>1.6                                       | 5.6                                            | 1.0                                              | 1.8                                            | .5                                               | .2                                             | 1.2                                              |
| Flac                | ride<br>(F)                        | STINC   |                 | 0.2             | 4 ņ                                              | 9.                                             | . <del>.</del><br>84                                | .3                                             | ыü                                               | 1                                         | 5.1                                              | ů                           | ų ų                                              | 5.                                             | ůů.                                              | .2                                             | ůů.                                              | е.                                             | 4.0                                              |
| Chle-               | ride<br>(CI)                       | R AT AU |                 | 46              | 36<br>40                                         | 39                                             | 19<br>30                                            | 28                                             | 22<br>24                                         | 58                                        | 26<br>34                                         | 52                          | 31<br>41                                         | 25                                             | 41<br>41                                         | 54                                             | 51                                               | 87                                             | 57<br>78                                         |
| 1.5                 | fate<br>(SO.)                      | DO RIVE |                 | 23              | 22                                               | 29                                             | 13<br>17                                            | 19                                             | 17<br>19                                         | ł                                         | 19<br>24                                         | 28                          | 19<br>25                                         | 24                                             | 25                                               | 37                                             | 33                                               | 45                                             | 35                                               |
| Ricer.              | bonate<br>(HCO <sub>1</sub> )      | COLORA  |                 | 157             | 159<br>158                                       | 168                                            | 131<br>137                                          | 164                                            | 146<br>163                                       | 181                                       | 179<br>177                                       | 182                         | 126<br>160                                       | 260                                            | 190<br>193                                       | 193                                            | 172<br>177                                       | 175                                            | 203<br>182                                       |
| Po-                 | tas-<br>sium<br>(K)                | 114.    |                 | 33              | 26<br>30                                         | 31                                             | 13<br>23                                            | 20                                             | 18<br>18                                         | 1                                         | 19<br>23                                         | 33                          | 23<br>27                                         | 19                                             | 25<br>27                                         | 37                                             |                                                  | 52                                             | 37<br>                                           |
| 3                   | dium<br>(Na)                       |         |                 |                 |                                                  |                                                |                                                     |                                                |                                                  |                                           |                                                  |                             |                                                  |                                                |                                                  |                                                | 34                                               |                                                | 46                                               |
| Mag-                | ne-<br>sium<br>(Mg)                |         |                 | 10              | 11<br>9.9                                        | 9.2                                            | 6.4<br>7.1                                          | 9.9                                            | 7.6<br>9.8                                       | 1                                         | 13<br>15                                         | 16                          | 9.8<br>14                                        | 19                                             | 18                                               | 18                                             | 18<br>19                                         | 22                                             | 20                                               |
| 2                   | Ca)                                |         |                 | 42              | 42                                               | 49                                             | 38<br>38                                            | 46                                             | 40                                               | 1                                         | 44<br>43                                         | 46                          | 32                                               | 64                                             | 45                                               | 48                                             | 39                                               | 44                                             | 45                                               |
|                     | Iron<br>(Fe)                       |         |                 |                 |                                                  |                                                |                                                     |                                                | -                                                |                                           |                                                  |                             |                                                  |                                                |                                                  |                                                |                                                  |                                                |                                                  |
|                     | Silica<br>(SiO <sub>1</sub> )      |         |                 | 7.4             | 8.0<br>8.2                                       | 14                                             | 11<br>9.1                                           | 9.4                                            | 6 6<br>6 7<br>7<br>7                             |                                           | 10<br>9.6                                        | 9.4                         | 12                                               | 11                                             | 9.2                                              | 9.5                                            | 11                                               | 11                                             | 13                                               |
| Mean                | dis-<br>charge<br>(cfs)            |         |                 | 2, 243          | 966<br>1,331                                     | 12,360                                         | 4,899<br>4,900                                      | 4,359                                          | 6,268<br>4,353                                   | 3 430                                     | 1,477<br>1,631                                   | 1,211                       | 9,247<br>246                                     | 875                                            | 2,440<br>2,502                                   | 175                                            | 2,895<br>1,414                                   | 1,462                                          | 283<br>1,056                                     |
|                     | Date of collection                 |         | Water year 1956 | Oct. 1-31, 1955 | Minimum,<br>Apr.1-30, 1956-<br>Weighted average- | Water year 1957<br>Maximum,<br>June 2-3, 1957- | Minimum,<br>July 1-31,<br>1957<br>Weighted average- | Water year 1958<br>Maximum,<br>Feb. 1-28, 1958 | Minimum,<br>Nov.1-30, 1957-<br>Weighted average- | Water year 1959<br>Maximum,<br>Ann 6 1050 | Minimum.<br>Oct.1-31, 1958-<br>Weighted average- | Water year 1960<br>Maximum, | Minimum,<br>Oct. 8-31, 1959<br>Weighted average- | Water year 1961<br>Maximum,<br>Jan.1-31, 1961- | Minimum,<br>May 1-31, 1961-<br>Weighted average- | Water year 1962<br>Maximum,<br>Mar. 1-31, 1962 | Minimum,<br>Nov.1-30, 1961-<br>Weighted average- | Water year 1963<br>Maximum,<br>Sept. 1-30,1963 | Minimum,<br>Oct. 1-31, 1962<br>Weighted average- |

÷

¢

ч

æ

ыř

r

÷ÿ

è

۰.

c

16.0

c

|                                                                                           | Mean<br>dis-                |                     | hon  | Cal-           | Mag-            | Ś            | Ро.         | Bicar-                        | Sul-           | Chlo-          | Fluo-       | Ni-            | Bo-        | Dise                         | wheed sol                    | ida                     | Hard<br>as Co                   | ness<br>CO,            | Per-                | So-                      | Specific<br>conduct-                 |     |
|-------------------------------------------------------------------------------------------|-----------------------------|---------------------|------|----------------|-----------------|--------------|-------------|-------------------------------|----------------|----------------|-------------|----------------|------------|------------------------------|------------------------------|-------------------------|---------------------------------|------------------------|---------------------|--------------------------|--------------------------------------|-----|
| Date of collection                                                                        | charge<br>(cfs)             | (SiO <sub>2</sub> ) | (Fe) | cium<br>(Ca)   | sium<br>(Mg)    | dium<br>(Na) | sium<br>(K) | benate<br>(HCO <sub>s</sub> ) | fate<br>(SO.)  | ride<br>(CI)   | ride<br>(F) | trate<br>(NO,) | ron<br>(B) | Parts<br>per<br>mil-<br>lion | Tons<br>per<br>åcre-<br>foot | Tons<br>per<br>day      | Cal-<br>cium,<br>magne-<br>sium | Non-<br>carbon-<br>ate | cent<br>30-<br>dium | adsorp-<br>tion<br>ratio | ance<br>(micro-<br>mhos at<br>25° C) | Hq  |
|                                                                                           |                             |                     |      |                |                 |              | 114.        | COLORA                        | VDO RIVI       | ER AT AU       | NILS        | Continu        | bet        |                              |                              |                         |                                 |                        |                     |                          |                                      |     |
| ater year 1964<br>Maximum,<br>Dec.1-31, 1963-                                             | 43.9                        | 9.7                 |      | 62             | 24              | 4            | 6           | 245                           | 47             | 75             | 0.4         | 5<br>10        |            | 389                          | 0.53                         | 46.1                    | 253                             | 52                     | 30                  |                          | 188                                  | 7.9 |
| Minimum,<br>July 1-31,1964-<br>Weighted average-                                          | 1,568<br>729                | 8.1<br>9.1          |      | 42             | 222             | 47           | 4.1         | 174<br>183                    | 45<br>46       | 828            | 4.4         | 0.1            |            | 338<br>351                   | .46                          | 1,430                   | 196                             | 20<br>20<br>20         | 34                  | 1.5                      | 610                                  | 7.5 |
| Maximum, 1965<br>Maximum, 0ct. 1-31,1964-                                                 | 132                         | 9.2                 |      | 48             | 22              | 46           | 3.4         | 196                           | 45             | 62             | с.          | 1.0            |            | 350                          | .48                          | 1                       | 210                             | 20 20                  | 32                  | 1,4                      | 628                                  | 8.1 |
| Meighted average-                                                                         | $1,416 \\ 1,475$            | 7.7<br>9.8          |      | 46<br>47       | 14<br>17        | ด้ต้         | 0 8         | 181<br>180                    | 27<br>32       | 43             | ស៊ីល        | 2.3            |            | 258                          |                              | 11                      | 172<br>187                      | 24<br>39               | 28<br>28            | 1.0                      | 475<br>513                           | 7.5 |
|                                                                                           |                             |                     |      |                |                 |              |             | 133. C                        | OLORADO        | ) RIVER        | AT WHAD     | RTON           |            |                              |                              |                         |                                 |                        |                     |                          |                                      |     |
| ater year 1944<br>Maximum,<br>Apr. 21-30,1944                                             | 1,430                       |                     |      | 54             | 17              | ž            |             | 211                           | 36             | 51             | 1           | 2.0            |            | 300                          | 0.41                         | 1,250                   | 205                             | 32                     | 28                  | 1                        | 531                                  |     |
| Sept. 1-10                                                                                | $\frac{4}{2}, 220$<br>2,649 |                     |      | 40             | 12              | 1.           | 5           | 149<br>175                    | 32             | 28<br>41       | 11          | 1.5            |            | 229<br>279                   | .38                          | 2,610                   | 150                             | 27<br>36               | 20                  |                          | 352<br>460                           |     |
| ater year 1945<br>Maximum,<br>Mar. 1-10,1945-                                             | 3,179                       |                     |      | 61             | 16              | 20           |             | 214                           | 34             | 33             | 1           | 2.5            |            | 324                          | .44                          | 2,780                   | 218                             | 42                     | 19                  |                          | 502                                  | ł   |
| Minimum,<br>Jan. 19-241<br>Weighted average-                                              | 14,700<br>3,766             |                     |      | 41<br>47       | 7.6<br>13       | ,<br>15      | 6.3         | 121<br>168                    | 22             | 14<br>32       |             | 1.5            |            | 180<br>255                   | .35                          | 7,140                   | 134                             | 33.4<br>33             | 19                  |                          | 293<br>413                           |     |
| ater year 1946<br>Maximum,<br>Nov. 21-30,1945                                             | 2,299                       | ł                   |      | 48             | 19              | 2,           | र्च         | 174                           | 27             | 43             | ł           | 1.0            |            | 358                          | .49                          | 2,220                   | 198                             | 37                     | 21                  | 1                        | 474                                  | ł   |
| July 3-6, 1946-1<br>Weighted average-                                                     | 11,630<br>3,535             |                     |      | 36<br>46       | 7.4             | 2,1          | £0 ₩        | 118<br>174                    | 13<br>27       | 350            |             | 2.1            |            | 186<br>267                   | .25                          | 5,840<br>2,550          | 120<br>168                      | 10                     | 21                  |                          | 286<br>427                           |     |
| ater year 1947<br>Maximum,<br>Feb. 1-10,1947-<br>Minimum, Aug. 27-31<br>Weighted average- | 3,617<br>6,792<br>3,095     |                     |      | 50<br>50<br>50 | 18<br>7.6<br>15 | 80.0         | 9.6         | 216<br>114<br>186             | 35<br>31       | 49<br>18<br>38 | 111         | 2.0            |            | 337<br>179<br>280            | . 246<br>.38                 | 3,290<br>3,280<br>2,340 | 231<br>116<br>186               | 33<br>34<br>34         | 23<br>15<br>23      |                          | 546<br>271<br>454                    | 111 |
| ater year 1948<br>Maximum,<br>Apr. 1-10, 1948                                             | 976                         | 9.4                 |      | 48             | 19              | 45           | ~           | 208                           | 40             | 64             | 1           | œ              |            | 386                          | . 52                         | 1,020                   | 198                             | 28                     | 35                  | 1                        | 602                                  | 1   |
| May 26-31<br>Weighted average-                                                            | 3,563<br>1,246              |                     |      | 36<br>44       | 7.8<br>18       | 21           | P-0         | 131<br>187                    | 354<br>35      | 34             | 11          | 1.2            |            | 215<br>310                   | . 29                         | 2,070<br>1,040          | 122<br>184                      | 15<br>30               | 33                  |                          | 365<br>530                           |     |
| ater year 1949<br>Maximum,<br>Apr.1-21, 1949<br>Minimum, Feb.24-281<br>Weighted average-  | 1,419<br>12,030<br>1,804    | 14<br>8.4<br>12     |      | 3 8 8<br>3 9 8 | 14<br>4.1<br>11 | 15           | 0.0.0       | 188<br>104<br>148             | 35<br>27<br>27 | 51<br>26<br>36 |             | 2.2            | -          | 312<br>144<br>237            | .42<br>.32                   | 1,200<br>4,680<br>1,150 | 178<br>87<br>143                | 24<br>21               | 3333                | 111                      | 524<br>240<br>406                    | 7.8 |

·

| River basinContinued |
|----------------------|
| Colorado             |
| in the               |
| streams              |
| ü                    |
| stations             |
| daily                |
| at                   |
| analyses             |
| chemical             |
| of                   |
| 5Summary             |
| Φ                    |
| Tabl                 |

|                      | Hd                                   |          |                 | 8.0              | 7.8                                                 | 7.6                                | 7.9                          | 8.1                                             | 7.5                                                | 7.7                                                                                            | 8.0                                             | 8.0                                            | 8.0<br>7.9                                                                                 | 8.1<br>7.7<br>                                                                                        | 8.2                                             | 7.7<br>                                          |
|----------------------|--------------------------------------|----------|-----------------|------------------|-----------------------------------------------------|------------------------------------|------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Specific<br>conduct- | ance<br>(micro-<br>mhos at<br>25° C) |          |                 | 531              | 278<br>402                                          | 555<br>5                           | 325<br>513                   | 598                                             | 250<br>474                                         | 579<br>251<br>353                                                                              | 532                                             | 270<br>406                                     | 539<br>298<br>431                                                                          | 507<br>313<br>435                                                                                     | 544                                             | 169<br>331                                       |
| So-<br>dium          | adsorp-<br>tion<br>ratio             |          |                 | ł                |                                                     | 1                                  |                              | 2.0                                             | .6                                                 | 1.3<br>.4                                                                                      | 6.                                              | .7                                             | 1.1<br>7.9                                                                                 | 1.0<br>1.0                                                                                            | 1.0                                             | 4.1.                                             |
| Per-                 | cent<br>so-<br>dium                  |          |                 | 28               | 23                                                  | 98                                 | 32 32                        | 43                                              | 24<br>34                                           | 30<br>18<br>23                                                                                 | 24                                              | $^{16}_{22}$                                   | 28<br>24                                                                                   | 27<br>24<br>29                                                                                        | 26                                              | 17<br>22                                         |
| CO,                  | Non-<br>carbon-<br>ate               |          |                 | 34               | 18<br>24                                            | 96                                 | 21 28                        | 0                                               | 8<br>22                                            | 24<br>19<br>14                                                                                 | 26                                              | 14<br>18                                       | 10<br>18                                                                                   | 12<br>18<br>18                                                                                        | 12                                              | 3<br>16                                          |
| Hard<br>as Co        | Cal-<br>cium,<br>magne-<br>sium      |          |                 | 198              | 107<br>146                                          | 174                                | 127<br>176                   | 175                                             | 93<br>154                                          | 211<br>102<br>130                                                                              | 203                                             | 110                                            | 192<br>104<br>152                                                                          | 185<br>114<br>151                                                                                     | 199                                             | 66<br>124                                        |
| ds                   | Tons<br>per<br>day                   |          |                 | 892              | 1,330                                               | 679                                | 715                          | 404                                             | 2,970                                              | 342<br>302<br>766                                                                              | 322                                             | 1,380<br>568                                   | 301<br>1,400<br>788                                                                        | 358<br>757<br>691                                                                                     | 235                                             | $^{7}_{3,170}$                                   |
| solved soli          | Tons<br>per<br>acre-<br>foot         |          |                 | 0.43             | 332                                                 | 45                                 | .28                          | .48                                             | .37                                                | .45<br>23                                                                                      | .42                                             | .23                                            | . 25                                                                                       | .39                                                                                                   | .42                                             | .15                                              |
| Dia                  | Farts<br>per<br>mil-<br>lion         |          |                 | 314              | 160<br>242                                          | 399                                | 206                          | 354                                             | 154<br>263                                         | 331<br>170<br>211                                                                              | 306                                             | 167<br>239                                     | 310<br>244<br>244                                                                          | 288<br>178<br>246                                                                                     | 312                                             | 108                                              |
| Bo-                  | ron<br>(B)                           | nued     |                 |                  |                                                     |                                    |                              |                                                 |                                                    |                                                                                                |                                                 |                                                |                                                                                            |                                                                                                       |                                                 |                                                  |
| -in                  | trate<br>(NO <sub>3</sub> )          | -Contin  |                 | 1.8              | 2.2                                                 | 10                                 | 2.5                          | 5.                                              | 2.0                                                | 3.8<br>2.2                                                                                     | 1.0                                             | 2.5                                            | 1.5<br>4.5<br>1.9                                                                          | 2.4                                                                                                   | 2                                               | 1.0<br>3.0                                       |
| Fluo-                | ride<br>(F)                          | RTON     |                 | 0.2              | .;                                                  | 6                                  |                              | 2                                               | 6j (j                                              | 440                                                                                            | ů.                                              | 4.0                                            | 4.0.0                                                                                      | 1.64                                                                                                  |                                                 | 1.4                                              |
| Chlo-                | ride<br>(CI)                         | R AT WH/ |                 | 50               | 18<br>33                                            | y<br>y                             | 17                           | 64                                              | 14<br>49                                           | 54<br>11<br>25                                                                                 | 41                                              | 12                                             | 47<br>20<br>39                                                                             | 44<br>24<br>22                                                                                        | 77                                              | 9.5                                              |
| Sul-                 | fate<br>(SO,)                        | VDO RIVE |                 | 36               | 21<br>28                                            | 37                                 | 34<br>34                     | 36                                              | 30<br>15                                           | 34<br>19<br>22                                                                                 | 34                                              | 21<br>24                                       | 29<br>18<br>23                                                                             | 26<br>231<br>231                                                                                      | 26                                              | 11<br>18                                         |
| Bicar-               | bonate<br>(HCO <sub>3</sub> )        | COLOR/   |                 | 201              | 108<br>149                                          | 891                                | 130<br>181                   | 216                                             | 104<br>162                                         | 228<br>101<br>142                                                                              | 216                                             | 118<br>171                                     | 223<br>116<br>165                                                                          | 212<br>118<br>163                                                                                     | 229                                             | 77<br>131                                        |
| Po-                  | tar<br>K)                            | 133.     |                 |                  |                                                     |                                    |                              | _                                               | <b>6</b> b                                         | 3.5<br>3.8<br>8                                                                                | 3.6                                             | 3.6                                            | 4.8<br>3.7<br>8.8                                                                          | 4.8<br>5.2<br>2.2                                                                                     | 4.9                                             | 5.2                                              |
| Ş.                   | dium<br>(Na)                         |          |                 | 60               | 14                                                  | 44                                 | 3.6                          | 99                                              | 16                                                 | 42<br>10                                                                                       | 30                                              | 21                                             | 36<br>27                                                                                   | 32<br>17<br>29                                                                                        | 34                                              | 17.0                                             |
| Mag-                 | aium<br>(Mg)                         |          |                 | 15               | 6.6<br>10                                           | 9                                  | 6.7<br>15                    | 17                                              | 5.0<br>12                                          | 18<br>5.9<br>8.6                                                                               | 16                                              | 5.0                                            | 14<br>5.9<br>11                                                                            | 11<br>6.0                                                                                             | 14                                              | 1.1<br>9                                         |
| Cal-                 | cium<br>(Ca)                         |          |                 | 55               | 32<br>42                                            | 43                                 | 46 46                        | 42                                              | 29<br>42                                           | 55<br>31<br>38                                                                                 | 55                                              | 36<br>45                                       | 54<br>32<br>43<br>23                                                                       | 36<br>36                                                                                              | 57                                              | 39                                               |
|                      | (Fe)                                 |          |                 |                  |                                                     |                                    |                              |                                                 |                                                    |                                                                                                |                                                 |                                                |                                                                                            |                                                                                                       |                                                 |                                                  |
| 1                    | Silica<br>(SiO <sub>2</sub> )        |          |                 | 0.6              | 13                                                  | 5                                  | 11                           | 11                                              | 11                                                 | 9.0<br>8.4<br>11                                                                               | 9.0                                             | 17<br>15                                       | 8.6<br>16<br>12                                                                            | 8.0<br>8.0<br>8.0                                                                                     | 8.8                                             | 11                                               |
| Mean                 | dia-<br>charge<br>(cfs)              |          |                 | 1,052            | 1,637<br>2,038                                      | 767                                | 1,419<br>892                 | 423                                             | 7,153<br>764                                       | <b>383</b><br>659<br>1,345                                                                     | 390                                             | 3,050                                          | 360<br>2,840<br>1,196                                                                      | 461<br>1,575<br>1,041                                                                                 | 279                                             | 24,360<br>5,937                                  |
|                      | Date of collection                   |          | Water year 1950 | Mar. 1-31, 1950- | Minimum, Jan. 1-5,<br>10-16, 20<br>Weighted average | Water year 1951<br>Maximum, 91,051 | Minimum, June 1-5,<br>10, 13 | Water year 1952<br>Maximum,<br>Nov. 1-30, 1951- | Minimum,<br>May 25-30,<br>1952<br>Weighted average | Water year 1953<br>Maximum,<br>Maximum, 131, 1952-<br>Minimum, Nov. 1-30-<br>Weighted average- | Water year 1954<br>Maximum,<br>Feb. 1-28, 1954- | Minimum,<br>Nov. 1-6, 1953<br>Weighted average | Water year 1955<br>Maximum,<br>Mar. 1-31, 1955-<br>Minimum, Feb. 6-15-<br>Weighted average | Water year 1956<br>Maximum, 131, 1956-<br>Jan, 1-31, 1956-<br>Minimum, Feb. 11-17<br>Weighted average | Water year 1957<br>Maximum,<br>Dec. 1-25, 1956- | Minimum,<br>Sept. 27-29,1957<br>Weighted average |

e

ю

ė

7.9 7.8 7.5 7.4 8.1 8.0 7.7 7.3 7.1 7.4 7.0 7.9 7.8 8.0 7.2 7.9 Hd Specific conduct-ance (micro-mhos at 25° C) 522 204 393 216 372 278 511 645 365 563 280 437 429 199 354 563 491 190 397 606 667 404 584 653 So-dium adsorp-tion ratio 1.0 .5 1.2 1.6.7 1.20.5 с. i 8 4.0 6. 6. 1.7 .9 1.3 1.2 4. 5 12 20 20 22 23 29 35 24 Per-cent dium 35 29 16 23 Non-carbon-ate 30 228 32 22 33 30 53 30 22 22 46 16 31 59 59 50 68 19 45 57 14 33 Hardness as CoCO, Cal-cium, magne-85 147 210 182 82 224 122 168 188 78 148 232 88 148 224 102 187 209 134 199 232 147 203  $^{2,810}_{1,480}$ 2,740  $^{11,990}_{3,490}$ 1,850 9,550 3,250 700 5,020 817 560 869 714 900 580 850 1 11 | || Tons day ъ, ŝ solida 0.35 . 16 .41 .16 .38 .46 .17 .30 .22 . 49 . 28 .54 .45 47 .22 .33 Tons per foot Dissolved Parts per mil-259 211 302 118 231 368 160 303 360 206 323 345 163 243 279 114 231 337 128 223 399 222 328 WHARTON--Continued a : @ Ni-Itrate NO,) 5.0 2.5 4.4 3.0 1.8 2.5 1.5 2.3 1.2 1.8 1.9 5.4 2.0 2.5 1.0 1.2 2.21.9 3.8 3.0 11 18.1 ņ 11 ŝ ł e, e, ł  $\left\{ \cdot \right\}$ Ł <u>ຕ</u>ຸ | ຕຸ ю.4 1 11 Files 0 œ 0 AT 27 22. 34 6. (C) 19 (F) 37 27 34. 34. 60 49  $^{28}_{28}$ 98 30 67 72 10 35 RIVER 9 0 27. Sul-fate (SO,) 27 22 22 36 23°8 40 17 26 50 35 35 4545 51 29 42 21 21 32 COLORADO Bicar-bonate (HCO<sub>1</sub>) 186 94 153 218 93 159 193 93 153 253 94 154 216 106 190 183 182 200 156 193 204 132 165 133. 3.6 2.6 3.5 3.9 3.3 3.9 ł K) in the P 6.0 | 19 42 17 35 24°31 32 19 58 26 43 42 11 24 5.8 14 25 7.9 18 So-dium (Na) 17 40 3.0 16 4.1 11 4.7 0 0 Ņ 18 6.7 16 Mag-ne-Mg) 14 10.3 23 9. 1.31 21 17. Ξ 5 Cal-Cal 55 29 45 58 26 43 47 26 41 70 30 43 60 30 49 49 52 52 55 51 51 62 41 49 (Fe) 8.4 6.2 10 6.4 8.9 Silica (SiO<sub>3</sub>) 7.0 14 1212 12 11 1213 14 14 12 13 13 2,030 11,6301,716 $^{841}_{997}$ 11,270 2,378 1,195 44,130 4,576 620 3,921 620 128 876 820 372 705 836 615 4,560 848 Mean dia-charge (cfa) 37, 6, 27, ຜົດໂ Water year 1961 Maximum, Jan. 16-31, 1961 Minimum, Nov. 1-3, 1960-- 2' Weighted average--Water year 1959 Maximum, Dec.1-31, 1959--Minimum, May 24-25, 1959-Weighted average--Water year 1960 Maximum. Sept.1-30, 1960-Minimum,Jully 262-28 4 Weighted average--Water year 1958 Maximum, Feb. 1-22, 1958-Minimum, 15-19, 1957-Oct.15-19, 1957-Weighted average--Apr. 16-27, 1962 Minimum, Nov. 14-17, 1961 Weighted average--Water year 1965 Maximum, 1965----May 12, 1965----Minimum, Feb. 14-21------Weighted average--May 1-31, 1964--Minimum, Mar. 1-15-----Weighted average--Aug.I-31, 1963--Minimum,Feb.20-25-Weighted average--Date of collection Water year 1962 Maximum, Water year 1963 Maximum. Water year 1964 Maximum,

.

Table 6.--Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

|                                                                |                            |                                |                                  |                                  |                                                               | 1 [nsəy]             |                            | strs pé                                    |                                                                                                                                                    | on except                        | wher                 | e ING                                                                                                      | lcateo     | Dis                                        | olved so                     | olids              | Hard                                 | ness                        |                             |                               | Crootfie                                     |                               |
|----------------------------------------------------------------|----------------------------|--------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------------|----------------------|----------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------------------------|-------------------------------|
|                                                                |                            |                                |                                  |                                  | Max                                                           |                      | é                          | Bi-                                        |                                                                                                                                                    |                                  |                      |                                                                                                            |            | )<br>)                                     | lculat                       | ed)                | as Ca                                | co3                         |                             | So-                           | -uoo                                         |                               |
| Date<br>of<br>collection                                       | Discharge<br>(cfs)         | Silica<br>(SiO <sub>2</sub> )  | Iron<br>(Fe)                     | Cal-<br>ctum<br>(Ca)             | nag-<br>ne-<br>sium<br>(Mg)                                   | Sodium<br>(Na)       | stum<br>(K)                | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Sulfate<br>(SO4)                                                                                                                                   | Chloride<br>(Cl)                 | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO3)                                                                                      | Bo-<br>(B) | Parts<br>per<br>million                    | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-<br>ate | Per-<br>cent<br>so-<br>dium | ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | Hd                            |
|                                                                |                            |                                |                                  |                                  |                                                               |                      | -                          | LAKE J                                     | . B. TH                                                                                                                                            | OMAS NEAF                        | 3 VINC               | ENT                                                                                                        |            |                                            |                              |                    |                                      |                             |                             |                               |                                              |                               |
| May 28, 1953<br>Nov. 11<br>July 21, 1954<br>Jan. 3, 1956       |                            | 10<br>8.4<br>8.2<br>3.6<br>3.6 | 0.18<br>.00<br>.01<br>.00<br>.00 | 22<br>16<br>31<br>32             | 0.5<br>6.4<br>6.1<br>0.5<br>1                                 | 70<br>46<br>41<br>53 | 3.6<br>3.6<br>3.6          | 147<br>103<br>104<br>140<br>173            | 61<br>37<br>52<br>52                                                                                                                               | 29<br>18<br>22<br>22<br>22<br>22 | 0.0                  | 4-0<br>0.0<br>4-0<br>4-0<br>4-0<br>4-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5-0<br>5 | 0.16       | 277<br>A203<br>A189<br>A225<br>A225<br>252 | 0.31                         |                    | 77<br>55<br>61<br>97<br>105          | 00000                       | 65<br>53<br>51<br>51        | 22                            | 472<br>313<br>324<br>388<br>429              | 48.44                         |
| Feb. 6, 1957<br>Mar. 6, 1962<br>Scpt. 9, 1964<br>Dec. 21       |                            | 3.4<br>2.2<br>4.0<br>4.0       | . 04                             | 32<br>34<br>28<br>28<br>28<br>28 | 88749<br>88749<br>8979<br>8979<br>8979<br>8979<br>8979<br>897 |                      | 60<br>63<br>77<br>77<br>77 | 168<br>176<br>184<br>205<br>194            | 56<br>57<br>53<br>53<br>53<br>53<br>54<br>53<br>56<br>53<br>56<br>53<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 | . 28<br>29<br>31<br>31           |                      |                                                                                                            |            | 269<br>A295<br>306<br>308                  | 37<br>40<br>42<br>42         |                    | 105<br>115<br>100<br>106             | 00000                       | 56<br>54<br>61<br>62<br>62  | 001000<br>001000              | 468<br>494<br>503<br>537<br>537              | 0.0224                        |
|                                                                |                            |                                |                                  |                                  |                                                               |                      |                            | 6.1                                        | DEEP CRE                                                                                                                                           | EK NEAR                          | DUNN                 |                                                                                                            |            |                                            |                              |                    |                                      |                             |                             |                               |                                              |                               |
| May 30, 1964<br>Junc 2<br>Sept. 17<br>May 11, 1965             | 28.8<br>1.03<br>7.80<br>20 | 9.0<br>6.0<br>17<br>8.7<br>8.6 |                                  | 52<br>36<br>32<br>60<br>24<br>60 | 34245                                                         | 6.6                  | 17<br>28<br>15<br>15<br>17 | 170<br>108<br>90<br>126<br>208             | 11<br>21<br>7.4<br>14                                                                                                                              | 16<br>41<br>9.3<br>8.5           | 0.5.5.4.4.           | 1002                                                                                                       |            | 194<br>190<br>111<br>214                   | 0.26<br>.15<br>.20<br>.29    |                    | 140<br>108<br>689<br>162             | - 6000                      | 21<br>25<br>15<br>18        | 10.6                          | 354<br>364<br>166<br>247<br>375              | 6.98<br>7.7.8<br>7.7.8<br>7.7 |
| May 12                                                         | 3.28<br>11.1<br>917        | 6.3<br>14<br>9.0               |                                  | 31<br>30<br>61                   | 20.4                                                          |                      | - 20<br>57<br>-            | 116<br>C118<br>218                         | 25<br>25<br>28                                                                                                                                     | 10<br>22<br>61                   | 4.6.4                | ت.<br>1. ت. ت                                                                                              |            | 146<br>184<br>330                          | .25                          |                    | 87<br>86<br>172                      | 090                         | 333<br>45<br>72             | 0.1<br>1.5<br>1.9             | 257<br>314<br>591                            | 7.0<br>8.6                    |
|                                                                |                            |                                |                                  |                                  |                                                               |                      | 7                          | . SUL                                      | PHUR CRF                                                                                                                                           | SEK NEAR                         | DUNN                 |                                                                                                            |            |                                            |                              |                    |                                      |                             |                             |                               |                                              |                               |
| May 7, 1952<br>Mar. 25, 1953                                   | B.01                       | 2.7                            |                                  | 116                              | 39<br>66                                                      |                      | 70<br>105                  | 210<br>180                                 | 340<br>514                                                                                                                                         | 54<br>78                         | 11                   | 1.0                                                                                                        |            | A771<br>A1,080                             | 1.05                         |                    | 450<br>564                           | 278<br>416                  | 25                          | -1-0-1                        | 1,090                                        | 1- 00                         |
|                                                                | -                          |                                |                                  |                                  |                                                               | T                    | 3. LAK                     | E COLO                                     | RADO CIJ                                                                                                                                           | TY NEAR C                        | OLORA                | DO CI                                                                                                      | TY         |                                            |                              |                    |                                      |                             |                             |                               |                                              |                               |
| Nov. 15, 1956<br>Nov. 6, 1958<br>May 18, 1960<br>Dec. 22, 1964 |                            | 5.3<br>4.1.2<br>3.9            | 0.03                             | 39<br>38<br>38<br>42             | 9.4<br>8.4<br>11<br>12                                        | 56                   | 6.6<br>37<br>49<br>63      | 167<br>164<br>172<br>185                   | 62<br>52<br>64                                                                                                                                     | 47<br>26<br>37<br>50             | 8.0<br>2<br>10.      | 8.01.2                                                                                                     |            | 311<br>A241<br>A296<br>328                 | 0.42<br>.33<br>.40           |                    | 136<br>132<br>140<br>154             | 0000                        | 40000                       | 2112                          | 5588<br>5588<br>5588                         | ~ ~ ~ ~ ~                     |
| A Residue on eva<br>B Field estimate<br>C Contains the e       | poration a                 | cf 10                          | °C.                              | arbona                           | te (CO <sub>3</sub>                                           |                      |                            |                                            |                                                                                                                                                    |                                  |                      |                                                                                                            |            | -                                          |                              |                    |                                      |                             |                             |                               |                                              |                               |

30

ż

te

|                        | Hq                                          |           |                               |           | 7.7<br>7.4<br>7.0<br>6.7                               |           | 7.2         |          | 7.1         |            | 6.8         |          | 6.8<br>6.7<br>6.9<br>6.9<br>6.9                                           |          | 6.3           |           | 8.1<br>8.0<br>8.0<br>7.9       |                                                                                |
|------------------------|---------------------------------------------|-----------|-------------------------------|-----------|--------------------------------------------------------|-----------|-------------|----------|-------------|------------|-------------|----------|---------------------------------------------------------------------------|----------|---------------|-----------|--------------------------------|--------------------------------------------------------------------------------|
| Specific<br>con-       | duct-<br>ance<br>micro-<br>nhos at<br>25°C) |           | $^{1,890}_{1,710}$            |           | 532<br>515<br>536<br>526                               | 1         | 167         |          | 201         |            | 8,260       |          | 130, 000<br>196, 000<br>1153,000<br>27,500<br>69,300<br>153,000           |          | 5,090         |           | $^{298}_{1,060}$               |                                                                                |
| s,                     | ad-<br>ad-<br>sorp-<br>tion<br>ratio        |           |                               |           | 1.1.0                                                  | 1         | 0.5         |          | 0.2         |            | 17          |          | FOEHDW                                                                    |          | 10            |           | 0.7<br>3.4<br>3.9              |                                                                                |
|                        | Per-<br>cent<br>so-<br>dium                 |           |                               |           | 27<br>27<br>35<br>31                                   | 1         | 22          |          | 10          |            | 68          |          | 76<br>69<br>56<br>76<br>77                                                |          | 60            |           | 22<br>52<br>54                 | (P04)                                                                          |
| 688<br>CO <sub>3</sub> | Non-<br>car-<br>bon-<br>ate                 |           |                               |           | 73<br>66<br>75<br>80                                   |           | 0           | 1        | 0           |            | 1,360       |          | 7,700<br>57,700<br>08,000<br>08,000<br>12,000<br>35,100                   |          | 1,040         | 1         | 5<br>167<br>201                | phate                                                                          |
| Hardn<br>as Ca         | Cal-<br>cium,<br>Mag-<br>ne-<br>sium        |           | 675<br>380<br>580             |           | 199<br>186<br>170<br>176                               |           | 60          |          | 81          |            | 1,430       |          | 47,400<br>58,400<br>4,330<br>12,200<br>35,500                             |          | 1,100         |           | 113<br>84<br>235<br>276        | ppm Phos                                                                       |
| olids<br>ed)           | Tons<br>per<br>day                          |           |                               |           |                                                        |           |             |          |             |            |             |          |                                                                           |          |               |           |                                | (I); 1.0                                                                       |
| <b>olved so</b>        | Tons<br>per<br>acre-<br>foot                |           |                               |           | 0.45<br>.39<br>.41                                     | -         | 0.14        | _        | 0.16        |            | 8.01        |          |                                                                           |          | 4.41          | -         | 0.26<br>.18<br>.86<br>1.04     | Iodine                                                                         |
| Dilse<br>(c:           | Parts<br>per<br>million                     |           | A1,280<br>620<br>1,060        |           | A332<br>285<br>298<br>291                              | -         | 106         |          | 119         |            | 5,890       |          | 22,300<br>58,700<br>185,000                                               |          | 3,240         |           | A192<br>133<br>A629<br>A765    | 2.7 ppm                                                                        |
|                        | ron<br>(B)                                  | 1         |                               | CITY      |                                                        | 5         |             |          |             | SPRIN      |             | NG       | 4.3                                                                       |          |               |           |                                | Br);                                                                           |
|                        | Ni-<br>trrate<br>(NO3)                      | CITY      | 1.81                          | DRADO     | 0.01.02                                                | SPRIM     | 0.8         |          | 0.5         | R BIG      | 3.0         | SPRI     | 49                                                                        | SING     | 1.5           | ING       | 4.5<br>3.0<br>2.5              | nine (                                                                         |
|                        | Fluo-<br>ride<br>(F)                        | RADO      |                               | COLC      | 14.0                                                   | BIG       | 0.2         | ANTON    | 0.2         | VEAI       |             | R BIG    | e<br>e                                                                    | G SPF    |               | SPR.      |                                | Bron                                                                           |
|                        | Chloride<br>(Cl)                            | NEAR COLO | 228<br>94<br>205              | VOIR NEAF | 32<br>36<br>43<br>43                                   | REEK NEAF | 1.2         | NEAR ST! | 6.5         | I GHWAY 87 | 1,850       | LAKE NEA | $\begin{array}{c} 100,000\\ 122,000\\ 7,040\\ 21,800\\ 69,300\end{array}$ | ABOVE BI | 1,300         | EK AT BIO | 14<br>10<br>218<br>275         | ; 372 ppm                                                                      |
|                        | Sulfate<br>(SO4)                            | N CREEK   | 495<br>235<br>466             | EK RESER  | 94<br>94<br>94                                         | PRINGS C  | 7.2         | LF CREEK | 8.0         | T U.S. H   | ,020        | DAM SALT | 64,400<br>21,700<br>80,000<br>7,720<br>16,800<br>52,900                   | LS CREEK | 838           | EALS CRE  | 18<br>9.4<br>111<br>131        | ium (Li)                                                                       |
| B1-                    | car-<br>bon-<br>ate<br>(HCO_)               | HAMPIO    | 185<br>183<br>127             | ON CRE    | 154<br>146<br>116<br>116                               | PHUR S    | 94          | 7. CA    | 100         | REEK A     | 89          | TURAL    | 522<br>884<br>873<br>78<br>218<br>530                                     | . BEA    | 64            | 21. E     | 132<br>98<br>83<br>91          | a Lith                                                                         |
| Ğ                      | sium<br>(K)                                 | (4. C     | 14<br>88<br>37                | THAMPI    | 400 F                                                  | SUL       | 7.2         |          | 7.4         | ZARD C     | 59          | . NA'    | 2,330<br>5,680<br>50<br>00<br>00                                          | 20       | 35            |           | 11                             | 16 pp:                                                                         |
|                        | Sodium<br>(Na)                              |           | 1001                          | 15. (     |                                                        | 16.       | 8.8         |          | 4.5         | 18. BUZ    | 1,500       | 19       | 73, 500<br>63, 000<br>69, 200<br>16, 7<br>16, 7                           |          | 76            |           |                                | [ :(UM) ;                                                                      |
| Mag                    | nie-<br>sium<br>(Mg)                        |           | 78<br>33<br>73                |           | 18<br>16<br>20<br>19                                   |           | 2.5         |          | 2.7         |            | 252         |          | 11,200<br><br>868<br>2,540<br>8,370                                       |          | 213           |           | 30 22 23                       | ganese                                                                         |
|                        | Cal-<br>cium<br>(Ca)                        |           | 142<br>98<br>112              |           | 50<br>395<br>395<br>395                                |           | 20          |          | 28          |            | 158         |          | 535<br><br>305<br>424                                                     |          | 88            |           | 39<br>30<br>58<br>61           | pm Mar                                                                         |
|                        | Iron<br>(Fe)                                |           |                               |           |                                                        | 1         |             | 1        |             |            |             |          | 0.54                                                                      |          |               |           |                                | 8.<br>                                                                         |
|                        | Silica<br>(SiO <sub>2</sub> )               |           |                               |           | 1.1<br>.5<br>2.5<br>2.5                                |           | 12          |          | 12          |            | 4.6         |          | 2.211.0                                                                   |          | 4.5           |           | 19<br>18<br>12<br>12           | 180°(                                                                          |
|                        | Discharge<br>(cfs)                          |           |                               |           |                                                        |           |             |          |             |            |             |          |                                                                           |          | 36.1          |           |                                | oration at<br>m Aluminum                                                       |
| ł                      | uate<br>of<br>collection                    |           | uly 8, 1947<br>ov. 3<br>ct. 7 |           | ay 17, 1960<br>ar. 25, 1964<br>ept. 10<br>ug. 26, 1965 |           | ay 15, 1965 |          | ay 15, 1965 |            | ay 15, 1965 |          | Mar. 23, 1964<br>ar. 2, 1965<br>pr. 6<br>ay 17<br>une 21, 1965<br>ug. 25  |          | ept. 13, 1962 |           | pr. 25, 1957<br>ay 11<br>ay 25 | A Residue on evap<br>E Contains .95 pp<br>P Density 1.218.<br>A Density 1.280. |

÷

۴.,

e

Ç

- 67 -

Table 6.--Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

| So- Specific<br>con- | atium duct-<br>artsorp- (micro-<br>ium ratio 25°C) |          | 2 198 7.8<br>3 0.1 214 7.4     |           | 3         0.1         222         7.8           5         .1         254         7.8           16         .5         350         7.9           24         .9         374         6.8           24         .9         474         6.8           22         .7         428         7.0 |          | 17 245 7.6<br>20 290 7.6<br>26 170 7.6<br>30 255 7.0 |          | 25 0.8 377 7.5<br>94 .7 302 7.1 |          | 12         2.6         1,190         6.9           32         1.2         555         6.7           26         .7         316         6.8           49         4.5         2.70         7.3           49         4.5         2.70         7.3           31         2.0         1,380         7.3 | 28         1.1         568         7.5           42         2.0         725         7.0           43         1.9         643         6.5 |          | 28 654 8.0<br>18 0.5 306 8.2<br>28 1.4 864 7.2<br>27 1.3 792 7.7<br>28 1.4 815 7.1 |           | 3         0.0         170         6.6           5         .1         347         6.9           3         .1         316         6.9           3         .1         216         6.9           3         .1         227         6.8 | 2 .1 318 7.1 |
|----------------------|----------------------------------------------------|----------|--------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|----------|---------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 88.0                 | on-Pe<br>ar-ce<br>diste                            |          | 12 2                           |           | 10<br>10<br>76 2<br>62 2                                                                                                                                                                                                                                                             |          | 23 23 23 23 23 23 23 23 23 23 23 23 23 2             |          | 11 2 0 2                        |          | 198<br>58<br>386<br>344<br>288<br>344<br>288<br>344<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>2                                                                                                                                                                          | 108<br>108<br>98<br>98                                                                                                                   |          | 42 24 0 0<br>4 2 2 4 2<br>8 4 2 0 0                                                |           | იიი-                                                                                                                                                                                                                              | 6            |
| Hardnes<br>as CaC(   | Cal-<br>Cium,<br>Mag-<br>b<br>b<br>ne-<br>stum     |          | 84<br>103                      |           | 104<br>119<br>148<br>176<br>167                                                                                                                                                                                                                                                      |          | 107<br>127<br>88<br>102                              |          | 155<br>122                      |          | 334<br>171<br>112<br>567<br>477                                                                                                                                                                                                                                                                  | 203<br>196<br>168                                                                                                                        |          | 234<br>136<br>311<br>298<br>300                                                    |           | 79<br>166<br>154<br>104                                                                                                                                                                                                           | 1.50         |
| dids<br>( )          | Tons<br>per<br>day                                 |          |                                |           |                                                                                                                                                                                                                                                                                      |          |                                                      |          |                                 |          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |          |                                                                                    |           |                                                                                                                                                                                                                                   |              |
| olved so<br>lculate  | Tons<br>per<br>acre-<br>foot                       |          | 0.18                           |           | 0.17<br>.26<br>.36<br>.33                                                                                                                                                                                                                                                            |          | 0.22<br>.26<br>.16                                   |          | 0.30                            |          | $\begin{array}{c} 0.87\\ .38\\ .23\\ 1.67\\ 1.09\end{array}$                                                                                                                                                                                                                                     | 42<br>51                                                                                                                                 |          | 0.47<br><br>.63<br>.60<br>.61                                                      |           | 0.13<br>.28<br>.25                                                                                                                                                                                                                | 5            |
| Diss<br>(ca          | Parts<br>per<br>million                            |          | A121<br>127                    |           | A127<br>145<br>190<br>263<br>239                                                                                                                                                                                                                                                     |          | 162<br>190<br>A116<br>A165                           |          | 224<br>167                      |          | 641<br>277<br>168<br>1,230<br>798                                                                                                                                                                                                                                                                | 310<br>377<br>334                                                                                                                        |          | 348<br><br>465<br>439<br>449                                                       |           | 96<br>204<br>182<br>130                                                                                                                                                                                                           | 100          |
|                      | Bo-<br>(B)                                         | E        |                                |           | 0.06                                                                                                                                                                                                                                                                                 |          |                                                      |          |                                 |          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |          |                                                                                    |           | 10.10.10.00                                                                                                                                                                                                                       |              |
|                      | N1-<br>trate<br>(NO3)                              | SRT LF   | 1.5                            | KWELL     | 1.80                                                                                                                                                                                                                                                                                 |          | 1.023                                                |          | 1.0                             |          | 15 350                                                                                                                                                                                                                                                                                           | 2.2                                                                                                                                      | DOVAL    | 0.0444                                                                             | KERSL     | 00.41                                                                                                                                                                                                                             | 10           |
|                      | Fluo-<br>ride<br>(F)                               | ROBI     | 1 0.1                          | BLACI     | 38181                                                                                                                                                                                                                                                                                | KWELL    | 0000                                                 | INTER    | 0.5                             | INGER    | 0 44004                                                                                                                                                                                                                                                                                          | ũũ ị                                                                                                                                     | HRIST    |                                                                                    | E TANI    | 0446                                                                                                                                                                                                                              |              |
|                      | Chloride<br>(Cl)                                   | RVOIR AT | 19 m                           | DIR NEAR  | 1.<br>6.<br>37<br>29                                                                                                                                                                                                                                                                 | EAR BLAC | ထ်ထဲက်မ်                                             | S NEAR W | 26<br>13                        | AT BALL  | 235<br>83<br>34<br>540<br>226                                                                                                                                                                                                                                                                    | 60<br>131<br>119                                                                                                                         | VER AT C | 50<br>9.2<br>95<br>103                                                             | TER ABOVI | 9491                                                                                                                                                                                                                              |              |
|                      | Sulfate<br>(SO4)                                   | EEK RESE | 24<br>16                       | C RESERVO | 8.4<br>35<br>76<br>64                                                                                                                                                                                                                                                                | CREEK N  | 322<br>266<br>54                                     | MINTERS  | <b>22</b><br>13                 | LM CREEK | 98<br>18<br>150<br>227                                                                                                                                                                                                                                                                           | 36<br>57<br>52                                                                                                                           | ONCHO RI | 22<br>4.2<br>16<br>16                                                              | NCHO RIV  | 4.6<br>15<br>10<br>8.0                                                                                                                                                                                                            | 20           |
| Bi-                  | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )         | TAIN CR  | 92<br>111                      | K CREEP   | 125<br>133<br>134<br>128<br>128                                                                                                                                                                                                                                                      | . OAK    | 102<br>140<br>104<br>99                              | . LAKI   | 176<br>155                      | 32. El   | 166<br>138<br>102<br>220<br>162                                                                                                                                                                                                                                                                  | 192<br>106<br>86                                                                                                                         | SOUTH C  | 278<br>171<br>314<br>312<br>306                                                    | DDLE CC   | 93<br>196<br>182                                                                                                                                                                                                                  | 100          |
|                      | Po-<br>tas-<br>(K)                                 | MOUN     | 1 4.7                          | . OA      | 4.5                                                                                                                                                                                                                                                                                  | 29       | 11<br>11<br>20                                       | 31       | n 20                            |          | 118<br>118<br>118<br>118<br>118                                                                                                                                                                                                                                                                  | 36<br>58<br>58                                                                                                                           | 36.      | 41<br>14<br>56<br>51<br>54                                                         | IW .      | 4.1<br>5.6<br>5.6                                                                                                                                                                                                                 |              |
|                      | Sodium<br>(Na)                                     | 26.      | 1.8                            | 28        | 3.2                                                                                                                                                                                                                                                                                  |          |                                                      |          |                                 |          | 1                                                                                                                                                                                                                                                                                                |                                                                                                                                          |          |                                                                                    | 37        | 2 4 1<br>2 5 2 0                                                                                                                                                                                                                  | -            |
|                      | Mag-<br>ne-<br>(Mg)                                |          | 4.7                            |           | 4.6<br>6.9<br>9.2<br>13<br>12<br>12                                                                                                                                                                                                                                                  |          | 4 80 9<br>9 9 9 9<br>9 9 9 9                         |          | 11<br>9.0                       |          | 38<br>16<br>7.8<br>51<br>51                                                                                                                                                                                                                                                                      | 13<br>19<br>15                                                                                                                           |          | 18<br>21<br>19<br>20                                                               |           | 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                           |              |
|                      | Cal-<br>cium<br>(Ca)                               | 1        | 26<br>36                       |           | 34<br>36<br>44<br>49<br>47                                                                                                                                                                                                                                                           |          | 36<br>37<br>26                                       |          | 44<br>34                        |          | 71<br>42<br>32<br>107<br>107                                                                                                                                                                                                                                                                     | 60<br>47<br>42                                                                                                                           |          | 64<br>90<br>88<br>87                                                               |           | 28<br>55<br>55                                                                                                                                                                                                                    | 200          |
|                      | (Fe)                                               | 1        | 0.08                           | 1         | 0.12                                                                                                                                                                                                                                                                                 | -        |                                                      |          | 0.43<br>.02                     | 1        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                          | 1        |                                                                                    |           |                                                                                                                                                                                                                                   |              |
| -                    | llica 1<br>SiO <sub>2</sub> ) (                    |          | 5.2                            | 1         | 1.1.68.6                                                                                                                                                                                                                                                                             |          | 20<br>20<br>20<br>30<br>30                           | -        | 9.0<br>3.0                      |          | 4.6<br>10<br>7.3<br>7.8<br>7.8                                                                                                                                                                                                                                                                   | 5,4.8<br>8,80<br>3,88                                                                                                                    | 1        | 145<br>445<br>445<br>16<br>16                                                      |           | 5.9<br>13.8<br>8.8                                                                                                                                                                                                                | 0.0          |
|                      | starge Si<br>(cfs) (S                              |          |                                | -         |                                                                                                                                                                                                                                                                                      |          |                                                      |          |                                 |          | 1.7<br>5.2<br>16.4<br>1,910                                                                                                                                                                                                                                                                      | 1,730<br>153<br>14.8                                                                                                                     |          | 670<br>670<br>111.2<br>11.1<br>4.23                                                |           | 318<br>318<br>826                                                                                                                                                                                                                 | 0-081        |
|                      | Date<br>of Di<br>collection                        |          | June 19, 1951<br>Nov. 14, 1956 |           | Oct. 16, 1953<br>Nov. 15, 1956<br>Nov. 6, 1956<br>Apr. 28, 1964<br>May 11, 1965                                                                                                                                                                                                      |          | Apr. 21, 1950<br>May 11                              |          | Aug. 16, 1963<br>Nov. 13, 1964  |          | Mar. 11, 1964<br>Aug. 25<br>Sept. 1                                                                                                                                                                                                                                                              | do<br>May 7                                                                                                                              |          | May 9, 1950<br>Sept. 23, 1964<br>Apr. 2, 1965<br>June 7                            |           | Aug. 17, 1964<br>do                                                                                                                                                                                                               | AU2 . 19     |

ų,

Table 6 --- Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

æ

¢

с.

e.

65

с

|                |                            |                                     |            | -                          | ;                           |                | ŝ                                                                  | Bl-                                       |                            |                                        |                      |                                                                                                  |                                         | Dise<br>(c:                            | solved s                         | ed)                | Hardi<br>as Ca                         | CO <sub>3</sub>                    |                                        | s'                                    | Specific<br>con-                             |                          |
|----------------|----------------------------|-------------------------------------|------------|----------------------------|-----------------------------|----------------|--------------------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------|--------------------|----------------------------------------|------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------|--------------------------|
| te<br>ction    | Discharge<br>(cfs)         | Silica Ir<br>(SiO <sub>2</sub> ) (1 | ron<br>Fe) | Cal-<br>tium<br>(Ca)       | mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Fo-<br>tas-<br>(K)                                                 | car-<br>bon-<br>ate<br>HCO <sub>3</sub> ) | Sulfate<br>(SO4)           | Chloride<br>(Cl)                       | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO3)                                                                            | L I I I I I I I I I I I I I I I I I I I | Parts<br>per<br>nillion                | Tons<br>per<br>acre-<br>foot     | Tons<br>per<br>day | Cal-<br>clum,<br>Mag-<br>ne-<br>slum   | Non-<br>car-<br>bon-<br>ate        | Per-<br>cent<br>so-<br>dium            | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рH                       |
|                |                            |                                     |            |                            |                             |                | 40.                                                                | SPRINC                                    | CREEK                      | ABOVE TA                               | NKERSL               | , Y                                                                                              |                                         |                                        |                                  |                    |                                        |                                    |                                        |                                       |                                              |                          |
| 1964           | 385<br>7.98<br>4.14<br>.06 | 8.3<br>8.4<br>8.7<br>15.7           |            | 44<br>33<br>57<br>57       | 3.5<br>3.3<br>17            | 8.40<br>8.70   | 4.2                                                                | 147<br>114<br>104<br>189                  | 9.0<br>9.8<br>11<br>68     | 5.6<br>8.5<br>71                       | 0                    | 1.5                                                                                              |                                         | 152<br>126<br>123<br>374               | 0.21<br>.17<br>.17<br>.51        |                    | 124<br>96<br>92<br>212                 | 57 2 4<br>57 2                     | 35 I 3 9 6                             | 0.1                                   | 265<br>220<br>212<br>638                     | 7.1<br>6.9<br>6.8<br>7.4 |
|                |                            |                                     |            |                            |                             | 41             | . DO                                                               | VE CREF                                   | ZK SPRIN                   | GS NEAR                                | KNICKE               | RBOCKE                                                                                           | R                                       |                                        |                                  |                    |                                        |                                    |                                        |                                       |                                              |                          |
| 1949           | 10.8                       | 29<br>16                            |            | 69                         | 20<br>16                    | 17             | 12                                                                 | 236<br>293                                | 24<br>15                   | 208<br>21                              | 0.5                  | 6.8<br>10                                                                                        |                                         | A596<br>316                            | 0.81                             |                    | 254<br>258                             | 60<br>18                           | 51                                     | е.<br>                                | 1,180                                        | 7.9                      |
|                |                            |                                     |            |                            | -                           |                | 43.                                                                | DOVE (                                    | CREEK AT                   | KNICKER                                | BOCKER               | 1                                                                                                |                                         |                                        |                                  |                    |                                        |                                    |                                        |                                       |                                              |                          |
| 1965           | 3.04                       | 11                                  |            | 60                         | 20                          |                | 31                                                                 | 244                                       | 24                         | 51                                     | 0.6                  | 0.2                                                                                              |                                         | 318                                    | 0.43                             |                    | 232                                    | 32                                 | 22                                     | 0.9                                   | 567                                          | 7.2                      |
|                |                            |                                     |            |                            |                             | 45             | 5. TW.                                                             | IN BUT'                                   | TES RESE                   | RVOIR NE                               | AR SAN               | A ANGE                                                                                           | LO U                                    |                                        | -                                |                    |                                        |                                    |                                        |                                       |                                              |                          |
| 23, 1964       |                            | 17<br>14<br>2.6<br>3.6<br>7.5       |            | 47<br>64<br>50<br>49<br>49 | 33<br>22<br>20<br>27<br>19  | 3.222          | 288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288<br>288 | M158<br>126<br>202<br>174<br>173          | 48<br>32<br>32<br>32<br>47 | 330<br>142<br>195<br>208<br>190<br>126 | 0<br>0,0,0,4,4       | 4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 737<br>448<br>519<br>617<br>491<br>491 | 1.00<br>.61<br>.71<br>.84<br>.67 |                    | 253<br>188<br>242<br>270<br>208<br>208 | 128<br>84<br>77<br>113<br>65<br>58 | 61<br>51<br>51<br>53<br>53<br>46<br>46 | 000404                                | 1,360<br>754<br>1,010<br>1,130<br>943<br>768 | 8.3<br>7.0<br>7.0<br>7.0 |
|                |                            | -                                   |            |                            |                             |                | 48.                                                                | LAKE                                      | NASWORT                    | THY NEAR                               | SAN AN               | NGELO                                                                                            | -                                       |                                        |                                  |                    |                                        |                                    |                                        |                                       |                                              |                          |
| 1958<br>1964   |                            | 7.6<br>4.8<br>2.3                   |            | 133<br>133<br>55<br>55     | 14<br>71<br>250<br>250      | m              | 39<br>50<br>77<br>36                                               | 210<br>162<br>207<br>172                  | 27<br>318<br>54<br>71      | 56<br>650<br>132<br>165                | 0<br>6.4.6.6         | 3.22                                                                                             |                                         | A310<br>1,610<br>451<br>500            | 0.42<br>2.19<br>.61              |                    | 197<br>624<br>244<br>240               | 25<br>491<br>75<br>99              | 30<br>55<br>41<br>47                   | 1.2<br>6.1<br>2.7                     | 2,770<br>835<br>952                          | 7.9<br>6.9<br>7.3<br>6.9 |
|                |                            |                                     |            |                            |                             |                | 49.                                                                | SOUTH                                     | CONCHO                     | RIVER AT                               | SAN 4                | INGELO                                                                                           |                                         |                                        |                                  |                    | _                                      |                                    |                                        |                                       |                                              |                          |
| , 1947<br>1952 |                            | 13                                  |            | 47<br>68                   | 22                          |                | 533                                                                | 226<br>260                                | 36<br>57                   | 71<br>94                               |                      | 0.5                                                                                              |                                         | A362<br>A481                           | 0.49                             |                    | 208<br>272                             | 23                                 | 36                                     | 1.76                                  | 628<br>785                                   | 8.0                      |
|                |                            |                                     |            |                            |                             |                | 51.                                                                | NORTH                                     | CONCHO I                   | ALVER AT                               | STERL.               | ING CI                                                                                           | ΤY                                      |                                        |                                  |                    | -                                      |                                    |                                        |                                       |                                              |                          |
| 1945           | 1.3<br>730                 | 20                                  |            | 82<br>31                   | 38<br>3.3<br>3.3            | 0.9            | 36 3.9                                                             | 322<br>117                                | 45<br>5.2                  | 61<br>2.8                              | 0.6                  | 1.5                                                                                              |                                         | A484<br>135                            | 0.66                             |                    | 320<br>91                              | 56                                 | 12                                     | 6.0                                   | 216                                          | 8.1                      |
|                | - +                        | 1000 s                              | -          | -                          | -                           |                |                                                                    | -                                         |                            |                                        |                      | -                                                                                                | -                                       |                                        |                                  |                    | _                                      |                                    |                                        |                                       | _                                            |                          |

A Residue on evaporation at 180°C. L South Coucho Pool. M Includes the equivalent of 3 ppm carbonate (CO<sub>2</sub>). N Middle Concho Pool.

|                   |                                             | I         | നനനം പ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r-4-0.00 80                                 | 500007                                                                             |          | 6.0 5                                                                            |          | 4                                |            |
|-------------------|---------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|----------|----------------------------------|------------|
| -0                | DH<br>DH                                    |           | 40-104<br>40-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80733                                       | 7 4 7 8 8 7                                                                        |          | 26 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                         |          | 30 7                             |            |
| Specifi<br>con-   | duct-<br>ance<br>(micro-<br>mhos a<br>25°C) |           | 21/<br>26(<br>19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 6 6 6 6<br>4 8 6 7 6 6                    | 231<br>231<br>231<br>231<br>232<br>232<br>232<br>232<br>232<br>232                 |          | 43328                                                                            |          | 1,26                             |            |
| -so-              | ad-<br>sorp-<br>tion<br>ratio               |           | 0.042.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | 0004-0                                                                             |          | 0.2                                                                              |          | 4.2                              |            |
|                   | er-<br>cent<br>so-<br>dium                  |           | 10<br>116<br>117<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n − 0 0 4                                   | 2 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1  |          | 15<br>18<br>18<br>25                                                             |          | 53                               |            |
| 1038              | in don-                                     |           | 10 P 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600Hu                                       | 0<br>26<br>2<br>2<br>2<br>0                                                        |          | 4000                                                                             |          | 138<br>70                        |            |
| Hardne<br>as CaC  | Cal-<br>Caum,<br>Mag-<br>ne-<br>sium        |           | 103<br>122<br>129<br>134<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>141<br>128<br>148<br>148<br>166      | 92<br>95<br>100<br>186<br>99<br>112                                                |          | 112<br>129<br>132<br>122<br>122<br>163                                           |          | 352<br>355                       |            |
| olids<br>ed)      | Tons<br>per<br>day                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                                                                    |          |                                                                                  |          |                                  |            |
| olved s<br>lculat | Tons<br>per<br>acre-<br>foot                |           | 0.17<br>.21<br>.23<br>.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>21<br>20<br>25<br>25                  | .19<br>                                                                            |          | 0.19<br>.22<br>.22<br>.22<br>.31                                                 |          | 1.25                             |            |
| Diss<br>(ca       | Parts<br>per<br>million                     |           | 127<br>158<br>170<br>170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143<br>157<br>145<br>187<br>198             | 138<br><br>230<br>134<br>129                                                       |          | A138<br>A162<br>164<br>229                                                       |          | A920                             |            |
|                   | B)<br>(B)                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PL                                          | 200000                                                                             |          | 040100                                                                           | 0        | - 20                             |            |
|                   | N1-<br>trate<br>(NO3)                       | LSBAD     | 4.02.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41 11                                       | ⊳4 ωα                                                                              | INGELO   |                                                                                  | ANGEL    | i                                | ROCK       |
|                   | Fluo-<br>ride<br>(F)                        | R CARI    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89799                                       | 000000                                                                             | SAN A    | 0                                                                                | SAN      |                                  | DATNT      |
|                   | Chloride<br>(Cl)                            | IVER NEAR | 3.0<br>8.5<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1<br>1.1<br>1.5<br>1.5<br>5.2             | 1089<br>1089<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108 | RVOIR AT | 4.2<br>9.6<br>13<br>13<br>13<br>13<br>13<br>13                                   | RIVER AT | 300<br>190                       | VER NEAR 1 |
|                   | Sulfate<br>(SO4)                            | CONCHO R  | 5.2<br>9.6<br>17<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.2<br>2.0<br>14<br>12<br>12<br>12<br>12    | 4,6<br>15.6<br>30<br>3.0<br>3.0                                                    | ELO RESE | 4.0<br>8.4<br>12<br>22<br>22                                                     | CONCHO   | 100<br>98                        | MCHO RIV   |
| Bi-               | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )  | NORTH     | 120<br>142<br>136<br>178<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143<br>172<br>159<br>143                    | 116<br>132<br>104<br>196<br>118<br>118                                             | AN ANG   | 139<br>158<br>151<br>151<br>191                                                  | NORTH    | 261<br>348                       | 00         |
| 1                 | Po-<br>tas-<br>(K)                          | 53.       | 1 4 - 3<br>4 - 5<br>7 - 7<br>7 - 7<br>7<br>7 - 7<br>7 | 5.1<br>5.0<br>6.0<br>5.8                    | 4.4<br>11 3.9<br>13.9<br>3.7<br>3.7                                                | 6. S     | 10<br>110<br>13<br>26                                                            | 57.      | 80                               | u          |
|                   | Sodium<br>(Na)                              |           | 2.3<br>6.2<br>13<br>13<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9<br>1.09<br>1.03                         | 4.2<br>7.1<br>3.1<br>1.0                                                           | ŝ        | 4.0                                                                              |          |                                  |            |
|                   | Mag-<br>nie-<br>sium<br>(Mg)                |           | 4.08 4<br>4.08 4<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.1<br>2.1<br>6.4                           | 3.0<br>15<br>1.8<br>1.8                                                            |          | 5.5<br>7.2<br>9.0<br>13                                                          |          | 40                               |            |
|                   | Cal-<br>cfum<br>(Ca)                        |           | 34<br>37<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43<br>44<br>56<br>56                        | 32<br>34<br>350<br>42                                                              |          | 41-38<br>380<br>44-38<br>380                                                     |          | 75                               |            |
|                   | Iron<br>(Fe)                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                                                                    |          | 0.08                                                                             |          |                                  |            |
|                   | Silica<br>(SiO <sub>2</sub> )               |           | 10<br>10<br>11<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0<br>6.6<br>5.4<br>9.1                    | 24<br>32<br>16<br>16<br>5.5                                                        |          | 7.8                                                                              |          |                                  |            |
|                   | Discharge<br>(cfs)                          |           | 234<br>67.7<br>1.90<br>.09<br>1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $255 \\ 75.5 \\ 2.18 \\ 2.18 \\ .68 \\ 115$ | 3,220<br>661<br>13.0<br>13.0<br>2,470<br>68                                        |          |                                                                                  |          | B3.4                             |            |
|                   | Date<br>of<br>collection                    |           | May 23, 1963<br>May 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nov. 19<br>do                               | Sept. 24<br>Sept. 25<br>Sept. 28<br>Nov. 30<br>May 16, 1965                        |          | Oct. 16, 1953<br>May. 6, 1958<br>May. 19, 1960<br>Sept. 23, 1961<br>Apr. 5, 1965 |          | Sept. 16, 1947<br>Sept. 23, 1961 |            |

1,210 717 568 868 824

2.3 1.9 1.6

198 37 127 31 83 31 146 37 127 32

 $374 \\ 231 \\ 188 \\ 266 \\ 284 \\ 284 \end{cases}$ 

685 0.93 383 .52 312 .41 491 .67 472 .64

0.4 1.2 --- 2.8 --- 2.8 --- 0

196 99 68 132 106

7.7 48 39 71 61

74 46 53 24 44 19 58 29 66 29

Apr. 18, 1946-----Apr. 28, 1948-----July 27------Sept. 21-------Nov. 22------ A Residue on evaporation at 180°C. B Field estimate.

101

÷

Table 6.--Chemical analyses of strongs and reservoirs in the Colorado River basin for locations other than daily stations

- 70 -

Table 6 .---Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations

æ

c

۴.

e.

4

С

| Dato                                                       |                                     |                                      |              | ç                                | Mag-                                                                                                              |                                                                                                         | P0-                            | Bi-                                        |                              |                                  |                      |                                 | I          | Dis                                     | solved s                           | olids<br>ed)       | Hard<br>as C                              | CO.                           |                                                    | -So-                                 | Specific<br>con-                             |                              |
|------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|------------------------------|----------------------------------|----------------------|---------------------------------|------------|-----------------------------------------|------------------------------------|--------------------|-------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------|
| of<br>collection                                           | Discharge<br>(cfs)                  | Silica<br>(SiO <sub>2</sub> )        | Iron<br>(Fe) | ctum<br>(Ca)                     | nie-<br>sium<br>(Mg)                                                                                              | Sodium<br>(Na)                                                                                          | stum<br>(K)                    | car-<br>bon-<br>ate<br>HCO <sub>3</sub> )  | Sulfate<br>(SO4)             | Chloride<br>(Cl)                 | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO3)           | ron<br>(B) | Parts<br>per<br>million                 | Tons<br>per<br>acre-<br>foot       | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium      | Non-<br>car-<br>bon-          | Per-<br>cent<br>so-<br>dium                        | ad-<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | Н                            |
|                                                            |                                     |                                      |              |                                  |                                                                                                                   | 59.                                                                                                     | CONCH                          | O RIVE                                     | R NEAR F                     | AINT ROCI                        | KCon                 | tinue                           | р          |                                         |                                    |                    |                                           |                               |                                                    |                                      |                                              |                              |
| 26, 1949<br>11, 1964<br>16<br>25                           | 6.34<br>6.34<br>24<br>4.43<br>2,850 | 20<br>2.8<br>13.9                    |              | 33<br>155<br>158<br>73<br>50     | 9.1<br>84<br>93<br>28<br>11                                                                                       | 444                                                                                                     | 16<br>58<br>02<br>25<br>25     | 120<br>184<br>154<br>97<br>138             | 15<br>414<br>462<br>80<br>50 | 27<br>345<br>390<br>250<br>38    | 0.5.4.4              | 5.1<br>3.0<br>5.1<br>3.0        | -          | $1,260 \\ 1,260 \\ 1,360 \\ 264 \\ 264$ | 0.25<br>1.71<br>1.85<br>.81<br>.36 |                    | 120<br>732<br>776<br>298<br>170           | 21<br>581<br>650<br>218<br>27 | 25322<br>243322<br>243322                          | 2.5<br>2.5<br>8.4<br>8.4             | 2,020<br>2,160<br>1,120<br>1,448             | 6.9<br>7.0<br>7.1            |
| . 16                                                       | 14.5<br>13.0<br>4.01<br>92.1        | 2.5<br>2.2<br>1.1                    |              | 106<br>158<br>136<br>38          | 39<br>84<br>83<br>4.9                                                                                             | - 0                                                                                                     | 55<br>72<br>04<br>19           | 138<br>202<br>176<br>M116                  | 237<br>414<br>380<br>21      | 130<br>360<br>412<br>26          | 4.0000               | 1.2<br>8.7<br>1.2               |            | 1,300<br>1,310<br>1,310                 | .87<br>1.77<br>1.78<br>1.78        |                    | 425<br>740<br>681<br>115                  | 312<br>574<br>537<br>20       | 22<br>34<br>26                                     | 1.2<br>3.8<br>8.6<br>8.7             | 2,150<br>2,150<br>2,180<br>310               | 7.5<br>6.9<br>8.5            |
|                                                            |                                     |                                      |              |                                  |                                                                                                                   | O. MUK                                                                                                  | EWATER                         | CREEK                                      | SUBWATI                      | CRSHED NO                        | EN 6 .               | AR TR                           | ICKHAN     |                                         | -                                  |                    |                                           |                               |                                                    |                                      |                                              |                              |
| 5. 6, 1961<br>1. 8, 1962<br>13                             |                                     | 0.0<br>2.6<br>2.8<br>2.8             |              | 22<br>24<br>24<br>22             | 44<br>66<br>1.8<br>1.8<br>1.8<br>1.9<br>1.8<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 4.6<br>4.6<br>7.7<br>6.1                                                                                | 5.8<br>7.0<br>6.1              | 106<br>119<br>118<br>106<br>89             | 0.00440<br>0.0010            | 7.0<br>6.0<br>11<br>10<br>7.5    | 0                    | 0.0<br>1.2<br>8.8<br>.8         |            | 104<br>115<br>126<br>114<br>98          | 0.14<br>.16<br>.17<br>.13          |                    | 8000000<br>800000000000000000000000000000 | 00000                         | 15299                                              | 00.440                               | 220<br>234<br>234<br>183                     | 7.77<br>7.24<br>7.24<br>7.24 |
| 23, 1963<br>. 23, 1964                                     | $^{2.2}_{13.1}$                     | 4.8<br>1.6                           |              | 18<br>33<br>24                   | 2.7                                                                                                               | 3.8<br>8.8                                                                                              | 5.8<br>10<br>10                | 68<br>115<br>92                            | 4.0<br>4.0                   | 6.0<br>6.3<br>4.6                | <u>9</u> 999         | 3.20                            |            | 78<br>115<br>104                        | .11<br>.16<br>.14                  |                    | 96<br>96<br>98                            | 000                           | $\begin{smallmatrix}&12\\&7\\2&4\end{smallmatrix}$ | <u>0</u> 099                         | 137<br>217<br>165                            | 6.2<br>7.2<br>6.7            |
|                                                            |                                     |                                      |              |                                  |                                                                                                                   |                                                                                                         | 61.                            | MUKEW                                      | ATER CRI                     | EEK AT TR                        | LCKHAN               |                                 | 1          |                                         |                                    |                    |                                           |                               |                                                    |                                      |                                              |                              |
| t. 18, 1962<br>t. 18<br>v 21, 1963<br>ne 17<br>t. 23, 1964 | 0.06<br>360<br>145<br>972<br>972    | 7.8<br>11<br>9.9<br>10<br>9.7<br>8.0 |              | 26<br>26<br>28<br>26<br>26<br>28 | 20.100<br>20.100<br>20.400<br>20.50                                                                               | 3.0<br>9.0<br>3.0<br>0.2<br>0.0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5.7<br>5.0<br>5.0<br>15<br>3.2 | 85<br>95<br>125<br>94<br>128<br>128<br>189 | 60404<br>000008              | 8.0<br>5.0<br>14.0<br>3.2<br>3.2 | 000000               | 1.8<br>1.2<br>1.2<br>2.8<br>2.8 |            | 105<br>106<br>131<br>119<br>172<br>172  | 0.14<br>114<br>118<br>116<br>23    |                    | 74<br>78<br>104<br>122<br>155             | 1<br>1<br>1<br>1<br>0         | 0 6 6 1 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1            | 0 10.00                              | 174<br>173<br>222<br>317<br>317              | 6.6<br>6.6<br>7.1<br>7.4     |
|                                                            |                                     |                                      |              |                                  |                                                                                                                   | 63.                                                                                                     | DEEP                           | CREEK                                      | SUBWATE                      | RSHED NO.                        | 1 NE/                | AR PLA                          | CID        |                                         |                                    |                    |                                           |                               |                                                    |                                      |                                              |                              |
| t. 4, 1961                                                 |                                     | 5.9                                  |              | 40                               | 7.2                                                                                                               |                                                                                                         | 12                             | 128                                        | 19                           | 21                               | 0.4                  | 1.0                             |            | 170                                     | 0.23                               |                    | 129                                       | 24                            | 17                                                 | 0.5                                  | 297                                          | 7.3                          |
|                                                            |                                     |                                      |              |                                  |                                                                                                                   | 64.                                                                                                     | DEEP                           | CREEK                                      | SUBWATE                      | RSHED NO.                        | 2 NE                 | AR PLA                          | CID        |                                         |                                    |                    |                                           |                               |                                                    |                                      |                                              |                              |
| t. 4, 1961                                                 |                                     | 3.7                                  |              | 34                               | 3.6                                                                                                               | 6.0                                                                                                     | 3.8                            | 102                                        | 16                           | 12                               | 0.5                  | 0.8                             |            | A142                                    | 0.19                               |                    | 100                                       | 16                            | 1                                                  | 0.3                                  | 233                                          | 7.2                          |
| Residue on evap<br>Includes the eq                         | oration at<br>uivalent c            | t 180°<br>of 7 p                     | C.<br>pm car | bonate                           | (CO <sub>3</sub> )                                                                                                |                                                                                                         |                                |                                            |                              |                                  |                      |                                 | -          |                                         |                                    |                    |                                           |                               |                                                    |                                      |                                              |                              |

1

/

Table 6.--Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

|                  | Нq                                          |          | 7.3         | 7.0        | 7.2<br>6.7           |          | 7.3          |          | 7.4         |          | 6.5           |           | 7.3<br>6.7<br>6.7<br>6.7                         | 6.8<br>6.8<br>7.1<br>7.3             | 7.7<br>6.9<br>6.8<br>6.8<br>7.0                    | 7.4               |
|------------------|---------------------------------------------|----------|-------------|------------|----------------------|----------|--------------|----------|-------------|----------|---------------|-----------|--------------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------|
| pecific<br>con-  | duct-<br>ance<br>nicro-<br>thos at<br>25°C) |          | 331<br>304  | 323        | 364<br>392<br>401    |          | 348          |          | 309         |          | 153           |           | 223<br>271<br>407<br>379<br>348                  | 265<br>458<br>310<br>327<br>236      | 623<br>815<br>719<br>228<br>311                    | 261<br>268        |
| So-S             | ad-<br>ad-<br>fion-<br>ratio<br>n           |          | 0.7         | 9.9.<br>9. | 0 O O                |          | 0.5          | 1        | 0.5         |          | 0.2           |           | 0.3<br>8<br>2<br>2                               | 1.35                                 | 0.1<br>0.1<br>0.2<br>0.2                           |                   |
|                  | er-<br>so-<br>lium<br>1                     |          | 22          | 22         | 21<br>20             | 1        | 18           |          | 20          |          | 12            |           | 2 4 4 13<br>5 4 4 5 5                            | 34<br>20                             | 41<br>52<br>10<br>19                               | 21<br>18          |
| 88<br>03         | ar-<br>are                                  |          | 37          | 35         | 45                   |          | 40           | 1        | 29          |          | 4             |           | 9<br>11<br>10<br>10                              | 15<br>24<br>10<br>18<br>7            | 64<br>70<br>85<br>10<br>17                         | ഗര                |
| Hardne<br>as CaC | Cal-<br>Ctum,<br>Mag-<br>h<br>ne-<br>stum   |          | 125         | 122        | 145<br>156<br>158    |          | 148          |          | 128         |          | 63            | -         | 97<br>112<br>158<br>188<br>174                   | 112<br>155<br>130<br>116             | 179<br>184<br>238<br>97<br>126                     | 104 112           |
| olids<br>ed)     | Tons<br>per<br>day                          |          |             |            |                      |          |              |          |             |          |               |           |                                                  |                                      |                                                    |                   |
| olved so         | Tons<br>per<br>acre-<br>foot                |          | 0.25        | .23        | . 28                 |          | 0.28         | _        | 0.26        | URY      | 0.12          | -         | 0.18<br>.23<br>.32<br>.33                        | .37<br>.24                           | .46<br>.55<br>.18<br>.23                           | . 22              |
| Dise<br>(c2      | Parts<br>per<br>million                     |          | 181<br>162  | 171<br>179 | A208<br>203<br>211   |          | 208          | -        | A193        | EAR MERC | 06            |           | 134<br>A172<br>A235<br>A239<br>A213              | A163<br>A274<br>178                  | 336<br>433<br>406<br>130<br>172                    | 161<br>162        |
|                  | Bo-<br>ron<br>(B)                           | ACID     |             |            |                      | ACID     |              | LACID    |             | EEK) N   |               |           |                                                  |                                      |                                                    |                   |
|                  | N1-<br>trate<br>(NO3)                       | AR PL    | 1.0         | 0.8        | င ကဲဆ                | SAR PI   | 0.5          | EAR PI   | 0.2         | EP CRI   | 3.0           | ~         | 1.2<br>1.2<br>.8<br>.0<br>.0                     | 60911                                | 2.0                                                | 2.2               |
|                  | Fluo-<br>ride<br>(F)                        | 3 NE     | 0.4         | 4.4        | 444                  | 4 NF     | 0.4          | 2 NI     | 0.3         | NG DEI   | 0.3           | DLEMA     | 0.000000                                         | 0.4.0.                               | ũ⊣4Ω4                                              | ų ų               |
|                  | Chloride<br>(Cl)                            | SHED NO. | 42<br>35    | 37<br>38   | 38<br>440<br>84      | CHED NO. | 25           | SHED NO. | 22          | DRY PRON | 5.0           | K NEAR CO | 13<br>22<br>34<br>11<br>8.7                      | 20<br>28<br>28<br>14                 | 98<br>158<br>88<br>8.2                             | 12<br>14          |
|                  | (SO4)                                       | SUBWATER | 15          | 16         | 18<br>20<br>21       | SUBWATER | 35           | SUBWATER | 27          | NO. 8 (  | 6.8           | ED CREEK  | 10<br>12<br>25<br>8.8                            | 9.2<br>36<br>13<br>19<br>8.2         | 46<br>42<br>14<br>16                               | 11                |
| Bi-              | bon-<br>ate<br>HCO <sub>3</sub> )           | CREEK 3  | 107         | 107<br>114 | 128<br>136<br>137    | CREEK    | 131          | CREEK    | 121         | TERSHEL  | 71            | JIM N     | 107<br>123<br>162<br>216<br>201                  | 119<br>160<br>119<br>119<br>102      | 140<br>140<br>187<br>187<br>106<br>133             | 121<br>126        |
| 5                | Po-<br>tas-<br>(K)                          | DEEP     | 10 10       | 9 9        | ഗഗാ                  | DEEP     | 10           | DEEP     | 4           | SUBWA    | 5.1           | 71.       | 3.9<br>16<br>4.8<br>4.8                          | 1 2 2 1 1                            | 57<br>91<br>54<br>14.1                             | 11                |
|                  | Sodium<br>(Na)                              | 65.      |             |            |                      | 66.      | I            | 67.      |             | P CREEK  | 4.3           |           | 7.2<br>6.2<br>4.7                                |                                      | 5.4                                                |                   |
| ;                | Mag-<br>ne-<br>sium<br>(Mg)                 |          | 6.7         | 6.9        | 7.3                  |          | 6.8          |          | 6.9         | . DEE    | 1.9           |           | 8.44<br>8.72<br>9.40<br>9.64<br>0.64             | 404<br>1.94                          | 12<br>11<br>4.8<br>6.4                             | 3.5<br>3.0        |
|                  | Cal-<br>clum<br>(Ca)                        |          | 39<br>36    | 38         | 50<br>51<br>51       |          | 48           |          | 40          | - 69     | 22            |           | 32<br>50<br>50<br>64<br>8                        | 38<br>47<br>1 1 4                    | 55<br>56<br>74<br>31<br>40                         | 36<br>40          |
|                  | Iron<br>(Fe)                                |          |             |            |                      |          |              |          |             |          |               |           |                                                  |                                      |                                                    |                   |
|                  | Silica<br>SiO <sub>2</sub> )                |          | 0.0         | 40         | 2.2                  |          | 13           |          | 6.7         |          | 6.6           |           | 8.8<br>9.9<br>13.9                               | 86.08<br>8.08<br>1.1                 | 1.5<br>5.2<br>10<br>8.0<br>8.2                     | 20<br>18<br>180°G |
|                  | ischarge (<br>(cfs)                         |          |             |            |                      |          |              |          |             |          |               |           | 216<br>36.2<br>12.0<br>2,540<br>2,080            | 428<br>B7.2<br>117<br>B5.5<br>81,470 | B30<br>27.4<br>8.85<br>9.34<br>6.21                | 1,650<br>522      |
|                  | Date<br>of<br>collection                    |          | ct. 4, 1961 | ec. 6      | an. 3, 1962<br>cb. 2 |          | let. 4, 1961 |          | ct. 4, 1961 |          | let. 13, 1961 |           | ct. 9, 1961<br>ct. 10<br>ct. 13<br>nuly 26, 1962 | uty 27<br>bet 15                     | hr. 23, 1964<br>Apr. 24, 24<br>Jure 15<br>Sept. 21 | May 13, 1965      |

ъ.

e,

89

,n

do.

P

- 72 -

Table 6.--Chemical analyses of streams and reservoirs in the Calorado River basin for locations other than daily stations.

| lc                 | DH<br>DH                                   |           | 84 7.2<br>84 7.2<br>7.2<br>7.2<br>7.2                                   | -         | 3 6.9      |           | 6 6.5<br>5 7.7<br>3 7.6           |           | 3 6.4      |           | 1 6.8       |           | 5 6.7       |         | 6 6 6 7 3<br>6 7 7 0<br>6 7 4<br>7 4<br>7 4  |
|--------------------|--------------------------------------------|-----------|-------------------------------------------------------------------------|-----------|------------|-----------|-----------------------------------|-----------|------------|-----------|-------------|-----------|-------------|---------|----------------------------------------------|
| Specif.<br>con-    | duct-<br>ance<br>(micro<br>mhos a<br>25°C) |           | 44480<br>44480                                                          |           | 27.        |           | 333                               |           | 54         |           | 99          |           | 41          |         | 44400                                        |
| \$;                | dium<br>ad-<br>Borp-<br>tion<br>ratio      |           | 0.5                                                                     |           | 0.6        |           | 0.6<br>1.5<br>.6                  |           | 1.8        |           | 2.2         |           | 0.8         |         | 1.1.0.6.0                                    |
|                    | Per-<br>cent<br>so-<br>dium                |           | 19<br>6<br>20<br>23<br>20                                               |           | 22         |           | 22<br>29<br>21                    |           | 43         |           | 46          |           | 24          |         | 30<br>30<br>30<br>30<br>30<br>30             |
| CO <sub>3</sub>    | Non-<br>car-<br>bon-<br>ate                |           | 001<br>96                                                               |           | 6          |           | 36<br>126<br>20                   |           | 81         |           | 64          |           | 22          |         | 3883388                                      |
| Hardr<br>as Ca     | Cal-<br>cfum,<br>Mag-<br>ne-<br>sfum       |           | 108<br>119<br>136<br>108<br>122                                         |           | 105        |           | 123<br>312<br>122                 |           | 138        |           | 169         |           | 154         |         | 146<br>152<br>150                            |
| solids<br>ted)     | Tons<br>per<br>day                         |           |                                                                         |           |            |           |                                   |           |            |           |             |           |             |         |                                              |
| solved s<br>alcula | Tons<br>per<br>acre-<br>foot               |           | 0.21<br>20<br>25<br>25<br>25                                            |           | 0.21       |           | 0.24<br>.68<br>.24                |           | 0.38       | 1         | 0.48        |           | 0.30        |         | 0.32                                         |
| Dls<br>)           | Parts<br>per<br>million                    |           | 108<br>A146<br>181<br>150<br>161                                        |           | 152        |           | 180<br>499<br>176                 |           | 282        |           | 353         |           | 219         |         | 234<br>241<br>235<br>195                     |
|                    | Bo-<br>(B)                                 |           |                                                                         |           |            |           |                                   |           |            | ]         |             | INWOOL    |             | WOOD    |                                              |
|                    | Ni-<br>trate<br>(NO3)                      | LERA      | 28520                                                                   |           | 2.0        |           | 0.0<br>2.5                        | CLYDE     | 2.0        |           | 0.2         | BROV      | 0.8         | BROW    | 0.0<br>.0                                    |
|                    | Fluo-<br>ride<br>(F)                       | AR VA     | 0400                                                                    | ALERA     | 0.2        | EMAN      | 0.000                             | NEAR      | 0.3        | RETT      | 0.2         | NEAR      | 0.3         | NEAR    | 0<br>0<br>0<br>0<br>0<br>0<br>0              |
|                    | Chloride<br>(Cl)                           | CRVOIR NE | 6.0<br>25.8<br>20<br>21<br>25.8<br>20<br>21<br>25.8<br>20<br>21<br>25.8 | SK NEAR V | 19         | EK AT COL | 33<br>118<br>23                   | AN BAYOU  | 263<br>102 | DU AT BUF | 120         | ROAD 2559 | 43          | 1 CANAL | 58<br>56<br>56                               |
|                    | Sulfate<br>(SO4)                           | REEK RESI | 8.8<br>3.4<br>8.4<br>8.8<br>8.8                                         | ORDS CREI | 9.6        | ORDS CREI | 24<br>84<br>17                    | FORK PECI | 106<br>37  | ECAN BAY  | 35          | AT FARM   | 7.6         | WID NO. | 20<br>21<br>21                               |
| Bi-                | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | ORDS CI   | 138<br>146<br>148<br>124<br>138                                         | 73. H     | 117        | 74. H     | 106<br>227<br>124                 | NORTH     | 70         | 76. P     | 128         | BAYOU     | 161         | COUNTY  | 132<br>142<br>137<br>126                     |
| 1                  | Po-<br>tas-<br>sium<br>(K)                 | 72. H     | 11<br>16<br>14<br>14                                                    |           | 14         |           | 16<br>59<br>15                    | 75.       | 48         |           | 66          | PECAN     | 22          | BROWN   | 31<br>31<br>24<br>24                         |
|                    | Sodium<br>(Na)                             |           | 4                                                                       |           |            |           |                                   |           |            |           |             | 77.       |             | 78.     |                                              |
| ;                  | Mag-<br>ne-<br>sium<br>(Mg)                |           | 40004<br>608808                                                         |           | 3.7        |           | 4.4<br>19<br>4.8                  |           | 6.9        |           | 7.2         |           | 3.5         |         | 6.6<br>6.6<br>7.4<br>6.1                     |
|                    | Cal-<br>cium<br>(Ca)                       |           | 8 8 9 8 9 8<br>9 8 9 9 9 1                                              |           | 36         |           | 42<br>44                          |           | 44         |           | 56          |           | 56          |         | 48<br>50<br>48<br>40                         |
|                    | Iron<br>(Fe)                               |           | 0.09<br>110<br>110                                                      |           |            |           |                                   |           |            |           |             |           |             |         |                                              |
|                    | Silica<br>(SiO <sub>2</sub> )              |           | 15<br>6.4<br>6.0<br>2.8                                                 |           | 10         |           | 8.4<br>12<br>11                   |           | 16<br>7.5  |           | 5.8         |           | 6.8         |         | 5.9<br>5.8<br>6.0<br>7.0                     |
|                    | Discharge<br>(cfs)                         |           |                                                                         |           | 96.8       |           | 16.4<br>.13<br>250                |           | 2.25       |           | 2.5         |           | 2,320       |         | 29.5<br>11.0<br>21.2<br>21.7                 |
|                    | Date<br>of<br>collection                   |           | 1y 28, 1949<br>n. 14, 1954<br>r. 13, 1964<br>t. 6<br>1y 19, 1965        |           | y 19, 1965 |           | r. 22, 1964<br>t. 6<br>y 19, 1965 |           | y 19, 1965 |           | r. 21, 1964 |           | r. 21, 1964 |         | t. 29, 1963<br>r. 18, 1964<br>r. 24<br>t. 21 |

A Residue on evaporation at 180°C.

- 73 -

ۍ ۲

5

~

c

Table 6.--Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

|                  | Н                                           |          | 6.9                                                                              |          | 7.1<br>7.3                |          | 7.5           |          | 7.7<br>7.6<br>7.6<br>7.6                 |          | 7.5           |          | 6.8<br>7.2<br>7.4                          |          | <br><br>7.3                                               |                                         |
|------------------|---------------------------------------------|----------|----------------------------------------------------------------------------------|----------|---------------------------|----------|---------------|----------|------------------------------------------|----------|---------------|----------|--------------------------------------------|----------|-----------------------------------------------------------|-----------------------------------------|
| pecific<br>con-  | duct-<br>ance<br>nicro-<br>nhos at<br>25°C) |          | 431<br>548<br>548<br>457<br>562<br>562                                           |          | 350<br>433                |          | 541           |          | 480<br>509<br>476<br>556                 |          | 314           |          | 222<br>311<br>333                          |          | 429<br>278<br>1,330<br>210                                |                                         |
|                  | ad-<br>orp-(1<br>tion<br>ratio              |          | 1.0                                                                              |          | 0.4<br>.7                 |          | 0.3           |          | 0.5<br>.4<br>.5                          | 1        | 1.1           |          | 0.6<br>.6<br>.6                            |          | 3.6                                                       | _                                       |
|                  | Per-<br>cent<br>so- 8<br>dium 1             |          | 22<br>22<br>23<br>26<br>23<br>26                                                 |          | 21                        |          | 10            |          | 13<br>12<br>15                           | 1        | 34            |          | 25<br>20<br>19                             |          | 13<br>15<br>30<br>30                                      | _                                       |
| 0°88             | Von-<br>car-<br>bon-<br>ate                 |          | 27<br>21<br>31<br>25<br>64                                                       | -        | 19                        | 1        | 10            |          | 10<br>8<br>3<br>10                       |          | 0             |          | 000                                        |          | 0<br>181<br>8                                             | _                                       |
| Hardne<br>as CaC | Cal-<br>cium,<br>Mag-<br>ne-<br>sium        |          | 151<br>281<br>220<br>157<br>173<br>208                                           |          | 160<br>178                |          | 274           |          | 234<br>250<br>227<br>258                 |          | 109           |          | 84<br>130<br>140                           |          | 194<br>123<br>318<br>80                                   | _                                       |
| olids<br>ed)     | Tons<br>per<br>day                          |          |                                                                                  |          |                           |          |               |          |                                          |          |               |          |                                            |          |                                                           |                                         |
| solved so        | Tons<br>per<br>acre-<br>foot                |          | 0.31<br>54<br>35<br>36<br>36<br>.42                                              |          | 0.27                      | -        | 0.43          |          | 0.39<br>.40<br>.36<br>.36                |          | 0.25          |          | 0.17<br>.23<br>.24                         |          | 0.33<br>.22<br>1.09<br>.18                                |                                         |
| Dilse<br>(c      | Parts<br>per<br>million                     |          | 224<br>400<br>306<br>254<br>264<br>309                                           |          | 198<br>241                |          | 315           |          | 284<br>293<br>267<br>317                 |          | A181          | -        | 124<br>171<br>178                          |          | 244<br>160<br>A802<br>130                                 |                                         |
|                  | Bo-<br>(B)                                  |          |                                                                                  |          |                           |          |               |          | 0.010.0                                  |          | ~             |          | 000                                        |          | 10 20 N O                                                 | _                                       |
|                  | NI-<br>trate<br>(NO3)                       | e        | 0                                                                                | ITE      | 8<br>8<br>8               | E        | 3.0           | e        | 00000                                    |          | 0.0           | BRAD'    | 000                                        |          | m N                                                       | _                                       |
|                  | Fluo-<br>ride<br>(F)                        | NNWOO    | 0.4                                                                              | DTHWA    | 0                         | KAVET    | 0.4           | MENAF    | 0                                        | EDEN     | 3.0           | NEAR     | 0                                          | RADY     |                                                           |                                         |
|                  | Chloride<br>(Cl)                            | U AT BRO | 41<br>35<br>36<br>36<br>49                                                       | NEAR GOL | 13<br>34                  | FORT MC  | 17            | IVER AT  | 17<br>19<br>18<br>24                     | REEK AT  | 20            | SERVOIR  | 12<br>14                                   | EEK AT B | 13<br>6.(<br>248<br>18                                    |                                         |
|                  | Sulfate<br>(SO <sub>4</sub> )               | CAN BAYO | 51<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | N BAYOU  | 12<br>16                  | RINGS AT | 11            | N SABA R | 19<br>14<br>13<br>20                     | HARDIN C | 10            | CREEK RE | 7.6<br>8.0<br>8.8                          | 3RADY CR | 9.1<br>12<br>146<br>13                                    |                                         |
| Bi-              | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )  | 80. PE(  | 152<br>293<br>230<br>159<br>181<br>181                                           | PECA     | 186<br>194                | 32. SP   | 322           | 84. SA   | 274<br>296<br>273<br>302                 | 86.      | 153           | BRADY    | 105<br>164<br>174                          | 88.      | 237<br>150<br>168<br>88                                   |                                         |
| ĥ                | F0-<br>tas-<br>stum<br>(K)                  |          | 334<br>334<br>334<br>33                                                          | 81       | 21                        |          | 13            |          | 16<br>116<br>21<br>21                    |          | 26            | 87.      | 13<br>15<br>15                             |          | 14<br>9.9<br>15                                           |                                         |
|                  | Sodium<br>(Na)                              |          |                                                                                  |          |                           |          |               |          |                                          |          |               |          |                                            |          |                                                           |                                         |
| -                | mag-<br>sium<br>(Mg)                        |          | 8.9<br>15<br>11<br>7.2<br>9.4<br>18                                              |          | 6.7<br>6.9                |          | 20            |          | 20<br>21<br>25<br>25                     |          | 7.7           |          | 4.38                                       |          | 14<br>9.3<br>38<br>3.6                                    |                                         |
|                  | clum<br>(Ca)                                |          | 46<br>54<br>54<br>54                                                             |          | 53<br>60                  |          | 77            |          | 61<br>58<br>58<br>62                     |          | 31            |          | 29<br>45                                   |          | 55<br>34<br>65<br>26                                      |                                         |
|                  | Iron<br>(Fe)                                |          |                                                                                  |          |                           |          |               |          |                                          |          |               |          |                                            |          |                                                           |                                         |
|                  | Silica<br>(SiO <sub>2</sub> )               |          | 6.2<br>15.2<br>5.5<br>4.3                                                        |          | 8.3                       |          | 15            |          | 16<br>12<br>7.9<br>15                    |          | 6.0           |          | 6.4<br>8.2<br>9.2                          |          | 19<br>14<br>4.6<br>9.0                                    | 180°C                                   |
|                  | Discharge<br>(cfs)                          |          | 0.1<br>960 .4                                                                    |          | 477<br>2,520              |          | 12.2          |          | 4.02<br>13.3<br>29.1<br>5.14             |          |               |          |                                            |          | 5,620                                                     | ration at                               |
|                  | Date<br>of<br>collection                    |          | hpr. 28, 1948<br>7011y 27<br>Sept. 21<br>cov. 23<br>Peb. 1949<br>Apr. 21, 1944   |          | Sept. 23, 1964<br>Nov. 20 |          | Jan. 12, 1965 |          | Nov. 3, 1964<br>Jan. 12, 1965<br>Mar. 23 |          | June 27, 1958 |          | Sept. 30, 1964<br>Jan. 14, 1965<br>Mar. 24 |          | July 27, 1948<br>Sept. 21<br>May 19, 1960<br>Oct. 9, 1961 | A Residue on evapo.<br>P Pield setimate |
Table 6 .-- Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

e,

^

¢,

n.

s.t.

e

|                                                                  | Hq                                        |          | 7.6<br>7.1<br>6.9                                                               | 7.0<br>8.0<br>7.6                   |           | 7.6           |           | 7.3           |          | 6.7<br>7.9<br>7.7                                    |          | 7.6           |           | 7.6           |          | 7.4<br>7.0<br>7.4<br>7.4<br>7.6                                                                                                        | 7.8<br>7.8<br>7.6                  |                     |
|------------------------------------------------------------------|-------------------------------------------|----------|---------------------------------------------------------------------------------|-------------------------------------|-----------|---------------|-----------|---------------|----------|------------------------------------------------------|----------|---------------|-----------|---------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|
| Specific<br>con-<br>duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |                                           |          | 225<br>308<br>546<br>491                                                        | 266<br>365<br>663                   |           | 992           |           | 518           |          | 435<br>490<br>455<br>460                             |          | 455           |           | 449           |          | 423<br>442<br>404<br>420<br>391                                                                                                        | 447<br>304<br>441                  |                     |
| So- S<br>So- S<br>dium<br>ad-<br>sorp-(r<br>tion<br>ratio        |                                           |          | 0.5<br>1.1<br>1.0                                                               | 6.<br>1.2                           |           | 2.3           | 1         | 1.5           |          | 0                                                    | 1        | 0.2           |           | 0.2           |          | 000040                                                                                                                                 | n 4 n                              | 1                   |
|                                                                  | Per-<br>cent<br>so-<br>dium               |          | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 11<br>19<br>27                      |           | 40            |           | 37            |          | 6<br>112<br>12<br>12<br>12                           |          | n             |           | 9             |          | 880519<br>1088                                                                                                                         | 10<br>14<br>8                      |                     |
| ess<br>CO <sub>3</sub>                                           | Non-<br>car-<br>bon-<br>ate               |          | 18<br>31<br>31<br>31<br>31<br>31                                                | 10<br>3<br>46                       |           | 28            |           | 44            |          | 22<br>19<br>12                                       |          | 90            |           | œ             |          | 401<br>844<br>1087                                                                                                                     | 12<br>16                           |                     |
| Hardn<br>as Ca(                                                  | Cal-<br>cium,<br>Mag-<br>ne-<br>sium      |          | 94<br>100<br>199<br>206<br>180                                                  | 115<br>159<br>256                   |           | 314           |           | 158           |          | 216<br>240<br>217<br>223                             |          | 231           |           | 231           |          | 207<br>215<br>195<br>201<br>194                                                                                                        | 226<br>139<br>215                  |                     |
| ed)                                                              | Tons<br>per<br>day                        |          |                                                                                 |                                     |           |               |           |               |          |                                                      |          |               |           |               |          |                                                                                                                                        |                                    |                     |
| solved sc<br>alculation                                          | Tons<br>per<br>acre-<br>foot              |          | 0.19<br>.27<br>.40<br>.41                                                       | .23                                 |           | 0.75          |           | 0.38          |          | 0.35<br>.39<br>.36<br>.36                            |          | 0.35          |           | 0.35          |          | 0.32<br>.33<br>.31<br>.31<br>.31<br>.31<br>.31                                                                                         | 33                                 |                     |
| ्रध्य                                                            | Parts<br>per<br>million                   |          | A143<br>177<br>291<br>304<br>270                                                | 154<br>215<br>387                   |           | 548           |           | 283           |          | 258<br>262<br>262<br>262<br>262                      |          | 259           |           | 260           |          | 235<br>245<br>226<br>241<br>229                                                                                                        | 266<br>172<br>243                  |                     |
|                                                                  | Bo-<br>(B)                                |          |                                                                                 |                                     |           |               |           |               |          |                                                      |          |               | Hd        |               |          |                                                                                                                                        |                                    |                     |
| N1-<br>trate<br>(NO3)                                            |                                           | inued    | 0.8<br>1.8<br>.5<br>.2<br>2.0                                                   | 3.5                                 | ABA       | 2.8           | RNET      | 1.2           | NOILC    | 11<br>4.8<br>2.2<br>2.2                              | EGRAPH   | 5.2           | ELEGR/    | 5.7           | NO       | 0.8<br>7.00<br>8.0                                                                                                                     | 4.5<br>3.2<br>2.0                  |                     |
|                                                                  | Fluo-<br>ride<br>(F)                      | -Cont:   | 0.0                                                                             | ស៊ត                                 | SAN SJ    | 0.2           | AR BUI    | 0.3           | R JUNC   | 0.000                                                | TELI     | 0.3           | EAR TI    | 0.3           | INCTIC   | 0.00.00                                                                                                                                | លុកុកុ                             |                     |
| Chloride<br>(Cl)                                                 |                                           | F BRADY  | 19<br>38<br>40<br>340<br>340                                                    | 11<br>17<br>63                      | INGS AT 8 | 159           | RVOIR NE/ | 69            | VER NEAD | 13<br>19<br>19                                       | UER NEAH | 6.6           | PRINGS NI | 8.6           | NEAR JI  | 14<br>13<br>14<br>10                                                                                                                   | 14<br>14<br>14                     |                     |
|                                                                  | Sulfate<br>(SO <sub>4</sub> )             | CREEK A1 | 13<br>18<br>28<br>28<br>28                                                      | 13<br>16<br>50                      | ABA SPRI  | 8.4           | IAN RESEI | 38            | LLANO R1 | 15<br>19<br>15                                       | LLANO R1 | 6.4           | NDRED SI  | 6.4           | NO RIVER | 11<br>11<br>9,4<br>12,8                                                                                                                | 13<br>12<br>12                     |                     |
| Bi-                                                              | car-<br>bon-<br>ate<br>HCO <sub>3</sub> ) | BRADY    | 92<br>98<br>205<br>236<br>216                                                   | 128<br>190<br>256                   | SAN S     | 348           | BUCHAN    | 140           | NORTH    | 237<br>269<br>247<br>257                             | SOUTH    | 273           | VEN HU    | 272           | LLA      | 236<br>250<br>228<br>220<br>220                                                                                                        | 262<br>154<br>243                  |                     |
| f                                                                | Po-<br>tas-<br>(K)                        | 88.      | 14051                                                                           | 8<br>4.0                            | 90.       | u.            | 92.       | 4             | 93.      | 4 6 5<br>2<br>8                                      | 94.      | 1.4           | 5. SE     | 1.5           | 96       | 1.5<br>1.7<br>3 2.6                                                                                                                    | 20<br>.9                           |                     |
|                                                                  | Sodium<br>(Na)                            |          |                                                                                 | 6.7                                 |           | 6             |           | 4             |          | 9<br>9<br>9                                          |          | 5.8           | 6         | 6.7           |          | 8.4<br>8.7<br>5.3<br>1                                                                                                                 | 8.7<br>8.7                         |                     |
| ;                                                                | Mag-<br>ne-<br>sium<br>(Mg)               |          | 4.0<br>9.0<br>9.2                                                               | 3.7<br>5.9<br>12                    |           | 35            |           | 13            |          | 15<br>20<br>19                                       |          | 15            |           | 15            |          | 17<br>17<br>17<br>18<br>18                                                                                                             | 18<br>18<br>19                     |                     |
| cal-<br>cium<br>(Ca)                                             |                                           |          | 31<br>30<br>65<br>67<br>57                                                      | 40<br>54<br>83                      |           | 68            |           | 42            |          | 62<br>54<br>58<br>86<br>28                           |          | 68            |           | 89            |          | 55<br>50<br>51<br>58<br>58<br>58<br>50<br>58<br>50<br>58<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 61<br>55<br>55                     |                     |
|                                                                  | Iron<br>(Fe)                              |          |                                                                                 |                                     |           |               |           |               |          |                                                      |          |               |           |               |          |                                                                                                                                        |                                    |                     |
|                                                                  | Silica<br>(SiO <sub>2</sub> )             |          | 10<br>10<br>7.8<br>9.3<br>10                                                    | 8.6<br>11<br>8.6                    |           | 0.6           |           | 6.4           |          | 15<br>115<br>112                                     |          | 13            |           | 13            |          | 11<br>12<br>16<br>14                                                                                                                   | 14<br>13<br>12                     | 180°C               |
| Discharge<br>(cfs)                                               |                                           |          | 2,430<br>186<br>.28<br>.21<br>B.04                                              | 2.20<br>.90<br>.19                  |           | 6.62          | -         |               |          | 218<br>47.9<br>28.9<br>28.5                          |          | 17.5          |           | 15.7          |          | 76.5<br>70.0<br>56.6<br>30.9<br>533                                                                                                    | 138<br>120<br>106                  | ation at            |
|                                                                  | Date<br>of<br>collection                  |          | Det. 10, 1961<br>Det. 11<br>Npr. 3, 1964<br>lay 6                               | Sept. 30<br>vov. 6<br>fan. 14, 1965 |           | Jan. 14, 1965 |           | Jan. 13, 1965 |          | Sept. 28, 1964<br>Vov. 3<br>Tan. 12, 1965<br>far. 23 |          | Jan. 12, 1965 |           | Jan. 12, 1965 |          | <pre>dar. 31, 1964<br/>day 5<br/>June 8<br/>fuly 14<br/>sept. 28</pre>                                                                 | Nov. 3<br>Jan. 13, 1965<br>far. 23 | A Residue on evapor |

|                                                 | Hq                                          |          | 7.4<br>8.0<br>7.3<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                   | 7.7<br>7.7<br>7.5<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.12                                   | 7.6<br>7.2<br>7.2                                                                                                                                                |          |                                                                                                                                              | 7.000                                      |                                          |
|-------------------------------------------------|---------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| Specific<br>con-                                | duct-<br>ance<br>micro-<br>nhos at<br>25°C) |          | 463<br>524<br>603<br>547<br>598<br>598<br>615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 355<br>355<br>311<br>362<br>401                                   | 417<br>417<br>366<br>414<br>403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 374<br>325<br>325<br>350               | 430<br>475<br>436<br>391                                                                                                                                         |          | 443<br>522<br>764<br>779<br>699                                                                                                              | 610<br>597<br>496<br>357<br>404            |                                          |
| s,                                              | ad-<br>sorp-<br>tion<br>ratio               |          | 0 1 0 8 8 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 00004                                                             | 00440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | က အ 4 က မ                              | . 9<br>                                                                                                                                                          |          | 1.4                                                                                                                                          | 1<br>8 4 8 4 1                             |                                          |
|                                                 | So-                                         |          | 221<br>23<br>23<br>23<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | 11<br>11<br>12<br>12                                              | 19<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{17}_{18}$                           | 15<br>17<br>19<br>18                                                                                                                                             |          | 19<br>20<br>30<br>30<br>30                                                                                                                   | 20<br>21<br>20<br>20<br>20                 |                                          |
| 038                                             | ate                                         | -        | 26<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 7<br>16<br>25<br>16                                               | 16<br>15<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01151<br>88                            | 16<br>14<br>14                                                                                                                                                   |          | 12<br>22<br>134<br>134                                                                                                                       | 52<br>26<br>16<br>26<br>26                 |                                          |
| Hardne<br>as CaC                                | Cal-<br>cium,<br>Mag-<br>ne-<br>sium        | -        | 218<br>224<br>256<br>225<br>225<br>225<br>226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 152<br>166<br>150<br>181<br>181                                   | 178<br>188<br>165<br>188<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162<br>172<br>146<br>150<br>154        | 195<br>202<br>185<br>170                                                                                                                                         |          | 185<br>214<br>268<br>306<br>258                                                                                                              | 252<br>218<br>165<br>168                   |                                          |
| olids<br>olids                                  | Tons<br>per<br>day                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                                                  |          |                                                                                                                                              |                                            |                                          |
| solved so                                       | Tons<br>per<br>acre-<br>foot                |          | 0.36<br>.40<br>.39<br>.39<br>.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 0.27                                                              | 32<br>33<br>28<br>29<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27<br>31<br>26<br>28                   | 334                                                                                                                                                              |          | 0.55                                                                                                                                         | 44<br>47<br>38<br>38<br>28<br>31           |                                          |
| Dis<br>(c:                                      | Parts<br>per<br>million                     |          | 266<br>294<br>332<br>332<br>288<br>332<br>341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | A214<br>200<br>184<br>A197<br>A224                                | A237<br>241<br>A209<br>218<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199<br>230<br>191<br>208<br>208        | 234<br>242<br>222                                                                                                                                                |          | A285<br>A294<br>402<br>A387<br>A404                                                                                                          | 326<br>344<br>281<br>204<br>204            |                                          |
|                                                 | Bo<br>(B)                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                                                  | ΓY       |                                                                                                                                              |                                            |                                          |
|                                                 | Culoride Fluo-Ni-<br>Culo (F) (NO3)         |          | 3<br>5<br>5<br>0<br>0<br>0<br>2<br>8<br>0<br>0<br>2<br>8<br>0<br>0<br>2<br>8<br>0<br>0<br>2<br>8<br>0<br>0<br>2<br>8<br>000<br>8<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 0.8<br>1.8<br>.0<br>.8                                            | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.9<br>4.5<br>2                        | 19 0 0 0                                                                                                                                                         | ON CI    | 1.2<br>1.2<br>.8<br>1.0                                                                                                                      | 1.0<br>7.5<br>1.8                          |                                          |
|                                                 |                                             |          | 484<br>886<br>486<br>486<br>448<br>448<br>448<br>448<br>448<br>448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CANO      |                                                                   | 0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04040                                  | 040 <u>0</u>                                                                                                                                                     | JOHNSO   | 0.4                                                                                                                                          | 0,0,4,0j ⊢                                 |                                          |
|                                                 |                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VER AT LI | 19<br>16<br>16<br>19                                              | 26<br>26<br>22<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>34<br>11<br>18                   | 23<br>28<br>27<br>20                                                                                                                                             | ER NEAR  | 29<br>106<br>102<br>89                                                                                                                       | 56<br>84<br>39<br>32<br>32                 |                                          |
|                                                 | Sulfate<br>(SO4)                            | AVER CRE | 19<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LLANO RIV | 9.5<br>11<br>8.2<br>9.6<br>13                                     | 16<br>17<br>15<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>12<br>16<br>15                   | 16<br>19<br>16                                                                                                                                                   | ALES RIV | 15<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35                                                             | 35<br>31<br>20<br>22<br>22                 |                                          |
| Bi-                                             | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )  | 97. BE   | 234<br>262<br>262<br>256<br>234<br>256<br>256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99. I     | 177<br>182<br>182<br>191<br>213                                   | 197<br>207<br>183<br>207<br>205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 186<br>195<br>165<br>168<br>178        | 219<br>218<br>209<br>196                                                                                                                                         | PEDERN   | 210<br>235<br>236<br>234<br>234<br>234<br>234<br>232                                                                                         | 244<br>218<br>234<br>182<br>173            |                                          |
|                                                 | Po-<br>tas-<br>sium<br>(K)                  |          | 14<br>31<br>33<br>33<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 14<br>9.5<br>12.6<br>12.6<br>12.6                                 | 19<br>18<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>11<br>15<br>16                   | 16<br>19<br>21<br>17                                                                                                                                             | 103.     | 233<br>23<br>23<br>23<br>23<br>23<br>23<br>20<br>23<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            | 30<br>268<br>20<br>20                      |                                          |
|                                                 | Sodiu<br>(Na)                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                                                  |          |                                                                                                                                              |                                            |                                          |
| Mag-<br>ne-<br>sium<br>(Mg)                     |                                             |          | 16<br>33<br>28<br>28<br>29<br>29<br>29<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | 116<br>116<br>21<br>22                                            | 255087<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55008<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>555008<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>55508<br>5550 | 20<br>23<br>8.2<br>17<br>15            | 23<br>23<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                           |          | 20<br>29<br>44<br>29<br>42                                                                                                                   | 31<br>32<br>11<br>16                       | e (C0,                                   |
|                                                 | Cal-<br>cium<br>(Ca)                        |          | 61<br>44<br>48<br>48<br>48<br>46<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 33<br>33<br>37<br>38<br>40                                        | 35<br>33<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32<br>32<br>32<br>32<br>32<br>32<br>32 | 442<br>338<br>55<br>85<br>25<br>85<br>25<br>85<br>25<br>85<br>25<br>85<br>25<br>85<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 |          | 41<br>38<br>38<br>34<br>34<br>35<br>38<br>34<br>36<br>38<br>34<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 | 50<br>38<br>41<br>41                       | rbonat                                   |
|                                                 | Iron<br>(Fe)                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                                                  |          |                                                                                                                                              |                                            | Dm Ca                                    |
| Date<br>of Discharge Silica<br>collection (cfs) |                                             |          | 15 - 7 2 4 8 8 8 8 9 1 1 2 9 4 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 9 1 2 |           | 11<br>14<br>114<br>18<br>8.2<br>8.2<br>8.2                        | 9.0<br>12<br>3.5<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1<br>10<br>15<br>11<br>11            | 6.0<br>3.3<br>11<br>17                                                                                                                                           | 1        | $   \begin{array}{c}     12 \\     9.2 \\     11 \\     2.4 \\     9.1 \\     9.1   \end{array} $                                            | 3.2<br>3.7<br>114<br>10<br>10              | 180°C                                    |
|                                                 |                                             |          | 36.6<br>9.28<br>1.42<br>1.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 233<br>216<br>88<br>108                                           | 114<br>532<br>187<br>97.9<br>70.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $^{48.5}_{1,710}$ 1,710 1,020          | 148<br>187<br>304<br>106                                                                                                                                         |          |                                                                                                                                              | 44.4<br>22.8<br>.12<br>276<br>39.1         | ration at<br>ivalent o:                  |
|                                                 |                                             |          | ept. 29, 1964<br>ov. 4<br>ar. 13, 1965<br>ar. 25<br>uly 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | pr. 28, 1948<br>uly 27,<br>ept. 21<br>ov. 21, 1949<br>eb. 8, 1949 | ay 19, 1960<br>an 18, 1961<br>ct. 11<br>ay 64<br>ay 62, 1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unc 8<br>uly 14<br>ept. 29             | an. 13, 1965<br>lar. 24<br>lay 11                                                                                                                                |          | pr. 28, 1948<br>iuly 27<br>iept. 21<br>iov. 21                                                                                               | pr. 2, 1964<br>lay 9<br>ug. 20<br>iept. 28 | A Residue on evapo<br>• Contains the equ |

η¢

e

ъ

 $\Delta t$ 

ų,

Table 6.--Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

|                          | Hq                                          |          | 7.5<br>7.5<br>7.1<br>6.9                                                              |          | 7.6          |          | 7.5          |           | 7.7          |          | 6.9           |                                                                                                  | 7.0<br>6.6<br>7.3<br>6.9                           | 7.6<br>6.5<br>6.7    |                | 6.9<br>6.6<br>7.2<br>6.9                           | 7.5<br>6.5<br>6.6   |
|--------------------------|---------------------------------------------|----------|---------------------------------------------------------------------------------------|----------|--------------|----------|--------------|-----------|--------------|----------|---------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------|----------------------------------------------------|---------------------|
| pecific<br>con-          | duct-<br>ance<br>nicro-<br>thos at<br>25°C) |          | 758<br>574<br>559<br>254                                                              |          | 358          |          | 396          |           | 434          |          | 618           |                                                                                                  | 841<br>371<br>190<br>180<br>222                    | 709<br>442<br>300    |                | 803<br>383<br>204<br>199<br>258<br>258             | 685<br>459<br>292   |
| -os                      | ad-<br>ad-<br>forp-<br>fion<br>ratio        |          | 1.4                                                                                   |          | 0.3          |          |              | 1         | 0.2          |          | 0.4           |                                                                                                  | 5.01<br>1.00<br>1.00<br>1.00                       | 1.0                  |                | 5.0.1.0.0<br>1                                     | 1.1                 |
| per-<br>cent so-<br>dium |                                             |          | 30<br>17<br>55                                                                        |          | 12           | 1        |              |           | 2            | 1        | 10            |                                                                                                  | 26<br>1347<br>8                                    | 1   23               |                | 26<br>13<br>12<br>12                               | 26                  |
| ess<br>CO <sub>3</sub>   | Non-<br>car-<br>bon-                        |          | 60<br>38<br>0<br>1<br>28<br>0                                                         | ĺ        | 30           | 1        | 14           |           | 20           |          | 29            |                                                                                                  | 50<br>18<br>28<br>20<br>28<br>20<br>28<br>20<br>28 | 0 0 0<br>20          | 1              | 85<br>18<br>19<br>11                               | 66<br>16<br>4       |
| Hardn<br>as Ca(          | Cal-<br>cium,<br>Mag-<br>ne-<br>sium        |          | 282<br>246<br>232<br>121                                                              |          | 166          |          | 161          |           | 211          |          | 301           |                                                                                                  | 342<br>177<br>107<br>77<br>103                     | 296<br>173<br>148    |                | 310<br>174<br>113<br>87<br>112                     | 265<br>200<br>142   |
| olids<br>ed)             | Tons<br>per<br>day                          |          |                                                                                       |          |              |          |              |           |              |          |               |                                                                                                  |                                                    |                      |                |                                                    |                     |
| solved so<br>alculat     | Tons<br>per<br>acre-<br>foot                | -<br>    | 0.56<br>41<br>41                                                                      | -        | 0.29         | -        |              |           | 0.33         |          | 0.47          |                                                                                                  | 0.72<br>.29<br>.17<br>.14                          | 8 <u>.</u>           |                | 0.66<br>.29<br>.18<br>.16                          | . 55                |
| Dis<br>(c                | Parts<br>per<br>million                     |          | 410<br>305<br>301<br>142                                                              |          | A212         | RINGS    |              |           | 239          |          | 348           |                                                                                                  | 531<br>210<br>124<br>102<br>123                    | 424                  |                | 484<br>211<br>131<br>114<br>1145                   | 404                 |
|                          | Bo-<br>(B)                                  | tinued   |                                                                                       | TIN      |              | ING SI   |              | ISTIN     |              |          |               | NI                                                                                               |                                                    |                      | NIN            |                                                    |                     |
| Ni-<br>trate<br>(NO3)    |                                             | Con      | 0.2<br>1.0<br>.2                                                                      | R AUS    | 0.0          | DRIPP    |              | AT AU     | 4.5          | N        | 7.8           | AUST                                                                                             | 49<br>12<br>1.0<br>.8<br>.1.2                      | 17                   | LSUA 1         | 30<br>7.9<br>2.2<br>2.2                            | 8.0                 |
|                          | Fluo-<br>ride<br>(F)                        |          | 0.000                                                                                 | RK NEA   | 0.2          | NEAR     | NEAR         | 0.2       | AUSTI        | 0.2      | ET AT         | 0<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ÷                                                  | SET AT               | 0<br>4.0.1.1.1 | 4                                                  |                     |
|                          | Chloride<br>(Cl)                            | OSNHOL 3 | 98<br>41<br>3.8<br>3.8                                                                | NTGE PAI | 20           | TY LINE  | 15           | ARTON SPI | 12           | VINGS AT | 22            | 38TH STRI                                                                                        | 61<br>8.0<br>9.0<br>7.0                            | 56<br>28<br>4.8      | 23RD STRI      | 75<br>12<br>2.8<br>11<br>12                        | 70<br>24<br>5.5     |
|                          | Sulfate<br>(SO4)                            | VER NEAF | 38<br>38<br>31<br>6.4                                                                 | AT DOEF  | 22           | AYS COUN |              | ABOVE B/  | 18           | RTON SPI | 22            | REK AT 3                                                                                         | 45<br>12<br>7.0<br>7.2                             | 40                   | TEEK AT        | 61<br>14<br>5.4<br>8.8<br>11                       | 1 1 23              |
| Bi-                      | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )  | ALES RI  | 270<br>254<br>232<br>149                                                              | L CREEK  | 166          | EK AT H  | 216          | CREEK     | 233          | 11. BA   | 322           | LLER CB                                                                                          | 349<br>194<br>131<br>88<br>116                     | 297<br>205<br>174    | LLER CH        | 275<br>190<br>137<br>95<br>124                     | 242<br>224<br>168   |
| ŕ                        | ro-<br>tas-<br>stum<br>(K)                  | EDERN    | 4 6 F<br>0.0                                                                          | BUL      | 0            | N CRE    |              | ARTON     | 0.6          | 1        | ۍ<br>د        | WA.                                                                                              | 4<br>2000<br>2000<br>2000                          | 90 I I               | . WA           | 33.24                                              |                     |
|                          | Sodium<br>(Na)                              | 103. P   | 19 19 11<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | 106.     | -            | BARTO    |              | 110. B    | 6.8          |          | -             | 112                                                                                              | 00004<br>40000                                     | 69 T T               | 113            | 4 9 . 1<br>7 . 1<br>7 . 1                          | 411                 |
| Mar                      | mag-<br>ne-<br>sium<br>(Mg)                 |          | 43<br>29<br>32<br>5,2                                                                 |          | 16           | 109.     | 16           |           | 18           |          | 21            |                                                                                                  | 1.1.8                                              | 7.5                  |                | 8 2 1 1 2 8<br>2 4 9 9 4                           | 6<br>8.1            |
|                          | Cal-<br>cium<br>(Ca)                        |          | 42<br>51<br>40                                                                        |          | 40           |          | 50           |           | 55           |          | 86            |                                                                                                  | 128<br>67<br>40<br>28<br>38                        | 106                  |                | 110<br>65<br>32<br>32<br>41                        | 06                  |
|                          | Iron<br>(Fe)                                |          |                                                                                       |          |              |          |              |           |              |          |               |                                                                                                  |                                                    |                      |                |                                                    |                     |
|                          | Silica I<br>(SiO <sub>2</sub> ) (           |          | 1.3<br>6.5<br>6.4                                                                     | -        | 16           |          |              |           | 9.3          |          | 1             |                                                                                                  | 16<br>5.8<br>3.3<br>3.3                            | <sup>1</sup> ا       |                | 14<br>5.3<br>4.3<br>4.6                            | 11                  |
| Discharge (cfs)          |                                             |          | 11.6<br>74.1<br>102<br>.8,600                                                         |          |              |          |              |           | 1.59         |          | 75.1          |                                                                                                  | 0.30<br>14.1<br>830<br>52.0<br>26.1                | . 49<br>2.31<br>43.4 |                | $1.42 \\ 1,380 \\ 76.5 \\ 41.3 \\$                 | .84<br>42.4<br>85.8 |
|                          | Date<br>of<br>collection                    |          | an. 16, 1965<br>teb. 27<br>une 9                                                      |          | 'uly 5, 1960 |          | ot. 17, 1961 |           | Tune 2, 1965 |          | hug. 18, 1965 |                                                                                                  | lot. 5, 1961<br>lpr. 27, 1962<br>lune 3<br>sept. 6 | fov. 6               |                | Dct. 5, 1961<br>hpr. 27, 1962<br>hune 3<br>sept. 6 | Vov. 6              |

Table 6 -Chemical analyses of streams and reservoirs in the Colorado River basin for locations other than daily stations.

c,

¢

- 77 -

•

A Residue on evaporation at 180°C.

|                                                    | A Residue on evaporation at 180°C.<br>B Field estimate.                                           |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   |                                      |                       |                                                    |                                              |                                                                                         | А<br>А                               |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------|------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|--------------------------------------|-----------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|----------------------------|----------------------------------------------|----------------------------|--------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| £.7                                                | 664                                                                                               | 2.0                                         | τz                                     | 30                              | SLI                                                  |                    | ₽€.0                                                                                   | 842                                                          |                   | 2·2                                  | 2·0                   | 56                                                 | 36                                           | 221                                                                                     | 22                                   |                            | L.6                                          | 2₫                         |              | ττ                                           | 09T'E                                                                                                | 696T                 | , Z5,                                                                                                     | d₩                                                                               |
|                                                    |                                                                                                   |                                             |                                        |                                 | L                                                    |                    |                                                                                        |                                                              |                   | YTIC                                 | BAY (                 | AVER NEAR                                          | и одузо                                      | 100 · 1                                                                                 | ₽£T                                  |                            |                                              |                            |              |                                              |                                                                                                      | 4                    |                                                                                                           |                                                                                  |
| 7.8                                                | ₹I€                                                                                               | G.O                                         | L٦                                     | Þ                               | 621                                                  |                    | ₽2.0                                                                                   | 921                                                          |                   | Z.0                                  | S.0                   | ₽Ţ                                                 | ΟŢ                                           | εςτ                                                                                     | 21                                   |                            | 2. <i>T</i>                                  | 0₽                         |              | 21                                           |                                                                                                      | 6961                 | , 26,                                                                                                     | đy                                                                               |
|                                                    |                                                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   | εE                                   | LE LA                 | EAT EAG                                            | AL 3J943                                     | .32.                                                                                    | t                                    |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 8.7                                                | 827<br>609<br>927<br>977<br>177<br>287<br>027                                                     | 9.0                                         | 81                                     | 32                              | 202<br>144<br>165<br>206<br>208<br>208<br>202<br>202 |                    | 78.0                                                                                   | 822A<br>822A<br>822A<br>822A<br>822A<br>822A<br>822A<br>822A |                   | 8-2<br>0-1<br><br>0-1<br>8'0         | 8.0                   | 58<br>38<br>50<br>32<br>33<br>33<br>33<br>34<br>34 | 35<br>31<br>58<br>58<br>30<br>30<br>35<br>35 | 203<br>166<br>175<br>224<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223 | 50<br>22<br>19<br><br><br>           |                            | 15<br>19<br>1<br><br><br>                    | 19<br>89<br>67<br>         |              | 15                                           |                                                                                                      | 1959<br>1959<br>1942 | , 22 , 3<br>, 1 , 1<br>, 1 , 1<br>, 1 , 1<br>, 1 , 1<br>, 1<br>, 1                                        | AL<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC |
|                                                    |                                                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   | LAKE                                 | <b>AJDA3</b>          | лек икак и                                         | IN OUAN                                      | сого                                                                                    | τετ                                  |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 6'9<br>9'2                                         | 268<br>292                                                                                        | <b>S</b> .0                                 | 8                                      | 88<br>9 T                       | 281<br>131                                           |                    | 0.22                                                                                   | 0918                                                         |                   | 0.0                                  | 2.0                   | 18<br>0'1⁄2                                        | 61                                           | 176<br>128                                                                              | 8.4                                  | 8.1                        | 6.5                                          | ZÞ                         | 00.00        | 0.6                                          | 018'T<br>018'5                                                                                       | 896T<br>0961         | ,18 .1<br>,0 9n                                                                                           | э0<br>пГ                                                                         |
|                                                    | 130° COTOBYDO BIAEB VI COLUMBUS                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   |                                      |                       |                                                    |                                              |                                                                                         |                                      |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 2.7<br>8.8<br>9.7                                  | 629<br>282<br>934                                                                                 | ₽`T<br>₽`<br>6`                             | 36<br>12<br>53                         | 81<br>8                         | 195<br>86<br>514                                     |                    | 24.<br>81.<br>01.                                                                      | 967<br>281<br>808                                            |                   | 0.<br>2.<br>2.                       | с.<br>с.              | 11<br>25<br>25                                     | 23<br>5.2<br>8.0                             | 091<br>911<br>540                                                                       | 1<br>  2.5<br>10<br>10               | с.8<br>,                   | 0.0<br>4.1<br>7.1                            | 99<br>28<br>82             |              | 81<br>0' <i>L</i><br>21                      | 02.₽<br>02∂,1<br>80.7                                                                                | 996T                 | y 3<br>b, 17,<br>b, 3                                                                                     | De<br>De<br>De                                                                   |
| 7.0<br>7.0<br>7.3<br>7.5<br>7.7<br>7.7             | 528<br>819<br>385<br>515<br>024                                                                   | 8.0<br>7.<br>2.1<br>2.1                     | 15<br>50<br>50<br>14<br>53             | ₽<br>∠<br>2<br>9<br>₽ Т         | 011<br>222<br>891<br>18<br>281                       |                    | 85.0<br>81.<br>81.<br>81.<br>81.<br>81.<br>81.<br>81.<br>81.<br>81.<br>81.             | SÞI<br>Þ92V<br>822V<br>211<br>082V                           |                   | 0.0<br>8.5<br>0.0<br>2.              | 5.0<br>2.<br>2.       | 15<br>97<br>52<br>15<br>34                         | 20<br>11<br>20<br>8.6<br>8.6                 | 130<br>520<br>182<br>130<br>130<br>130                                                  | 3'J<br>#5<br>  3'5<br>  3'5<br>  3'5 | 2.8<br>Z.7                 | 5.5<br>2.5<br>2.5<br>4.2                     | 07<br>08<br>29<br>89       |              | 01<br>22<br>91<br>0.0<br>92                  | 8100<br>82<br>92<br>92<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82 | 6961<br>6961<br>6961 | r. 17,<br>r. 28,<br>r. 28,                                                                                | вМ<br>qÅ<br>эU<br>вМ<br>оИ                                                       |
|                                                    | JIS9. CUMMINS CREEK NEAR COUNDED                                                                  |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   |                                      |                       |                                                    |                                              |                                                                                         |                                      |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 9.7                                                | £6¥                                                                                               | ε.τ                                         | 33                                     | Lε                              | 128                                                  |                    | 68.0                                                                                   | 282A                                                         |                   | 0.2.                                 | ε.0                   | 95                                                 | 34                                           | 8Þ1                                                                                     | 2.I                                  | 22                         | 13                                           | 42                         | 00.0         | £,6                                          | 088'I                                                                                                | Z501                 | 'II əu                                                                                                    | ռբ                                                                               |
|                                                    |                                                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   | CE                                   | и сваи                | IVER AT LA                                         | я одаяо                                      | . COI                                                                                   | 127                                  |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 8 · 7                                              | 220                                                                                               | ε.0                                         | οt                                     | 82                              | 532                                                  |                    | 66.0                                                                                   | 1-82                                                         |                   | ετ                                   | ₽.0                   | 75                                                 | 5∉                                           | 293                                                                                     | 51                                   | t                          | 9 ° Z                                        | 06                         |              | 7.8                                          | 01.0                                                                                                 | \$96T                | '07 'q                                                                                                    | ъэ                                                                               |
|                                                    |                                                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              | 5                 | TTI I A                              | тосен                 | а вуду жа                                          | сев све                                      | MILBAR                                                                                  | .121                                 | [                          |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| 8 ° L<br>9 ° L<br>9 ° L<br>0 ° 8<br>1 ° L<br>1 ° L | 964<br>964<br>204<br>204<br>204<br>203<br>203<br>213                                              | C.<br>C.<br>C.<br>C.<br>C.<br>C.            | 11<br>21<br>21<br>81<br>20<br>50<br>61 | 55<br>42<br>28<br>28<br>9<br>32 | 021<br>922<br>923<br>962<br>081<br>242               |                    | 18:<br>88:<br>94:<br>18:<br>18:<br>18:<br>18:<br>18:<br>18:<br>18:<br>18:<br>18:<br>18 | 552<br>582<br>581<br>582<br>361<br>542<br>354<br>352         |                   | 3.8<br>6.3<br>8.<br>0.<br>0.1<br>0.1 | €.<br>5.<br>5.<br>0.5 | 21<br>12<br>12<br>21<br>21<br>81                   | 74<br>75<br>75<br>77<br>72<br>79<br>79       | 180<br>550<br>588<br>515<br>528<br>528<br>528<br>528                                    | 91<br>91<br>91<br>67<br>67<br>17     | [<br>[<br>]<br>]<br>]<br>] | 11<br>91<br>10<br>11<br>11<br>21<br>11<br>21 | 09<br>12<br>06<br>12<br>12 |              | 2.4<br>9.6<br>7.8<br>7.8<br>11<br>7.8<br>7.8 | 0.32<br>2.25<br>2.67<br>2.67<br>2.55                                                                 | 9961<br>             | , 7 , 7<br>7 9<br>7 13, 13,<br>7 13, 13,<br>7 20<br>7 21, 13,<br>7 27, 27, 27, 27, 27, 27, 27, 27, 27, 27 | Nai<br>Na<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma                                    |
|                                                    |                                                                                                   |                                             |                                        |                                 |                                                      |                    |                                                                                        |                                                              |                   | ЭТ                                   | TAVL                  | с вегом ре                                         | ON CEEE                                      | INO                                                                                     | 120                                  |                            |                                              |                            |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |
| Hq                                                 | 25°C)<br>ance<br>micro-<br>micro-<br>arce<br>arce<br>arce<br>arce<br>arce<br>arce<br>arce<br>arce | ad-<br>tion<br>tion<br>tion<br>tion<br>tion | -T99<br>Jago<br>-os<br>muib            | Non-<br>car-<br>ate<br>ate      | sium<br>ne-<br>Mag-<br>Cal-<br>Cal-                  | голг<br>тэд<br>үяр | Tons<br>per<br>acre-<br>foot                                                           | Parts<br>Per<br>noillim                                      | (B)<br>Fon<br>Bo- | (NO <sup>\$</sup> )<br>Lefe<br>NI-   | (E)<br>Flue<br>Flue   | (CI)<br>Chloride                                   | (sOd)<br>(sOd)                               | car-<br>bon-<br>bon-<br>bor-                                                            | -or<br>Po-                           | (sN)<br>(sN)               | -25M<br>-9n<br>muis<br>(3M)                  | Cal-<br>ctum<br>(Ca)       | (Fe)<br>(Fe) | (SIUea)<br>(SUIea                            | Discharge<br>(sis)                                                                                   | ate<br>of<br>ection  | coll                                                                                                      |                                                                                  |
| -noo -oS                                           |                                                                                                   |                                             |                                        | CO <sup>3</sup><br>688          | nbraH<br>As Ca                                       | abilo<br>(bet      | Diseolyed solids<br>(bajsluolso)                                                       |                                                              |                   |                                      |                       |                                                    |                                              | -ia                                                                                     | -04                                  | <i>'</i> α                 | -26M                                         | 1-0                        |              |                                              |                                                                                                      |                      |                                                                                                           |                                                                                  |

 $\bar{p}$ 

4j

a ç

- 78 -

in 9