OCCURRENCE AND QUALITY OF GROUND WATER IN THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN THE TRANS-PECOS REGION OF TEXAS

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 255

OCCURRENCE AND QUALITY OF GROUND WATER IN THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN THE TRANS-PECOS REGION OF TEXAS

TEXAS DEPARTMENT OF WATER RESOURCES

Harvey Davis, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman	John H. Garrett, Vice Chairman
George W. McCleskey	W. O. Bankston
Glen E. Roney	Lonnie A. 'Bo"' Pilgrim

TEXAS WATER COMMISSION

Felix McDonald, Chairman
Dorsey B. Hardeman, Commissioner
Joe R. Carroll, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed
by the
Texas Department of Water Resources
Post Office Box 13087
Austin, Texas 78711

TABLE OF CONTENTS

Page
CONCLUSIONS 1
INTRODUCTION 1
Well-Numbering System 2
Metric Conversions 3
GEOLOGY 3
GROUND-WATER USE 11
Irrigation 11
Municipal 11
Industrial 15
Domestic and Livestock 15
GROUND-WATER AVAILABILITY 15
OCCURRENCE AND QUALITY OF GROUND WATER WITHIN THE MAJOR IRRIGATION AREAS 15
Reeves County Irrigation Area 15
Pecos Counity Irrigation Areas 15
North Coyanosa Area 15
South Coyanosa Area 21
Fort Stockton-Leon-Belding Area 21
Girvin Area 21
Bakersfield Area 21
Reeves County Ranch Area 22
Pecos County Ranch Area 22
Terrell County Ranch Area 22

TABLE OF CONTENTS--Continued

Page
RECOMMENDATIONS 22
SELECTED REFERENCES 23
TABLES

1. Geologic Units and Their Water-Bearing Properties 4
2. Records of Seclected Wells and Springs 26
3. Chemical Analyses of Water From Selected Wells and Springs 36
FIGURES
4. Map of Texas Showing Location of the Edwards-Trinity (Plateau) Aquifer in the Trans-Pecos Region 2
5. Map Showing Approximate Altitude of the Base of the Edwards-Trinity (Plateau) Aquifer 5
6. Conceptual Geologic Section Along Line A-A' 7
7. Conceptual Geologic Section Along Line B-B' 9
8. Map Showing Major Irrigation Areas 11
9. Map Showing Concentrations of Selected Chemical Constituents in Water From Selected Wells in the Edwards-Trinity (Plateau) Aquifer 13
10. Map Showing Approximate Altitude of Water Levels in the Edwards-Trinity (Plateau) Aquifer, 1973 17
11. Map Showing the Approximate Change of Water Levels in the Edwards-Trinity (Plateau) Aquifer From 1957-59 to 1971-73 19
12. Map Showing Location of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer 41

OCCURRENCE AND QUALITY OF GROUND WATER IN THE EDWARDS-TRINITY (PLATEAU) AOUIFERIN
 THE TRANS-PECOS REGION OF TEXAS

CONCLUSIONS

The Edwards-Trinity (Plateau) aquifer, which consists of limestones and sands of Cretaceous age, is one of the most important sources of water in Reeves, Pecos, and Terrell Counties. The aquifer has an areal extent of approximately 9,400 square miles $(24,000$ km^{2}). In small localized areas, the aquifer yields large quantities of water to wells, principally for irrigation use. However, throughout most of the aquifer's extent, it yields only small to moderate amounts of water to wells. The geology of the aquifer, particularly the structure, strongly influences both the yields of wells and the chemical quality of the water.

Computation of recharge to the aquifer and discharge from the aquifer has resulted in the estimation that on the order of 150,000 to 190,000 acre-feet (180 to $230 \mathrm{hm}^{3}$) of water is available from the aquifer on a sustained annual basis. However, it appears from the long-term water level declines that pumpage in the irrigated areas of the aquifer has, in many places, exceeded recharge. Total pumpage from the aquifer, primarity in the irrigation areas with lesser amounts by municipalities and industry, exceeds 130,000 acre-feet ($160 \mathrm{hm}^{3}$) annually. Also, in those portions of the study area where there has been no irrigation development, strata are relatively impervious and aquifer yields are generally too low to support high-capacity wells.

Before extensive development of irrigation wells, the discharge from the aquifer was in equilibrium with recharge. However, with the development of large-scale irrigation, discharge has exceeded recharge in most of the irrigation areas and water has been withdrawn from storage. This has caused long-term water level declines. These declines are most pronounced in the central Reeves County irrigation area and in the north and south Coyanosa, and Fort Stockton-Leon-Belding irrigation areas of Pecos County. This decline in water levels has caused Comanche Springs and Leon Springs to stop flowing. In those parts of the aquifer that have not been
developed for irrigation such as in Terrell and southern Pecos Counties, the recharge and discharge have remained almost in equilibrium and the aquifer contributes flow to the Rio Grande and the Pecos River through seeps and springs.

The quality of water within the aquifer varies from less than 500 to more than 5,000 milligrams per liter (mg / l) dissolved solids. The high amount of dissolved solids in water contained in the aquifer is primarily the result of recharge water from evaporite deposits of the Castile and Rustler Formations in Culberson County and northwestern Reeves County and from the Rustler Formation in north-central Pecos County. The high chloride content of water from wells in north-central Pecos County may be the result of contamination by oil-field brines from improperly plugged or cased oil wells.

INTRODUCTION

The Edwards-Trinity (Plateau) aquifer investigation was initiated in January 1973. The objective of this investigation is to update previous investigations into one report covering the extent of the Edwards-Trinity (Plateau) aquifer west of the Pecos River with particular emphasis on the chemical quality and occurrence of ground water within the aquifer.

The geology and occurrence of ground water in the Edwards-Trinity (Plateau) aquifer have been described in several reports listed in the "Selected References" section of this report. The reports have been used in this investigation, and data from them have been incorporated per se except in those cases where recent data collected in the field update previous data, such as water levels and chemical analyses.

The area of investigation is shown in Figure 1 and includes all of Terrell County and those portions of Reeves, Pecos, Culberson, Jeff Davis, Val Verde (west of
the Pecos River), and Brewster Counties underlain by the Edwards-Trinity aquifer. West of the Pecos River, the aquifer covers an area of approximately 9,400 square miles ($24,000 \mathrm{~km}^{2}$). The topography ranges in elevation from approximately 8,000 feet ($2,400 \mathrm{~m}$) above sea level in the Davis Mountains on the northwest to 1,200 feet (366 m) above sea level near the confluence of the Rio Grande and the Pecos River in the southeast. The physiography ranges from the very rugged, high relief of the Davis Mountains to the broad, flat plain of the Pecos River valley and the highly dissected and relatively flat-lying plateaus and mesas of Terrell, Val Verde, and southern Pecos Counties. This area encompasses one of the most complex geologic and hydrologic regions of the State.

Figure 1.-Location of the Edwards-Trinity (Plateau) Aquifer in the Trans-Pecos Region

The area has an average annual rainfall of 12 inches (31 cm) and an annual evaporation rate of 70 to 80 inches (178 to 203 cm). Its average maximum daily air temperature in July is $95^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$ while the average minimum in January is $33^{\circ} \mathrm{F}\left(0.6^{\circ} \mathrm{C}\right)$.

In conducting the regional investigation of the Edwards-Trinity
ground-water aquifer, the following items of work were performed.

1. Available geologic and hydrologic data were compiled and reviewed.
2. Available subsurface data were compiled and correlated.
3. Water levels in wells were measured.
4. Water samples from wells were collected for chemical analysis.
5. Data were compiled, interpreted, and analyzed and illustrations prepared.
to show the geologic and hydrologic conditions within the study area.

Numerous people helped in many ways in the completion of this study, and their contribution of time, aid, and information is greatly appreciated. Special thanks are due Loyd Walker, who edited the manuscript and made many useful suggestions concerning the illustrations and conclusions contained within the report. General supervision was furnished by C. R. Baskin, director, Data and Engineering Services Division and Tommy R. Knowles, chief, Data Collection and Evaluation Section.

Well-Numbering System

The well-numbering system used in this report is one adopted by the Texas Department of Water Resources for use throughout the State and is based upon the divisions of latitude and longitude. This system facilitates the location of wells and prevents duplication of well numbers in present and future studies

Under this system, each 1-degree quadrangle in the State is given a number consisting of two digits, from 01 to 89. These are the first two digits in the well number. Each 1 -degree quadrangle is divided into $71 / 2$-minute quadrangles which are given 2 -digit numbers from 01 to 64 . These are the third and fourth digits of the well number. Each $71 / 2$-minute quadrangle is divided into $2 \frac{1}{2}$-minute quadrangles given single digit numbers from 1 to 9 . This is the fifth digit of the well number. Finally, each well within a $21 / 2$-minute quadrangle is given a 2 -digit number in the order in which it is inventoried, starting with 01 . These are the last two digits of the well number.

In addition to the seven-digit well number, a two-letter prefix is used to identify the county. The prefixes for the counties entirely or partially covered by this report are:

Prefix	County
BK	Brewster
HL	Culberson
PS	Jeff Davis
US	Pecos
WD	Reeves
XX	Terrell
YR	Val Verde

On the well-location map in this report (Figure 9), the 1 -degree quadrangles are numbered with large numerals. The $71 / 2$-minute quadrangles are numbered in the northwest corners where possible. The 3 -digit number shown with the well symbol contains the number of the $2 \frac{1}{2}$-minute quadrangle in which the well is located and the number of the well within that quadrangle.

Metric Conversions

For those readers interested in using the International System (SI) of Units, the metric equivalents of English units of measurements are given in parentheses in the text. The English units used in this report may be converted to metric units by the following coversion factors:

From English units	Multiply by	To obtain metric units
acre	0.4047	square hectometers (hm^{2})
acre-feet	0.00123	cubic hectometers (hm^{3})
cubic feet per second ($\mathrm{ft}^{3} / \mathrm{s}$)	28.32	liters per second $(1 / s)$
feet (ft)	0.3048	meters (m)
feet per mile (ft/mi)	0.189	meters per kilometer (m / km)
gallons (gal)	3.785	liters (1)
gallons per minute (gal/min)	0.0631	liters per second (1/s)
gallons per day per foot [(gal/d)/ft]	12.418	liters per day per meter [($1 / \mathrm{d}$)/m]
inches (in)	2.540	centimeters (cm)
miles (mi)	1.609	kilometers (km)
square miles ($\mathrm{mi}^{\mathbf{2}}$)	2.590	square kilometers (km^{2})

To convert degrees Fahrenheit to dregrees Celsius use the following formula:
${ }^{\circ} \mathrm{C}=0.556\left({ }^{\circ} \mathrm{F}-32\right)$

GEOLOGY

The Edwards-Trinity (Plateau) aquifer covers parts of the Delaware and Val Verde Basins and is composed of water-bearing lower Cretaceous sands and limestones of the Washita, Fredericksburg, and Trinity Groups. The
upper part of the aquifer is made up of the Georgetown Formation and Edwards Limestone and the lower part is made up of sands and limestones of the Trinity Group. Table 1 briefly describes the lithology and water-bearing properties of the geologic units. Figure 2 shows the approximate altitude of the base of the Edwards-Trinity aquifer in the study area.

The quality and movement of ground water in the northwest one-third of the aquifer is influenced by the geologic structure of that area. Toward the end of Permian time the seas in the Delaware Basin became shallow and restricted, resulting in the deposition of vast amounts of evaporites. The Cretaceous seas advanced over these Permian evaporites depositing the Cretaceous rocks that are present in the area. Subsequent to the retreat of the Cretaceous seas, ground water began leaching the soluble gypsum and salt deposits of Permian age to such an extent that the overlying Cretaceous rocks lost their underlying support and were subjected to extensive faulting, folding, and subsidence. This folding and faulting is shown in Figure 3.

Prior to and following subsidence of the Cretaceous rocks, Tertiary volcanic rocks which formed the Davis Mountains were extruded onto the surface, and with each successive eruption created, in effect, a new base level of erosion. As a result, the eroded and degraded Cretaceous rocks in the subsidence area became an area of aggradation and deposition for the alluvial deposits of the mountain front. Within the area bounded by the Capitan Reef complex, the Edwards-Trinity (Plateau) aquifer is dissected by, and hydrologically connected to the overlying Quaternary alluvium, and water of the Edwards-Trinity is commingled with alluvial water (Figures 3 and 4).

Another feature affecting the quality of ground water in this area is the movement and solution action of water through the Permian outcrops of the Rustler (anhydrite) and Castile (gypsum) Formations northwest of the Edwards-Trinity (Plateau) aquifer. Ground water derived from the surface runoff and infiltration from this source contains a large amount of sulfate in solution from the evaporites.

The southeastern two-thirds of the Edwards-Trinity (Plateau) aquifer which lies outside the Delaware Basin, is a continuous unit and is relatively undisturbed from its original depositional position (Figure 4). The surface drainage generally follows the regional southeast dip which is approximately 30 feet per mile $(5.7 \mathrm{~m} / \mathrm{km})$.

Yield: small, less than 50 gpm ; moderate, $50-500 \mathrm{gpm}$; large, more than 500 gpm .

GROUND-WATER

USE

Irrigation

Development of irrigation water supplies from the Edwards-Trinity (Plateau) aquifer is limited by the availability and quality of the water. With the exception of that part of the Reeves County irrigation area which has been abandoned and the Bakersfield irrigation area, the irrigated areas show moderate to large water-level declines within the last 15 years. Irrigation surveys conducted by the Texas Department of Water Resources indicate that approximately 100,000 acre-feet $\left(120 \mathrm{hm}^{3}\right)$ of water is pumped annually from the Edwards-Trinity (Plateau) aquifer in the major irrigation areas (Figure 5). This pumpage for the most part is concentrated in the limited areas of irrigation, thus resulting in localized long-term water level declines when ground water is withdrawn from the aquifer at a faster rate than it can be replaced by recharge. In many of these areas, maximum safe development by irrigation wells has been accomplished and in some cases exceeded.

The water generally contains more than 1,000 mg / l dissolved solids, and much of it contains more than $2,000 \mathrm{mg} / \mathrm{l}$ (Figure 6).

Municipal

The development of public water supplies from the Edwards-Trinity (Plateau) aquifer is limited; however, Fort Stockton, McCamey, Iraan, Sheffield, and Sanderson obtain all or part of their water from the Edwards-Trinity and have a combined annual pumpage of approximately 3,700 acre-feet $\left(4.6 \mathrm{hm}^{3}\right)$. All these towns with the exception of Fort Stockton meet the quality standards established by the Texas Department of Health (1977). The Fort Stockton water supply contains chloride in excess of $500 \mathrm{mg} / \mathrm{l}$ and a sulfate content of approximately $500 \mathrm{mg} / \mathrm{l}$; thus the water has a salty taste and laxative effect. However, water of better chemical quality is available in several areas west of Fort Stockton where ground water contains less than $1,000 \mathrm{mg} / \mathrm{l}$ dissolved solids and the concentration of chloride and sulfate is less than $200 \mathrm{mg} / \mathrm{l}$ each (Figure 6).".

Figure 5.-Major Irrigation Areas

Industrial

Nearly all of the water pumped from the Edwards-Trinity (Plateau) aquifer for industrial purposes is used in the production of oil and gas, electricity, and sulfur. About 700 acre-feet $\left(0.9 \mathrm{hm}^{3}\right.$) of water used in the production of oil and gas is for cooling purposes by the natural gas plants in the area. A minor amount is used by oil rigs during the drilling of oil tests with an average of 42 gallons (1591) of water being required for each foot $(0.3 \mathrm{~m})$ drilled. Water-supply wells for oil test drilling generally are considered adequate if they can furnish as much as 30 gallons per minute (1.91/s). The total amount of water used by wells of this type is estimated to be a few hundred acre-feet a year, but use of the well is usually short and the long-term effect on the water table is negligible.

The West Texas Utilities Company operates the Rio Pecos generating plant near Girvin and a smaller station near Fort Stockton and the combined annual pumpage is approximately 1,660 acre-feet $\left(2.0 \mathrm{hm}^{3}\right)$.

The Duval Corporation in Reeves County and the Atlantic Richfield Company in Pecos County operate sulfur recovery plants which have a combined annual pumpage of approximately 8,300 acre-feet ($10.2 \mathrm{hm}^{3}$).

Domestic and Livestock

Domestic and livestock wells pump water from the Edwards-Trinity over the entire extent of the aquifer; however, they do not pump enough to affect the quantity or quality of the water in the aquifer. These wells are generally equipped with windmills or small electric submersible pumps and their yields range from less than 1 to 20 gallons per minute $(<0.1$ to $1.31 / \mathrm{s})$. This type of well is predominant in Terrell and southeast Pecos County.

GROUND-WATER AVAILABILITY

Ground-water availability for the purposes of this study is defined in terms of effective recharge or sustainable annual yield. The sustainable annual yield is defined as the amount of ground water which can be safely withdrawn perennially throughout the extent of the aquifer without reducing the amount of water in storage. The sustainable annual yield of the Edwards-Trinity (Plateau) aquifer in the study area is determined from spring flow and base flow gain data (Peckham, 1963, p. 8) to be on the order of 150,000 to 190,000 acre-feet (180 to $230 \mathrm{hm}^{3}$) annually.

OCCURRENCE AND QUALITY OF GROUND WATER WITHIN THE MAJOR IRRIGATION AREAS

Reeves County Irrigation Area

The depth to water in the Edwards-Trinity (Plateau) aquifer in this area varies greatly. Water levels range from 29 feet (8.8 m) below land surface in the artesian area to 330 feet (101 m) below land surface in the water-table area (Figure 7). The wells range in depth from 600 to 1,400 feet (180 to 430 m). Water levels in this area have generally declined; however, part of the area has experienced a rise in water levels. In the area north of Balmorhea and west of State Highway 17, the water levels have declined from 0 to 70 feet (0 to 21 m). East of State Highway 17 and north of Interstate Highway 10, water levels have risen (Figure 8). The rises in water levels are the result of a decline in use of water for irrigation since 1959; thus the water levels are recovering significantly in some areas. For example, the water level in well 46-60-902, located about 13 miles (21 km) east of Balmorhea, rose 187 feet (57 m) from 1959 to 1973 and has remained fairly constant. The coefficient of transmissibility of the Edwards-Trinity (Plateau) aquifer in Reeves County ranges from a few thousand to 10,000 gallons per day per foot [124,180 ($1 / \mathrm{d}) / \mathrm{m}]$.

The dissolved solids content of ground water pumped for irrigation generally exceeds $1,000 \mathrm{mg} / \mathrm{l}$ and in some water exceeds $3,000 \mathrm{mg} / 1$ (Figure 6). When ground water was initially used for irrigation in this area, the chemical quality of the water was not a problem because of the permeable alluvial soils and the raising of salt-tolerant crops. However, due to repeated infiltration of irrigation water, heavy applications of fertilizers, and perching of water, the soils became more saturated with minerals which resulted in low crop yield. In 1974, approximately 20,000 acre-feet ($25 \mathrm{hm}^{3}$) of ground water was pumped from the Edwards-Trinity aquifer for irrigation of crops.

Pecos County Irrigation Areas

Pecos County is divided into the following major irrigation areas: north Coyanosa, south Coyanosa, Fort Stockton-Leon-Belding, Girvin, and Bakersfield (Figure 5).

North Coyanosa Area

The north Coyanosa irrigation area is near the lower reaches of Coyanosa Draw in the northwestern
part of Pecos County. The Edwards-Trinity (Plateau) aquifer contributes little water directly to wells in this part of the area; however, it is an important factor in the recharge to the alluvium. Water levels in wells that are known to be tapping the Edwards-Trinity around the margin of the alluvial trough range from 96 feet to 275 feet (29 to 84 m) below land surface (Figure 7). Depths of these wells range from 500 to 700 feet (150 to 210 m). Water levels have declined significantly in this area. The water level in one well has declined 106 feet $(32 \mathrm{~m})$ in 12 years (Figure 8).

Water quality is generally suitable for irrigation and industrial use; however, dissolved solids and fluoride concentrations are higher than that recommended by the Texas Department of Health in regard to public water supply. Approximately 6,000 acre-feet ($7.4 \mathrm{hm}^{3}$) of ground water was pumped from the Edwards-Trinity (Plateau) aquifer in the north Coyanosa area during 1974.

South Coyanosa Area

The south Coyanosa irrigation area lies along Coyanosa Draw, 15 miles (24 km) west of Fort Stockton. About 3,000 acres $\left(1,200 \mathrm{hm}^{2}\right)$ of land is irrigated in this area. Most of the ground water is pumped from the Edwards-Trinity (Plateau) aquifer which is 500 to 700 feet (152 to 213 m) thick. The Trinity sand portion of the aquifer is about 200 feet (61 m) thick and yields a large part of the water. Although the overlying limestones contain many fractures and reach a thickness of 500 feet (152 m), the permeability and storage capacity are low because the fractures are small. According to Figures 7 and 8, water levels range from about 200 to 280 feet (61 to 85 m) below land surface with declines of as much as 149 feet $(45 \mathrm{~m})$. Depths of wells in this area range from 450 to 600 feet (137 to 183 m).

Water quality in the western part of the area is generally less than $500 \mathrm{mg} / /$ dissolved solids which is suitable for most uses. However, most of the water in the eastern part of the area contains more than $1,000 \mathrm{mg} / \mathrm{l}$ dissolved solids which would limit it to irrigation of sandy soils and certain industrial uses such as production of hydrocarbons. Approximately 9,000 acre-feet ($11 \mathrm{hm}^{3}$) of water was pumped from the Edwards-Trinity (Plateau) aquifer in the south Coyanosa area during 1974.

Fort Stockton-Leon-Belding Area

This irrigation area includes Leon Springs and Leon Lake, Fort Stockton, and Belding railroad siding.

The Edwards-Trinity in this area has been faulted and contains a highly permeable zone created by interconnected solution cavities in the limestone. The system of solution cavities apparently extends from the Belding Fault zone to Leon Springs and Comanche Springs. During the period 1959 to 1973, water levels dectined 59 feet (18 m) in the Leon area and 83 feet (25 m) in the Belding area (Figure 8). Although a considerable amount of water is still pumped from the Edwards-Trinity (Plateau) aquifer near Leon Lake and Fort Stockton, wells completed in the Rustler Formation have been developed to supplement the Edwards-Trinity wells in the Belding area. This increased pumpage from the Rustler has resulted in stable water levels in some Edwards-Trinity wells in the area. Depths of the Edwards-Trinity wells in the Fort Stockton-Leon-Belding irrigation area range from 300 to 600 feet (91 to 183 m).

The chemical quality of the water in the area ranges from about $2,000 \mathrm{mg} / 1$ to almost $4,000 \mathrm{mg} / \mathrm{l}$ dissolved solids (Figure 6). This limits use of the water to irrigation of salt-tolerant crops grown on porous soils and to selected industries. During 1974, approximately 45,000 acre-feet ($55 \mathrm{hm}^{3}$) of ground water was pumped from the Edwards-Trinity (Plateau) aquifer.

Girvin Area

The Girvin irrigation area is about 4 to 8 miles (6.4 to 13 km) southwest of the town of Girvin. It consists of approximately 3,400 acres $\left(1,380 \mathrm{hm}^{2}\right)$ of irrigated land. Almost all wells in this area produce from the Edwards-Trinity (Plateau) aquifer and range in depth from 150 to 400 feet (46 to 122 m). Figures 7 and 8 show water levels in this area that range from about 110 feet to 180 feet (34 to 43 m) below land surface, with declines of as much as 43 feet (13 m).

Dissolved-solids concentrations of water produced from the Edwards-Trinity (Plateau) aquifer in this area range from $3,250 \mathrm{mg} / \mathrm{l}$ to more than $5,000 \mathrm{mg} / \mathrm{l}$ (Figure 6). This limits use of the water to irrigation and industrial purposes. Approximately 9,000 acre-feet $\left(11 \mathrm{hm}^{3}\right)$ of ground water was pumped from the Edwards-Trinity (Plateau) aquifer during 1974.

Bakersfield Area

The Bakersfield irrigation area comprises about 5,000 acres $\left(2,020 \mathrm{hm}^{2}\right)$ north of the town of Bakersfield. Most of the wells in this area produce water from the alluvium; however, a few wells on the perimeter of the alluvial trough tap the Edwards-Trinity (Plateau) aquifer. Wells in the Cretaceous Formations are

300 to 400 feet deep (91 to 122 m). Depths to water in this area range from 90 to 100 feet (27 to 30 m) below land surface (Figure 7). According to Figure 8, the maximum recorded decline during the period from 1959 to 1973 was 16 feet (4.9 m).

Figure 6 shows one well (53-06-501) in this area with water containing $1,740 \mathrm{mg} / \mathrm{l}$ dissolved soldis. Approximately 5,000 acre-feet ($6.2 \mathrm{hm}^{3}$) of ground water was pumped from the Edwards-Trinity (Plateau) aquifer in the Bakersfield area during 1974.

The coefficient of transmissibility of the Edwards-Trinity (Plateau) aquifer in Pecos County ranges upward from a few thousand to 10,000 gallons per day per foot [124,180 (1/d)/m].

Reeves County Ranch Area

The western section of Reeves County and the parts of Culberson and Jeff Davis Counties underlain by the Edwards-Trinity (Plateau) aquifer are devoted primarily to ranching. Water for cattle and domestic use is obtained from wells equipped principally with windmills. Depths to water in this area range from 30 to 360 feet (9.1 to 110 m) below land surface (Figure 7). Except for the area just north of Balmorhea where a decline as much as 70 feet (21 m) is recorded, water levels have been stable (Figure 8).

Water quality varies greatly with dissolved solids ranging from less than $500 \mathrm{mg} / 1$ in the southwestern part to more than $3,000 \mathrm{mg} / \mathrm{l}$ in the northern part of this area (Figure 6).

Pecos County Ranch Area

That part of southeastern Pecos County known as the Stockton Plateau is overlain by relatively flat-lying Cretaceous formations and is devoted entirely to ranching since the land surface is too rough for cultivation. Water is obtained from wells equipped with windmills and electric pumps. Water levels in this area range in depth from 120 to 600 feet (37 to 183 m) below land surface and have not changed significantly during the period of record (Figure 7).

Water quality in this area is good with dissolved solids generally less than $500 \mathrm{mg} / \mathrm{I}$ (Figure 6).

Terrell County Ranch Area

Terrell County is devoted almost entirely to ranching with a small amount of irrigation from the alluvium in the Pecos River valley. Practically all livestock, domestic, and public supply wells in the county obtain their water from the Edwards-Trinity (Plateau) aquifer. The same holds for those parts of Brewster and Val Verde Counties that are underlain by the Edwards-Trinity (Plateau) aquifer. Because of low permeabilities, well yields are small in this area and water levels range from less than 50 to almost 800 feet (61 to 274 m) below land surface (Figure 7). Changes in water levels have been insignificant during the period of record.

Except for a small area in the northern part of the county just south of Sheffield, water quality is good with dissolved solids less than $500 \mathrm{mg} / \mathrm{l}$ (Figure 6).

RECOMMENDATIONS

The existing water level monitoring program for the Edwards-Trinity (Plateau) aquifer should be updated periodically to reflect changes in the distribution of pumping wells. The network of observation wells that are used to monitor water levels in the aquifer should be reevaluated periodically with the purpose of getting adequate data for the aquifer from a minimum number of strategically located wells. Using essentially the same criteria, an effective long-term chemical quality monitoring program should be established for the aquifer. The monitor wells should be located in critical areas, such as public supply and irrigation areas. The wells should be sampled periodically depending on the amount of change in chemical quality. Also, any oil-field brine disposal or injection wells that may be contaminating the aquifer should be located and plugged. Before planning additional large-scale development of ground water, the chemical quality of the water and anticipated well yields in each area should be evaluated.

SELECTED REFERENCES

Adams, J. E., 1944, Upper Permian Ochoa Series of Delaware Basin, west Texas and southeastern New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 28, no. 11, pp. 1596-1625.

1965, Stratigraphic-tectonic development of Delaware Basin: Am. Assoc. Petroleum Geologists Bull., v. 49, no. 11, pp. 2140-2148.

Armstrong, C. A., and McMillion, L. G., 1961, Geology and ground-water resources of Pecos County, Texas: Texas Board Water Engineers Bull. 6106, v. 1 and 2.

Audsley, G. L., 1956, Reconnaissance of ground-water development in the Fort Stockton area, Pecos County, Texas: U.S. Geol. Survey open-file rept.

Brand, J. P., and DeFord, R. K., 1962, Geology of eastern half of Kent quadrangle, Culberson, Reeves, and Jeff Davis Counties, Texas: Univ. Texas Bur. Eccn. Geology, Geol. quad. map 24.

Broadhurst, W. L., Sundstrom, R. W., a: :i, Weaver, D. E., 1951, Public water supplies in western Texas: U.S. Geol. Survey Water-Supply Paper 1106.

Brown, J. B., Rogers, L. T., and Baker, B. B., 1965, Reconnaissance investigation of the ground-water resources of the middle Rio Grande basin, Texas: Texas Water Comm Bull. 6502, pt. 2.

Cartwright, L. D., Jr., 1930, Transverse section of Permian Basin, west Texas and southeast New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 14, no. 8, pp. 969-981.

Christner, D. D., and Wheeler, O. C., 1918, The geology of Terrell County: Univ. Texas Bull. 1819.

Core Laboratories, Inc., 1972, A survey of the subsurface saline water of Texas: Texas Water Devel. Board Rept. 157, v. 1-8.

Dante, J. H., 1947, Records of wells and springs in northern Pecos County, Texas: Texas Board Water Engineers duplicated rept.

Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, pp. 1155-1179.

Dean, H. T., Dixon, R. M., and Cohen, Chester, 1935, Mottled enamel in Texas: Public Health Repts., v. 50, pp. 424-442.

Dennis, P. E., and Lang, J. W., 1941a, Records of wells and springs and analyses of water in Loving, Ward, Reeves, and northern Pecos Counties in Water resources of the Pecos River basin, Texas: Texas Board Water Engineers duplicated rept., v. 2.

1941b, Records of auger holes including logs, records of fluctuations of water levels, water analyses, and maps showing locations of wells in Water resources of the Pecos River basin, Texas: Texas Board Water Engineers duplicated rept., v. 3.
__Edson, D. J., Jr., 1951, Comanche Series, Lancaster Hill, Crockett County, Texas: Univ. Texas at Austin thesis.

Eifler, G. K., Jr., 1951, Geology of the Barrilla Mountains, Texas: Geol. Soc. America Bull., v. 62, pp. 339-353.

Flawn, P. T., Goldstein, August, Jr., King, P. B., and Weaver, C. E., 1962, The Quachita System: Univ. Texas Bur. Econ. Geology Pub. 6120.

Follett, C. R., 1954, Records of water-level measurements in Reeves County, Texas: Texas Board Water Engineers Bull. 5414.

Freeman, V. L., 1968, Geology of the Comstock-Indian Wells area, Val Verde, Terrell, and Brewster Counties, Texas: U.S. Geol. Survey Prof. Paper 594-K.

Groat, C. G., 1972, Presidio Bolson, Trans-Pecos Texas and adjacent Mexico-Geology of a desert basin aquifer system: Univ. Texas Bur. Econ. Geology, Rept. No. 76.

Haynie, R. B., 1948, Preliminary geologic studies-San Francisco Creek to Indian Creek: Internat. Boundary and Water Comm. Field Inv., Rept. No. G-4.
_1951, Preliminary geologic studies-Reagan Canyon to San Francisco Creek: Internat. Boundary and Water Comm. Field Inv., Rept. No. G-3.

Hood, J. W., 1950, Phenomenal increase in irrigation with ground water near Pecos, Texas, described: U.S. Geol. Survey open-file rept.

Hood, J. W., and Knowles, D. B., 1952, Summary of ground-water development in the Pecos area, Reeves and Ward Counties, Texas, 1947-51: Texas Board Water Engineers Bull. 5202.

Iglehart, H. H., 1967. Occurrence and quality of ground water in Crockett County, Texas: Texas Water Devel. Board Rept. 47.

International Boundary and Water Commission, United States and Mexico, 1959, Flow of the Rio Grande and related data from Elephant Butte Dam. New Mexico, to the Gulf of Mexico: Internat. Boundary and Water Comm. Water Bull. 29.

Jones, C. T., 1938, Cretaceous and Eocene stratigraphy of Barrilla and eastern Davis Mountains of Trans-Pecos Texas: Am. Assoc. of Petroleum Geologists Bull., v. 22, no. 10, pp. 1423-1439.

Kiersch, G. A., and Hughes, P. W., 1952, Structural localization of ground water in limestones-Big Bend district, Texas-Mexico (abs.): Geol. Soc. America Bull., v. 63, no. 12, pt. 2, pp. 1334-1335.

Knowles, D. B., and Lang, J. W., 1947, Preliminary report on the geology and ground-water resources of Reeves County, Texas: Texas Board Water Engineers duplicated rept.

Lang, J. W., 1941, Results of plugging a leaky artesian well at Pecos Junior High School, Pecos, Texas: U.S. Geol. Survey open-file rept.
___1942a, Available supplies of ground water of low mineral content in vicinity of Fort Stockton, Texas: U.S. Geol. Survey open-file rept.
___1942b, Ground water available for emergency landing fields near flying school at Pecos, Texas: U.S. Geol. Survey open-file rept.
_1943, Ground-water resources of the Toyah area, Reeves County, Texas: U.S. Geol. Survey open-file rept.

Lang, W. B., 1937, Permian formations of the Pecos Valley of New Mexico and Texas: Am. Assoc. Petroleum Geologists Bull., v. 21, no. 7. pp.833-898.

Lee, Frank, 1954, Records of test holes along the Rio Grande in Terrell and Val Verde Counties: U.S. Geol. Survey open-file rept.

Livingston, Penn, and Bennett, R. R., 1940, Ground water in the vicinity of Sanderson, Texas: U.S. Geol. Survey open-file rept.

Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Engineering and Environment, app. D, pp. 265-271.

Muse, W. R., 1965, Water-level data from observation wells in Pecos and Reeves Counties, Texas: Texas Water Comm. Bull. 6507.
_1966, Water-level data from observation wells in Culberson, Jeff Davis, Presidio, and Brewster Counties, Texas: Texas Water Devel. Board Rept. 16.

Nye, S. S., and Rupp, V. W., 1941, Partial records of wells in southeastern part of Reeves County, Texas: U.S. Geol. Survey open-file rept.

Ogilbee, William, Wesselman, J. B., and Irelan, Burdge, 1962, Geology and ground-water resources of Reeves County, Texas: Texas Water Comm. Bull. 6214, v. 1 and 11.

Peckham, R. C., 1963, Summary of the ground-water aquifers in the Rio Grande basin: Texas Water Comm. Circ. 63-05.

Rayner, F. A., 1959, Records of water-level measurements in Crockett, Glasscock, Reagan, Upton, and Terrell Counties, Texas, 1937 through 1957: Texas Board Water Engineers Bull. 5903.

Reeves, R. D., and Small, T. A., 1973, Ground-water resources of Val Verde County, Texas: Texas Water Devel. Board Rept. 172.

Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, the geology of Texas, v. I. Stratigraphy: Univ. Texas Bull. 3232.

Stevens, J. C., 1957, Ground-water geology of Hovey area, Brewster and Pecos Counties, Texas: Univ. Texas at Austin thesis.

Texas Department of Health, 1977, Drinking water standards governing drinking water quality and reporting requirements for public water supply systems: Texas Dept. of Health. Div. of Water Hygiene rept.

Texas Water Development Baord, 1975, Inventories of irrigation in Texas, 1958, 1964, 1969, and 1974: Texas Water Devel. Board Rept. 196.

Tighe, R.W., 1946, Geologic reconnaissance-Agua Verde Reservoir on the Rio Grande: International Boundary and Water Comm. rept.
1947. Diamond drilling, Agua Verde dam site, Axis no 2: International Boundary and Water Comm. rept.

Tighe, R. W., and Bustamante, J. R., 1947, Agua Verde Reservoir ground-water investigation, measurement of static water level in drilled wells: International Boundary and Water Comm. rept.
U.S. Bureau of Reclamation, 1956, Reconnaissance report on Fort Stockton project, Texas: U.S. Bur. of Reclamation, Region 5, Amarillo, Texas, duplicated rept.
U.S. Public Health Service, 1962, Drinking-water standards, 1962: Public Health Service Pub. 956, U.S. Dept. Health, Education, and Welfare.
U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60.

West Texas Geological Society, 1959, Geology of the Val Verde Basin: West Texas Geol. Soc. Guidebook, 1959 field trip.
1961. Shallow formations and aquifers of the west Texas area in Geologic sections: West Texas Geol. Soc. Pub. 61-45.

1965, Geology of the Big Bend area, Texas: West Texas Geol. Soc. Pub. 65-51.
__ 1968, Delaware basin exploration, guidebook: West Texas Geol. Soc. Pub. 68-55.

White, W. N., Gale, H.S., and Nye, S.S., 1941. Geology and ground-water resources of the Balmorhea area, western Texas: U.S. Geol. Survey Water-Supply Paper 849-C.

Winslow, A. G., and Kister, L. R., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365.

All wells are drilied unless otherwise noted in remarks column.
Water Level \quad : Reported water levels are given in feet; measured water levels are given to the nearest tenth or hundredth of a foot.
Method of 1 ft and type of power: E , electric; G, Method of 11 ft E, electric; G, gasoline, butane, or diesel engine; N, none; c, cylinder; S, submersible
: D , domestic; Ind, industrial; Irr, irrigation; P, pubilic supply; S, livestock; N, none.

See foornotes at end of table

Table 2. --Records of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

See footnotes at end of table.

Table 2.--Records of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer-Continued

See footnotes at end of table.

Table 2.--Records of Selected Wells and Springs in the Edwerds-Trinity (Plateau) Aquifer--Continued

See footnotes at end of tanle.

Table 2.--Records of Selected Wells and Springs in the Edwards-Trintty (Plateau) Aquifer--Continued

[^0]Table 2.--Records of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

see foomotes at end of table.

Table 2.-ARecords of Seiected helio and spings in the Edwards-Trinity (Plateau) Aquifer--Concinued

See footnotes at end of table.

Table 2.--Records of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

Well	Owner	Driller	Dace completed	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (f t) \end{gathered}$	Casing		Altitude uf land surface (ft)	Water level		$\begin{aligned} & \text { Mechod } \\ & \text { of } \\ & 1 \mathrm{ift} \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Diafali- } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\left.\begin{array}{r} \text { Depth } \\ (\mathrm{ft}) \end{array} \right\rvert\,$		Below Landsurface datum (ft)	luate of measurement			
		Thompson Drilling Company	1965	1,285		Reeves County--Continued			Oct. 22, 1970	--	--	Originally drilled to $3,540 \mathrm{ft}$.
* WD-47-56-902	Banky Stocks				$\begin{gathered} 10-5 / 8 \\ 9-5 / 8 \end{gathered}$	575	3,619	332.91				
* 52-02-601	H. Weinacht Estate	.-	1930's	500	6	200?	3,380	$\begin{aligned} & 79.5 \\ & 84.5 \end{aligned}$	$\begin{array}{ll} \text { Sept. 21, } & 1959 \\ \text { Mar. 16, } & 1970 \end{array}$	c, w	D, 5	Well $\mathrm{x}-20$ In TWC Bulletin 6214.
* 610	Reeves County Water Improvement District No. 1	--	--	Spring	\cdots	--	3,306	--	--	Flows	Irr	Giffin Springs.
611	State of Texas	--	--	Spring	--	\cdots	3,306	--	-*	Flows	Irr	San Solomon Springs. X-21 in TWC Bulletin 6214. We11 Y-26 in TWC Bulletin 6214. Temp. $75^{\circ} \mathrm{F}$ on July 14, 1970.
* 04-205	Mrs. Oscar Graef	Royce Hemmeline	1954	536	16	428	2,964	307.66	Nov. 3, 1958	T, G	Irr	
* 301	Rudolf toefs	L. W. Stratton	--	615	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	2,979	$\begin{aligned} & 320.3 \\ & 289.8 \end{aligned}$		--	ii	--
* 303	do	--	1960's	--	8	-	--	--		c, w	s	--
* 503	John A. Moore	c. c. Calvert	1955	930	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 512 \\ & 930 \end{aligned}$	2,980	328.61	Nov. 4, 1958	T, G	Irr	Pump set at 500 ft .
* 05-201	AgriculturalLivestock Finance Corp.	--	--	--	6	--	3,125	--	--	c, w	--	--
* 401	Mrs. Oscar Graef	--	--	445	--	\cdots	3,109	$\begin{aligned} & 264.2 \\ & 285.8 \end{aligned}$	$\begin{array}{ccc} \text { Mar. } & 27, & 1959 \\ \text { July } & 29, & 1970 \end{array}$	c, w --	s	--
* 402	do	--	--	--	8	--	3,142			,	s	Well Y-38 in TWC Bulletin 6214.
* 502	do	--	--	--	6		3,192	--	--	$\begin{aligned} & \mathrm{c}, \mathrm{w} \\ & \mathrm{~s}, \mathrm{E} \end{aligned}$	$\begin{gathered} \mathrm{s} \\ \mathrm{D}, \mathrm{~s} \end{gathered}$	--
* 12-301	Agricultural - Livestock Finance Corp.	--	--	314	5		3,300	239.1 241.98	$\begin{array}{lr} \text { Sept. } & 1959 \\ \text { July } 16, & 1970 \end{array}$			Well Y-51 in TWC Bulletin 6214.
						Terrell County						
* xx -53-30-501	Abilene Christian Univ.	-*	--	400	6				--	S, E	s	Temp. $74^{\circ} \mathrm{F}$ on May 17. 1973.
801	J. C. Mitchell	Humble oll \& Refining Company	--	12,074	--	--	2,909	--	--	--	--	Oil test. 3
901	J. M. Corder	Mobil Oil Company	--	15,713	\cdots	--	2,848	\cdots	**	\cdots	--	Do.
31-601	David Mitchell	--	1906	250	8	--	2,6801	196.2	Nov. 16, 1960	c, w	D, s	--
32-101	Marathon-Pure University	Marathon 011 Company, Pure Oil Company	--	14,027	--	--	2,450	--	--	--	--	Oil test. 3
* 601	Mary Mitchell	--	--	--	8	--	2,402	210.27	May 17, 1973	c, w	s	--
* 38-501	Sid Maskins	"Curly" Seareg	1950	500	--	--	2,900:	438.7	Nov. 15, 1960	c, w	D. S	--
* 39-301	N. M. Mitchell	--	--	$600+$	--	--	2,830	$\rightarrow 500$	Nov. 16, 1960	S, E	5	--
40-101	George K. Mitchell	Mobil Oil Company	--	14,442	--	--	2,681	--	--	--	--	Oil test. 3

See footnotes at end of table.

Table 2.0-Records of Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer-=Continued

Well	Owner	Driller	$\left\|\begin{array}{c} \text { Date } \\ \text { completed } \end{array}\right\|$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft } \end{gathered}$	Casing		$\left\lvert\, \begin{aligned} & \text { Altitude } \\ & \text { of land } \\ & \text { surface } \\ & \text { (fft) } \end{aligned}\right.$	Hater level		$\begin{aligned} & \text { Method } \\ & \text { of } \\ & \mathrm{lift} \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { (ft) } \end{gathered}$		Below landsurface datum \qquad	Date of measurement			
* xx-53-44-801			1945	257	Terre11 County--Continued				$\begin{array}{ll} \text { Juuce } \\ \text { Nov. } & 1,1566 \\ \hline \end{array}$	c, w	s	--
	Mrs. W. T. Bondurant	--			5	--	3,35u士	$\begin{aligned} & 235.5 \\ & 235.45 \end{aligned}$				
* 46-901	Mrs. Lee Dudley	--	--	425450	--	--	2,620 \pm	381.24	Nov. 15, 1960	--	s	--
\% 48-101	R. W. Prosset	--	--		8	--	2,530士	426.5	Nov. 16, 1960	c, w	d, s	--
\% 801	MoMullen Estate	-*	--	500	8	--	2,420	360.7	Nov. 17, 1960	s, E	D, s	--
\% 53-801	Terrell County Water Improvement District No. 1	--	--	840	7	--	2,848	$\begin{aligned} & 400 \\ & 356.4 \end{aligned}$	$\begin{array}{lr} \text { Jan. } & 1940 \\ \text { May } & 15, \\ 1973 \end{array}$	c, e	P	Pump set at 480 ft . Temp. $73^{\circ} \mathrm{F}$ on May 15, 1973.
54-101	Beulah McCue	Gulf oil Corp.	--	12,751	--	--	3,162	--	--	--	--	011 test. 3
\% 55-501	F. M. Wood	--	--	680	--	--	2,480	550	Nov. 1960	$\begin{aligned} & c, G \\ & c, w \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{~s} \\ & \mathrm{D}, \mathrm{~s} \end{aligned}$	-.
56-501	John williams	--	--	1,814	--	--	2,200	$\begin{aligned} & 387.9 \\ & 386.3 \end{aligned}$	$\begin{array}{ll} \text { July } & 14,1947 \\ \text { May } & 15, \\ 1977 \end{array}$			--
* 63-101	Pinky Caruthers	--	--	>800	6	--	2,470	--	--	c, w	s	--
* 64-402	Southern Pacific Railroad	--	1900	1,800	8	--	2,100	$\begin{aligned} & 536.2 \\ & 531.0 \end{aligned}$	$\begin{array}{cc} \begin{array}{c} \text { July } \\ \text { Nov. } \end{array} & \text { s, }, 1957 \\ \hline \end{array}$	s, E	D, P	Water reported at about 600 ft .
901	Barksdale	R, E. Freeman	--	6,977	--	\cdots	2,067	--	--	--	--	Oil test. 3
54-18-702	-- Smith	Shel1-Humble	--	3,377	--	--	2,317	--	--	--	-*	Do.
* 902	W. E. White Estate	--	--	--	--	--	2,042	$\begin{aligned} & 26.42 \\ & 27.10 \end{aligned}$	$\begin{array}{ll} \text { Feb. } & 8, \\ \text { Dec. } & 1962 \\ 5,1972 \end{array}$	c, \%	s	3
25-501	Annie Spencer	Hurble Oil \& Refining Company	--	14,616	--	--	2,322	--	--	--	--	011 test. 3
26-501	-- Allison	Texas Crude Oil Company and the Superior oil Company	--	13,102	--	\cdots	2,658	--	--	--	--	Do.
27-801	-- Graham	Humble 0 il \& Refining Company	--	--	--	\cdots	1,964	--	--	-	--	Do.
33-401	Alma h. Poulter	Honoiulu oil corp.	--	6,389	--	--	2,326	--	--	--	--	Do.
* 901	Sallie Packanhan Estate	Wesley Young	--	660	4	644	2,450	525	1960	c, c	Ind	Well used to drill oil test.
34-202	L. H. Hicks	--	1955	> 200	10	--	--	$\begin{aligned} & 79.78 \\ & 56.51 \end{aligned}$	$\begin{array}{lrr} \text { Jan. } & 26, & 1955 \\ \text { Dec. } & 5, & 1972 \end{array}$	N	N	3
701	Avis C. Scott	Sinclair Oil and Gas Company	--	14,748	--	--	2,431	-*	--	\cdots	--	041 test. 2
43-101	-- Mitchell	Shell ofl Company	--	14,427	--	--	1,905	--	--	--	-	Do.
49-201	Austin Chriesman	A. F. Holdeman	1926	550	8	--		476.1	Nov. 17, 1960	c, w	D, s	--
701	Adams Brothers	--	--	669.	-.	--	2,125	382.1	July 15, 1947	--	D, s	--
901	Bassett Mineral Trust	Standard OIl Company of rexas	--	6,307	--	--	2,021	--	--	--	--	Oil test. $2 /$

See footnotes at end of rable.

Table 2. - -Records of Selected Wells and Spring to the Edwards-Trinity (Plateau) Aquifer--Continued

Well	Owner	Driller	$\begin{gathered} \text { Date } \\ \text { completed } \end{gathered}$	$\begin{gathered} \text { Dequh } \\ \text { of } \\ \text { well } \\ \text { (ft) } \end{gathered}$	Casing		Alricude of land (ft) (ft)	Water level		$\begin{aligned} & \text { Mechod } \\ & \text { of } \\ & \text { lift } \end{aligned}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \end{gathered}$	Remarks
					$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { (in.) } \end{aligned}$	$\begin{array}{\|c} \text { Depth } \\ (\mathrm{ft}) \end{array}$		Delow land. surface datum (ft)	$\begin{aligned} & \text { Date of } \\ & \text { mes surement } \end{aligned}$			
* XX-54-50-701					Terrell conty--Continued							
	Bob Whice	--	--	$550 \pm$	8	--	2,210土	491.0	Nov. 18, 1960	c, w	D, S	--
* 58-501	Austin Ghriesman	--	--	--	6	--	--	--	--	c, w	s	--
* 71-01-501	Sam Bell	Cox and Wagonner	1946	1,000	8	--	1,915	599.4	Mar. 3, 1950	c, w	s	Temp. $73^{\circ} \mathrm{F}$ on May 14. 1973.
02-101	do	--	--	--	--	--	1,760	461.6	Juty 9, 1947	-	s	--
09-401	John A. Martin	--	--	275	6	--	1,443	191.8	June 23, 1947	c, w	s	Water reported at 240 ft .
10-101	Stoney M. Smith	--	--	--	--	--	1,720	496.7	July 12, 1947	--	s	Water reported at 594 ft .
* 72-05-301	T. A. Herring	--	--	--	--	--	2,162	517.4	July 19, 1947	--	D, S	Water reported at 517 ft .
06-401	Hinson and Stumberg	--	--	925	6	-*	2,325	775	1950	c. w	s	--
07-101	H. E. Gation	--	1938	665	7	--	2,160	586.3	July 7, 1947	c, w	s	--
08-301	R. J. Barksdale	--	--	--	--	--	2,050	605.0	June 27, 1947	-	s	--
701	John Harrison	--	--	898	--	--	2,121	793.6	July 2, 1947	c, g	s	--
16-102	do	--	--	>900	--	--	2,046	767.6	June 28, 1947	S. E	s	--
					val Verde County							
* YR-54-51-801	Eastman Ranch	--	--	640	7	--	2,000	347.3	Oct. 18, 1968	c, w	D, s	--
903	-- Bassett	Western Natural Gas Company	1953	4.774	-*	--	1,875	--	--	--	--	$0: 11$ test, 2
* 59-801	Mrs. M. B. Cox	--	--	900	7	--	--	600	Oct. 25, 1968	c, w	s	Pump set at 800 ft .
60-304	w. Babb	o. W. Killam	1949	3.075	--	--	1.559	--	--	--	--	Oil test.
* 501	R. Cash	-- Snow	1925	574	6	--	--	480	Aug. 27, 1969	c, w	D	Pump set at 550 ft .
* 71-03-701	C11fford Owens	-- Crawford	1934	706	8	\cdots	1,750	$\begin{gathered} 642.7 \\ 574.1 \end{gathered}$	$\begin{aligned} & \text { June } \begin{array}{r} 9550 \\ \text { Nov. } \\ 29,1965 \end{array}{ }^{2950} \end{aligned}$	c, w	s	Reported discharge $7 \mathrm{gai} / \mathrm{min}$. Temp. $68^{\circ} \mathrm{F}$ on May 14, 1973.
* 04-402	I. B. Newman	Lonnie Crawford	1946	400	8	--	1,600	$\begin{aligned} & 202.9 \\ & 297.94 \end{aligned}$	$\begin{array}{ll} \text { May } & 11,1967 \\ \text { Nov. } & 20, \\ 1969 \end{array}$	c, w	5	Pump set at 400 ft .
501	I. F. Ingram	Phantom Oil Company	1930	3,010	*	--	1,487	--	--	--	--	011 test.
11-502	Boye Babb, fr .	Meek and Page	1953	2,605	--	--	1,704	, --	--	--	--	Do.
* 601	J. H. Fisher	A. F. Holderman	1938	885	8	\cdots	1,650	$\begin{aligned} & 555.4 \\ & 565.7 \end{aligned}$	$\begin{array}{lr} \text { Mar. } & 1952 \\ \text { Jan. } & 19, \\ 1965 \end{array}$	c, ${ }^{\text {b }}$	s	Temp. $74^{\circ} \mathrm{F}$ on May 14, 1973.
* 701	Ross Foster	2. B. Fuller	1949	250	8	--	1.240	200	Aug. 12, 1968	c. W	s	--
13-201	J. W. Ingram	C. A. Mauer	1947	2,030	--	--	1.564	--	--	--	--	0 Oil test.
* 401	A. L. Brown Estate	-- Snow	1920	750	8	--	1,450	397.8	May 22, 1939	c, w	D, s	\cdots

* For chemical analysis of the water see Table 3 .
$\frac{1}{2}$ Water-level measurements from observation well in files of che Texas Department of Water Resources, dustin. Texas.
2 Mechanical log of well in files of the Texas Department of Water Resources

Analyses are in miliigrams per liter except percent sodium, specific conductance, pH, and sodium-adsorption ratio (SAR)

Well	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { of } \mathrm{fl} \\ & \text { (ft) } \end{aligned}$	Date of collection	$\begin{gathered} \text { silica } \\ \left(\mathrm{SiO}_{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Ca} 1- \\ & \begin{array}{c} \mathrm{c} 1 \mathrm{um} \\ (\mathrm{Cos}) \end{array} \end{aligned}$	$\underset{\substack{\text { Magne- } \\ \text { sium }}}{ }$ (Mg)	$\begin{gathered} \text { Sodium } \\ \text { (Na) } \\ \text { plus } \\ \text { Putasoinm } \\ \text { (K) } \end{gathered}$	$\begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \text { (HCOH3) } \end{aligned}$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \text { (som) } \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (C1) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { ride } \end{gathered}$	$\begin{gathered} \text { Ni- } \\ \text { trate } \\ \text { (nouz) } \end{gathered}$	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { solicids } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { hardness } \\ \text { as } \mathrm{CuCO}_{3} \end{gathered}$	Fercent sodi unl	Specific conductance: (micromhos at $25^{\circ} \mathrm{C}$	pH	Sodium adsorp- tion ratio (SAR)
								ter Cour									
BK-52-29-802	1,700	June 6, 1973	21	139	17	163	207	457	61	2.1	15.0	980	419	45.8	1,380	7.2	3.5
30-501	650	do	19	130	52	277	254	334	389	2.1	$<.4$	1,330	539	52.8	2,100	7.5	5.2
53-58-302	720	May 16, 1973	17	48	21	26	232	31	24	. 6	12.0	294	209	21.3	490	7.7	. 8
802	790	do	14	69	20	10	276	17	12	. 5	9.0	288	255	7.6	480	7.8	. 3
72-12-101	857	do	16	62	27	53	259	89	36	1.1	19.0	430	265	30.3	692	7.8	1.4
								rson Cou									
HL-47-47-901	450	Aug. 5, 1970	10	338	105	140	189	1,100	224	2.2	< .4	2,010	1,280	19.2	2,420	7.5	1.7
55-604	--	Oct. 6, 1970	8	118	50	51	221	378	21	. 5	< .4	740	500	18.2	996	7.6	1.0
901	1,150	Aug. 12, 1970	18	245	83	461	203	840	660	2.0	. 4	2,409	950	51.3	3,400	7.8	6.4
56-103	--	Aug. 6, 1970	16	382	110	276	182	1,250	388	2.1	. 4	2,513	1,410	29.9	3,050	7.3	3.2
64-101	1,300	Mar. 16, 1969	--	153	39	219	267	368	306	1.3	2.6	1,360	542	46.8	2,376	7.4	4.1
								Davis Cout									
ps-52-01-401	314	May 4, 1973	15	40	5	8	126	16	11	. 2	2.7	160	121	12.6	270	7.2	. 3
902	623	Oct. 18, 1969	18	49	20	23	245	39	12	1.3	$<.4$	282	204	19.7	469	7.7	. 7
09-201	700	May 15, 1969	29	62	13	20	250	35	6	. 8	1.0	290	207	17.4	451	7.9	. 6
301	635	do	33	81	7	10	261	26	5	. 5	< .4	291	232	8.8	460	7.6	. 3
								County									
WS -45-49-301	--	Dec. 13, 1971	10	116	77	890	336	970	890	3.4	< .4	3,120	610	76.2	4,360	7.6	15.7
902	300	May 3, 1973	19	336	255	1,260	145	1,630	1,900	3.5	. 4	5,500	1,890	59.1	6,270	7.7	12.6
57-601	96	Apr. 15, 1975	12	141	42	178	240	314	291	1.8	< . 4	1,100	530	42.4	1,650	7.6	3.4
901	470	May 3, 1973	6	136	58	231	183	394	387	2.2	< . 4	1,300	580	46.4	2,000	7.8	4.2
59-901	259	do	8	550	276	780	201	1,940	1,420	3.6	< .4	5,100	2,510	40.4	5,996	7.7	6.8
60-902	400	Apr. 15, 1975	14	500	110	420	238	1,340	720	2.2	22.0	3,250	1,710	34.8	3,200	7.3	4.4
61-702	--	May 2, 1973	13	600	140	530	256	1,650	910	2.7	2.9	3,980	2,080	35.7	4,630	7.6	5.1
46-63-601	203	Dec. 14, 1971	29	80	12	43	210	87	54	1.0	2.5	412	250	27.4	645	7.5	1.2
64-302	690	May 3, 1973	28	142	34	166	233	311	261	1.2	3.5	1,060	496	42.1	1.600	7.7	3.2
52-06-502	225	do	14	93	19	54	222	156	59	1.0	8.0	510	311	27.3	785	7.9	1.3
07-302	501	June 7, 1973	15	110	31	79	218	198	130	1.1	10.0	680	403	29.9	1.050	7.5	1.7

See footnotes at end of table.

Table 3.--Chemical Analyses of Water From Selected Wells and Springs in the Edwards-Trinity (Plateau) Aguifer-Continued

We 11	Depth of well (ft)	Date of collection	$\begin{aligned} & \text { Silica } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (} \mathrm{Ca} \text { (} \end{aligned}$	$\begin{gathered} \text { Magne- } \\ \text { slum } \\ \text { (Mg) } \end{gathered}$	Sodium (Na) Plus Potassium (K)	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\begin{aligned} & \text { Sul- } \\ & \text { fate } \\ & \text { (SO24) } \end{aligned}$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (Cl) } \end{aligned}$	$\begin{gathered} \text { Fluo- } \\ \text { ride } \\ \text { (F) } \end{gathered}$	$\begin{gathered} \mathrm{Ni}- \\ \substack{\text { rate } \\ \text { (} \mathrm{NO}_{3} \text {) }} \end{gathered}$	$\begin{aligned} & \text { Dis- } \\ & \text { solved } \\ & \text { solids } \end{aligned}$		Percent	Specitice conductance: (micrombos at $25^{\circ} \mathrm{C}$)	pH	Sodium adsorp- tion ratio (SAR)
							Pecos	nty --Con									
JS -52-07-902	550	June 7, 1973	14	106	21	77	226	180	111	1.1	0.6	620	352	32.1	975	7.4	1.8
08-301	401	May 3, 1973	15	109	42	227	179	330	323	1.4	< . 4	1,140	446	52.6	1.750	7.8	4.7
908	346	Dec. 14, 1971	23	257	101	399	239	770	630	2.0	28.0	2,330	1,060	45.0	3,250	7.3	5.3
13-201	470	June 6, 1973	27	79	18	9	317	15	5	. 5	7.0	317	272	6.7	508	7.5	. 2
301	360	do	21	90	15	37	244	92	52	. 8	. 4	428	289	21.9	675	7.6	. 9
14-201	375	do	22	88	18	49	250	104	69	. 9	. 8	475	296	26.6	756	7.5	1.2
16-401	396	June 7, 1973	22	116	30	153	233	260	216	1.1	$<.4$	910	414	44.5	1,410	7.5	3.3
801	450	Apr. 10, 1958	27	145	45	268	267	384	380	--	--	1,395	547	50.7	2,200	7.5	4.9
21-301	350	June 6, 1973	22	56	14	20	205	44	17	1.4	5.1	280	196	18.0	442	7.7	. 6
22-801	450	Apr. 28, 1975	30	91	20	115	251	167	126	1.2	1.3	670	311	44.5	1,070	7.7	2.8
802	421	June 6, 1973	36	59	7	26	216	24	17	. 8	9.0	285	176	24.3	433	7.5	. 9
23-101	650	June 7, 1973	25	106	27	147	233	232	200	1.1	. 4	850	376	46.0	1,310	7.7	3.3
24-801	700	June 5, 1973	25	138	48	195	277	331	286	2.2	13.0	1,170	541	43.9	1,740	7.7	3.6
53-01-704	100	Aug. 19, 1970	25	316	237	530	242	1,580	740	2.7	38.0	3,592	1,760	39.6	4,390	7.7	5.4
02-102	260	Dec. 13, 1971	26	478	152	640	261	1,450	1,060	2.3	19.0	3,960	1,820	43.4	4,940	7.1	6.5
703	642	May 3, 1973	21	354	132	610	367	930	1,040	2.3	27.0	3,300	1,430	48.2	4,350	7.5	7.0
03-901	462	May 2, 1973	10	157	55	231	285	400	346	2.2	$<.4$	1,340	620	44.7	1,990	7.9	4.0
05-902	200	June 5, 1973	21	202	83	348	317	640	490	2.5	3.7	1,950	850	47.2	2,650	7.4	5.2
06-501	425	May 2, 1973	17	203	76	282	300	570	415	2.2	31.0	1,740	820	42.7	2,450	7.7	4.3
07-701	535	do	13	70	31	27	254	83	41	1.4	4.9	396	303	16.3	640	8.0	. 7
08-401	354	do	14	68	29	52	216	106	81	1.8	6.0	464	292	27.7	758	7.9	1.3
09-402	520	June 5, 1973	20	262	84	289	211	720	474	2.4	38.0	1,990	1,000	38.6	2,660	7.4	4.0
10-502	400	June 4, 1973	13	163	55	210	249	466	280	2.0	$<.4$	1,310	630	41.9	1,860	7.5	3.6
12-203	--	Apr. 14, 1975	20	312	103	510	295	940	780	2.0	7.0	2,820	1,210	47.7	3,400	7.4	6.3
801	375	June 4, 1973	16	74	16	23	245	46	31	1.0	11.0	338	252	16.6	551	7.8	. 6
14-501	387	June 5, 1973	13	62	14	13	212	33	18	1.4	4.9	263	212	11.8	434	7.8	. 4
15-601	503	do	13	62	17	18	222	35	27	1.2	7.0	289	226	14.8	481	7.8	. 5
19-101	450	June 4, 1973	17	44	15	21	189	30	22	1.5	$<.4$	244	170	21.0	435	7.3	. 7
21-701	864	do	16	122	23	55	256	138	111	1.0	25.0	620	402	23.0	965	7.4	1.2
22-501	515	June 5, 1973	12	70	14	16	235	34	21	1.1	7.0	291	232	13.0	488	7.6	. 5
28-801	585	June 4, 1973	16	62	17	18	242	31	20	. 8	9.0	293	227	14.8	481	7.5	. 5
37-502	650	do	16	60	11	14	218	20	16	. 9	7.0	252	196	13.5	418	7.6	. 4

See footnotes at end of table.

Table 3.-Chemical Analyses of Water From Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

See footnotes at end of table.

Table 3. --Chemical Analyses of Water From Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

See footnotes at end of table.

Table 3.--Chemical Analyses of water From Selected Wells and Springs in the Edwards-Trinity (Plateau) Aquifer--Continued

$\frac{1}{2}$ Analysis conducted by U.S. Geological Survey laboratories.

[^0]: See footnotes at end of table.

