GROUND-WATER RESOURCES OF COLORADO, LAVACA, AND WHARTON COUNTIES, TEXAS

TEXAS DEPARTMENT OF WATER RESOURCES

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 270

GROUND-WATER RESOURCES OF COLORADO, LAVACA, AND WHARTON COUNTIES, TEXAS

By

Carole L. Loskot, William M. Sandeen, and C. R. Follett U.S. Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Department of Water Resources.

TEXAS DEPARTMENT OF WATER RESOURCES

Harvey Davis, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman Glen E. Roney W. 0. Bankston George W. McCleskey, Vice Chairman Lonnie A. "Bo" Pilgrim Louie Welch

TEXAS, WATER COMMISSION

Lee B. M. Biggart, Chairman Felix McDonald, Commissioner John D. Stover, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed by the Texas Department of Water Resources Post Off ice Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

Page

ABSTRACT
Purpose and Scope of the Investigation
Previous Investigations
Well-Numbering System
Metric Conversions, Abbreviations, and Use of Quantitative Terms
Acknowledgments
GEOLOGIC AND HYDROLOGIC UNITS AND THEIR WATER-BEARING CHARACTERISTICS
Jackson Group
Catahoula Sandstone
Jasper Aquifer
Burkeville Confining Layer
Evangeline Aquifer
Chicot Aquifer
RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER
Recharge to Aquifers
Ground-Water Movement
Discharge From Aquifers
GROUND-WATER USE AND EFFECTS OF PUMPING
CHEMICAL QUALITY OF GROUND WATER
Chemical Qualtiy of Water in the Aquifers
Catahoula Sandstone
Jasper Aquifer

TABLE OF CONTENTS-Continued

Page

Evangeline Aquifer	53
Chicot Aquifer	54
Changes in Water Quality	54
Relationship of Fresh Water to Saline Water	54
CONTAMINATION OF GROUND WATER IN OILFIELD OPERATIONS	61
Disposal of Salt V/ater	61
Improperly Cased Wells	61
FRESH WATER AVAILABLE FOR DEVELOPMENT	61
Chicot Aquifer	61
Evangeline Aquifer	67
Jackson Group, Catahoula Sandstone, and Jasper Aquifer	68
Areas Most Favorable for Ground-Water Development	73
WELL CONSTRUCTION	73
LAND-SURFACE SUBSIDENCE	73
NEEDS FOR ADDITIONAL STUDIES	74
SUMMARY	74
REFERENCES CITED	78

TABLES

1.	Correlation of Geologic and Hydrologic Units	13
2.	Summary of Aquifer Tests in Colorado, Lavaca, and Wharton Counties	15
3.	Methods of Disposal and Quantity of Salt Water Disposed in 1967 in Colorado, Lavaca, and Wharton Counties	65
4.	Records of Wells and Test Holes in Colorado, Lavaca, and Wharton Counties \ldots \ldots \ldots \ldots \ldots	80
5.	Records of Wells and Test Holes in Matagorda, Jackson, Fayette, DeWitt, Austin, Fort Bend, Victoria, and Gonzales Counties	176
6.	Drillers' Logs of Wells in Colorado, Lavaca, and Wharton Counties	177

TABLE OF CONTENTS-Continued

		Page
7.	Water Levels in Wells in Colorado, Lavaca, and Wharton Counties	200
8.	Water-Quality Data for Ground-Water Samples Collected in Colorado, Lavaca, and Wharton Counties	229

FIGURES

1.	Map Showing Location of Colorado, Lavaca, and Wharton Counties	3
2.	Graphs Shewing Average Monthly Precipitation at Columbus, Pierce, and Hallettsville, and Average Monthly Temperature at Pierce and Hallettsville	5
3.	Graph Showing Average Monthly Gross Lake-Surface Evaporation in Colorado, Lavaca, and Wharton Counties, 1940-65	7
4.	Map Showing Geology of Colorado, Lavaca, and Wharton Counties	11
5.	Geohydrologic Section A-A', Jackson, Wharton, and Fort Bend Counties	19
6.	Geohydrologic Section B-B ⁺ , DeWitt, Lavaca, Colorado, and Austin Counties	21
7.	Geohydrologic Section C-C', Fayette, Lavaca, Wharton, and Matagorda Counties	23
8.	Geohydrologic Section D-D', Fayette, Colorado, Wharton, and Matagorda Counties	25
9.	Map Showing Approximate Altitude of the Base of the Evangeline Aqufier	27
10.	Map Showing Approximate Altitude of the Base of the Chicot Aquifer	31
11.	Graphs Showing Approximate Withdrawals of Ground Water By Usage and By Aquifer in Colorado County, 1901-74	34
12.	Graphs Showing Approximate Withdrawals of Ground Water By Usage and By Aquifer in Lavaca County, 1948-74	35
13.	Graphs Showing Approximate Withdrawals of Ground Water By Usage and By Aquifer n Wharton County, 1901-74	36
14.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Chicot Aquifer in 1902	37
15.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Evangeline and Chicot Aquifers, 1934-37 and 1947	39
16.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Chicot Aquifer, 1959-60 and 1975	41
17.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Evangeline Aquifer, 1959-60 and 1975	43

TABLE OF CONTENTS-Continued

Page

18.	Hydrographs Showing Fluctuations of Water Levels in Selected Wells Screened in the Evangeline and Chicot Aquifers	45
19.	Map Showing Approximate Decline of Water Levels in Wells Screened in the Chicot Aquifer, 1947-75	49
20.	Graph Showing Relationship of Drawdown to Transmissivity and Distance	51
21.	Graphs Showing Relationship of Drawdown to Time and Distance as a Result of Pumping Under Artesian and Water-Table Conditions	51
22.	Map Showing Chemical Quality of Ground Water From Selected Wells in the Various Aquifers $\ .$.	55
23.	Map Showing Approximate Altitude of the Base of Fresh Water	57
24.	Map Showing Approximate Altitude of the Base of Slightly Saline Water	59
25.	Map Showing Locations of Oil and Gas Fields	63
26.	Graph Showing Comparison Between Surface-Casing Requirements in Oil and Gas Fields and the Base of Sands Containing Fresh and Slightly Saline Water	66
27.	Map Showing Approximate Aggregate Thickness of Sands Containing Fresh Water in the Chicot Aquifer	69
28.	Map Showing Approximate Aggregate Thickness of Sands Containing Fresh Water in the Evangeline Aquifer	71
29.	Map Showing Transmissivity Values and Areas Most Favorable for the Future Development of Fresh Water in the Chicot and Evangeline Aquifers	75
30.	Map Showing Locations of Wells and Test Holes in Colorado County	241
31.	Map Showing Locations of Wells and Test Holes in Lavaca County	243
32.	Map Showing Locations of Wells and Test Holes in Wharton County	245

AND WHARTON COUNTIES, TEXAS

ABSTRACT

The main sources of fresh water for all uses in Colorado, Lavaca, and Wharton Counties are the Chicot and Evangeline aquifers. The Jackson Group, Catahoula Sandstone, and Jasper aquifer are minor sources of water and are largely undeveloped in the area. The Chicot aquifer, which consists of discontinuous layers of sand and clay of about equal aggregate thickness, ranges in total thickness from 0 in the outcrop area to about 1,200 feet (366 m) in southern Wharton County. The Evangeline aquifer, which also consists of discontinuous sand and clay layers, ranges in total thickness from 0 at the outcrop to about 1,500 feet (457 m) in Wharton County. The combined thicknesses of the fresh-water sands in the Chicot and Evangeline aquifers range from 0 at the outcrop to more than 850 feet (259 m) in Wharton County.

Average daily withdrawals of ground water for all uses in 1974 were 252 million gal/d (954,000 m³/d), most of which was used for rice irrigation; smaller amounts of water were pumped for municipal supply and industrial use. Estimates of the additional amounts of fresh and slightly saline water in available storage are based on the assumptions of average sand thicknesses of 250 feet (76 m) and 200 feet (61 m) in the Chicot and Evangeline aquifers, respectively, and a specific yield of 0.2. Sands of the Chicot aquifer contain about 72.0 million acre-feet (88,776 hm³) of fresh water in available storage, and sands of the Evangeline aquifer contain about 71.7 million acre-feet (88.406 hm³) of water and about 9.0 million acre-feet fresh (1 1,097 hm³) of slightly saline water in available storage. Additional amounts of water, probably 20 to 25 percent of the amount available from the sands; would be available from the clays.

Additional development of the ground-water resources is possible throughout most of Colorado, Lavaca, and Wharton Counties, but the consequences of more land subsidence and declining water levels should be carefully considered. The most favorable areas are in central Wharton County. Additional potential for development exist in most other areas where as much as 50 feet (15 m) of sand occurs in the Chicot aquifer.

Considerable amounts of brine are produced in Colorado, Lavaca, and Wharton Counties in conjunction with the production of oil and gas. To prevent possible contamination of "the fresh water", the Railroad Commission of Texas requires that oil and gas wells must have cemented casings from the land surface to the base of the slightly saline water. The elimination of brine-disposal pits has minimized contamination by this method of salt-water disposal, but contamination may still occur through improperly cased wells, abandoned injection wells, and abandoned brine-disposal pits.

The vast amounts of water in storage cannot be recovered fully without depleting the supply and incurring other serious consequences. More judicious approaches to determining the quantities of water available for development were based on theoretical lines of recharge and discharge with drawdowns of 200 feet (61 m) at the lines of discharge. On the basis of theoretical lines of recharge and discharge with drawdowns of 200 feet (61 m), about 50,000 acre-feet (62 hm³) and 20,000 acre-feet (25 hm³) could be produced from the Chicot and Evangeline aquifers, respectively, with only moderate pumping lifts without depleting the supply. These amounts of water are less than the potential amounts of natural recharge that are available to the aquifers. The potential recharge is estimated to be 78,000 acre-feet (96 hm³) per year for the Chicot aguifer and 38,000 acre-feet (47 hm³) per year for the Evangeline aquifer. These recharge estimates are about the maximum amount perennially available without depleting the large quantities of ground water in storage.

Present (1974) pumpage from the Chicot and Evangeline aquifers exceeds those estimated amounts of recharge. Consequently, some water-level decline and land-surface subsidence may be expected to continue. Land-surface subsidence as a result of ground-water withdrawal is not a problem at this time. However, more data are needed to determine the extent of subsidence and the relationship between the amount of ground-water withdrawals and the amount of subsidence. The available data indicate that maximum subsidence within the three counties is less than 1 foot (0.3 m), and in most places is less than 0.5 foot (0.15 m).

AND WHARTON COUNTIES, TEXAS

INTRODUCTION

Colorado, Lavaca, and Wharton Counties, which include an area of about 3,000 square miles (7,770 km²) on the Gulf Coastal Plain of southeastern Texas, are about midway between Houston and San Antonio and from 35 to 100 miles (56 to 161 km) inland from the Gulf of Mexico (Figure 1). Agriculture, mainly rice farming and livestock production, form the economic base for a population of about 75,000 in the three-county area. The production of oil, gas, sulfur, and gravel are additional and important sources of income in some local areas.

Figure 1.-Location of Colorado, Lavaca, and Wharton Counties

The climate of the area is humid subtropical, and annual rainfall is abundant. The average annual precipitation for 1912-73 was 37.07 inches (940 mm) at Hallettsville in Lavaca County and 41.02 inches (1,040 mm) at Columbus in Colorado County. For 1905-73, the average annual precipitation at Pierce in Wharton County was 41.11 inches (1,040 mm). Rainfall is fairly well distributed throughout the year, with the maximum amount usually occurring in May or September and the minimum amount usually occurring in March (Figure 2). The average monthly temperatures at Pierce and Hallettsville for 1932-63 are also shown on Figure 2. The average annual gross lake-surface evaporation for the three-county area was about 54 inches (1,370 mm) during 1940-65 (Figure 3). Evaporation is not a problem in the area except during exceptionally dry years when the potential evaporation rate, which exceeds the average annual precipitation, increases the severity of drought conditions.

Purpose and Scope of the Investigation

The investigation of the ground-water resources of Colorado, Lavaca, and Wharton Counties began in 1973 as a cooperative project of the U.S. Geological Survey and the Texas Water Development Board (now the Texas Department of Water Resources). The purpose of the investigation was to determine the occurrence, availability, dependability, quantity, and quality of the ground-water resources of the area. Special emphasis was placed upon estimating the quantities of ground water available for development and on determining the areas most favorable for additional development.

The scope of the investigation included the collection, compilation, and analyses of data on the location and extent of the water-bearing formations, the chemical quality of the water in the aquifers, the quantity of water being pumped for all uses, the effects of ground-water pumping on water levels in wells, the hydraulic characteristics of the principal water-bearing formations, estimates of the quantities of ground water available for development, and the effects of ground-water withdrawals on land-surface subsidence. An inventory was made of all industrial, municipal, and irrigation wells, and of selected rural-domestic wells, livestock wells, and test holes in Colorado, Lavaca, and Wharton Counties (Table 4): records of selected wells were compiled for adjacent counties (Table 5). The locations of the wells and test holes are shown on Figures 30-32.

In addition to the inventory of wells and test holes, the following items of work were included in the investigation:

Figure 3. – Average Monthly Gross Lake-Surface Evaporation in Colorado, Lavaca, and Wharton Counties, 1940-65

1. Electrical logs of water wells and oil tests were analyzed to construct geohydrologic sections, to construct maps showing the thicknesses of sands in the principal aquifers, to determine the altitudes of the base of fresh and slightly saline water, and to determine the altitudes of the base of the base of the Chicot and Evangeline aquifers.

2. An inventory was made of the withdrawals of ground water for public supply, industrial use, and irrigation.

3. Drillers' logs of wells were collected and analyzed (Table 6).

4. Forty-three aquifer tests were made in wells in the Chicot, Evangeline, and Jasper aquifers. The information obtained from these tests provided data for the computations of transmissivities, storage coefficients, and hydraulic conductivities.

5. Climatological records were collected and compiled.

6. Water levels in wells were measured, and historical records of water levels were analyzed to determine the long-term hydrologic effects of ground-water pumping (Table 7).

7. Data on land-surface subsidence were collected and analyzed.

8. Water samples were collected and analyzed to determine the chemical quality of the water in the principal aquifers (Table 8).

Previous Investigations

Taylor (1902, 1907), in generalized hydrologic studies of the Gulf Coastal Plain, furnished the earliest information available on ground water in Colorado, Lavaca, and Wharton Counties. His work is the source of the water-level data used to determine the original (predevelopment) altitudes of the potentiometric surfaces in the aquifers.

George (1936) compiled information on wells and test holes, water quality, and drillers' logs in Lavaca County. May (1938) inventoried wells in Colorado County and assembled drillers' logs and chemical analyses of ground-water samples. Bridges (1935) compiled well records, drillers' logs, and chemical analyses of water samples for Wharton County; and Cromack (1940) provided additional well records, drillers' logs, and water analyses for Wharton County. Barnes (1948) presented a detailed discussion of the water resources of Wharton County, including well records, drillers' logs, and chemical analyses.

Water levels in a few selected wells in Colorado, Lavaca, and Wharton Counties have been measured annually by either the U.S. Geological Survey or the Texas Department of Water Resources since 1934, and in other wells since 1956. Historical water-level measurements in Jackson, Matagorda, and Wharton Counties were reported by Rayner (1958). Wood (1956) reported on ground-water availability on the Texas Gulf Coast, including Colorado, Lavaca, and Wharton Counties. Wood, Gabrysch, and Marvin (1963) collected field data and prepared a report on the water-bearing potential of the principal aquifers in the Gulf Coast region, including the area of Colorado, Lavaca, and Wharton Counties.

Mount and others (1967) made a reconnaissance of the Colorado River basin that included parts of Colorado and Wharton Counties. Because the ground-water hydrology of Wharton County and the southern parts of Colorado and Lavaca Counties is similar to the hydrology of other areas in which investigations have been completed, the following reports were useful in analyzing the hydrologic data obtained for this report:

County

Author and date¹

Jackson Matagorda Baker (1965) Hammond (1969)

¹See references cited

County	Author and date ¹			
		qu		
Brazoria	Sandeen and Wesselman (1973)	in		
Fort Bend	Wesselman (1972)			
Austin and Waller	Wilson (1967)			
Fayette	Rogers (1967)			
Gonzales	Shafer (1965)			
DeWitt	Follett and Gabrysch (1965)			
Victoria and Calhoun	Marvin and others (1962)	m		

¹See references cited

Well-Numbering System

The well-numbering system used in this report is the system adopted by the Texas Department of Water Resources for use throughout the State. Under this system, each one-degree quadrangle in the State is given a number consisting of two digits. These are the first two digits in the well number. Each one-degree quadrangle is divided into 7 1/2-minute quadrangles that are given two-digit numbers from 01 to 64. These are the third and fourth digits of the well number. Each 7 1/2-minute quadrangle is subdivided into 2 1/2-minute quadrangles given single-digit numbers from 1 to 9. This is the fifth digit of the well number. Each well within a 2 1/2-minute quadrangle is given a two-digit number in the order in which it was inventoried. These are the last two digits of the well number.

Only the last three digits of the well number are shown adjacent to the well locations on the maps (Figures 30-32). The second two digits are shown in the northwest corner of each 7 1/2-minute quadrangle, and the firts two digits are shown by the large double-line numbers.

In addition to the seven-digit well number, a two-letter prefix is used to identify the county. The prefixes for Colorado, Lavaca, Wharton, and adjacent counties are as follows:

County	Prefix	County	Prefix
Austin	AP	Gonzales	KR
Brazoria	BH	Jackson	PP
Colorado	DW	Lavaca	RY
DeWitt	нх	Matagorda	ΤA
Fayette	JT	Victoria	ΥT
Fort Bend	JY	Warton	ZA

For example, well ZA-66-54-603 (which supplies water for the city of El Campo) is in Wharton County (ZA) in the 1-degree quadrangle (66), in the

7 1/2-minute quadrangle (54), in the 2 1/2-minute quadrangle (6), and was the third well (03) inventoried n that 2 1/2-minute quadrangle.

Metric Conversions, Abbreviations, and Use of Quantitative Terms

For readers interested in using the metric system, metric equivalents of English units of measurements are given in parentheses in the text of this report. The English units may be converted to metric units by the following conversion factors:

From	Multiply by	To obtain
acre-foot	0.001233	cubic hectometer (hm ³)
barrel	.1590	cubic meter (m ³)
foot	.3048	meter (m)
foot per day (ft/d)	.3048	meter per day (m/d)
foot per mile (ft/mi)	.189	meter per kilometer (m/km)
foot squared per day (ft ² /d)	.0929	meter squared per day (m²/d)
inch	25.4	millimeter (mm)
inch	2.54	centimeter (cm)
mile	1.609	kilometer (km)
million gallons per day (million gal/d)	.04381	cubic meter per second (m ³ /s)
million gallons per day (million gal/d)	3,785	cubic meter per day (m ³ /d)
square mile	2.590	square kilometer (km²)

Quantitative terminology used in this report with regard to yields of wells and water quality are defined as follows:

Yields of wells (in gallons per minute)	Water quality ' (dissolved-solids concentration in milligrams per liter)				
small—less than 100 moderate—100 to 1,000 large—more than 1,000	fresh—less than 1,000 slightly saline—1,000 to 3,000 moderately saline—3,000 to 10,000 very saline—10,000 to 35,000 brine—more than 35,000				

The general term "salt water" is used here to describe water in which the salinity varies or is unknown.

¹Modified from Winslow and Kister (1956).

Acknowledgments

The authors express their appreciation to the many land owners, well owners, and industrial and municipal officials for their cooperation in allowing access to their land and wells, for assisting in the collection of well data, and for permitting aquifer tests to be conducted in appropriate wells.

Particular appreciation is expressed to Mr. Harold Mickelson, to the Crowell Drilling Company, to the Katy Drilling Company for their exceptional help during this investigation, to Jack Waldron with Layne Texas Company, and to Marvin Lang of L&N Drilling Company.

GEOLOGIC AND HYDROLOGIC UNITS AND THEIR WATER-BEARING CHARACTERISTICS

The geologic units containing fresh and slightly saline water in Colorado, Lavaca, and Wharton Counties are the Jackson Group of Eocene age; the Catahoula Sandstone of Oligocene and Miocene age; the Oakville Sandstone and Fleming Formation of Miocene age; the Goliad Sand of Pliocene age; the Willis Sand, Lissie with the Bentley Formation (correlative and Montgomery Formations), and Beaumont Clay of Pleistocene age; and the alluvium of Quaternary age (Figure 4). The hydrologic units are identified as the Catahoula Sanastone, the Jasper aquifer, the Burkeville confining layer, the Evangeline aquifer, and the Chicot aquifer. The correlation of the hydrologic and geologic units is given in Table 1.

With exception of the Quaternary alluvium, the geologic formations crop out in belts that are nearly parallel to the shoreline of the Gulf of Mexico. The younger formations crop out nearer the Gulf and the older formations crop out farther inland (Figure 4). All formations thicken downdip so that the older units dip more steeply than the younger ones. Faults are common in the area, and some of them displace the older Tertiary formations by several hundred feet. The south flank of Boling Dome, for example, is associated with one of the largest known thrust faults on the Texas Gulf Coast (Halbouty and Hardin, 1954, p. 1725-1740). The fault displacements tend to decrease upward so that in many places the faulting may not be apparent at the surface. Generally, the geologic units containing freshwater are not displaced enough to disrupt regional hydraulic continuity; therefore the faults have not been shown on the geologic map and geohydrologic sections.

Jackson Group

The Jackson Group of Eocene age underlies the Catahoula Sandstone. The Whitsett Formation, the uppermost formation of the Jackson Group, crops out in the extreme northwestern part of Lavaca County (Figure 4). The older formations of the Jackson Group are present in the subsurface but are not differentiated in this report.

The Jackson Group is composed of a series of predominantly terrestrial shales with some sand units that are capable of yielding small to moderate amounts of fresh to slightly saline water in the outcrop area and in areas a short distance downdip from the outcrop. Geologic and hydrologic data for the Jackson Group are meager, and because of its minor importance as a water-bearing unit in the three-county area, the Jackson Group is not discussed in detail in this report.

Catahoula Sandstone

The Catahoula Sandstone of Oligocene and Miocene age, which consists of alternating beds of clay, tuff, and sandstone, crops out in the northwestern part of Lavaca County (Figure 4). Near the outcrop, the Catahoula is sandy, but it generally becomes tuffaceous downdip. The sandy units of the Catahoula are probably in hydraulic continuity with the overlying sands of the Jasper aquifer. In and near the outcrop area, the Catahoula supplies small to moderate quantities of fresh to slightly saline water to wells in the northwestern part of Lavaca County and in the extreme northwestern part of Colorado County. Downdip from the outcrop area, the Catahoula contains a greater percentage of fine-grained material and functions as a confining layer.

Jasper Aquifer

The Jasper aquifer consists mainly of the Oakville Sandstone, which crops out in the northwestern part of Lavaca County (Figure 4), but may in places include the upper part of the Catahoula Sandstone (Table 1). The Oakville, which unconformably overlies the Catahoula Sandstone, consists of laterally discontinuous sand and gravel lenses interbedded with shale and clay. Massive crossbedded-sandstone beds at the base of the formation grade upward into more thinly bedded units that contain greater amounts of shale and clay. The Jasper aquifer ranges in thickness from about 200 feet (61 m) near the outcrop to about 2,500 feet (760 m) downdip in

Т	able	1Correlation	of	geologic	and	hydrologic	units
_			-	00			

System	Geologic c Series	lassification Stratigraphic unit	Colorado, Lavaca, and Wharton Counties	Houston district (Wood and Gabrysch, 1965)	Houston district (Jorgensen, 1975)	Brazoria County (Sandeen and Wesselman, 1973)	Austin and Waller Counties (Wilson, 1967)	Galveston County (Petitt and Winslow, 1957)	Houston district (Lang, Winslow, and White, 1950)	Fort Bend County (Wesselman, 1972)					
RNARY	and Holocene	Quaternary alluvium Beaumont Clay	Chicot	"Confining" layer and Alta Loma Sand of Rose (1943)	C h i Upper c unit o t	C h i Upper c unit o t	Alluvium of the Brazos River Evange line aquifer	Beach and dune sand B e a C u 1 m a	Alluvial deposits e a C u 1 m a	C h i Upper c unit o t					
QUATE	Pleistocene	Formation Formation Formation Willis Sand	aquifer	Heavily pumped layer	a q i Lower f unit e r	a q i Lower f unit e r	n unidenti- s of basal ter along the azos River or along urt of both	o y n "Alta t Loma Sand" Lissie Formation	o y n "Alta Loma Sand" Zone 7 Zone 6	a q i Lower f unit e r					
	Plíocene	Goliad Sand	Evangeline a quifer		Evangeline aquifer	Evangeline aquifer	(May contai (fiable part Chicot aqui edges of Br flood plain southern pa counties)		Zone 5 Zone 4 Zone 3	Evangeline aquifer					
	11.go- cene	Fleming Formation	Burkeville	Zone 2	Burkeville		Burkeville		Zone 2	Burkeville					
TERTIARY		11.go- cene	11.go- Niocene State	iocene	iocene	iocene	Oakville Sandstone	Jasper aquifer		Ja a q Upper s u unit p i e f r e Lower r unit		Jasper aquifer		Zone 1	Jasper aquifer
				Upper Catahoula Catahoula "Anahuac" Formation "Frio" Formation	Catahoula Sandstone (designated as Tuff west of Colorado County)										
	Eocene	Jackson Whitsett Group Formation	Jackson Group												

Wharton County. The average range in thickness within the zones of fresh to slightly saline water is about 200 to 800 feet (61 to 240 m).

The transmissivity values for the Jasper aquifer (Table 2), which were calculated by using the Theis equation (Wenzel, 1942, p. 94-97) and measurements of the recovery of water levels in four pumped wells in Lavaca County (Table 2), ranged from 500 to 1,250 ft²/d (45 to I 15 m²/d). The storage-coefficient values were not determined. In parts of the geohydrologic sections (Figures 5-8), the Jasper aquifer and the overlying Burkeville confining layer were combined because delineation of the units would be highly arbitrary.

The Jasper aquifer, which is a minor source of water in the three-county area, supplies small to moderate quantities of water to municipal supply, irrigation, rural-domestic and livestock wells. Because both the Jasper and the Eurkeville contain slightly saline to moderately saline water in most areas, and because they occur at depths of more than 2,500 feet (760 m) in southern Wharton County, they are not likely to be developed as major sources of ground-water supply in most of the three-county area.

Burkeville Confining Layer

The Burkeville confining layer is composed mostly of clay but contains some layers of sand. In the subsurface, identification of the Burkeville is based on the sequences of clay layers, as determined from electrical logs, that act as regional impediments to the vertical flow of water. The thickness of the Burkeville confining layer (Figures 5-8) generally ranges from about 300 to 500 feet (90 to 150 m). Although the Burkeville is a confining layer downdip from the outcrop, parts of the unit in the outcrop area and in the shallow subsurface contain sufficient amounts of saturated sand to supply small quantities of fresh to slightly saline water to rural-domestic and livestock wells.

Evangeline Aquifer

The Evangeline aquifer consists of sand and clay layers in the Goliad Sand and in the upper part of the Fleming Formation (Figure 4 and Table I). The altitude of the base of the Evangeline (Figure 9) was determined by interpretations of electrical logs, which indicate that the aquifer ranges in depth from the land surface at the outcrop to more than 2,300 feet (700 m) below NGVD (National Geodetic Vertical Datum or mean sea level) in southern Wharton County. The Evangeline aquifer is present in the subsurface throughout most of Colorado, Lavaca, and Wharton Counties. It crops out in central Lavaca County and subcrops (overlapped by the Willis Formation) in central and northern Colorado County (Figure 4), but is absent in northwestern Lavaca County in the outcrop area of the Burkeville confining layer.

Within the three-county area, the Evangeline generally contains more sand than clay, and although some sands and clays are continuous throughout much of the area, the unit varies in total thickness from 0 in the outcrop area to about 1,500 feet (457m) in the south-central part of Wharton County. The thicknesses of individual sand beds range from a few feet to about 100 feet (30 m) in the sequences that contain fresh and slightly saline water, and the aggregate thickness of the sand units is as much as 470 feet (143 m). The maximum thickness of the fresh-water section in the Evangeline is about 1,380 feet (420 m) in southeastern Wharton County. Fresh water occurs at depths of as much as 2,000 feet (610 m) in east-central Wharton County.

The hydraulic characteristics of the Evangeline aquifer in Colorado and Lavaca Counties were determined from aquifer-test data. Table 2 shows the transmissivities and hydraulic conductivities of the aquifer and the specific capacities of several wells. Storage coefficients were not determined. The transmissivities, as analyzed from aquifer tests by using the Theis equation, ranged from 480 to 3,400 ft²/d (45 to 320 m²/d). Hydraulic conductivities ranged from 5.5 ft/d (I.7 m/d) to about 24 ft/d (7.3 m/d) and averaged about I2 ft/d (3.7 m/d) in wells screened only in the Evangeline.

Twelve of the aquifer tests were made in wells that were screened in more than one aquifer. Nine of the tests were made in wells in which most of the screened sections were in the Evangeline aquifer, with lesser amounts of the screened sections in the Chicot aquifer. The transmissivities of the Evangeline and Chicot combined ranged from 3,800 to 9,900 ft² /d (353 to 920 m²/d). A test in one well (DW-66-20-903) screened in the Evangeline, Burkeville, and Chicot indicated a transmissivity of only 1,000 ft² /d (93 m² /d). Two other aquifer tests were made in wells screened mostly in the Chicot aquifer and partially screened in the Evangeline. The transmissivities determined in these tests averaged about 3,000 ft²/d (280 m²/d).

Chicot Aquifer

The Chicot aquifer, which consists mainly of discontinuous layers of sand and clay of about equal

Table 2.--Summary of aquifer tests in Colorado, Lavaca, and Wharton Counties

Water-bearing units: B--Burkeville confining layer, C--Chicot aquifer, E--Evangeline aquifer, J--Jasper aquifer.

Well	Date	Water- bearing unit	Intervals screened (feet below land surface)	Sand thickness (feet)	Transmissivity (ft ² /d)	Hydraulic conductivity (ft/d)	Average pumping rate (gal/min)	Drawdown (feet)	Specific capacity [(gal/min)/ft]	Remarks
					COLORADO COUNTY					
DW-66-20-505	11-17-72	E	65 feet slotted between 162-222 and 253-258 feet; gravel packed.	65	670	10	457	167	2.7 (7 hours)	30-minute recovery after pumping 10 hours.
602	2-21-68	E	79 feet slotted between 195-234 and 255-295 feet; gravel packed.	79	780	10	519	140	3.7 (1 hour)	30-minute recovery after pumping 4 hours.
903	8-10-55	È-B-C	788 feet of casing slotted between 115-903 feet; gravel packed.	180 <u>+</u>	1,000	6	1,050			60-minute recovery after pumping 100 minutes.
21-301	6 - 28-75	E	400 feet of casing slotted between 400-800 feet; gravel packed.		3,400		530	12.4	42.7 (1 hour)	93-minute recovery after pumping 2 hours.
601	7-21-75	E-C	Casing slotted from 200-915 feet; gravel packed.	300 <u>+</u>	7,380	25	2,000			60-minute recovery after pumping 2 days.
28-303	3 -22- 65	E	291 feet of casing slotted between 276-854 feet; gravel packed.	291	3,130	11	1,210			30-minute recovery after pumping 8 hours.
901	7 -15-5 5	C-E	350 feet of casing slotted between 105-601 feet; gravel packed.	250 <u>+</u>	3,050	12	1,200			60-minute recovery after pumping 2 hours.
30-101	12-28-55	E-C	110 feet of screen between 360-385, 405-420, 440-460, 470-485, and 490- 525 feet; gravel packed.	135	4,000	30	625		10.6 (5 hours)	80-minute recovery after pumping 4 2/3 hours.
102	do.	E-C	115 feet of screen between 351-362, 365-407, 441-481, and 489-511 feet; gravel packed.	125	6,380	51				Interference test; 60- minute recovery after pumping well DW-66-30- 101 for 4 2/3 hours.
203	6 -19- 75	E-C	Casing slotted between 340-806 feet; gravel packed.	220	9,860	45	2,642	109	26.4 (1 hour)	8 1/2-hour drawdown test.
35-304	9-28-65	Е	97 feet of casing slotted between 695-722, 726-736, 756-796, and 800- 820 feet; underreamed and gravel packed.	90	1,400	16	412	<u>1</u> /72.5	5.7 (1 hour)	30-minute recovery after pumping 8 hours.
37-204	10-27-70	E-C	370 feet of casing slotted between 350-1010 feet; gravel packed.	370	3,780	10	3,002	167	18.0 (1 hour)	30-minute recovery after pumping 8 hours,
					LAVACA COUNTY					
RY-66-33-507	6- 5-64	L	155 feet slotted between 290-620 feet; underreamed and gravel packed.		760	5	508	110	4.6 (1 hour)	30-minute recovery after pumping 12 hours.
35-902	7 -20- 55	C-E	387 feet slotted between 172-559 feet; gravel packed.	173	2,940	17	950			1-hour recovery after pumping 12 hours.
42-502	6-20-64	E	64 feet slotted between 747-757 and 791-845 feet; underreamed and gravel packed.	64	480	8	376			30-minute recovery after pumping 4 hours.
903	6-18-75	Е	Casing slotted opposite sands between 290-737 feet; gravel packed.	320 <u>+</u>	1,750	6	1,203	<u>1</u> /103	11.7 (1 hour)	90-minute recovery after pumping well 4 days.

Well	Date	Water- bearing unit	Intervals screened (feet below land surface)	Sand thickness (feet)	Transmissivity (ft ² /d)	Hydraulic conductivity (ft/d)	Average pumping rate (gal/min)	Drawdown (feet)	Specific capacity [(gal/min)/ft]	Remarks
				TAV	ACA COUNTY Contin	med				
RY-66-43-203	4 - 23-54	С	69 feet slotted between 250-273, 320-343, and 395-415; underreamed and gravel packed.	69 <u>69</u>	2,000	29	577			30-minute recovery after pumping 12 hours.
50 - 401	1- 5-51	E-C	512 feet slotted opposite sands between 187-880 feet; gravel packed.	280 <u>+</u>	4,970	18	2,650	106	25 (1 hour)	15-minute recovery after pumping 6 hours.
502	11-21-50	E-C	299 feet slotted between 153-641 feet; gravel packed.	299	4,290	14	2,435	100	19.6 (1 hour)	20-minute recovery after pumping 8 hours (average discharge after 1 hour, 1955 gal/minused for 1 hour specific capacity).
.57 -201	6-12-64	E-C	Casing slotted between 234-584 feet; gravel packed.	350	6,020	17	1,020	28	36.3 (1 hour)	102-minute recovery after pumping 60 hours.
67-31-606	10-14-71	J	90 feet screened between 180-200, 245-275, and 285-325 feet; gravel packed.	90	500	6	210	53	4.0 (1 hour)	30-minute recovery after pumping 8 hours.
39-509	9-27-72	J	Nine sections of screen between 610-935; underreamed and gravel packed.	150	1,250	8	500	117	4.3 (1 hour)	30-minute recovery after pumping 8 hours.
510	6-16-63	J	Seven sections of slotted casing between 754-975 feet; underreamed and gravel packed.	121	500	4	351	62	5.7 (1 hour)	30-minute recovery after pumping 8 hours.
48-703	5 - 7-69	E	Casing slotted between 320-430 feet; gravel packed.	93	2,220	24	456			2-hour recovery after pumping 2 hours.
					WHARTON COUNTY					
ZA-66-31-901	6-20-75	С	35 feet of casing slotted between 100-135 feet; gravel packed.	65	13,800	212	223			3-hour recovery after pumping 4 days.
902	7 -26- 55	С	12 feet of casing slotted between 40-52 feet.		25,500- 46,400		420	<u>1</u> /17.9	23.4 (1 hour)	1-hour recovery after pumping 26 hours.
903	do.	С	315 feet of casing slotted between 40-50 and 100-405 feet.	300 <u>+</u>	9,040	30	1,370			l-hour recovery after pumping 14 days.
906	10-19-55	Е	87 feet of casing slotted between 860-897, 935-970, and 975-990 feet.	100	1,130	11	146			Recovery of pumped well.
38-303	6-24-75	С	432 feet of casing slotted between 223-655 feet; gravel packed.	225	45,630	203	2,650			7-hour, 50-minute recov- ery, first reading taken 4 hours after pumping stopped.
45 - 201	7-21-55	С	Slotted 0-257 feet; gravel packed.	235	27,000-	115	1,650			1-hour recovery after pumping 24 hours.
804	7-11-55	С	278 feet of casing slotted between 110-388 feet; gravel packed.	278	16,440	59	1,675	<u>1</u> /36.1	46.5 (4 days)	1-hour recovery after pumping 4 days.

<u>1</u>/ 1-hour recovery.

	Detu	Water-	Intervals screened	Sand	Transmissivity	Hydraulic	Average	Drawdown	Specific	Descentes
well	nate	unit	(rec below land surface)	(feet)	(12-74)	(ft/d)	(gal/min)	(1000)	[(gal/min)/ft]	Remains
				LTH Δ	RTON COUNTYCont	inued				
ZA-66-46-402	7-12-55	C	266 feet of casing slotted between 100-366 feet; gravel packed.	250 <u>+</u>	32,100	128	3,100	<u>1/20_8</u>	149.0 (1 hour)	1-hour recovery after pumping 3 weeks.
48-904	7-26-55	С	275 feet of casing slotted between 95-370 feet; gravel packed.	204	17,900	88	1,710	31.1	55.0 (60 days)	1-hour recovery after pumping 3 weeks.
54-601	10-19-55	E-C	165 feet of screen between 690-725, 755-775, 842-855, 880-925, 970- 1002, and 1065-1085; gravel packed.	171	4,800	28	1,090		9.0 (1 hour)	Recovery of pumped well.
603	10-21-55	E	285 feet of screen between 790- 1265 feet; gravel packed.	297	2,860	10	625		7.9 (2 hours)	Recovery of pumped well.
55-103	6- 5-55	С	240 feet of casing slotted between 260-500 feet; gravel packed.	180 <u>+</u>	10,600	59	1,150	35.5	32.4 (1 hour)	2-hour, 59-minute recov- ery test after 4-hour, 56-minute pump test.
61-302	6-17-75	с	65 feet of screen between 400-440 and 503-528 feet; gravel packed.	75	3,880- 8,640	52- 115		12.6		Interference test; 150- minute recovery test after pumping well ZA- 66-61-309 for 70 minutes. The storage coefficient is 0.0018.
305	7-14-55	С	369 feet of casing slotted between 134-599 feet; gravel packed.	230	15,100	66	2,100	25.3	83.0 (2 days)	63-minute recovery after pumping 48 hours.
309	6-17-75	С	100 feet of screen between 95-110, 175-195, 245-260, 280-315, and 335-350 feet; gravel packed.	120	3,000- 7,420	25- 62	820	52.8	15.5 (1 hour)	150-minute recovery after pumping 70 minutes.
62-709	6-25 - 75	С	585 feet of casing slotted between 200-785 feet; gravel packed.	251	16,070	64	2,276			2 1/2-hour recovery test after pumping 24 hours.
713	do.	С	Casing slotted from about 200-690 feet.	211 <u>+</u>	19,080	90				Interference test; 2 1/2- hour recovery test after pumping well ZA-66-62- 709 for 24 hours. (Bot- tom part of well may be collapsed.)
904	7-18-55	C	307 feet of casing slotted between 162-289, 352-452, 467-527, and 553-573 feet; gravel packed.	278	13,400	48	1,430	21.0	68.1 (14 days)	l-hour recovery test after pumping 2 weeks.
63-201	7-14-55	С	Slotted at all sand intervals between 116-594 feet; gravel packed.	361	19,100	53	1,760	23.3	75.5 (1 hour)	1-hour recovery test after pumping 75 hours.

1/ 1-hour recovery.

thickness, is the main source of ground water in the three-county area. The Chicot aquifer overlies the Evangeline aquifer and is composed of water-bearing units in the Willis Sand, Lissie Formation, Beaumont Clay, and Quaternary alluvium (Figure 4 and Table 1). The Chicot includes all deposits from the land surface to the top of the Evangeline aquifer (Figures 5-8), and all of the deposits contain fresh water in Colorado, Lavaca, and Wharton Counties. The base of the Chicot aquifer, as determined from interpretations of electrical logs, ranges in altitude from the land surface at the outcrop to more than 1,100 feet (335 m) below NGVD in southern Wharton County (Figure 10).

On the basis of interpretations of electrical logs, the Chicot ranges in thickness from 0 in the outcrop areas to more than 1,000 feet (305 m) in southern Wharton County. The thicknesses of individual sand units in the aquifer range from a few feet to about 500 feet (152 m).

The Chicot and Evangeline aquifers generally are in hydraulic continuity, and it is difficult to differentiate the two units. Delineation of the Chicot in the subsurface is based in part on a higher sand-clay ratio in the Chicot than in the underlying Evangeline and in part on the differences in hydraulic conductivity because the Chicot generally has higher values of hydraulic conductivity than the Evangeline.

The combined thicknesses of the fresh-water sands in the Chicot and Evangeline aquifers range from 0 at the outcrop to more than 850 feet (259 m) in Wharton County. The average sand thickness is about 250 feet (76 m) in the Chicot aquifer and about 200 feet (61 m) in the Evangeline aquifer.

The hydraulic characteristics of the Chicot aquifer in parts of the three-county area were determined from aquifer-test data. Table 2 shows the transmissivities and hydraulic conductivities of the aquifer and the specific capacities of selected wells. The transmissivities range from 2,000 ft²/d) (185 m² /d) to more than 46,000 ft²/d (4,300 m² /d). Hydraulic conductivities range from 29.0 ft/d (8.8 m/d) to more than 200 ft/d (61 m/d), and average about 80 ft/d (24.4 m/d).

RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER

Recharge to Aquifers

The principal source of recharge to the aquifers in Colorado, Lavaca, and Wharton Counties is the

infiltration of rainfall in the outcrop areas. The sand units composing the Chicot aquifer (excluding those in the Beaumont Clay) crop out and are recharged within an area of about 1,100 aquare miles (2,850 km²) in northern Wharton County, in the eastern and southern parts of Lavaca County, and in most of Colorado County. Approximately 4 inches (102 mm) of rainfall would be required infiltration to replace the ground-water withdrawals from the Chicot aquifer in 1974 of 207 million gal/d (780,000 m³/d). The Evangeline aquifer is recharged by the infiltration of rainfall in an outcrop area of about 600 square miles (1,550 km²) in central Lavaca County, and in an undetermined area in Colorado County where the aquifer is overlapped by younger formations. About 1 inch (25 mm) or less of infiltration would be required to equal the 43 million gal/d (163,000 m^3/d) of water pumped from the Evangeline aguifer in 1974. A fraction of an inch of infiltration would be required to equal about 2 million gal/d (7,500 m³/d) that was withdrawn from the other aquifers in 1974.

The quantities of water that are available as natural recharge to the Chicot and Evangeline aquifers in the three-county area have been approximated to be about 78,000 acre-feet (96 hm³) per year for the Chicot and 38,000 acre-feet (47 hm³) per year for the Evangeline. Inherent in these approximations of potential recharge are increments of water that originally moved as recharge through the aquifers prior to development by wells and water that entered the outcrops of the aquifers as recharge but was discharged to streams. The derivations of the quantities of potential recharge and the significance of these quantities are given in the section of this report on "Fresh water available for development."

Ground-Water Movement

Ground water moves under the influence of gravity from areas of recharge to areas of discharge. Before development of the aquifers in Colorado, Lavaca, and Wharton Counties began, the general direction of water movement was down gradient from the outcrop areas toward the Gulf of Mexico and toward areas of discharge along the major drainage systems such as the Colorado River. In some places ground-water pumping for municipal supply, industrial use, and irrigation has created cones of depression in the potentiometric surface; and in these areas, ground water moves from all directions toward the center of the cones of depression.

The rate of movement of ground water depends upon the effective porosity and hydraulic conductivity of the aquifer and the hydraulic gradient. In Colorado, Lavaca, and Wharton Counties, the rate of movement of ground water ranges from tens of feet to hundreds of feet per year. The average rate of ground-water movement in the Chicot aquifer is approximately 75 feet (23 m) per year. This value is based on calculations using an average hydraulic gradient of 4 ft/mi (0.8 m/km), a porosity of 30 percent, and an average hydraulic conductivity of 81 ft/d (25 m/d), as determined from aquifer-test data.

An average rate of ground-water movement of 37 feet (11 m) per year for all aquifers was calculated by using an average hydraulic conductivity of about 40 ft/d (12 m/d). The rates of movement near pumping wells are much greater than the calculated averages because the hydraulic gradients near the wells are much steeper than the regional hydraulic gradients.

Discharge from Aquifers

Ground water is discharged naturally through seeps and springs and by evaporation and transpiration from the water table part of the aquifers. Evaporation is more significant during summer months when the rice fields are flooded with water pumped from the aquifers. Ground water is discharged artificially by wells, drainage ditches, gravel pits, and other manmade structures that intersect the water table. In 1974, the total amount of water pumped by wells was about 280,000 acre-feet (345 hm³), or about 252 million gal/d (954,000 m³/d).

Until ground-water pumping lowered the original water levels in the aquifers, the perennial streams in the area received significant amounts of ground water that was discharged near the outcrops of the aquifers. Ground water was discharged because the water table was above the level of the streambeds and the recharge rate exceeded the capacity of the sands to transmit the water into the artesian parts of the aquifers. Presently, the streams in some areas are receiving considerably less water than originally.

GROUND-WATER USE AND EFFECTS OF PUMPING

Although little is known about ground-water usage in Colorado, Lavaca, and Wharton Counties prior to 1900, some aspects of development may be inferred from the history of the area. Taylor (1907) reported several flowing wells in the three-county area; and George (1936), May (1938), and Cromack (1940), confirmed the occurrence of flowing wells. Water flowing from wells in Lavaca County originated from the Jasper aquifer, while water from most flowing wells in Colorado County and from two flowing wells in Wharton County originated from the Evangeline aquifer. Water from one flowing well in Wharton County originated from the Chicot aquifer. Most wells ceased flowing by the mid-1940's after ground-water pumping had lowered the artesian pressures.

Most of the ground water pumped in the three-county area is used for rice irrigation, but minor amounts are used for irrigation of cotton and maize. A total of about 260,000 acre-feet (320 hm³) was pumped for irrigation in 1974, and approximately two-thirds of this amount was used in Wharton County. The second largest use of ground water is for sulfur production at the Boling Salt Dome in Wharton County. Industrial use of ground water in Lavaca and Colorado Counties is insignificant because in 1974, only 13,000 acre-feet (16 hm³) of water was pumped for industrial use in the three counties.

Ground water is the only source of water for municipal supply in the three-county area, and the total amount pumped for this purpose in 1974 was 6,400 acre-feet (7.9 hm³). There was no significant pumping of ground water for municipal supply in Colorado County before about 1938 or before about 1910 in Wharton County. Pumping for municipal supply has increased only slightly in Lavaca County since 1948, which is the earliest date of available data.

Ground-water pumping for all uses has increased significantly since the 1940's, and in the early to mid-I 950's ground-water pumping sharply increased with the introduction of the two-crop rice season. The daily withdrawals of ground water for all uses in 1974 were about 252 million gal/d (954,000 m³/d), and the total withdrawals in 1974 were about 280,000 acre-feet (345 hm³).

The net annual depletion of water from the aquifers in the three-county area is equal to the pumpage minus the amount of natural recharge and return flow from irrigation. In a study of return flow from rice irrigation in Colorado County, Tuck (1974) estimated that about 30 percent of the water used for rice irrigation returns as surface flow to the drainage system and is available for downstream reuse and recharge. An undetermined amount of water infiltrates to the aquifers directly from the flooded rice fields.

Figures 11-13 show the approximate withdrawals of ground water from the Chicot and Evangeline aquifers in each of the three counties, and show that most of the ground water is pumped from the Chicot aquifer. Of the total of about 280,000 acre-feet (345 hm³) of ground water used in 1974, approximately 82 percent was withdrawn from the Chicot aquifer, 17 percent from the aquifers. Three of the hydrographs that contain data dating back to 1934 indicate little change in the water levels until about 1947, which may reflect the above-normal rainfall from 1940 to 1946 and the consequent decrease in pumping for irrigation. After 1947, the hydrographs indicate a steady rate of water-level decline.

The greatest amount of water-level decline in the Evangeline aguifer for the period of record is shown by the hydrograph of well ZA-66-54-604. In this public-supply well for El Campo in Wharton County, water levels declined about 65 feet (20 ml) during the 42 vears of record. Water levels in other wells in the Evangeline have declined at a faster rate. For example, the water level in well RY-66-42-902, near the edge of a large rice-growing area, declined 20 feet (6 m) during a 10-year period. Many water-level fluctuations are shown on the hydrogtaphs of wells in the Evangeline aguifer, but some of the fluctuations, such as those shown on the hydrograph of well DW-66-28-902 (Figure 18), may result from measurements being made in the spring after the beginning of the pumping season. Normally, water levels recover cluring the winter and are measured early in the spring when they reflect a higher potentiometric surface.

Figure 16 shows the approximate altitude of water levels measured during 1959-60 in wells screened in the Chicot aquifer. This map can be compared with Figure 15 which shows the altitudes of water levels in the Evangeline and Chicot aquifers in 1947, because the majority of the water-level measurements in 1947 were in wells in the Chicot aquifer. The water levels in the Chicot aquifer in 1959-60 show a general decline in the southeastern part of Lavaca County, in the southeastern part of Colorado County, and in most of Wharton County since 1947.

In one area of concentrated pumping for rice irrigation in the southern part of Colorado County and extending into Lavaca and Wharton Counties, a small cone of depression occurs within a larger area of general decline in the altitude of the potentiornetric surface. Figure 16 also shows the altitudes of water levels in selected wells in the Chicot aquifer that were measured during a 2-week period in March 1975, before the beginning of pumping for rice irrigation. From 1959-60 to 1975, water levels in the Chicot aquifer declined more than 20 feet (6 m) in some areas, but the overall water-level decline averaged about 10 feet (3 m) or less.

During 1950-56, the average annual rainfall was about 9 inches (229 mm) below normal; consequently, water levels generally declined as a result of increased pumping for irrigation. In addition, the introduction of the two-crop rice season about 1954 resulted in additional increases in pumping for irrigation and greater water-level declines. An example of rapid decline is shown by the hydrograph of irrigation well ZA-66-45-802 (Figure 18), in which the water level declined 19 feet (6 m) during the 16 years of record. Figure 19 shows the approximate decline of water levels in wells in the Chicot aquifer between 1947 and 1975. The map indicates little or no decline in areas of limited irrigation, but indicates declines of about 40 feet (12 m) in areas of extensive irrigation.

Water-level declines that will result from pumping can be estimated if the aquifer characteristics are known. The theoretical relationship between drawdown and distance from the center of pumping for different transmissivities is shown on Figure 20. For example, if the transmissivity and storage coefficient are 6,000 ft²/d (557 m²/d) and 0.001, respectively, the drawdown would be 9 feet (2.7 m) at a distance of 1 mile (1.6 km) from a well or group of wells discharging 1 million gal/d (3,785 m³/d) for 1 year. If the transmissivity and storage coefficient are 1,000 ft²/d (93m²/d) and 0.0001, respectively, pumping at the same rate and for the same time would result in a decline of 61 feet (19 m) at the same distance.

Figure 21 shows the relationship of drawdown to distance and time as a result of pumping from water-table and artesian aquifers. These graphs show that the rate of drawdown decreases with time. For example, if the drawdown at a distance of 100 feet (30 m) from a well in a water-table aquifer is about 14 feet (4.3 m) after 1 million gal/d ($3,785 \text{ m}^3$ /d) has been pumped for 1 year, the drawdown would be about 19 feet (5.8 m) after 1 million gal/d ($3,785 \text{ m}^3$ /d) had been pumped for 100 years. The drawdown in a water-table aquifer is less than in an artesian aquifer because under water-table conditions, the coefficient of storage is much larger.

CHEMICAL QUALITY OF GROUND WATER

The factors that determine the suitability of water for a particular use are the quality of the water and the limitations imposed by the contemplated use. Some of the properties or constituents that affect the utility of the water supply include the concentrations of chemical constituents, suspended-sediment content, bacterial content, temperature, hardness, color, taste, and odor. For most purposes, the dissolved-solids concentration is a major limitation on the use of water. Chemical analyses of water from wells in Colorado, Lavaca, and Wharton Counties are given in Table 8. This table includes the results of analyses by the U.S. Geological Survey, by other government agencies, and by commercial laboratories. The concentrations of the chemical constituents are reported in mg/l (milligrams per liter) or μ g/l (micrograms per liter).

Figure 20.—Relationship of Drawdown to Transmissivity and Distance

The chamical composition of ground water depends upon the source of the water; the rate of movement of the water; and most importantly, the minerals contained in the rocks and soils through which the water moves. Differences in the chemical quality of ground water generally reflect differences in the chemical composition of the sediments of the water-bearing formations, and the generally slow rate of ground-water movement inhibits the mixing of waters of different chemical compositions. Relatively impermeable beds of clay rnay form local barriers to ground-water movement and tend to stratify the water by limiting vertical movement.

The data in Table 8 show that the chemical quality of the ground water varies considerably throughout Colorado, Lavaca, and Wharton Counties at different places and different depths in the aquifers. The factors causing these differences include composition of the aquifers, hydraulic continuity or lack of continuity, and contamination from oil-field operations.

The Federal Water Pollution Control Act Amendments of 1972 required that the U.S. Environmental Protection Agency (EPA) publish water-quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare that may be expected from the presence of pollutants in any body of water, including ground water. In 1973, EPA published the criteria for water quality for the protection of human health and for the protection and propagation of desired species of aquatic biota (National Academy of Sciences, 1973). The latest revision of these criteria was published by EPA in 1976 (U.S. Environmental Protection Agency, 1976). This publication addresses the effects of the basic water constituents and pollutants that are considered most significant in the aquatic environment in the context of present knowledge and experience.

According to EPA, "The word criterion represents a constituent concentration or level associated with a degree of environmental effect upon which scientific judgement may be based. As it is currently associated with the water environment it has come to mean a designated concentration of a constituent that when not exceeded, will protect an organism, an organism community, or a prescribed water use or quality with an

adequate degree of safety" (U.S. Environmental Protection Agency, 1976, p. 4).

EPA's "Quality Criteria for Water" (National Academy of Sciences, 1973) includes a concise statement of the dominant criterion or criteria for a particular constituent followed by a narrative introduction, a rationale that includes justification for the designated criterion or criteria, and a listing of the references cited within the rationale.

The criteria for some of the properties or constituents of domestic water supplies are included in the following tabulation. For a discussion of the supporting scientific rationale, the reader is referred to the report by EPA (National Academy of Sciences, 1973, p. 25-401).

	Recommended criteria
Property or constituent	(mg/l)
Chloride (Cl)	250
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (N)	10
Sulfate (SO ₄)	250

Recommended criteria for fluoride were not included in the 1976 "Quality Criteria for Water." However, the earlier 1973 report recommended that the maximum levels shown in the following table not be exceeded in public-water supply sources.

Annua maximi temr	l average of um daily air peratures	Fluoride maximum (mg/l)
80-91	26.3-32.5	1.4
72-79	21.5-26.2	1.6
65-71	17.7-21.4	1.8
59-64	14.7-17.6	2.0
55-58	12.1-14.6	2.2
50-54	10.0-12.0	2.4

Although these criteria are based upon current knowledge of the effects on health and welfare, it must be emphasized that many other factors should be considered in making decisions relative to establishing particular standards and control measures. These criteria are quoted as a basis for comparison.

Water containing concentrations of chloride exceeding 250 mg/l in combination with sodium may

have a salty taste. Fluoride in drinking water reduces tooth decay, especially in young children; however, concentrations greater than the recommended criteria may cause mottling of the teeth. Excessive iron and manganese in the water supply tends to stain utensils and to discolor laundry and plumbing fixtures. Water having a nitrate (N) concentration greater than 10 mg/l is potentially dangerous for infant feeding because it has been related to infant cyanosis or "blue baby" disease. Large concentrations of nitrate may also indicate pollution by sewage or organic material. Excessive sulfate concentrations in drinking water often produce a laxative effect.

The hardness of water, caused mainly by calcium and magnesium, is important in a domestic water supply although no limits of hardness have been established. Excessive hardness causes an increase in the consumption of soap and induces the formation of scale in hot-water heaters and water pipes. A commonly used classification of water hardness is given in the following table:

Hardness range	
(mg/l)	Classification
60 or less	soft
61 to 120	moderately hard
121 to 180	hard
more than 180	very hard

The suitability of water for irrigation depends partly upon the chemicals in the water and the effect of these chemicals on plants and soils. The suitability is also affected by the type of crop, the soil structure and composition, the irrigation and drainage facilities, the amount of water used, and the climate. Some of the more important chemical characteristics that are considered in the evaluation of water for irrigation are: (1) The relative proportion of sodium to other cations, which is an index of the sodium or alkali hazard; (2) the concentrations of soluble salts, an index of the salinity hazard; (3) the amount of residual carbonate; and (4) the concentration of boron.

The water-quality requirements for rice irrigation have been studied extensively because of its importance to the economy of many parts of the country, including Colorado, Lavaca, and Wharton Counties. Young rice is particularly sensitive to a high sodium chloride concentration in the water, but develops a resistance to this constituent as the plant matures. According to Shutts (1953, p. 871-884), the commonly accepted tolerances of rice are as follows:

Concentration of salts as sodium chloride	
(mg/l)	Tolerance
600	Tolerant at all stages.
1,300	Rarely harmful and only to seedlings in dry, hard soil.
1,700	Harmful before tillering; tolerable from jointing to heading.
3,400	Harmful before booting; tolerable from booting to heading.
5,100	Harmful at all stages.

Chemical analyses of about 460 water samples collected in the three-county area over the past 40 years are listed in Table 8. The chemical quality of ground water from selected wells in the various aquifers is shown on Figure 22.

Chloride concentrations of more than 250 mg/l were exceeded in approximately 7 percent of the samples analyzed. Dissolved-solids concentrations of 500 mg/l were exceeded in about 40 percent of the samples analyzed. The greatest number of analyses showing dissolved-solids concentrations of more than 500 mg/l were from samples collected in Lavaca County. Less than 3 percent of all samples analyzed were classified as slightly to moderately saline.

About 4:25 water samples were analyzed for hardness as $CaCO_3$. Water from more than two-thirds of these samples was very hard, and water from less than 5 percent of the samples was soft. The maximum hardness determined was 2,400 mg/l for a sample collected from well RY-67-48-301 in Lavaca County.

Iron determinations were made in about 110 samples. Only six analyses, five of which were from Lavaca County, showed iron in excess of 0.3 mg/l (300 μ g/l).

About 215 samples were analyzed for fluoride, but none of the analyses showed concentrations in excess of the recommended limits of 1.4 mg/l. The maximum value of fluoride concentration was 1.2 mg/l in a sample from well ZA-66-61-309 in Wharton County.

Of about 275 samples analyzed for nitrate, only 2 of the samples contained nitrate in excess of the Environmental Protection Agency criterion. Water from well DW-66-20-409 contained 17.2 mg/l and well RY-67-32-702, which is unused, contained 22 mg/l nitrate.

The concentration of sulfate exceeded the limit of 250 mg/l in 1 sample of a total of about 400 samples that were analyzed. The highest value was 540 mg/l in water from well RY-67-48-301 in Lavaca County. Only seven analyses showed concentrations greater than 100 mg/l.

Chemical Quality of Water in the Aquifers

Catahoula Sandstone

Water in the Catahoula Sandstone is generally of poorer quality than the water in the overlying Jasper aquifer. Samples of water from two wells penetrating the Catahoula (DW-66-11-602 and DW-66-18-605) were analyzed (Table 8). The only well for which a complete chemical analysis is available yielded a sodium bicarbonate type water.

Jasper Aquifer

The Jasper aquifer contains fresh water in the northern parts of Lavaca and Colorado Counties. The water quality, however, varies widely. Hardness ranges from very hard in water from most of the wells less than 300 feet (91 m) deep to soft in water from two wells about 1,000 feet (305 m) deep. A sodium calcium bicarbonate or calcium bicarbonate type water is produced from the shallow wells. The dissolved-solids concentration ranged from 366 mg/l in well RY-67-39-504, which is 288 feet (88 m) deep, to 1,179 mg/l in well RY-67-39-510, which is 980 feet (299 m) deep. Electrical logs indicate that the salinity of water in the Jasper aquifer increases downdip.

Evangeline Aquifer

Fresh water occurs in the Evangeline aquifer throughout most of Colorado, Lavaca, and Wharton Counties. Wells drilled into the deeper sands yield a sodium bicarbonate type water as shown by well ZA-66-54-604, which is 1,060 feet (323 m) deep. The shallower sands tend to contain calcium bicarbonate type water as shown by well RY-66-49-401, which is 230 feet (70 m) deep.

About one-half of the water samples collected from the Evangeline aquifer were analyzed for the

concentrations of dissolved solids and about one-half of the samples analyzed contained 500 mg/lor more dissolved solids. The dissolved-solids concentration in most of the water samples obtained from wells producing from both the Evangeline and Chicot aquifers ranged from about 200 to 500 mg/l. In the southern part of Wharton County, both slightly saline and moderately saline water occur in the Evangeline aquifer.

Chicot Aquifer

Fresh water occurs in the Chicot aquifer throughout the entire three-county area except in local areas of contamination from oilfield operations. Water in the Chicot aquifer is, for the most part, a calcium bicarbonate type; but water from about 20 percent of the samples analyzed was a sodium bicarbonate type. Water from well ZA-66-47-101, which is representative of the Chicot aquifer, is a calcium bicarbonate type water. The Chicot aquifer contains hard to very hard water, but the concentrations of dissolved solids vary greatly. Contamination from oil-field operations probably contributed to the higher concentrations of dissolved solids in many of the samples analyzed.

Changes in Water Quality

Several wells in the three-county area have been sampled two or three times for water-quality analyses. Water from two wells in the Jasper aquifer in Colorado County showed increasing mineralization during a 28.year period of record. The dissolved-solids concentration in waler from well DW-66-18-601 increased from 219 to 610 mg/l and from 557 to 612 mg/l in water from well DW-66-18-602. Water-guality changes with time were noted in two wells screened in the Evangeline aguifer in Wharton County. The dissolved-solids concentration in water from well ZA-66-31-906 decreased from 314 to 298 mg/l during a 16-year period and increased from 365 to 379 mg/l in water from well ZA-66-E4-604 during a 35-year period. Water from wells screened in a depth interval between 100 feet (30 m) and 370 feet (I13 m) showed the areatest increase in the concentrations of dissolved solids-from 617 to 867 ma/l in water from well DW-66-37-703 during a 15-year period, and water from well ZA-66-48-904 showed the greatest decrease, from 614 to 362 mg/l, during a14-year period.

The greatest change in the concentration of dissolved solids in a deeper well (RY-66-43-203) screened from 244 to 44.4 feet (74 to 135 m) occurred in Lavaca County, in which the dissolved-solids concentration decreased from 338 to 274 mg/l over a 20-year period. Water from most wells in the Chicot and Evangeline aquifers that were sampled over a period of time showed little change in water quality or only a slight increase in mineralization. Water from shallow wells or from wells located near oil or gas fields usually showed the greatest changes in mineralization.

Relationship of Fresh Water to Saline Water

The approximate altitude of the base of freshwater is shown on Figure 23; the approximate altitude of the base of slightly saline water is shown on Figure 24. The interface between fresh and saline water in Colorado, Lavaca, and Wharton Counties is very irregular, and the geohydrologic cross sections (Figures 5-8) show vertical layering of fresh and slightly saline water in some areas. The electrical log of well DW-66-30-207 indicates that a zone of fresh water occurs in sand units between depths of 2,800 and 2,950 feet (850 and 900 m). Slightly saline water occurs above this zone, and moderately saline water occurs below this zone. This stratification may be due in part to differences in hydraulic conductivity within parts of the aquifers.

The altitude of the base of fresh water varies considerably throughout the three-county area. In two areas (Figure 23), fresh water extends to considerable depths. The greatest depth of occurrence, about 2,100 feet (640 m) below NGVD, is in the southeastern part of Wharton County (south of Wharton) where the thickest sands occur in the Evangeline aquifer. In an extensive area of southeastern Colorado County, fresh water occurs at depths greater than 1,800 feet (550 m) below NGVD. In this area, fresh water occurs in the Jasper aquifer and may occur in the Catahoula Sandstone.

In the area of the Boling Salt Dome in eastern Wharton County, a distinct anomaly occurs in the altitude of the base of fresh water. At this location, the base of fresh water rises to less than 750 feet (230 m) below NGVD. Within central Lavaca County, the base of fresh water rises to less than 400 feet (120 m) below NGVD and extends as a narrow band from Fayette County in the northeast to Dewitt County in the southwest. In the vicinity of Yoakum, the base of fresh water is less than 300 feet (90 m) below NGVD. In the northwestern corner of Lavaca County, the base of fresh water rises to about 260 feet (80 m) below NGVD (Figure 23).

The highest altitude of the base of slightly saline water is in northwestern Lavaca County, where slightly saline water occurs at a depth of approximately 480 feet (145 m) below NGVD (Figure 24). In southeastern Wharton County, the base of slightly saline water rises to less than 1,200 feet (365 m) below NGVD, as indicated by the electrical log of well ZA-65-41-932. This relatively shallow depth of occurrence of slightly saline water may result from ground-water circulation around the Boling Salt Dome. The greatest depth at which slightly saline water occurs is almost 2,900 feet (885 m) below NGVD in northern Wharton County.

CONTAMINATION OF GROUND WATER IN OILFIELD OPERATIONS

Disposal of Salt Water

Considerable amounts of brine are produced in Colorado, Lavaca, and Wharton Counties in conjunction with the production of oil and gas. According to a salt water disposal inventory made by the Texas Water Development Board, Texas Water Pollution Control Board, and Railroad Commission of Texas for 1967, 27,338,522 barrels (4.3 million m³) or about 3,500 acre-feet) of salt water was produced in 1967 in the three counties. The method of disposal, the number of well fields, and the quantity of salt water disposed by each method are given in Table 3. The locations of the oil and gas fields are shown on Figure 25.

Since 1967, when these data were compiled, the danger of contamination has been minimized by State regulations that eliminate the use of unlined surface pits for the disposal of oil-field brines (Railroad Commission of Texas, 1973). Although unlined surface pits are no longer used, the effects of such disposal practices in the past will continue for many years because of the slow rates of infiltration, dispersion, and ground-water movement. Some previously open pits in the Pickett Ridge, Magnet-Withers, Withers North, Bernard Prairie, Boling, and Niels Carlsen fields (Figure 25) may already have contaminated the shallow fresh water bearing sands in some places. Contamination in the area of these fields is suggested by chemical analyses of water samples that show a generally higher than normal mineralization of the water in the aquifers (Table 8).

Improperly Cased Wells

Salt water contamination also occurs through improperly cased oil and gas wells, which normally penetrate aquifers containing both fresh water and saline water before reaching the oil- or gas-producing horizons. If the wells or tests are improperly cased or plugged, brines can move upward from the higher-pressured formations into zones of fresh and slightly saline water. To prevent this type of contamination, the Railroad Commission of Texas (1973) requires that the fresh and slightly saline water be protected by cementing surface casing to the appropriate depths.

The depths of the sands containing fresh to slightly saline water in oil fields for which field rules have been issued and the amount of cemented casing required are shown on Figure 26. These data show that in most fields, the fresh water is adequately protected by the surface-casing rules.

FRESH WATER AVAILABLE FOR DEVELOPMENT

Various methods of estimating the availability of ground water have been used in the coastal region of Texas, and each method has been useful in its own way in providing indices of water availability.

One method that has been widely employed in both regional and county-wide studies in Texas uses theoretical lines of recharge and discharge with preselected pumping lifts along the line of discharge. The theoretical nature of this method is necessarily predicated upon several assumptions, which may be difficult to meet in actual practice. However, the quantitative values obtained by using this method may be useful as guides to water availability.

Another widely-used method of estimating ground-water availability is that of relating availability to potential recharge. This method is also useful as a guide to determining how much water is available perennially without depleting the ground water in storage.

The estimates of availability of ground water in the Chicot and Evangeline aquifers in Colorado, Lavaca, and Wharton Counties were based on these two methods.

Chicot Aquifer

The following assumptions were used in calculating the amount of fresh water available from the Chicot aquifer:

1. Water levels will be lowered 200 feet (61 m) by development along a line of discharge 35 miles (56 km) in length, approximately parallel to the coast and to the trend of the outcrop of the aquifer. This area of development (line of discharge) is assumed to be in Wharton County in an area of occurrence of thick sections of sand containing fresh water. The distance

i	n 1967 in Colorado, Lava	ca, and Wharton Co	ounties	
Method of	Number of oil			
disposal	or gas fields	Barrels	Acre-feet	Percent
COLORADO COUNTY				
Disposal wells	14	2,022,571	260.7	89.0
Open surface pits	24	250,299	32.3	11.0
Miscellaneous methods	1	871	.1	0
TOTAL		2,273,741	293.1	100.0
LAVACA COUNTY				
Disposal wells	4	442,389	57	52.3
Open surface pits	10	402,850	51.9	47.7
Miscellaneous methods	1	125	0	.0

Table 3.-Methods of disposal and quantity of salt water disposed

WHARTON COUNTY

TOTAL

Disposal wells	37	27,254,514	3,512.9	99.7
Open surface pits	10	32,727	4.2	.1
Miscellaneous methods	6	51,281	6.6	.2
TOTAL		27,338,522	3,523.7	100.0

845,364

108.9

100.0

NOTE: Totals may not agree with individual figures due to rounding.

areas as base flow. The average precipitation in Colorado, Lavaca, and Wharton Counties is about 40 inches (1,016 mm). One inch (25 mm) of water applied to the 1,100 square miles $(2,850 \text{ km}^2)$ of the recharge area of the Chicot aquifer is equivalent to 58,000 acre-feet (72 hm³) of potential recharge. This increment of potential recharge, plus about 20,000 acre-feet (25 hm³) of ground water moving through the aquifer equals 78,000 acre-feet (96 hm³) of water that is estimated to be about the maximum amount perennially available for development from the Chicot without depleting the large quantity of ground water in storage.

The ground water in storage in the Chicot aquifer underlies approximately 75 percent or about 2,250 square miles (5,830 km²) of the three-county area. Within this area, the total thickness of the fresh-water sands ranges from 0 at the inland extent of the outcrop in Colorado and Lavaca Counties to more than 450 feet (137 m) in southern Wharton County (Figure 27); the average thickness is about 250 feet (76 m). On the basis of an average sand thickness of 250 feet (76 m) and a specific yield of 0.2, approximately 72.0 million acre-feet (88,776 hm³) of fresh water is theoretically available from storage in the sands of the Chicot aquifer in Colorado, Lavaca, and Wharton Counties. About two-thirds of this total amount is in Wharton County. In addition to the amount theoretically available from the sands, a significant amount of water, probably 20-25 percent of the amount available from the sands, would be available from the clays due to compaction.

Estimates of such large amounts of water theoretically available from storage can be misleading, however, because the total amount cannot be recovered without serious consequences, such as land-surface subsidence. In addition, the depths from which it is economically feasible to pump water would be a constraint on development.

A part of this large amount of ground water in storage is presently (1974) being produced from the Chicot aquifer in excess of the estimated annual recharge rate. Water levels may be expected to continue to decline together with some subsidence of the land surface. The wide spacing of wells in the Chicot throughout the three-county area, however, provides a favorable well-distribution pattern that should minimize these problems.

Evangeline Aquifer

In calculating the amounts of water available for development in the Evangeline aquifer, the assumptions were similar to those used in calculating the amounts available from the Chicot. However, because of the geographic configuration of the three-county area with respect to the outcrop of the Evangeline aquifer, separate calculations of availability were made for Lavaca County.

1. The area of development (line of discharge) is assumed to be in southern Lavaca County in an area of occurrence of thick sands containing fresh water. The line of discharge is 30 miles (48 km) in length, parallel to the coast and to the trend of the outcrop of the Evangeline aquifer. The average distance between the line of recharge and the line of discharge is about 14 miles (22 km).

2. The hydraulic gradient is constant at 17 ft/mi (3.2 m/km) after a drawdown of 200 feet (60 m) at the line of discharge. The 1975 gradient was about 9 ft/mi (1.7 m/km).

3. The average transmissivity of the Evangeline aquifer is 2,400 ft^2 /d (223 m² /d).

On the basis of these assumptions, the Evangeline aquifer will ultimately transmit slightly more than 10,000 acre-feet (12 hm^3) of water annually to the line of discharge in Lavaca County.

In estimating the amount of water available from the Evangeline aquifer in Colorado and Wharton Counties, the 35-mile (56-km) line of discharge was assumed to be in southern Wharton County, where the thick fresh-water sands occur. The distance between the recharge area and the line of discharge is about 50 miles (80 km), and the hydraulic gradient is 13 ft/mi (2.5 m/km) after a drawdown of 200 feet (61 m) at the line of discharge. On the basis of these assumptions, the Evengeline will ultimately transmit approximately 9,200 acre-feet (11 hm³) of water annually to the line of discharge in Wharton County.

In the three-county area, therefore, the Evangeline aquifer will transmit annually about 20,000 acre-feet (25 hm^3) of water to the 200-foot (61-m) lines of discharge. This amount of water, which is less than the recharge rate, is considered to be a quantity that could be produced annually with only moderate pumping lifts without depleting the ground water in storage.

The amount of recharge that is available to the Evangeline aquifer may be considered as the sum of two quantities. This recharge may be estimated by considering the amount of water that moved through the aquifer under predevelopment conditions and the amount of ground water that was discharged by the aquifer to streams in the outcrop area.

Q=TIL

where T (transmissivity) is 2,400 ft2/d (223 m²/d), I (original hydraulic gradient) is approximately 5 ft/mi (0.9 m/km), and L (length of the aquifer across which the water move;) is 30 miles (48 km) and 35 miles (56 km) for Lavaca County and the Colorado-Wharton County area, respectively, a total of about 6,500 acre-feet (8 hm³) of water originally moved as an increment of recharge through the Evangeline in the three-county area.

The amount of ground water that the aquifer discharged to the streams may be estimated by assuming that 1 inch (25 mm) of water is discharged by the aquifer at the outcrop. This 1 inch (25 mm) of water applied to the approximately 600 square miles $(1,550 \text{ km}^2)$ of the outcrop of the Evangeline aquifer is equivalent to about 32,000 acre-feet (39 hm³) of available recharge. This quantity plus the 6,500 acre-feet (8 hm³) that originally moved through the aquifer equals about 38,000 acre-feet (47 hm³) of water that may be considered the maximum amount perennially available for development from the Evangeline without depleting the large amount of ground water in storage.

The ground water in storage in the Evangeline aquifer underlies an area of approximately 2,800 square miles (7,250 km²), or more than 90 percent of the three-county area. The total thickness of the fresh-water sands ranges from 0 at the outcrop in northwestern Lavaca County to about 470 feet (143 m) in central Wharton County (Figure 28); the average thickness is about 200 feet (61 m). Most of the sands in the Evangeline aquifer contain fresh water, but slightly saline water occurs in some of the deeper sand layers in parts of Colorado and Lavaca Counties and in most of Wharton County.

On the basis of an average thickness of 200 feet (61 m) and a specific yield of 0.2 for the fresh-water sands, about 71.7 million acre-feet (88,400 hm³) of fresh water is theoretically available from storage in the sands of the Evangeline aquifer in Colorado, Lavaca, and Wharton Counties. Additionally, from 20 to 25 percent of this amount would also be available from the clays due to compaction as water levels are lowered.

The sand units in the Evangeline aquifer that contain slightly saline water underlie an area of approximately 1,400 square miles $(3,600 \text{ km}^2)$. On the basis of an average sand thickness of about 50 feet (15 m) and a specific yield of 0.2, about 9.0 rnillion

acre-feet (11,097 hm³) of slightly saline water is theoretically available from storage in the Evangeline aquifer in Colorado, Lavaca, and Wharton Counties.

These large amounts of water theoretically available from storage in the Evangeline can be misleading because most of this water cannot be pumped without serious consequences, such as land-surface subsidence and excessive pumping lifts.

Nevertheless, a part of these reserves can be developed and are being developed. In 1974, pumpage from the Evangeline exceeded by 10,000 acre-feet ($12 \text{ } \text{hm}^3$) the estimated 38,000 acre-feet ($47 \text{ } \text{hm}^3$) of recharge that is about the maximum amount perennially available. Consequently, water levels may be expected to continue to decline together with some subsidence of the land surface. Proper well spacing, such as the wide well-distribution pattern that is common to rice-irrigation practices in the three-county area, is an effective way of dealing with these problems.

Jackson Group, Catahoula Sandstone, and Jasper Aquifer

The Jackson Group in northern Lavaca County is the oldest geologic unit containing fresh water in the three-county area, and the Catahoula Sandstone, which overlies the Jackson Group, contains a small amount of fresh water. Because of the relative insignificance of these units as sources of water, no data have been collected on their potential for additional development. The Jasper aquifer contains fresh water only in northern Lavaca County and in northern and central Colorado County. The Jasper is not a major aquifer in the three-county area because the sands containing fresh and slightly saline water are very thin in comparison to those in the overlying Chicot and Evangeline aquifers.

The fresh-water sands in the aquifers below the Evangeline aquifer underlie an area of approximately 1,200 square miles $(3,100 \text{ km}^2)$ and average about 75 feet (23 m) in thickness. The amount of fresh water in storage is about 11.5 million acre-feet $(14,180 \text{ hm}^3)$, but only a very small amount of this water can be economically recovered because of the great depths (as much as 1,000-2,000 feet or 305-610 m) at which most of it occurs. The sands containing slightly saline water in the aquifers below the Evangeline aquifer underlie an area of approximately 2,500 square miles $(6,500 \text{ km}^2)$ throughout Colorado and Lavaca Counties and in most of Wharton County. On the basis of an estimated average sand thickness of 60 feet (18 m), about 19.2 million

acre-feet (23,674 hm³) of slightly saline water is in storage below the Evangeline aquifer.

Areas Most Favorable for Ground-Water Development

The areas in Colorado, Lavaca, and Wharton Counties that are the most favorable for future development of fresh ground-water supplies are indicated by the values of transmissivity shown on Figure 29. This rnap was constructed by multiplying the average hydraulic conductivity of the Chicot and Evangeline aquiiers by their respective thickness of fresh-water sand;. The average hydraulic conductivity was determined from aquifer tests that were selected to determine the transmissivities of the aquifer.

The areas of highest transmissivity are in Wharton County. Because of the high transmissivities of the Chicot aquifer, about two-thirds of the three-county area is suitable for additional ground-water development where at least 50 feet (15 m) of sand occurs in the aquifers. The areas least favorable for future development are the areas in northwestern Colorado County and all the southern part of Lavaca County, where transmissivities are less than 5,000 ft²/d (460 m² /d).

WELL CONSTRUCTION

The method of well construction in Colorado, Lavaca, and Wharton Counties depends upon the desired capacity of the well, the intended use of the water, the allowable cost of construction, and the preferences of individual drillers. Most of the recently constructed small-capacity wells, such as those used for rural-domestic and livestock needs, were drilled by hydraulic-rotary equipment. These wells range from 3 to 6 inches (8 to 15 cm) in diameter and commonly use 2to 4-inch (5- to 10-cm) casing and screens. Each well is usually completed by screening a single interval of 4 to 20 feet (1.2 to 6.1 m) in the water-bearing zone. Most of the wells are equipped with jet or submergible pumps powered by electrical motors.

Large-capacity wells, such as those used for irrigation, industry, or public supply are also drilled by hydraulic-rotary methods. First, a test hole about 6 inches (15 cm) in diameter is drilled and logged to determine the depths and thicknesses of the sand intervals. The test hole may also be used to determine the aquifer characteristics and water quality. If the test-hole log and other data indicate that suitable water-bearing sands are present, the test hole is then reamed to complete the well. The wells are usually fitted with deep-well turbine pumps powered by internal-combustion engines or electric motors.

The upper part of a test hole for a municipal-supply or industrial well is usually reamed 14 to 30 inches (36 to 76 cm) in diameter. A slightly smaller surface casing is set and cemented in place to form the pump pit. The remaining part of the test hole is then reamed to a diameter less than that of the surface casing. The interval to be screened is then underreamed to about 30 inches (76 cm) in diameter, and 8- to 12-inch (20- to 30-cm) diameter wire-wrapped screens and blank casing are installed. The annular space between the screen or casing and the wall of the hole is filled with gravel. This "gravel pack" stabilizes the hole, increases the effective diameter of the well, and provides a transfer medium for the water moving from the sand into the well.

The construction of rice-irrigation wells usually differs from the construction of municipal-supply and industrial wells, which are usually screened in selected sand units. The test hole for an irrigation well is usually reamed throughout the entire depth of the well, and a string of slotted casing, extending from near the surface or from a few hundred feet below the surface is installed through the remaining depth of the well. The space between the casing and the wall of the hole is filled with gravel from the bottom of the well to the land surface. This type of well construction, rather than selective screening, does not always produce water of the best quality available; but if the water is suitable for irrigation, this method of construction is highly effective.

LAND-SURFACE SUBSIDENCE

The major cause of land-surface subsidence in Colorado, Lavaca, and Wharton Counties is the withdrawal of water from the artesian aquifers. According to Meinzer and Wenzel (1942, p. 458), the water pressure in an artesian aquifer provides a buoyant effect that helps support the aquifer. When the water pressure is reduced, the buoyant effect is reduced and an additional load is transferred to the skeleton of the aquifer. A pressure difference between the sands and clays causes water to move from the clays to the sands. This causes compaction of the clays, which in turn results in subsidence of the land surface.

The amount of land-surface subsidence that has occurred may be determined by comparing the altitudes of bench marks over a period of time. The National Geodetic Survey determined and redetermined the altitudes of a line of bench marks in Colorado, Lavaca, and Wharton Counties between 1933 and 1973, but the extent of land-surface subsidence is generally unknown in most of the three-county area because the altitudes in approximately one-half of the area, including most of Wharton County, have not been redetermined since the original surveys in the early 1940's. Another large part of the three-county area was originally surveyed in the early 1930's and surveyed again in the early 1940's. The northern part of Wharton County was surveyed in 1957, but most of the county has not been surveyed since the 1940's.

In the area in which the bench-mark altitudes were redetermined in 1973, the amount of land-surface subsidence can be determined. At Hallettsville, for example, 0.256 foot (0.078 m) of subsidence occurred between 1933 and 1973, while only 0.043 foot (0.013 m) of subsidence occurred before 1943. In Jackson County, near the Wharton County line, the land surface subsided 0.571 foot (0.174 m) between 1943 and 1973. The greatest amount of land-surface subsidence measured in the three-county area is in southeastern Lavaca County, where 0.702 foot (0.214 m) of subsidence occurred between 1935 and 1973.

Because of a lack of subsidence data in Colorado. Lavaca, and Wharton Counties, especially in Wharton County, data from surrounding counties were used to estimate the amount of subsidence within these three counties. Most lines of bench marks, for which altitudes were redetermined in the early 1970's, as in Matagorda County, show less than 1 foot (0.3 m) of subsidence; and only a few bench marks in eastern Jackson County have subsided more than 1 foot (0.3 m). At Francitas in Jackson County, the data indicate subsidence of about 2 feet (0.6 m) betwsen 1918 and 1973, with 1.7 feet (0.5 m) of the subsidence approximately occurring between 1952 and 1973. The increase in the rate of subsidence in this area coincides with the introduction of the two-crop rice season and the increased withdrawals of ground water in the early 1950's.

NEEDS FOR ADDITIONAL STUDIES

The program of measuring water levels in observation wells should be continued in Colorado, Lavaca, and Wharton Counties; and the program should be expanded to include measurements in wells in areas of recent ground-water development. In addition, an expanded program of aquifer tests would be helpful in defining more accurately the hydraulic characteristics of the aquifers. A program to collect water-quality data on a continuing basis should be initiated to monitor the possible encroachment of salt water. A program for measuring subsidence is needed in the three-county area, especially in areas of large ground-water pumping for rice irrigation. This program should be coordinated with the program of collecting water-level and pumping data so that correlations can be made between subsidence and ground-water withdrawals.

SUMMARY

The Chicot and Evangeline aquifers, which are recharged by the infiltration of rainfall in the outcrop areas, are the main sources of fresh water for all uses in Colorado, Lavaca, and Wharton Counties; and most of the water is obtained from the Chicot aquifer, which overlies the Evangeline aquifer. The Jackson Group, Catahoula Sandstone, and Jasper aquifer are minor sources of water and are largely undeveloped in the area.

The Chicot aguifer, which consists of discontinuous layers of sand and clay of about equal aggregate thickness, ranges in total thickness from 0 in the outcrop area to more than 1.000 feet (305 m) in southern Wharton County. In places, the sand units containing fresh water are as much as 500 feet (152 m) thick. The Evangeline aguifer, which also consists of discontinuous sand and clay layers, ranges in total thickness from 0 at the outcrop to about 1,500 feet (457 m) in Wharton County. The aggregate thickness of the sand units containing fresh and slightly saline water is as much as 470 feet (143 m). The combined thicknesses of the fresh-water sands in the Chicot and Evangeline aquifers range from 0 at the outcrop to more than 850 feet (259 m) in Wharton County. The average sand thickness is about 250 feet (76 m) in the Chicot aguifer and about 200 feet (61 m) in the Evangeline aquifer.

The interface between the fresh and slightly saline water is irregular, and in some areas, the fresh, slightly saline, and moderately saline waters occur in vertical layers. Where the sand units are thick, as in south-central Wharton County, fresh water is available at depths of almost 2,200 feet (670 m). In Colorado and Lavaca Counties, where the aquifers are not as thick as in Wharton County, fresh water occurs in the Jasper aquifer and Catahoula Sandstone below the base of the Evangeline aquifer. The shallowest depth at which slightly saline water is encountered is about 800 feet (244 m) in the northwestern part of Lavaca County.

Daily withdrawal of ground water for all uses in 1974 was 252 million gal/d (954,000 m^3 /d), most of which was used for rice irrigation. Smaller amounts of

water were pumped for municipal supply and industrial use. Estimates of the amounts of fresh and slightly saline water theoretically available from storage in the sands were based on average sand thicknesses of 250 feet (76 m) and 200 feet (61 m) in the Chicot and Evangeline aquifers, respectively, and a specific yield of 0.2. The Chicot aquifer contains about 72.0 million acre-feet (88,776 hm³) of fresh water available from storage, and the Evangeline aguifer contains about 71.7 million acre-feet (88,406 hm³) of fresh water and about 9.0 million acre-feet (11,097 hm³) of slightly saline water available from storage. The Jackson Group, Catahoula Sandstone, and Jasper aguifer together contain about 11.5 million acre-feet (14,180 hm³) of fresh water and about 19.2 million acre-feet (23,674 hm³) of slightly saline water in available storage. Additional amounts of water, probably 20-25 percent of the amounts available from the sands, would be available in the clavs.

Estimates of such vast amounts of water theoretically available from storage can be misleading, because it is probable that these amounts cannot be recovered without serious consequences. More practical quides to a judicious development of the water supply were based on theoretical lines of recharge and discharge with drawdowns of 200 feet (61 m) at the lines of discharge and also were based on potential recharge. On the basis of theoretical lines of recharge and discharge and drawdowns of 200 feet (61 m), about 50,000 acre-feet (62 hm³) and 20,000 acre feet (25 hm³) could be produced from the Chicot and Evangeline aguifers, respectively, with only moderate pumping lifts without depleting the vast amount of ground water in storage. These indices of availability are less than the estimated potential amounts of recharge that are available to the aguifers. Estimates of the potential recharge are 78,000 acre-feet (96 hm³) per year for the Chicot and 38,000 acre-feet (47 hm³) per year for the Evangeline. These recharge estimates may be viewed as about the maximum amount perennially available without depleting the large quantities of ground water in storage.

Present (1974) pumpage from the Chicot and Evangeline aquifers exceeds the estimated recharge rates.

For this reason, water levels may be expected to continue to decline, along with some land-surface subsidence.

Additional development of the ground-water resources is possible throughout most of Colorado, Lavaca, and Wharton Counties; but the attendant consequences of more land-surface subsidence and declining water levels should be considered. The most favorable areas for additional development are in central Wharton County. Additional potential for development exists in most other areas where as much as 50 feet (15 m) of sand occurs in the Chicot aquifer.

Considerable amounts of brine are produced in Colorado, Lavaca, and Wharton Counties in conjunction with the production of oil and gas. In 1967, about 3.500 acre-feet (4.3 hm³) of brine was produced. To prevent possible contamination of the fresh water, the Railroad Commission of Texas requires that oil and gas wells must have cemented casings from the land surface to the base of the slightly saline water. Presently (1977), the fresh water is adequately protected in most of the oil fields by the rules for the required amount of cemented casing. The elimination of brine-disposal pits has contamination by this method minimized of salt-water disposal, but contamination may still occur through improperly cased wells, abandoned injection abandoned brine-disposal pits. Some wells. and previously open pits in the Pickett Ridge. Magnet-Withers, Withers North, Bernard Prairie, Boling, and Niels Carlsen fields may already have contaminated the shallow fresh water in the vicinity of these fields.

Land-surface subsidence is not a problem at this time. However, more data are needed to determine the extent of subsidence and the relationship between the amount of ground-water withdrawals and the amount of subsidence. The available data indicate that maximum subsidence within the three counties is less than 1 foot (0.3 m), and in most places is less than 0.5 foot (0.15 m).

- Baker, E. T., Jr., 1965, Ground-water resources of Jackson County, Texas: Texas Water Devel. Board Rept. 1, 229 p., 31 figs., 4 pls.
- Barnes, J. R., 1948, Ground-water resources of Wharton County, Texas: Texas Board Water Engineers duplicated rept., 86 p., 1 fig., 3 pls.
- Bridges, T. W., 1935, Records of wells, drillers' logs, and water analyses, and a map showing location of wells in Wharton County, Texas: U.S. Geol. Survey open-file rept., 12 p.
- Cromack, G. H., 1940, Records of wells and springs, drillers' logs, water analyses, and maps showing location of wells and springs in Wharton County, Texas: Texas Board Water Engineers duplicated rept., 54 p.
- Follett, C. R., and Gabrysch, R. K., 1965, Ground-water resources of Dewitt County, Texas: Texas Water Comm. Bull. 6518, 1: 3 p., 10 figs., 4 pls.
- George, W. O., 1936, Records of wells, drillers' logs, water analyses, and map showing location of wells in Lavaca County, Texas: Texas Board Water Engineers duplicated rept., 62 p.
- Halbouty, M. T., and Hardin, G. C., Jr., 1954, Thrust fault at Boling Dome, Texas: Am. Assoc. of Petroleum Geologists Bull., v. 38, no. 8, p. 1725-I 740.
- Hammond, W. W., Jr., 1969, Ground-water resources of Matagorda County, Texas: Texas Water Devel. Board Rept. 91, 180 p., 35 figs.
- Jorgensen, D. G., 1975, Analog-model studies of ground-water hydrology in the Houston district, Texas: Texas Water Devel. Board Rept. 190, 84 p., 40 figs.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p., 7 pls.
- Lang, J. W., Winslow, A. G., and White, W. N., 1950, Geology and groundwater resources of the Houston district, Texas: Texas Board Water Engineers Bull. 5001, 59 p., 15 figs.
- Marvin, R. F., Shafer, G. H., and Dale, 0. C., 1962, Ground-water resources of Victoria and Calhoun Counties, Texas: Texas Board Water Engineers Bull. 6202, 161 p., 8 figs., 10 pls.

- May, R. E., 1938, Records of wells and springs, drillers' logs, water analyses, and map showing location of wells and springs in Colorado County, Texas: Texas Board Water Engineers duplicated rept., 25 p.
- Meinzer, 0. E., and Wenzel, L. K., 1942, Movement of ground water and its relation to head, permeability and storage, in Physics of the earth, Part 9, Hydrology: New York, McGraw-Hill, p. 444-478.
- Mount, J. R., Rayner, F. A., Shamburger, V. M., Jr., Peckham, R. C., and Osborne, F. L., 1967, Reconnaissance investigation of the ground-water resources of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 51, 119 p., 11 figs., 17 pls.
- National Academy of Sciences, National Academy of Engineering, 1973, Water quality criteria 1972: Washington, D.C., Rept. of the Committee on Water Quality Criteria, 594 p.
- Petit, B. M., Jr., and Winslow, A. G., 1957, Geology and ground-water resources of Galveston County, Texas: U.S. Geol. Survey Water-Supply Paper 1416, 157 p.
- Railroad Commission of Texas, 1973, Oil and gas annual production by active fields, 1973: Oil and Gas Division, 193 p.
- Rayner, F. A., 1958, Records of water-level measurements in Jackson, Matagorda, and Wharton Counties, Texas, 1934 to April 1958: Texas Board Water Engineers Bull. 5804, 36 p.
- Rogers, L. T., 1967, Availability and quality of ground water in Fayette County, Texas: Texas Water Devel. Board Rept. 56, 134 p., 17 figs.
- Sandeen, W. M., and Wesselman, J. B., 1973, Ground-water resources of Brazoria County, Texas: Texas Water Devel. Board Rept. 163, 199 p., 29 figs.
- Shafer, G. H., 1965, Ground-water resources of Gonzales County, Texas: Texas Water Devel. Board Rept. 4, 93 p., 12 figs., 4 pls.
- Shutts, E. E., 1953, Rice irrigation in Louisiana: Am. Soc. of Civil Engineers Trans., v. 118, p. 871-884.
- Taylor, T. U., 1902, Rice irrigation in Texas: Univ. Texas Bull. 16, 49 p., 6 figs., 3 pls.
- ____1907, Underground waters of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190, 73 p., 3 pls.

- Tuck, C. A., Jr., 1974, Rice irrigation return flow study, Brookshire and Garwood projects, Texas, interim report, 1969-73: Texas Water Devel. Board file rept., 48 p.
- U.S. Environmertal Protection Agency, 1976, Quality criteria for water: Washington, D.C., 501 p.
- University of Texas, Bureau of Economic Geology, 1968, Geologic atlas of Texas, Houston sheet: Austin, Texas.
- <u>1974</u>, Geologic altas of Texas, Seguin sheet: Austin, Texas.
- ____ 1975, Geologic atlas of Texas, Beeville-Bay City sheet: Austin, Texas.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials with special reference to discharging-well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p.

- Wesselman, J. B., 1972, Ground-water resources of Fort Bend County, Texas: Texas Water Devel. Board Rept. 155, 176 p., 33 figs.
- Wilson, C. A., 1967, Ground-water resources of Austin and Waller Counties, Texas: Texas Water Devel. Board Rept. 68,236 p., 27 figs.
- Winslow, A. G., and Kister, L. R., Jr., 1956, Saline water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p., 12 figs., 9 pls.
- Wood, L. A., 1956, Availability of ground water in the Gulf Coast Region of Texas: U.S. Geol. Survey open-file rept., 55 p., 14 figs.
- Wood, L. A., and Gabrysch, R. K., 1965, Analog model study of ground water in the Houston district, Texas: Texas Water Comm. Bul 6508, 103 p., 43 figs.
- Wood, L. A., Gabrysch, R. K., and Marvin, R. F., 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast Region, Texas: Texas Water Comm. Bull. 6305, 123 p., 18 figs., 15 pls.

Table 5 .-- Records of wells and test holes in Matagorda, Jackson, Fayette, DeWitt, Austin, Fort Bend, Victoria, and Gonzales Counties

Water-bearing unit: C--Chicot aquifer, J--Jasper aquifer. Method of lift: E--electric; G--gasoline, butane, or diesel engine; N--none; S--submergible; T--turbine. Number indicates horsepower. Use of water: D--domestic, Irt--itrigation, N--none, S--stock.

					Cas	ing			Wate	r level			
No	0	Dudllau	Date	Depth	Diam-	Depth	Water-	Altitude	Above (+)	Date of	Method	Use	
NO,	owner	Driller	com- pleted	or well	eter (in.)	(11.)	bearing unit	or land	below land	measurement	of lift	of	Remarks
			,	(ft.)	(111)			(ft.)	datum		1110	water	
									<u>(ft.)</u>				
MATAGORDA COUNTY													
TA-65-57-103	Pierce Est. #1	Stanolind Oil & Gas Co	1951	8607				68				N	Oil test, used in cross section.
80-07-308	Kountz #12	Magnolia Petroleum Co.	1954	5007				50				N	Oil test, used in cross section.
JACKSON COUNTY).					
PP-66-52-401	Morton Bros.	Henry Cleveland	1954	680	20		с	116	71.1	10-22-59	N	N	
					12	680			86.4	5-21-74			
61-103	Sam B. Heard	Crowell Drilling Co.	1970	426	16	426	с	81			T,G,70	Irr	Casing slotted 101-426 feet.
407	M. W. Mauritz, et al. #1	Sam G. Harrison	1954	6416				67				N	Oil test, used in cross section.
FAYETTE COUNTY													
17-66-03-901	Burnsides #1	Hemmon Oil & Roffning	1054	2950	ļ		l	610		ļ	1 :		
51-00-05-001	burnbruch #1	Co.	1754	2030				420				N	Oll test, used in cross section.
17-101	Harry Vogelsang #1	Gulf Coast Leaseholds,	1961	4326				370				N	Oil test, used in cross section.
		Matzlavick]							
DEWITT COUNTY													
HX-67-56-802	Mrs. M. A. Plaacke #1	Harkins & Co.	1957	5516				199				N	Oil test, used in cross section.
AUSTIN COUNTY													
AP-66-15-802	D. C. Hillboldt #1	Shell Oil Co.	1958	10884				200				N	Oil test, used in cross section.
FORT BEND COUNTY													
JY-65-43-103	Mabel Allen #1	Kennon & Cantrell	1951	5420				80				N	011 test, used in cross section.
VICTORIA COUNTY													
YT-66-57-502	T. W. Nickel			500+	2	500	E?	172	1+	3-14-74	N	s	Measured flow 0.25 gal/min 3-14-74;
						ł							produces some gas.
67-31-201	F. E. Carter	Leroy Richter Water Well Drilling	1970	248	4		J	360	105	12-31-70	S,E	D,S	Casing slotted.
GONZALES COUNTY		Ŭ											
									- 1				
KR-67-31-201	do.	do.	1970	248	4	248	C2	360	<u>A</u> / 105	do.	S,E	D,S	Pump set at 222 fect; casing slotted 238- 248 feet.
]		1							

a/ Reported.

.

. Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties

COLORADO COUNTY

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	WELL DW-66-04-503		WELL DW-66-18-6	601Continued	
Owner Driller	Stratford Hog Farm Pomykal Drilling Co.		Sand	8	579
			Rock	2	581
	18	18	Gumbo	31	612
Rock and shale	7	25	Sand	7	619
Shale	87	112			
Sand	13	125	WELL DW-6	56-18-602	
Shale	8	1,33	Owner: City	of Weimar #2	
Rock	1	134	Driller: A. E.	. Fawcett, Jr.	
Shale	53	187	Surface material	10	10
Sand	28	215	Sand and rock	41	51
Shale	55	270	Rock	1	52
Sand	5	275	Clay, sandy	5	57
Shale, sandy	5	280	Sand and rock	15	72
Sand	29	309	Rock	1	73
Shale	4	313	Sand and clay	9	82
Rock	20	333	Sand and rock	5	87
Shale	7	340	Clav	23	110
Rock	70	410	Clay and rock	25	135
Shale	14	424	Clav	5	140
			Soapstone	7	147
	WELL DW-66-18-601		Sand and lime	1	148
Owne	r: City of Weimer #1		Sand and rock	5	153
Dr:.1	ler: Layne-Texas Co.		Clay	37	190
Clay	6	6	Sand and clay	10	200
Sand and layers of	clay 56	62	Gumbo	21	200
Rock	2	64	Sand and rock	21	245
Clay, sandy	13	77	Soanstone	8	245
Sand, muddy	59	136	Sand and rock	21	233
Sand and layers of	rock 7	143		21	274
Clay, sandy	70	213	Shale and clay	4	270
Rock	4	217	Sand and rock	10	315
Soapstone	10	227	Gumbo	30	350
Rock	6	233	Shalo hard	50	339
Sand, hard packed	8	241	Sand and shale	03	422
Rock	2	243		20	442
Sand	32	275	Shale hand	61	505
Shale and clay	206	481	Shale, hard	18	521
Rock	2	483	Sand and boulders	/1	592
Soapstone	27	510	Gumbo	13	605
Sandstone. soft	23	533			
Sand, hard packed	23	556			
Shale, hard	13	569			
Rock	2	571			

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL	DW-66-20-502		WELL D)W-66-20-802	
Owner: Driller:	A. J. Wray Layne-Texas Co.		Owner: Driller: P	E. M. Conner Katy Drilling Co.	
Surface soil	6	6	Top soil	8	8
Sand and gravel, coarse	42	48	Sand	37	45
Clay, sandy	24	72	Clay	50	95
Sand and shale, sandy	40	112	Sand	96	191
Shale, sandy	12	124	Clay	13	204
Sand and shale	57	181	Rock and sand	16	220
Sand and gravel	39	220	Clay	15	235
Shale, sandy	6	226	Rock and sand	31	266
Shale	31	257	Clay	23	289
Hard rock	1	258	Rock and sand	54	343
Shale	20	278	Clay	35	378
Sand	34	312	Sand	17	395
Sandstone	1	313	Clay	1	396
Shale and sand	16	329			
Sandstone	2	331	WELL E)W-66-20-902	
Shale, sticky	32	363	Owner: F	₹. J. Kleinman	
Shale, sandy	41	404	Driller:	Layne-Texas Co.	
Shale	20	424	Soil	4	4
Sand, hard	18	442	Gravel and clay	55	59
Shale	5	447	Clay and gravel	24	83
Sand and shale	93	540	Sandy clay	36	119
Shale, hard	45	585	Clay	163	282
Shale, sandy	55	640	Sand, hard, broken	28	310
Sand and shale	38	678	Shale	30	340
Shale	10	688	Sand, broken	60	400
Sand	12	700	Sand	52	452
Shale	33	733	Shale and boulders	48	500
Shale, sandy	21	754	Shale and sandy shale	48	548
Sand	`12	766	Shale	9	557
Shale and sand	28	794	Sand and shale breaks	28	585
Shale, sticky	3	797	Shale	24	609
Shale, with sand breaks	37	834	Shale and sand	9	618
Shale, sandy	9	843	Shale	16	634
Lime, sandy and shale	23	866	Shale, sandy	9	643
Shale, hard with lime	14	880	Shale	42	685
Shale, sandy	9	889	Sand and shale breaks	40	725
Shale, hard	6	895	Shale	24	749
Shale, sticky	8	903	Shale and sand breaks	12	761
			Sand	5	766

Shale

14

780

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

MELL DW-66-21-201 WELL DW-66-21-003continue Particler: LOS and Class Driller: LOS and Class Proport Sand 60 95 Topsof1 2 2 Gad 20 100 Clay, red and iron ore 15 17 Balle 100 100 Sand 39 65 Sand 62 200
billing billin
Topsoil 2 2 Sand 25 150 Clay, red and iron ore 15 17 Shale 160 160 Cay, yellow 9 26 Sand 65 Shale 35 220 Clay, yellow 6 71 Sand 15 225 Sand 13 84 Shale 20 305 Clay, yellow 5 89 Sand 15 320 Sand 46 135 Shale 30 320 335 Sand, rock 5 140 Sand 20 355 337 Sand 4 144 Shale, sticky 18 555 Clay, red 38 246 Sand 47 555 Sand and rock 14 208 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Marce 16 16 Sand 67 622 Sand and rock 15 Sand 67 622 600
Clay, red and iron ore 15 17 Shale 10 160 Clay, yellow 39 26 Sand 65 Sand 35 270 Clay, yellow 6 71 Sand 15 285 285 270 286 270 Clay, yellow 6 71 Sand 15 285 270 385 270 385 270 385 270 385 270 385 270 385 270 385 270 385 270 385 270 385 270 385 270 385 385 375 385 386 386 375 387 386 386 375 375 386 375 386 375 375 386 375 375 386 375 375 386 375 375 376 376 375 376 376 375 376 376 375 376 376 375 376 376 375 376 376 376 376 376 376 376 3
Clay, yellow 9 26 Sand 65 Sand 65 Sand 65 Sand 55 270 Clay, yellow 6 71 Sand 15 280 Sand 13 84 Shale 20 365 Clay, yellow 5 89 Sand 15 320 Sand, rock 5 40 Sand 5 430 Sand, rock 14 Sand 5 430 Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Sand 475 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 38 314 Sand 67 622 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 31 Sand 575 5816 70 NeELL DW-66-21-602 Sand 67 Sand 67 622 70 Netlet DW-66-21602 70 Netlet DW-66-21602<
Sand 59 65 $81e$ 35 270 Clay, yellow 6 71 $8ad$ 15 285 Sand 13 84 $8hal$ 20 305 Clay, yellow 5 89 $8ad$ 15 320 Sand 46 135 $8hal$ 53 375 Sand, rock 5 140 $8ad$ 56 375 Sand, rock 5 140 $8ad$ 516 375 Sand 46 $8ad$ $8te$ 360 375 Sand and rock 14 208 $8ad$ 470 532 Sand and rock 57 303 $8hale$, sticky 18 555 Clay, red 8 246 $8and$ 67 622 Sand and rock 57 303 $8hale$, sticky 18 555 Clay, red 8 $8ad$ 67 $8ad$ 770 Surface 10 10 $WELL DW-66-21-602$
Clay, yellow 6 71 Sand 15 285 Sand 13 84 Shale 20 305 Sand 46 135 Shale 520 375 Sand, rock 5 140 Sand 20 395 Sand, rock 5 140 Sand 20 395 Sand nock 4 144 Shale, sticky 35 430 Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Shale 10 485 Clay, red 38 246 Sand 67 622 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 55 805 700 812 Sand 20 51 51 812 812 Sand 20 51 51 60 912 Sand 25 70 Clay and grave
Sand 13 84 Shale 20 305 Clay, yellow 5 89 Sand 15 320 Sand 46 135 Shale 5 375 Sand, rock 5 140 Sand 20 395 Sand 4 144 Shale, sticky 35 450 Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Shale, sticky 10 485 Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Shale 158 70 Shale 70 812 Surface 10 10 WELL DW-66-21-901 58 58 70 Shale 35 805 Surface 10 10 WELL DW-66-21-901 58 58 58 70 Shale 38 38 58<
Clay, yellow 5 89 Sand 15 320 Sand 46 135 Shale 53 375 Sand, rock 5 140 Sande 20 395 Sand 4 144 Shale, sticky 35 430 Clay, red 50 194 Sand 45 4475 Sand and rock 14 208 Shale, sticky 18 555 Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 38 246 Sand 67 622 WELL DW-66-21-602 Sand 67 622 60 67 622 WELL DW-66-21-602 Shale Shale 15 805 60 67 612 Surface 10 10 WELL DW-66-21-901 5 5 6 60 60 60 Sand 20 30 Owmer: Superior 0il Co. Driller: Layne-Texas Co. 5 60 60 60
Sand 46 155 Shale 55 375 Sand, rock 5 140 Sand 20 395 Sand 4 44 Shale, sticky 35 430 Clay, red 50 144 Sand 45 475 Sand and rock 14 208 Shale 10 485 Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 38 246 Sand 67 622 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 38 311 Sand 67 622 WELL DW-66-21-602 Sand 58 8016 70 812 Owner: G. E. Thomas, Jr. Shale 78 812 Sand 20 30 Owner:: Superior 011 Co. Driller: Layne-Teas Co. Driller: Superior 011 Co. Driller: Layne-Teas Co. Driller: Superior 011 Co. Driller: Superior 011 Co. Priller: Layne-Teas Co. 60 Shale <t< td=""></t<>
Sand, rock 5 140 Sand 20 395 Sand 4 144 Shale, sticky 35 450 Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Shale, sticky 10 485 Clay, red 38 246 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 67 622 70 <t< td=""></t<>
Sand 4 144 Shale, sticky 35 430 Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Shale 10 485 Clay, red 38 246 Sand 47 532 Sand and rock 57 305 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand and rock 57 305 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 55 805 70 7 812 Owner: G. E. Thomas, Jr., Driller: American Water Co. Shale 7 812 Sand 20 30 Owner: Superior 011 Co. 7 812 Sand 25 70 Clay and gravel 38 38 Shale 15 85 Clay 20 58 Sand 20 G. Sand 20 69 Shale
Clay, red 50 194 Sand 45 475 Sand and rock 14 208 Shale 10 485 Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand 67 622 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 58 360 70 612 70 812 70 812 Owner: G. E., Thomas, Jr., Driller: American Water Co. Shale 70 0wner: Superior 011 Co. 7 812 Sand 20 30 Owner: Superior 011 Co. 7 813 Sand 15 45 Driller: Layne Toxas Co. 76 Sand 16 15 Clay and gravel 38 38 Shale 15 200 Clay and gravel 9 <td< td=""></td<>
Sand and rock 14 208 Shale 10 485 Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 35 Rob 70 Rob 71 812 Surface 10 10 WELL DW-66-21-901 8 <t< td=""></t<>
Clay, red 38 246 Sand 47 532 Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand 67 622 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Sand 55 Sand 55 805 Owner: G. E., Thomas, Jr., Driller: Sand 35 805 805 Sand 20 30 Owner: Superior 011 Co., Driller: 18 7 812 Sand 20 30 Owner: Superior 011 Co., Driller: 18 38 38 Shale 15 45 Clay and gravel 38 38 38 Shale 15 200 Clay and gravel 9 69 Sand 100 185 Rock 2 60 Shale 15 250 Sand, hard 48 146 Sand 25 2
Sand and rock 57 303 Shale, sticky 18 555 Clay, red 8 311 Sand 67 622 Sand 5 Shale 158 770 WELL DW-66-21-602 Sand 35 805 Owner: G. E. Thomas, Jr. Driller: Sand 35 805 Surface 10 10 WELL DW-66-21-901 7 812 Sand 20 30 Owner: Superior 011 Co. Driller: Downer: Superior 011 Co. Driller: 20 58 Sand 25 70 Clay and gravel 38 38 Shale 15 85 Clay 20 58 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 38 38 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 9 69 Sand 25 75 Clay and boulders 38 184 Shale 15 <t< td=""></t<>
Clay, red 8 311 Sand 67 622 WELL DW-66-21-602 Shale 158 770 Owmer: G. E. Thomas, Jr. Driller: American Water Co. Sand 35 805 Surface 10 10 WELL DW-66-21-901 812 Surface 10 10 WELL DW-66-21-901 812 Sand 20 30 Owmer: Superior 011 Co. Driller: Layne-Texas Co. 818 Sand 25 70 Clay and gravel 38 38 Shale 15 85 Clay and gravel 9 69 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 9 69 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 9 69 Sand 25 275 Clay and boulders 38 184 Shale 15 290 Sand, broken 28 212 Sand 25 315 Clay and boulders
NELL DW-66-21-602 Shale 158 770 Surface 10 Shale 35 805 Surface 10 10 WELL DW-66-21-901 7 812 Surface 10 10 WELL DW-66-21-901 7 812 Surface 10 10 WELL DW-66-21-901 7 812 Sand 20 30 Owner: Superior 011 Co. Driller: Layne-Texas Co. 7 8 8 Sand 25 70 Clay and gravel 38 38 8 Shale 15 85 Clay 20 58 8 8 Shale 15 200 Clay and gravel 9 69 9 8 Shale 15 200 Clay and gravel 9 98 8 8 8 8 Shale 15 200 Clay and gravel 38 8
WELL DW-66-21-602 sand 35 805 Owner: G. E. Thomas, Jr., Driller: Shale 7 812 Surface 10 10 $WELL DW-66-21-901$ 8 Sand 20 30 Owner: Superior 0il Co., Driller: 8 Sand 20 30 Owner: Superior 0il Co., Driller: 8 38 Sand 25 70 Clay and gravel 38 38 Shale 15 85 Clay 20 58 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 9 69 Sand 35 235 Sand 29 98 Shale 15 250 Sand, hard 48 146 Sand 25 275 Clay and boulders 38 184 Shale 15 290 Sand, broken 28 212 Sand 25 315 Clay and boulders 31 243 Shale 10 <t< td=""></t<>
Owner: Driller: American Water Co.Shale7812Surface1010 $WELL DW-66-21-901$ Sand2030Owner: Superior 0il Co. Driller: Layne-Texas Co.Surface1545Owner: Superior 0il Co. Driller: Layne-Texas Co.3838Sand2570Clay and gravel3838Shale1585Clay2058Sand100185Rock260Shale15200Clay and gravel969Shale15250Sand2998Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15200Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale30355Clay31243Shale30355Clay35304Shale30355Clay35304Shale35390390304Shale35390390304Shale35390390304Shale35390390304Shale35390390304Shale35390390304 <tr <tr="">Shal</tr>
Surface1010WELL DW-66-21-901Sand2030Owner: Superior Oil Co. Driller: Layne-Texas Co.Rock1545Driller: Layne-Texas Co.Sand2570Clay and gravel3838Shale1585Clay2058Sand100185Rock260Shale15200Clay and gravel969Sand35235Sand2998Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Shale10325Sand31243Shale10325Sand46289Sand30355Clay and boulders31243Shale10325Sand46289Sand30355Clay and boulders31243Shale10325Sand46289Sand30355Clay and boulders31243Shale30355Clay15304Shale35Sand4628930Shale35Sand4628930Shale35Sand4628930Shale36Sand463636Shale36Sand363636
Sand 20 30 Owner: Superior 011 Co. Rock 15 45 Driller: Layne-Texas Co. Sand 25 70 Clay and gravel 38 38 Shale 15 85 Clay 20 58 Sand 100 185 Rock 2 60 Shale 15 200 Clay and gravel 9 69 Sand 35 235 Sand 29 98 Shale 15 200 Clay and gravel 9 69 Sand 35 235 Sand 29 98 Shale 15 200 Clay and gravel 9 69 Sand 25 275 Clay and boulders 38 184 Shale 15 290 Sand, broken 28 212 Sand 25 315 Clay and boulders 31 243 Shale 10 325 Sand 46 289
Rock1545Driller: Layne-Texas Co.Sand2570Clay and gravel3838Shale1585Clay2058Sand100185Rock260Shale15200Clay and gravel969Sand35235Sand2998Shale15250Sand2998Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale35390Sand5050
Sand 25 70 $Clay and gravel$ 38 38 Shale15 85 $Clay$ 20 58 Sand100185Rock 2 60 Shale15 200 $Clay and gravel$ 9 69 Sand35 235 Sand 29 98 Shale15 250 Sand, hard 48 146 Sand25 275 $Clay and boulders$ 38 184 Shale15 290 Sand, broken 28 212 Sand25 315 $Clay and boulders$ 31 243 Shale10 325 Sand 46 289 Sand30 355 $Clay$ 15 304 Shale30 355 $Clay$ 15 304 Shale30 355 $Clay$ 15 304 Shale35 304 35 304 35 Shale 35 356 2122 314 Shale 30 355 2122 Shale 30 355 304 36 Shale 35 304 356 304 Shale 35 356 356 356 Shale 356 356 <t< td=""></t<>
Shale1585Clay and graver383838Sand100185Rock2058Shale15200Clay and gravel969Sand35235Sand2998Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale35390Sand50504
Sand100185Rock2038Shale15200Clay and gravel969Sand35235Sand2998Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale35390Sand50504Shale35390Sand50504Shale35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand50504Sand35390Sand30355Sand35390Sand30355Sand35390Sand30355Sand3536Sand3636Sand3536Sand36Sand3536Sand <t< td=""></t<>
Shale 15 200 Clay and gravel 9 69 Sand 35 235 Sand 29 98 Shale 15 250 Sand, hard 48 146 Sand 25 275 Clay and boulders 38 184 Shale 15 290 Sand, broken 28 212 Sand 25 315 Clay and boulders 31 243 Shale 10 325 Sand 46 289 Sand 30 355 Clay and boulders 31 243 Shale 10 325 Sand 46 289 Sand 30 355 Clay and boulders 31 243 Shale 30 355 Clay and boulders 31 304 Shale 30 350 Clay 15 304 Shale 35 390 Sand 30 304
Sand35235Sand969Shale15250Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay and boulders15304Shale30355Clay15304Shale35390504504504
Shale15250Sand25998Sand25275Sand, hard48146Sand25275Clay and boulders38184Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale3539015304
Sand25275Clay and boulders38146Shale15290Sand, broken28212Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale35390504504504
Shale15290Sand, broken38184Sand25315Clay and boulders31243Shale10325Sand46289Sand30355Clay15304Shale35390Sand500500
Sand25315Clay and boulders26212Shale10325Sand46289Sand30355Clay15304Shale35390504504
Shale10325Sand46289Sand30355Clay15304Shale3539015304
Sand30355Clay15304Shale3539
Shale 35 390
Sand 14 504
WELL DW-66-21-903 Owner: G. Goeckler
Driller: American Water Co. WELL DW-66-21-603
Owner: Jimmy Adkins Surface soil 30 30
Driller: American Water Co. Sand and gravel 45 75
Surface 15 15 Clay, white 115 190
Sand, medium 20 210
Sana 5 20

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL DW-66-21-903-	-Continued		WELL I	DW-66-28-802	
Sand	10	265	Owner:	Clipson Bros.	
Shale, sticky	33	298	Driller: An	merican Water Co.	
Sand	15	313	Surface	5	5
Shale, blue	27	340	Clay	25	30
Sand	18	358	Sand and rock	50	80
Shale and rock	23	381	Rock	8	88
Sand	6	387	Sand	26	114
Shale, sticky	103	490	Shale	12	126
Sand	14	504	Sand	14	140
			Shale	45	185
WELL DW-66-2	8-701		Sand	35	230
Owner: George B	urke Jr		Shale	24	254
Driller: Katy Dr	illing Co.		Sand and rock	4	258
Topsoil	50	50	Shale	50	308
Bock	8	58	Sand and rock	94	402
Clay rocky	7	65	Shale	32	434
Rock	2	67	Rock	2	436
Clay rocky	2	74	Sandrock	36	472
Sand rocky	1	79	Shale, sticky	38	510
Clay string	4	120	Sand	59	569
Pock and cand	42	120			
	15	102	WELL I	DW-66-28-903	
Cray	57	192	Owner:	R. E. Smith	
Sand, rocky	36	228	Driller: H	Katy Drilling Co.	
Citay and small sand strips	19	247	Topsoi1	12	12
Sand, FOCKY	17	264	Sand	41	53
	13	277	Clay	45	98
Rock and sand	4	281	Rock	6	104
Clay	43	324	Sand and rock	24	128
Sand, rocky	25	349	Rock	4	132
Clay	64	413	Sand and rock	6	138
Sand	69	482	Bock	4	142
Clay	21	503	Sand and rock	18	160
Sand and rock	20	523	Clay	68	228
Clay	25	548	Sand and rock	42	270
Sand	35	583	Clay	18	288
Rock	27	610	Sand	11	200
Clay	40	650	Clay	11	233
Sand and rock	26	676	Sand	107	312 41E
Clay	39	715	Clay	70	415
Shale	97	812	Cand	3U 2 <i>1</i>	445
No record	36	848	Clay	23	468
			Gand	/0	538
			oanu Clav	42	580
			CIAY	22	602

		Thickn (feet	ness Depth :) (feet)		Thickness (feet)	Depth (feet)
	WELL DW-66	-28-903Continued	I	WELL DW-66-30-102		
Sand		38	640	Rock, sand, and clay	7	135
Clay		20	660	Sand and gravel	14	149
Sand		35	695	Clay and sand breaks	39	188
Bottom clay			. 695	Sand	11	199
				Shale, hard	13	212
	WELI	DW-66-28-905		Sand	17	229
	Owner:	R. E. Smith #6		Shale, sandy	5	234
	Driller:	Katy Drilling Co.		Shale and sandy shale	44	278
Topsoil		26	5 26	Sand and layers of shale	45	323
Sand		19	9 45	Shale and boulders	35	358
Clay		21	66	Sand	25	383
Sand		20	86	Shale, sandy and hard layers	20	403
Clay		14	100	Sand	10	413
Rock		2	2 102	Shale	10	423
Sand, rocky		4	106	Shale and sandy shale	20	443
Rock		2	2 108	Sand and layers of hard shale	70	513
Clay		63	3 171	Sand	15	528
Sand, rocky		44	215	Shale, sandy and layers of sand	42	570
Clay		45	5 260	Sand, gravel and shale breaks	33	605
Sand, rocky		40	300	Shale	2	607
Clay		37	337			
Sand		17	7 354	WELL DW-66-30	-103	
Clay		40	394	Owner: Ralph T	homas	
Rock		3	3 397	Driller: Katy Dri	lling Co.	
Sand		28	3 425	Topsoil and clay	10	10
Clay		65	5 490	Quicksand	5	15
Sand		16	5 506	Sand and gravel	25	40
Rock		3	3 509	Clay and lime rock	30	70
Sand		81	L 590	Rock, hard	10	80
Sand, rocky		64	1 654	Rock and short sand strips	45	125
Bottom clay			- 654	Clay	13	138
				Lime rock and clay	31	169
	WELI	. DW-66-30-102		Sand and clay strips	22	191
	Owner: C:	ty of Eagle Lake #	# 5	Sand	16	207

Owner: City of Eagle Lake #5 Driller: Big State Water Wells, Inc.

Surface soil	4	4
Clay	13	17
Sand and gravel	39	56
Clay, hard	8	64
Clay	14	78
Rock	10	88
Rock, sand, gravel, and clay	25	113
Sand	10	123
Rock and gravel	5	128

C1ay

Clay

Sand and rock

Sand and rock

Sand, rocky

Bottom clay

Clay and small sand strips

Sand with clay strips

3

92

33

10

2

23

120

--

210

302

335

345

347

370

490

490

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL D	W-66-30-201		WELL DW-6	6-35-303	
Owner: P Driller: L	ayne Brothers &N Drilling Co.		Owner: John Driller: Katy	J. Williams / Drilling Co.	
Topsoil	2	2	Topsoil and clay	39	39
Clay, yellow	11	13	Sand	16	55
Clay, red	9	22	Rock	3	58
Sand	13	35	Lime rock and sand	14	72
Sand and gravel	17	52	Clay	30	102
Clay, red and yellow	33	85	Sand	28	130
Rock	16	101	Clay	35	165
Clay, red and yellow	17	118	Rock limestone	6	171
Rock	5	123	Clay and sand strips	39	210
Lime rock and clay	3	126	Clay	63	273
Sand	6	132	Sand and rock	31	314
Rock	4	136	Clay	11	325
Sand	18	154	Sand	12	337
Clay, yellow	8	162	Clay	45	382
			Sand	17	399
WELL D	W-66-30-401		Clay	16	415
Owner: Wha	rton Turf Grass		Sand and rock	35	450
Driller: L	&N Drilling Co.		Clay	16	466
Topsoil	5	5	Rock	10	476
Clay, yellow	4	9	Shale	14	490
Clay, red	21	30	Shale, sandy	14	504
Sand	11	41	Sand and shale strips	80	584
Gravel	19	60	Shale	16	620
Clay, yellow	27	87	Shale, sandy	33	653
Lime rock	3	90	Sand	18	671
Sand and lime rock	3	93	Shale	24	705
Lime rock	15	108	Sand with shale strips	32	737
Sand	7	115	Shale	23	760
Sand and rock	3	118	Sand and rock	45	805
Rock and yellow clay	4	122			
Sand	2	124	WELL DW-6	66-36-101	
Rock and sand	3	127	Owner: I	Dale Hunt	
Sand	4	131	Driller: A	. H. Justman	
Rock and sand	9	140	Topsoil	34	34
Sand	15	155	Sand	11	45
Rock	1	156	Rock	13	58
Sand	9	165	Clay	24	82
Clay, yellow	1	166	Sand	10	92
			Clay	8	100
			Sand	17	117

Clay

Sand

63

30

180

210

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL DW-66-36-101-	-Continued		WELL DW-66-3	37-203	
Clay	73	283	Owner: Lester Driller: Katy Dr	r Bunge rilling Co.	
Rock	2	285	Tonsoil and clay	77	32
Sand and rock	55	340	Sand	32	35
Clay	42	382	Sand and group1	3	55
Sand	11	393		23	58
Clay	40	433	Sand	10	68
Sand	64	497	Clay	7	75
Clay	63	560	Sand, gravel, and rocks	30	105
Sand	27	587	Clay	25	130
Clay	16	603	Sand	7	137
Rock	1	604	Clay and sand rocks	21	158
Clay	22	626	Sand	14	172
Sand	10	636	Clay and sand strips	11	183
Clay	7	643	Rock and sand strips	5	188
Sand and rock	17	660	Sand, hard, and hard rock	6	194
Clay	12	672	Clay	4	198
Sand and rock	11	683	Sand	12	210
Clay	24	707	Clay, red	27	237
Sand and rock	13	720	Sand and rocks	28	265
Clay	8	728	Sand and clay strips	30	295
Sand and rock	13	741	Clay	83	378
Clay	8	749	Sand and rock	13	391
Sand and rock	35	784	Clay	19	410
Bottom clay		784	Sand and shale strips	51	461

WELL DW-66-37-201

Cwner: Hlavinka Brothers Driller: Katy Drilling Co.

Surface	32	32
Sand and gravel	20	52
Clay	10	62
Sand and gravel	78	140
Rock and sand	60	200
Clay and rock	24	224
Sand and lime rock	40	264
Clay, lime rock, and sand strips	21	285
Clay	51	336
Lime rock, hard, and clay	23	359
Clay and lime rock	121	480
Sand	20	500
Clay	10	510
Sand and rock	60	570
Bottom clay		570

WELL DW-66-37-601

Owner: R. A. Shoop Driller: Layne-Texas Co.

Soil, black	3	3
Clay, sandy	17	20
Sand and gravel	17	37
Gravel	71	108
Boulders	21	129
Gravel, broken	71	200

WELL DW-66-37-703

Owner: Engstrom Brothers Driller: Crowell Brothers

Cląy	14	14
Sand	20	34
Clay	14	48
Gravel	28	76
Boulders	21	97
Hard	6	103

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL DW-66-37-70	3Continued		WELL D	DW-66-44-301	
Hard and boulders	16	19	Owner: C	Cole P. Hopkins	
Rock	15	134	Driller: C	rowell Brothers	
Clay	12	146	Clay	26	26
Gravel	16	162	Gravel	12	38
Clay	18	180	Clay	12	50
Clav	20	200	Gravel and boulders	36	86
Sand	4	204	Clay	9	95
Hard	10	214	Boulders	5	100
Sand and hard streaks	22	236	Gravel	14	114
Sand	50	286	Rock	6	120
Sand and hard streaks	23	309	Clay	30	150
Shale	7	316	Sand, hard	26	176
Sand	44	360	Shale	14	190
Shale, grav	40	400	Sand, hard	34	224
			Hard	12	236
WELL DW-66	5-37-801		Sand, fine	52	288
Owner: Adol	oh Korenek		Rock	3	291
Driller: A.	A. Wuensch		Shale	47	338
Clav	20	20	Sand	8	346
Limestone hard	4	20	Shale	59	405
Gravel and sand	15	39	Sand, fine	40	445
Clay	3	42	Shale	14	459
Gravel	17	59			
	5	64	WELL D	DW-66-44-501	
Clav white and lime	4	68	Owner: Texa	as West Indies #2	
Boulders	26	94	Driller: An	nerican Water Co.	
Limestone hard sandy	3	97	Surface	10	10
Gravel and boulders	4	101	Sand	50	60
Clay and gravel	2	103	Shale	15	75
Boulders	10	113	Sand and rock	65	140
Boulders and limestone	2	115	Shale	5	145
Flint hard and lime	21	136	Sand	30	175
Clay and gravel streaks	8	130	Shale	10	185
Gravel and boulders	9	153	Sand	30	215
Graver and Bounders	5	155	Shale	15	230
	5-78-102		Sand	15	245
Webe Du-ou	J-38-102		Shale	15	260
Driller: Leona	ard Mickelson		Sand	75	335
Soil and clay	21	21			
Sand	19	40			
Clay	8	48			
Sand, rocky	25	72			
Lime	4	75			

106

29

Sand, rocky

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	WELL DW-66-44-601		Well DW-	-66-44-601Continued	
	Owner: Bill Frnka		Boulders	11	71
	Driller: Crowell Brothers		Gravel	11	82
Clay	12	12	Boulders	8	90
Sand	6	18	Rock	2	92
Clay	12	30	Sand	4	96
Gravel	30	60			

LAVACA COUNTY

	WELL RY-66-25-701		WELL RY-66-3	3-403Continued	
	Owner: Dr. Harvey Renger		Shale	66	636
	Driller: A.C.C. Vacuum Trucks		Shale, sandy	14	650
Clay	110	110	Clay, sandy	30	680
Sand	70	180	Clay	140	820
Clay	36	216	Shale, sandy	20	840
Sand	27	243	Sand	17	857
Clay	51	294	Shale, sandy	79	936
Sand	51	345	Sand, hard	21	957
Clay	71	416	Shale, sandy	17	974
Sand	36	452			

WELL RY-66-33-403

Owner: City of Hallettsville Driller: Texas Water Wells Inc.

Surface	7	7
Sand, rock	8	15
Clay	5	20
Sand, rock	20	40
Clay	80	120
Sand with hard streaks	48	168
Clay	4	172
Rock	1	173
Sand, rock	7	180
Clay	76	256
Sandy clay	46	302
Clay	21	323
Sand, hard	38	361
Sand and clay streaks	29	390
Clay	29	419
Sand, hard, with clay streaks	77	486
Clay	24	510
Sand, cut good	20	530
Clay	15	545
Sand, clay streaks	25	570

WELL RY-66-33-504

Owner: City of Hallettsville Driller: Layne-Texas Co.

Surface soil	2	2
Clay	10	12
Sand	8	20
Clay	41	61
Sand, coarse and clay streaks	29	90
Clay	4	94
Sand and rock streaks	23	117
Clay	153	270
Clay, sandy	35	305
Sand, shale streaks and rock streaks	56	361
Clay and sandy clay	79	440
Clay, sandy and sand streaks	22	462
Sand	30	492
Shale	6	498
Sand	14	512
Clay	41	553
Sand	10	563
Shale	7	570
Shale and sand streaks	8	578
Shale	43	621
Shale, hard	31	662
Shale	114	776

	Thickness (feet)	Depth (feet)
WELL RY-66-33-504Con	ntinued	
Shale, sandy and shale	36	812
Sand, coarse, white	14	826
Shale	44	870
Shale, sandy	58	928
Sand and shale streaks	35	963
Shale	5	968
Shale and sandy shale	91	1,059
Sand	15	1,074
Shale and sandy shale	261	1,335

WELL RY-66-35-901

Owner: Mrs. Vivian Cloninger well 1 Driller: Katy Drilling Co.

Topsoil Sand Clay Sand Clay Sand Clay Sand, rocky Clay Sand Clay Sand Clay Sand, rocky C1ay Sand Clay Sand Clay Sand, rocky Shale, sandy

Topsoil Clay Sand, rock

Sand, clay Water, sand

Clay

	Thickness (feet)	Depth (feet)
WELL RY-66-41-903-	-Continued	
Rock	1	151
Water, sand	19	170
Rock	2	172
Clay, blue	80	252
Rock	5	257
Water, sand	38	295
Clay	13	308
Water, sand	27	335

WELL RY-66-43-301 Owner: Miller Brothers

Driller: A. H. Justman

Driller:	Katy Drilling Co.		Surface soil	38	38
	15	15	Clay	49	87
	66	81	Sand and clay streaks	35	122
	19	100	Clay	29	151
	36	136	Sand	61	212
	91	227	Clay	63	275
	20	247	Rock	3	278
	39	286	Clay	36	314
	38	324	Sand	26	340
	20	344	Clay	36	376
	24	368	Sand	10	386
	40	408	Clay	64	450
	5	413	Sand	6	456
	16	429	Clay	63	519
	9	438	Sand	10	529
	32	470	Clay	5	534
	20	490	Shale, sandy	25	559
	129	619	Clay	8	567
	11	630	Shale, sandy	18	585
	186	816	Clay	13	598
	24	840	Shale	19	617
		840	Clay	4	621
			Sand and rock	21	642
WELL	RY-66-41-903		Clay	18	660
Owner:	Hermes Brothers		Shale, sandy	40	700
Driller:	Schumacher & Sons		Clay	20	720
	3	3	Sand and rock	53	773
	39	42	Clay	201	974
	28	70	Sand and rock	62	1,036

90

106

150

20

16

44

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL RY-6	6-43-810		WELL RY-66-44-402C	Continued	
Owner: Mort	on Brothers		Clay	15	256
Driller: Katy	Drilling Co.		Sand, rocky	57	313
Surface and clay	66	66	Clay	37	350
Sand and gravel	15	81	Sand	39	389
Rock and clay	54	135	Clay	44	433
Clay	10	145	Rock and sand strips	21	454
Sand and rock	30	175	Clay and sand strips	75	529
Clay	16	191	Sand	35	564
Sand	10	201	Shale	12	576
Clay	17	218	Sand and rock	24	600
Sand and rock	14	232	Shale	17	617
Clay	18	250	Sand and rock	26	643
Sand	19	269	Clay and rock with sand strips	27	670
Clay	34	303	Clay	14	784
Sand	5	308	Sand and rock	8	792
Clay	16	324	Clay	17	809
Sand	57	381	Sand	71	880
Clay	29	410			
Sand and rock	40	450	WELL RY-66-50-	-502	
Clay	22	472	Owner: Henderson Bro	thers #11	
Sand and rock	58	530	Driller: Layne-Te	exas Co.	
Clay	23	553	Surface soil	1	1
Sand	33	586	Clay	15	16
Clay	36	622	Sand	10	26
Sand	17	639	Clay	10	36
Clay	15	654	Sand	10	46
Sand	20	674	Rock	4	50
Clay	44	718	Sand, hard, and lime	10	60
Sand	26	744	Shale, sandy	34	94
Clay	39	757	Sand	24	118
Sand	11	768	Shale, sandy	7	125
Clay	100	868	Sand	41	166
			Shale, sandy	21	187
WELL RY-6	6-44-402		Shale	42	229
Owner: A.	G. Faikus		Shale and sand streaks	20	249
Driller: Katy	Drilling Co.		Sand	10	259
Topsoil and clay	35	35	Shale, sandy, and lime	26	285
Sand	26	61	Shale	14	299
Clay	30	91	Shale, sandy	16	315
Sand, rocky	10	101	Sand	17	332
Clay	6	107	Shale	52	384
Sand	8	115	Sand	18	402
Clay	50	165	Shale, sandy	23	425
Sand, rocky	76	241	Sand	23	448

	Thickness (feet)	Depth (feet)	Th: (1	ickness feet)	Depth (feet)
WELL RY-66-50-502Cc	ntinued		WELL RY-67-31-602		
Shale	36	484	Owner: City of Moulte	on	
Shale, sandy	36	520	Driller: Layne-Texas (Co.	
Shale	41	561	Topsoil	3	3
Shale, sandy	9	570	Caliche	40	43
Shale	66	636	Clay	207	250
Shale, sandy	2	638	Sand	10	260
Shale	73	711	Clay, sandy	22	282
Shale, hard, and lime	36	747	Sand and clay breaks	38	320
Shale, sandy, and sand streaks	20	767	Shale and sandy shale	29	349
Shale	12	779			
Shale, sandy, and sand streaks	12	791	WELL RY-67-32-701		
Shale	50	841	Owner: Frank Petras		
Shale, sandy	12	853	Driller: Johnnie Mare	sh	
Shale	19	872	Topsoil, black	2	2
Shale, hard, sandy	9	881	- Clay, tan	26	28
Shale	89	970	Clay, white	28	56
Shale, sandy	25	995	Clay, pink	16	72
Shale	77	1,072	Clay, tan	38	110
			Clay, blue	40	150
WELL RY-67-31-6	01		Rock, sand (little)	50	200
Owner: City of Mc	oulton		Clay, blue 60		260
Driller: Layne-Tex	as Co.		Clay, white	80	340
Soil and hard caliche	45	45	Clay, blue	80	420
Shale and clay	125	170	Rock	40	460
Shale	36	206	Clay, blue	60	520
Sand	14	220	Rock	60	580
Shale	79	299	Clay, blue	77	657
Sand and shale layers	56	355	Rock	3	660
Shale, soft, and medium hard lave	ers 193	548	Clay, blue	40	700
Shale, soft	14	562	Rock	40	740
Shale and hard lime layers	41	603	Water, sand	50	790
shale. sticky	12	615			
Shale, soft	67	682	WELL RY-67-39-302		
Shale and hard lime layers	88	770	Owner: G. G. Nollkamp	er	
Shale, sandy	45	815	Driller: H&S Drilling	Co.	
Shale and lime	27	842	Clay	10	10
Shale	18	860	Sand	7	17
Shale and sand lavers	41	901	Sand streaks, shale and hard streaks	53	70
Shale	39	940	Shale and hard streaks	15	85
Shale, sandy	35	975	Sand	10	95
Shale	28	1,003	Sand and hard streaks	17	112
	20	-,	Shale	38	250
			Lime streaks and shale	65	315

Sand and shale streaks

22

337

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL RY-67-39-302Con	tinued		WELL RY-67-39	-509	
Shale	28	365	Owner: City of S	Shiner	
Sand	20	385	Driller: Layne-Te	exas Co.	
Shale	17	402	Topsoil	1	1
Sand	28	430	Clay, yellow, sandy	10	11
Shale	30	460	Clay, red, sandy	42	53
Sand	42	502	Sand, rock and clay streaks	38	91
Shale	5	507	Shale, sand and rock streaks	64	155
Sand	65	572	Shale, sandy shale streaks	65	220
			Sand and rock (cut good)	29	249
WELL RY-67-39-30	4		Shale, sandy shale	55	304
Owner: H. R. Seidenb	urger		Shale, sandy and sand streaks	33	337
Driller: Leroy Ric	hter		Sand	5	342
Topsoil	3	3	Sand, shale, sand streaks	63	405
Clay	6	9	Sand, shale streaks	24	429
Sand, rock/clay streaks	13	22	Shale, sandy and sand streaks	30	459
Blue shale	20	42	Sand, shale streaks	46	505
Brown-blue-white shale	123	165	Shale, sandy and sand streaks	37	542
Sand	10	175	Sand, shale, gravel layers	25	567
Brown-blue-white shale	35	210	Shale, sandy and gravel	43	610
Sand	10	220	Sand and shale layers	43	653
Brown-blue-white shale	160	380	Shale, sandy and shale	21	674
Sand/shale streaks	35	415	Shale, sandy shale	34	708
Sandy shale	72	487	Shale, sand streaks	22	730
Hard shale	78	565	Sand, shale layers	12	742
Sand, coarse blue	18	583	Shale, sandy	13	755
Shale	24	607	Sand and shale streaks	19	774
Sand, coarse blue and shale streak	s 38	645	Shale, sandy	6	780
Shale	9	654	Sand and shale layers	11	791
			Shale, sandy	6	797
WELL RY-67-39-40	2		Sand and shale layers	37	834
Owner: Q. B. Schae	fer		Shale, sandy and sand	11	845
Driller: 0. 1. Davis	& Sons		Sand and shale layers	22	867
Clay and sandrock	40	40	Shale, sandy	11	878
Sand	15	55	Sand and shale layers	18	896
Clay	15	70	Rock	1	897
Sand, coarse	15	85	Sand (cut good)	7	904
Shale with hard streaks	95	180	Shale, sandy	3	907
Sand, hard	60	240	Shale, hard	13	920
Sand, broken	35	275	Sand and shale streaks	15	935
Sand	58	333	Shale, hard	20	955

Sand

Shale, hard

Shale and sand layers

8

30

14

963

993

1,007

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL	RY-67-39-510		WELL RY-67-40-401Continued		
Owner:	City of Shiner		Sandrock	55	255
Driller:	Layne-Texas Co.		Sand, gray, thin streaks	18	273
Soil	4	4	Clay, red and streaks, blue shale	127	400
Sand and clay	15	19	Sand, thin streaks	2	402
Clay	15	34	Clay, red and white	84	486
Clay and rock clusters	123	157	Rock	14	500
Shale	62	219	Clay, white, dense and pale blue		
Sand and shale streaks	20	239	sticky shale	82	582
Shale, rock streaks	10	249	Sand, gray	32	614
Sand (cut good)	21	270	Sand, gray	21	641
Shale and sandy shale	115	385	Shale	19	660
Sand	11	396			
Shale	28	424	WELL RY-67-47-6	04	
Sand	18	442	Owner: City of Yoakum, Driller: Dawson Dril	park well 1	
Shale	150	592		The CO.	
Shale and sand layers	15	607	Sand	5	5
Shale, rock streaks	49	656	Caliche	7	12
Sand	9	665	Clay	18	30
Shale	11	676	Sand, soft	20	50
Sand and shale streaks	33	709	Sand, hard	40	90
Shale	42	751	Clay	30	120
Sand and shale streaks	11	762	Sand	60	180
Shale	20	782	Sand and hard lime	30	210
Sand and shale streaks	12	794	Sand and gravel, hard	40	250
Shale, sand streaks	21	815	Lime and shale	20	370
Shale, hard	24	839	Rock, red, hard	40	410
Sand and shale layers	34	873	Sand and gravel, hard	60	470
Shale	21	894	Clay and shale, soft	55	525
Sand	17	911	Shale, soft	50	575
Shale, sandy shale	79	990	Sand, rough	10	585
			Shale, soft	45	630
WELL	RY-67-40-401		Shale, rough	10	640
Owner:	Charles Chovanetz		Shale, soft	10	650
Driller: S	hellman Drilling Co.		Sand	35	685

Soil	7	7
Clay	3	10
Sand, yellow	50	60
Sand, gray	13	73
Rock	2	75
Clay, yellow	26	101
Sandrock	19	120
Clay, white and yellow	13	133
Sandrock	22	155
Clay, white and yellow	45	200

Shale, brown, soft 45 730 Sand, hard or shale 20 750 Shale, soft 30 880 Sand and gravel 105 985 Shale 20 1,005 Sand, hard 40 1,045 Sand and shale 160 1,205

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

		Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	WELL RY-67-4	8-702		WELL RY-67-48-7	02Continued	
Owner: Texas A&M University w Driller: L. C. Capps		versity well 2		Sand	11	353
		. Capps		Shale and sand	13	366
Clay		20	20	No record	59	425
Shale		90	110	Sand	4	429
Sand and shale	streaks	50	160	Shale and lime	21	450
Shale streaks		20	180	Shale	33	483
Shale		62	342	Shale, broken and lime	77	560

WHARTON COUNTY

WELL ZA-65-41-	102	
Owner: J. B. Har Driller: Crowell B	rison rothers	
Clay	20	20
Sand	48	68
Clay	12	80
Gravel	35	115
Clay	38	153
Sand	22	175
Clay	11	186
Sand, shaly	16	202
Sand and shell	48	250
Shale	25	275
Sand	25	300
Shale	7	307
Sand	26	333
Shale	8	341

WELL ZA-65-41-929

Owner: Texas Gulf Sulfur Co. Driller: Layne-Texas Co.

Topsoil	3	3
Brown clay	72	75
Sand and fine gravel	60	135
Blue shale	15	150
Sand	15	165
Blue shale	19	184
Sand	21	205
Blue shale	15	220
Sand and shale streaks	25	245
Red shale	28	273
Sand	3	276
Red shale and sand streaks	30	306
Fine sand	29	335

WELL ZA-65-41-929Con	tinued	
Sand and fine gravel	89	424
Shale and sand streaks	30	454
Sand and streaks of shale	30	484
Sand and gravel	30	514
Sand, gravel, and shale streaks	60	574
Sand and shale	26	600

WELL ZA-65-49-404

Owner: Trull & Herlin Driller: Layne-Texas Co.

Topsoil	2	2
Clay	8	10
Sand and clay	48	58
Clay	12	70
Sand	19	89
Sand and gravel	15	104
Coarse gravel and sand	26	130
Clay	13	143
Sand	6	149
Sandy clay	96	245
Shale	24	269
Sand	5	274
Shale	10	284
Sand	7	291
Shale	8	299
Sand	8	307
Shale	23	330
Sand	30	360
Shale	41	401
Sand	24	425
Shale	12	437
Sand, broken	13	450
Sandy shale	14	464

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-65-49-404	-Continued		WELL ZA-66-3	31-906	
Sand	39	503	Owner: Tenn. Gas Trans. Co.	, East Bernard	plant #3
Shale	4	507	Driller: McMaster	rs & Pomeroy	
Sandy shale	8	515	Clay and boulders	9	9
Shale	10	525	Caliche	11	20
Sand	18	543	Sand and gravel	31	51
Hard sandy shale	12	555	Clay	49	100
Sand, broken	32	587	Sand and gravel	40	140
Shale	10	597	Clay	9	149
Hard sandy shale	18	615	Gravel and boulders	58	207
Sand	31	646	Shale	34	241
Sand, broken	24	670	Sand, hard	33	274
Sandy shale	7	690	Shale and hard sand	55	329
Sand	28	718	Shale	12	341
Shale	37	755	Sand and shale	36	377
Sand	20	775	Rock	1	378
Shale	15	790	Shale and boulders	9	387
Sand	23	813	Sand	27	414
Shale	50	863	Clay	58	472
Hard shale	7	870	Shale	72	544
Sandy shale	8	878	Rock	2	546
Hard sandy shale	19	897	Shale and boulders	60	606
Rock	2	899	Sand	8	614
Sand, gravel, and lime	71	970	Shale	28	642
Hard sandy shale	15	985	Clay and boulders	9	651
Sand	27	1,012	Sand	12	663
Hard sandy shale	7	1,019	Clay	17	680
Sand	24	1,043	Clay and boulders	56	736
Shale	7	1,050	Sand	10	746
Sand	21	1,071	Clay and boulders	12	758
Hard shale	29	1,100	Sand	10	768
			Shale	11	779
WELL ZA-66-31	I-7 01		Sand	6	785
Owner: Tom A	Arlt		Clay	19	804
Driller: Johnson & Johnson I	Orilling & Supp	oly Co.	Rock	2	806
Sand and soil	18	18	Shale	4	810
Gravel	18	36	Sand	6	816
Sand	2	38	Rock	1	817
Clay and soil	52	90	Sand	13	830
Coarse sand	50	140	Rock	2	832
Gravel	20	160	Sand	4	836
Clay and gravel	60	220	Clay	18	854
Clay and sand	40	260	Sand	46	900
Clay	60	320	Clay	10	910
Clay and sand	49	369	Sand	5	915

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-66	-31-906Continued		WELL ZA-0	66-39-601	
Shale	3	918	Owner: Mrs. W.	A. Northington	
Sand	3	921	Driller: Leon	nard Mickelson	
Shale	13	934	Soil and clay	12	12
Sand	39	973	Sand	15	27
Shale	2	975	Shale	5	32
Sand	15	990	Sand, rocky	22	54
Shale	10	1,000	Sand and shale	29	82
			Sand	9	91
WELL	ZA-66-38-603		Shale	53	144
Owner:	Arthur Anderson		Sand	28	172
Diffier.	Katy Drilling CO.		Shale	10	182
Surface clay	19	19	Sand, rocky	28	210
Sand	13	32	Shale	3	213
Clay	19	51	Sand	7	220
Sand, gravel	72	123	Shale	20	240
Clay	11	134	Sand, rocky	62	302
Sand, gravel	34	168	Shale [.]	7	309
Clay, sand breaks	16	184	Sand, rocky	27	336
Sand, gravel	18	202			
Clay, rock	30	232	WELL ZA-0	66-45-608	
Sand, rock	47	279	Owner: Her Driller: Katy	nry Zboril v Drilling Co	
Clay	11	290	britter. kat	y billing co.	
Sand, rock	54	344	Surface clay	28	28
Clay	22	366	Sand	18	46
Sand, rock	37	403	Clay	11	57
Clay	9	412	Sand, gravel	22	79
Sand, rock	6	418	Clay	5	84
Clay	24	442	Sand, gravel	71	155
Sand, rock	43	485	Clay	10	165
Clay	60	545	Sand and rock	5	170
Sand, rock	8	553	Clay	8	178
Clay	14	567	Sand and rock	14	192
Sand, rock	21	588		3	195
Clay	40	628	Hard rock	4	199
Sand, rock	23	651	Clay	14	213
Clay	38	689	Sand and rock	10	223
Sand and rock	56	745		16	239
Cray	10	/55	Sana and FOCK	5	244
Sand, rock	1/	1/2	Clay	8	252
Clay	40	812	Sana ana rock	5	257
Sand	18	85U 857	Clay	22	2/9
Ciay	23	000		42	521
Sand	11	000	Clay	9	330
Ciay	30	900	Sana and TOCK	22	352

			Thickness (feet)	Depth (feet)
		WELL ZA-66-45-608C	ontinued	
Clay			44	396
Sand	and	rock	18	414
C1ay			7	421
Sand	and	rock	54	475
C1ay			78	553
Sand	and	rock	58	611
Clay			10	621
Sand	and	rock	11	632
Clay			31	663
Sand	and	rock	16	679
Clay			21	700

WELL ZA-66-46-203

Owner: Pryor Ranch Driller: Leonard Mickelson

Soil and clay	12	12
Sand and gravel	111	123
Lime and rock	23	146
Gravel	46	192
Rock	7	199
Gravel and rock	37	236
No record	15	251

WELL ZA-66-46-701

Owner: Gene Reitz Driller: Crowell Drilling Co.

Clay	30	30
Sand	40	70
Clay	54	114
Gravel	11	125
Rock	1	126
Sand	4	130
Rock	1	131
Sand and hard streaks	23	154
Clay	8	162
Sand and gravel	78	240
Hard	20	260
Sand	7	267
Rock, hard	8	275
Sand and hard streaks	35	310
Hard	22	332

	Thickness (feet)	Depth (feet)
WELL ZA-66-47-	412	
Owner: J. E. Heyne Driller: Leonard M	Estate lickelson	
Soil and clay	38	38
Sand and gravel	43	81
Clay	12	93
Lime rock	2	95
Clay	34	129
Gravel and sand	30	159
Clay, rocky	58	217
Rocky sand	62	279
Rock	9	288
Rocky	6	294
Sand, rocky	38	332

WELL ZA-66-48-404 Owner: City of Wharton #2 (old #5) Driller: Layne-Texas Co.

Topsoil and clay 26 Clay, red 30 Sand and gravel 45

26

56

Sand and gravel	45	101
Clay, red	74	175
Sand	10	185
Clay	21	206
Sand layers and rock	17	223
Shale, sandy and shale	57	280
Sand and layers of rock	18	298
Shale	11	309
Sand, gravel, and rocks	35	344
Sand streaks and shale	23	367
Shale, sandy, and streaks of sand		
rock	24	391
Sand	16	407
Shale, sandy	7	414
Sand	19	433
Shale, sandy, lime and streaks of		
sand	30	463
Sand and layers of hard lime	25	488
Shale, hard	12	500
Sand	6	506
Shale	6	512
Sand and layers of rock and lime	38	550
Sand	34	584
Sand and lime	10	594
Shale	6	600

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-66-48-404Con	tinued		WELL ZA-66-52	2-208Continued	
Sand, hard, and streaks of lime	23	623	Sand, rock	20	292
Shale	26	649	Clay	10	302
Rock	1	650	Sand, rock	17	319
Shale	14	664	Clay	6	325
Sand and streaks of shale and rock	: 14	678	Sand	61	386
Shale, hard	8	686	Clay	9	395
Sand	4	690	Sand, rock	24	419
Shale, sandy, and streaks of sand	15	705	Clay	45	464
Sand, fine gravel, and streaks of rock	44	749	Sand, rock	23	487
Sand, coarse	89	838	Clay	87	574
Shale	5	843	Sand, rock	18	592
Sand, loose, and streaks of shale	29	872	Clay	14	606
Shale and layers of sand	24	896	Sand, rock	38	644
Shale, blue	34	930	Clay	6	650
Sand and layers of shale	40	970	Sand, rock	78	728
Shale, red and blue	70	1.040	Clay	36	764
Sand with few shale breaks	33	1,073	Sand, rock	5	769
Shale and streaks of sand	11	1.084	Clay	28	797
Sand	19	1,103	Sand, rock	24	821
Shale, sandy shale, and lavers	10	1,100	Clay	5	826
of sand	32	1,135	Sand	14	840
Sand	8	1,143	Clay	48	868
Shale and sandy shale	29	1,172	Sand, rock	69	937
Shale	26	1,198	Clay	7	944
			Sand, rock	17	961
WELL ZA-66-52-20	8		Clay	51	1,012
Owner: E. G. Gof	f		Sand, rock	18	1,030
Driller: Katy Drilli	ng Co.		Clay	115	1,145
Surface, clay	30	30	Sand, rock	55	1,200
Sand, gravel	37	67	Shale, hard	70	1,270
Clay	6	73	Sand	10	1,280
Sand	21	94	Shale	17	1,297
Clay	27	121	Rock, sand breaks	19	1,316
Sand	14	135	Sand	23	1,339
Clay	17	152	Shale, hard	9	1,348
Sand, gravel	27	179	Sand	6	1,354
Clay	7	186	Shale	8	1,362
Sand, gravel	19	205	Sand	7	1,369
Clay	27	232	Shale	30	1,399
Sand, rock	8	240			
Clay	8	248			
Sand	15	263			
Clay	9	272			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-6	6-53-508		WELL ZA-66-5	54-603	
Owner: M. Driller: Crowel	L. Bain 1 Drilling Co.		Owner: City of H Driller: Otto M	El Campo #3 Mickelson	
Clay	34	34	Surface soil	8	8
Sand	14	48	Sand	30	38
Clay	45	93	Clay	8	46
Sand and gravel	32	125	Clay and layers of sand	17	63
Shale	10	135	Sand	5	68
Sand	21	156	Clay and layers of sand	25	93
Shale	32	188	Clay	38	131
Sand	32	220	Sand	7	138
Shale	15	235	Clay and layers of sand	11	149
Rock	7	242	Sand	5	154
Hard shale	28	270	Gravel	8	162
Sand and hard shale	20	290	Sand	5	167
Shale	30	320	Clay and lime rock	21	188
Sand	12	332	Sand	11	199
Rock	2	334	Clay	3	202
Shale	13	347	Sand	18	220
Sand and hard shale	23	370	Clay	24	244
Shale	15	385	Sand	5	249
Sand	6	391	Clay and soft rock	15	264
Hard	4	395	Clay, rocky	25	289
Sand	40	435	Sand, rocky	4	293
Rock	5	440	Clay, rocky	49	342
Sand and hard shale	30	470	Sand	12	354
Shale	36	506	Rock, soft	1	355
Sand	14	520	Sand	36	391
Shale	6	526	Rock	1	392
Sand and hard shale	29	555	Gumbo, rocky	16	408
Hard	9	564	Rock, soft	8	416
Sand and hard shale	20	584	Sand	6	422
Shale	64	648	Gumbo and boulders	18	440
Sand	32	680	Sand	5	445
Shale	8	688	Gumbo, boulders, and sand	35	480
Sand	16	704	Sand	6	486
Shale	8	712	Gumbo, boulders, and sand	17	503
Sand	23	735	Sand	16	519
Shale	6	741	Gumbo, boulders, and sand	9	528
			Sand	16	544
			Gumbo, boulders, and sand	13	557
			Gumbo	7	564
			Sand	19	583

Gumbo, hard

Pack sand

595

600

12

5

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-66-54-603	WELL ZA-66-5	55-711Continued			
Rock, hard	1	601	Clay	3	183
Pack sand	5	606	Coarse sand	14	207
Sand	14	620	Clay	6	213
Gumbo and boulders	11	631	Sand	15	228
Sand	25	656	Clay	17	245
Gumbo	24	680	Sand	13	258
Gumbo and boulders	5	685	Clay	6	264
Sand	43	728	Sand	10	274
Gumbo, sand, and boulders	16	744	Clay	43	317
Sand	15	759	Sand	15	332
Rock	1	760	Clay	15	347
Gumbo	30	790	Sand	10	357
Sand	33	823	Clay	5	362
Gumbo	37	860	Rock, sand	49	411
Sand	20	880	Clay	10	421
Shale	10	890	Rock, sand	25	446
Sand	26	916	Rock	3	449
Shale	9	925	Clay	15	464
Sand	102	1,027	Lime rock, sand	1	465
Shale	8	1,035	Clay	34	499
Sand	42	1,077	Rock, sand	88	587
Shale	41	1,118	Rock	5	592
Sand	44	1,162	Rock, sand	9	601
Shale	38	1,200	Clay	3	604
Sand and shale	30	1,230			
Shale	15	1,245	WELL 2	ZA-66-56-101	
Sand	20	1,265	Owner: Bol	llinger Brothers	
Shale	89	1,354	Driller: H	Katy Drilling Co.	
Sand	46	1,400	Topsoil	4	4
			Clay	6	10
WELL ZA-66-	-55-711		Sand	163	173
Owner: Harla	n Nelson		Clay	46	219
Driller: Leonar	d Mickelson		Sand	21	240
Soil and clay	44	44	Clay	32	272
Sand	16	50	Sand	9	281
Clay	10	60	Clay	75	356
Sand	25	85	Sand	111	467
Clay	5	90	Rock	1	468
Sand	25	115	Sand	3	471
Clay	5	120	Rock	1	472
Sand	17	137	Sand	24	496
Clay	38	175	Clay	9	505
Sand	5	180	Sand	19	524
Janu	э	100	Janu	19	524

Table 6.--Drillers' logs of wells in Colorado, Lavaca, and Wharton Counties--Continued

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
WELL ZA-66-56-101Continued			WELL ZA-66-61-301Continued		
Clay	12	536	Sand	13	678
Sand, rocky	44	580	Clay, red	10	688
Sand with clay strips	19	599			
Sand, rocky	82	681	WELL ZA	-66-62-714	
Clay	11	692	Owner: F	rank Zboril	
Rock	1	693	Driller: Ka	ty Drilling Co.	
Sand	9	702	Surface clay	10	10
Clay	53	755	Sand	35	45
Sand	63	918	Clay	23	68
Rock	5	923	Sand	82	150
Clay	5	928	Clay	44	194
Sand	82	1,010	Sand	22	216
Bottom clay		1,010	Clay	19	235
			Sand	22	257
WELL ZA-66-	61-301		Clay	16	273
Owner: Wharton County W	C&ID #1, Louise	#1	Sand	21	294
Driller: Texas	Water Wells		Clay	4	298
Surface	3	3	Sand	16	314
Clay	15	18	Clay	5	319
Sand	52	70	Sand	49	368
Clay, sandy	15	85	Clay	36	404
Sand	25	110	Sand, rock	57	461
Gravel	8	118	Clay	10	471
Caliche, sandy	44	162	Sand, rock	9	480
Sand	13	175	Clay	12	492
Clay and caliche	22	197	Sand	10	502
Caliche, sandy	23	220	Clay	24	526
Sand and gravel	28	248	Sand, rock	12	538
Caliche, sandy	77	325	Clay	19	557
Sand	21	346	Sand, rock	35	592
Caliche, hard, sandy	75	421	Clay	18	610
Clay, sandy	24	445	Sand, rock	7	617
Caliche, sandy	16	461	Clay	46	663
Sand and caliche	29	490	Sand	19	682
Caliche, sandy	10	500	Clay	11	693
Sand	27	527	Sand	46	739
Clay, red	35	562	Clay	10	749
Clay, sandy	20	582	Sand	17	766
Clay	15	597	Clay	26	780
Sand	37	634	Sand, rock	24	804
Clay	7	641	Clay	8	812
Clay, red	15	656	Sand, rock	27	839
Clay, sandy	9	665	Clay	14	853

		Thickness (feet)	Depth (feet)
		WELL ZA-66-62-714Continued	
Sand,	rock	22	875
Clay		15	890
Sand		43	933
Clay		7	940
Sand,	rock	37	977
Clay		13	990
Sand,	rock	21	1,011

WELL ZA-66-62-908

Owner: A. R. Zieschang, Jr. Driller: Crowell Drilling Co.

Clay	12	12
Sand	42	54
Clay	14	68
Sand	12	80
Clay	32	112
Sand	70	182
Shale	32	214
Sand	34	248
Shale	20	268
Sand	14	282
Shale	15	297
Sand	13	310
Hard shale	10	320
Sand	16	336
Shale	29	365
Sand	23	388
Shale	4	392
Sand	12	404
Shale	106	510
Sand and hard shale	40	550
Shale	12	562
Sand and hard shale	15	577
Shale	23	600
Sand and hard shale	32	632
Rock	3	635
Sand	5	640

WELL ZA-66-64-103

		Owner: Driller:	Wade Roberts Leonard Mickelson		
Soi1	and	clay	101	10	91
Sand	and	grave1	36	13	7
Clay			23	16	0

	Thickness (feet)	Depth (feet)
WELL ZA-66-64-103-	Continued	
Clay layers and gravel	31	191
Clay	32	223
Clay layers and gravel	63	286
Clay	10	296
Sand and gravel	97	393
Clay	25	418
Sand	80	498
Clay	9	507
Sand and gravel	57	564
Clay	15	579
Sand	16	595
Clay	8	603
Rocky sand	31	634