

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 230

WATER QUALITY OF LIVINGSTON RESERVOIR ON THE TRINITY RIVER, SOUTHEASTERN TEXAS

By

Jack Rawson United States Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Department of Water Resources and the Trinity River Authority.

April 1979

TEXAS DEPARTMENT OF WATER RESOURCES

Harvey Davis, Executive Director

TEXAS WATER DEVELOPMENT BOARD

A. L. Black, Chairman Milton Potts George W. McCleskey John H. Garrett, Vice Chairman Glen E. Roney W. O. Bankston

TEXAS WATER COMMISSION

Felix McDonald, Chairman

nan Dorsey B. Hardeman, Commissioner Joe R. Carroll, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

> Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

Fabruary 25-26, 197	
TABLE OF CONTENTS	
	Page
ABSTRACT	.e 1
INTRODUCTION	01 3
Purpose of Study	3
Standard International Units and Conversion Factors	S 3
DESCRIPTION OF LIVINGSTON RESERVOIR AND ITS ENVIRONMENT	ST 3
ANALYSIS OF WATER-QUALITY DATA	5
Stream Records	5
Reservoir Water Quality	7
Thermal Stratification	7
Dissolved Oxygen	9
Dissolved Iron and Dissolved Manganese	10
Nitrogen and Phosphorus	- 11
Dissolved Solids, Chloride, Sulfate, and Hardness	14
SUMMARY OF CONCLUSIONS	8 14
SELECTED REFERENCES	17
TABLES	
1. Concentrations of Selected Dissolved Constituents and Hardness for the Trinity River Near Crockett (Station 08065350)	18
2-16. Chemical-Quality Survey of Livingston Reservoir:	
2. October 15, 1969	19
3. March 6, 1970	20
4. August 26-27, 1970	21
5. October 20, 1970	23

TABLE OF CONTENTS-Continued

																				Page
6.	February 25-26, 1971															•				25
7.	May 19, 1971				•															27
8.	February 10, 1972 .																			29
9.	June 20, 1972																			31
10.	August 15-16, 1972 .											•						÷.,	Qv.	33
11.	February 27, 1973 .																		•••	35
12.	May 15, 1973																			37
13.	August 30, 1973		•					۰.	•			ί.		4	-			•		39
14.	February 12, 1974 .						•			1			•	۰.			1	1		41
15.	April 30-May 1, 1974																			43
16.	August 28-29, 1974 .													•						45

FIGURES

1.	Map Showing Locations of Water-Quality Data-Collection Sites	4
2.	Graphs Showing Water Discharges and Concentrations of Dissolved Solids for Trinity River Near Crockett, Water Years 1965-74	5
3.	Graphs Showing Relations of Dissolved Solids and Percentages of Ions to Water Discharge, Trinity River Near Crockett	6
4.	Graphs Showing Variations of Air and Water Temperatures at Selected Sites, October 1969-August 1974	8
5.	Graphs Showing Seasonal Profiles of Water Temperature and Dissolved Oxygen for Site A _C	9
6.	Graphs Showing Variations of Concentrations of Dissolved Oxygen During Summer and Winter Surveys	10
7.	Graphs Showing Seasonal Profiles of Dissolved Iron, Manganese, and Oxygen for Site A $_{ m C}$	10
8.	Graphs Showing Variations of Concentrations of Dissolved Iron During Summer and Winter Surveys	11
9.	Graphs Showing Variations of Concentrations of Dissolved Manganese During Summer and Winter Surveys	11

TABLE OF CONTENTS-Continued

10.	Graphs Showing Variations of Concentrations of Dissolved Iron and Manganese at Site A _C , October 1969-August 1974	12
11.	Graphs Showing Seasonal Profiles of Total Inorganic Nitrogen, Total Phosphorus, and Water Temperature for Site A _C	13
12.	Graphs Showing Variations of Concentrations of Total Phosphorus During Summer and Winter Surveys	14
13.	Graphs Showing Variations of Concentrations of Total Inorganic Nitrogen During Summer and Winter Surveys	14
14.	Graphs Showing Variations of Concentrations of Total Inorganic Nitrogen and Total Phosphorus at Site A _C , October 1969-August 1974	15
15.	Graphs Showing Variations of Average Concentrations of Dissolved Solids, Chloride, Sulfate, and Hardness, October 1969-August 1974	16
16.	Graphs Showing Variations of Concentrations of Dissolved Solids During Summer and Winter Surveys	16

٧

Page

- n − Oranis, second s
- a status di appre e la companya di anti-Recep
- ${\mathbb C}_{{\mathbb C}} = {\mathbb C}_{{\mathbb C}$

- and the second secon

WATER QUALITY OF LIVINGSTON RESERVOIR ON THE TRINITY RIVER, SOUTHEASTERN TEXAS

By

Jack Rawson U.S. Geological Survey

ABSTRACT

The concentrations of dissolved solids, chloride, and sulfate in Livingston Reservoir on the Trinity River in southeastern Texas usually average less than 250 mg/l (milligrams per liter), 40 mg/l, and 50 mg/l, respectively. The water is usually hard or moderately hard (61 to 180 mg/l as calcium carbonate). The concentrations of principal dissolved constituents in the reservoir are usually maximum during summer and fall when evaporation is high and inflow is low.

Thermal stratification of the reservoir usually begins in March and persists until September or October. Neither the seasonal variation of dissolved constituents in inflow to the reservoir nor thermal stratification has resulted in significant stratification of the principal dissolved constituents. However, thermal stratification has resulted in significant seasonal and areal variations of dissolved oxygen, which results in higher concentration of dissolved iron, dissolved manganese, total phosphorus, and total inorganic nitrogen.

Oxygen utilized in the stabilization of unoxidized material from upstream sources, decaying algae, and pre-existing organic material along the bottom of the reservoir is not replaced during periods of summer stagnation; and water below depths of 25 to 35 feet (8 to 11 meters) usually contains less than 1.0 mg/l dissolved oxygen.

During periods of summer stagnation, reducing conditions often result in the solution of iron and

manganese from bottom sediments in the deep parts of the reservoir. At site A_{C} , a deep site near Livingston Dam, dissolved-iron concentrations in water near the bottom of the reservoir during summer have ranged from 80 to 2,300 μ g/l (micrograms per liter) and have averaged about 750 μ g/l. The concentrations of dissolved manganese in water near the bottom of the reservoir at this site during summer have ranged from 230 to 4,700 μ g/l and have averaged about 2,600 μ g/l. Water near the surface of the reservoir throughout the year and water near the bottom during periods of winter circulation usually contain less than 100 μ g/l of dissolved iron and 100 μ g/l of dissolved manganese.

The concentrations of total phosphorus and inorganic nitrogen in water near the bottom at deep sites near Livingston Dam are usually maximum during periods of summer stagnation when decay of aquatic organisms and chemical reduction of bottom sediments release phosphorus and nitrogen to the water. The concentrations of phosphorus in the bottom stratum of water at site A_C average about 2.0 mg/l. The concentrations of inorganic nitrogen in the bottom and surface strata at this site during summer average about 4.0 mg/l and 0.1 mg/l, respectively.

Seasonal temperature and dissolved oxygen cycles have resulted in significant quantities of dissolved iron, dissolved manganese, total phosphorus, and total inorganic nitrogen being trapped and recycled within the reservoir.

e al a sur la contra de la contra

Due rationante de la contra de

¹ An example of the example of

and the second se

WATER QUALITY OF LIVINGSTON RESERVOIR ON THE TRINITY RIVER, SOUTHEASTERN TEXAS

INTRODUCTION

Purpose of Study

As part of a continuing cooperative program with State, federal, and local agencies to inventory the surface-water resources of Texas, the U.S. Geological Survey has made comprehensive water-quality surveys of selected reservoirs in Texas periodically since October 1961. During the 1970 water year, in cooperation with the Trinity River Authority and the Texas Water Development Board, the program was expanded to include periodic water-quality surveys of Livingston Reservoir.

The purpose of this report is to summarize the water-quality records and to explain the variations of

selected chemical constituents and characteristics of the water in Livingston Reservoir during the 1970-74 water years. Other reports containing results of water-quality surveys for Livingston Reservoir are cited in the list of references.

Standard International Units and Conversion Factors

Most units of measurements in publications of the Geological Survey before 1973 were those of the English system. Reports published after July 1, 1973, have contained both English units and International System of Units (SI). Factors for converting English units to equivalents of the International System are given in the following table:

From	n		To obta	ain
Unit	Abbrevi- ation	Multiply by	Unit	Abbrevi- ation
acres	_	4,047	square meters	m ²
acre-feet	_	1,233	cubic meters	m ³
cubic feet per second	ft ³ /s	.02832	cubic meters per second	m ³ /s
feet	_	.3048	meters	m
miles	_	1.609	kilometers	km

DESCRIPTION OF LIVINGSTON RESERVOIR AND ITS ENVIRONMENT

Livingston Dam is on the Trinity River about 6 miles (10 km) southwest of Livingston in southeastern Texas. The reservoir extends across parts of Polk, San Jacinto, Trinity, and Walker Counties (Figure 1). The

area consists predominantly of densely forested rolling hills with wide flood plains along the Trinity River.

Livingston Reservoir, which is owned and operated by the city of Houston and Trinity River Authority, was designed to conserve water for municipal supply, industrial use, and irrigation. Construction of the project

- 4 -

was started in May 1966 and was completed in August 1969. Deliberate impoundment of water began in October 1968, and the first achievement of the normal capacity occurred in November 1971 (Trinity River Authority of Texas, 1974, sec. 8).

The reservoir has a total capacity of 1,750,000 acre-feet (2.16 X 10^9 m^3) and a surface area of 82,600 acres (3.34 X 10^8 m^2) at the top of the conservation pool at elevation of 131.0 feet (40.0 m). Other data regarding the dam and reservoir have been compiled by Dowell and Petty (1973, p. 08-25.0A) and are given in the following table:

Feature	Elevation (feet above mean sea level)	Capacity (acre-feet)	Area (acres)
Top of dam	145.0		
Top of gates	134.0	2,045,000	88,900
Top of conservation storage	131.0	1,750,000	82,600
Spillway crest	99.0	161,000	17,700

ANALYSIS OF WATER-QUALITY DATA

Stream Records

A daily streamflow station has been operated on the Trinity River near Crockett (station 08065350) since 1964. Streamflow records for this station, which is about 136 miles (219 km) upstream from Livingston Dam, and records of reservoir contents and outflow from Livingston Reservoir indicate that more than 80 percent of inflow to the reservoir since deliberate impoundment began in October 1968 has originated in the drainage area upstream from the station near Crockett.

Samples for the determination of principle inorganic chemical constituents have been collected daily from this station since 1964. To supplement the information being obtained on the inorganic quality of the water, determinations of BOD (biochemical oxygen demand), dissolved oxygen, selected nutrients, and several other properties or constituents have been made at monthly or bimonthly intervals since 1968.

Streamflow and water-quality data are published annually in the U.S. Geological Survey series Water Resources Data for Texas: Part 1. Surface-Water Records and Part 2. Water-Quality Records. Selected streamflow and inorganic chemical water-quality records are summarized in Table 1 and on Figures 2 and 3.

Data on Figures 2 and 3 show that the concentrations of dissolved solids in the Trinity River near Crockett varies inversely with water discharge. At flows of greater than $1,000 \text{ ft}^3/\text{s}$ ($28 \text{ m}^3/\text{s}$), the water is usually of the calcium bicarbonate type. As the flow decreases, the percentages of sodium and chloride increase.

Figure 2.-Water Discharges and Concentrations of Dissolved Solids for Trinity River Near Crockett, Water Years 1965-74

Figure 3.-Relations of Dissolved Solids and Percentages of Ions to Water Discharge, Trinity River Near Crockett

Oil is produced in many areas in the Trinity River basin upstream from Crockett, and the disposition of oil-field brines has contributed to the deterioration of water quality in the river (Leifeste and Hughes, 1967, p. 17-20).

The duration data in Table 1 show that the concentrations of dissolved constituents in the Trinity River near Crockett during the period from October 1964 to September 1968 ranged from about 200 to 580 mg/l. The constituents that accounted for most of the variations were sodium and chloride. Sodium ranged from about 20 to 150 mg/l and chloride from about 20 to 160 mg/l.

Since 1969, the Railroad Commission of Texas has prohibited the disposal of oil-field brine in open pits. This ban on open-pit disposal has reduced the quantity of brine entering the Trinity River and has decreased significantly the variations in concentrations of sodium, chloride, and dissolved solids. During the period from October 1969 to September 1974, dissolved solids ranged from about 200 to 460 mg/l; sodium ranged from about 20 to 100 mg/l; and chloride ranged from about 20 to 100 mg/l. Reductions in concentrations of other constituents were less significant. The concentration of sulfate usually ranged from about 35 to 95 mg/l from October 1964 to September 1968 and from about 35 to 80 mg/l from October 1969 to September 1974. The water usually was hard (121 to 180 mg/l as calcium carbonate) during both periods.

The duration data in Table 1 indicate the frequencies that specified concentrations of dissolved constituents were equalled or exceeded without regard to the sequence of occurrence. The chronological variation of discharge and monthly discharge-weighted averages of dissolved solids for the Trinity River near Crockett are shown on Figure 2. These data show that the monthly discharge during the 1965-74 water years ranged from about 400 to 44,000 ft³/s (11 to 1,250 m³/s) and that the monthly discharge-weighted average of dissolved solids ranged from about 160 to 630 mg/l. During 8 of the 10 years, the minimum monthly discharge-weighted average of dissolved solids occurred in July, August, or September.

Dry-weather flow of the Trinity River between the Dallas-Fort Worth area and Livingston Reservoir consists predominantly of effluent from wastewater treatment plants (Trinity River Authority of Texas, 1974, sec. 26). A gradual decrease of oxygen-demanding wastes and nutrients and an increase of dissolved oxygen occurs as the water moves downstream from the Dallas-Fort Worth area. However, during some periods, the concentrations of oxygen-demanding wastes and nutrients are high, and the dissolved oxygen is low in the Trinity River near Crockett, which is more than 200 miles (320 km) downstream from the Dallas-Fort Worth area.

The BOD of 55 samples collected at monthly or bimonthly intervals ranged from 0.6 to 33 mg/l and averaged 6.6 mg/l. The BOD of 28 samples was greater than 3.0 mg/l.

The dissolved oxygen in 56 samples ranged from 1.1 to 11.6 mg/l and averaged 7.0 mg/l. Six of the samples contained less than 5.0 mg/l dissolved oxygen.

The concentration of total inorganic nitrogen (ammonia, nitrite, and nitrate nitrogen) in 55 samples ranged from 0.00 to 10 mg/l and averaged 2.8 mg/l.

Total phosphorus in 55 samples ranged from 0.11 to 7.1 mg/l and averaged 1.4 mg/l.

Many of these samples were collected during low flow, and the averages for BOD, nitrogen, and phosphorus probably are considerably higher than discharge-weighted averages. However, available data indicate that the discharge-weighted averages of BOD, nitrogen, and phosphorus exceed 3.0 mg/l, 1.5 mg/l, and 0.7 mg/l, respectively.

Reservoir Water Quality

Thermal Stratification

Impoundment of water in a reservoir may result in significant changes in the quality of the water. Some of the changes are beneficial; others are detrimental. Many of the detriments are related to thermal stratification—layering of the water due to temperature-induced density differences.

The following table (Weast, 1975, p. F-5) shows that pure water reaches its maximum density at a temperature of about $4^{\circ}C$ and that the difference in density per $1^{\circ}C$ is must greater at high temperatures than at low temperatures.

Temperature (°C)	Density (g/ml)
0.0	0.999868
4.0	1.000000

Temperature (°C)	Density (g/ml)
5.0	0.999992
10.0	.999728
15.0	.999129
20.0	.998234
25.0	.997075
30.0	.995678
35.0	.994063

A change in temperature from 29° to 30° C results in a change in density of about 0.0003 g/ml (grams per milliliter), whereas, a change in temperature from 10° to 11° C results in a density change of about 0.0001 g/ml. Stable stratification is common in lakes and reservoirs where the density of the upper and lower strata of water differs by about 0.001 to 0.002 g/ml. Thus, temperature differences of 3° to 4° C during the summer may result in stable stratification.

Thermal stratification may assume many patterns, depending upon the geographical location, climatological conditions, depth, surface area, and configuration of the lake or reservoir. During the winter, many deep reservoirs in the temperate zone are characteristically isothermal—that is, the water has a uniform temperature and density and circulates freely. With the onset of spring, solar heating warms the incoming water and the water at the reservoir surface and causes a decrease in density. This warm surface water overlies the colder and denser water. As the surface becomes progressively warmer, the density gradient steepens and the depth to which wind can mix the water is diminished. Thus, water in the reservoir often is separated into three fairly distinct strata:

- The epilimnion-a warm freely circulating surface stratum,
- (2) The hypolimnion—a cold stagnant lower stratum, and
- (3) The metalimnion-a middle stratum characterized by a rapid decrease in temperature with increase in depth.

Thermal stratification in deep reservoirs usually persists until fall, when a decrease in atmospheric temperature cools both the surface water in the reservoir and inflow from streams. When the temperatures and densities of the epilimnion and metalimnion approach those of the hypolimnion, the resistance to mixing is

Figure 4.-Variations of Air and Water Temperatures at Selected Sites, October 1969-August 1974

reduced, and wind action produces a complete mixing or overturn of the water in the lake or reservoir.

The depth throughout most of Livingston Reservoir, outside the drowned channel of the Trinity River, usually is less than 50 feet (15 m). The pattern of thermal stratification in the reservoir often varies from the classical three-layered pattern because of shallow depths.

Water-temperature data for the reservoir during water-quality surveys are shown in Tables 2 to 16 and on Figure 4. These data, supplemented by air-temperature data for the city of Livingston (Figure 4), indicate that the fall overturn usually occurs in September or October, and that the water in the reservoir is nearly isothermal from October through February. During March, April, and May, warming of the surface water results in a gradual vertical temperature gradient. The temperature gradient usually steepens during June, July, and August and results in three fairly distinct layers in deep areas of the reservoir. However, the temperature and density of water near the bottom in shallow areas during the warm weather months may approach those at the surface and prevent significant stratification.

Dissolved Oxygen

Fish and other aquatic organisms require oxygen to maintain the metabolic processes that produce energy for growth and reproduction. Moreover, dissolved oxygen is related to the cycles of some of the chemical constituents dissolved in water and thus is one of the most important factors that influence the quality of water in a reservoir.

Water entering a reservoir contains organic material both from natural sources and from man's waste. Bacterial stabilization of this organic material requires oxygen. Decaying trees, brush, and other pre-existing oxidizable material within the area inundated by the reservoir and decaying algae and other organic material produced within the reservoir also exert an oxygen demand.

The distribution of dissolved oxygen in a reservoir is related to thermal stratification. Oxygen enters the surface stratum of a reservoir by plant photosynthesis and by absorption from the atmosphere. During the period of winter circulation, the water is exposed to the atmosphere repeatedly, and dissolved oxygen utilized in the decomposition of organic matter is replenished. However, during spring and summer, thermal stratification results in a reduction of vertical circulation of the water. Oxygen utilized in the decomposition of organic material is not replaced in the deep stratum of the reservoir, and a vertical dissolved-oxygen gradient develops.

Dissolved-oxygen data for Livingston Reservoir are given in Tables 2 to 16 and on Figures 5 and 6. These data show that the dissolved-oxygen gradient usually is large at deep sites during periods of summer stagnation when algal growth in the near-surface stratum is prolific. The gradients at all sites decrease greatly during periods of winter circulation.

The concentration of dissolved oxygen in the reservoir varies seasonally and areally. Although the concentration usually increases and the vertical gradient decreases at most sites during the winter, seldom is the water saturated with respect to dissolved oxygen. The depth-integrated concentration of dissolved oxygen at most sites in the downstream half of the reservoir averages about 4.0 mg/l during periods of summer stagnation and about 9.0 mg/l during periods of winter circulation. The concentration at most sites in the headwaters of the reservoir averages less than

Figure 5.-Seasonal Profiles of Water Temperature and Dissolved Oxygen for Site Ac

Figure 6.–Variations of Concentrations of Dissolved Oxygen During Summer and Winter Surveys

3.0 mg/l during the summer and less than 8.0 mg/l during the winter.

As noted earlier, low flows of the Trinity River consist predominantly of oxygen-demanding waste effluents. Thus, a large part of the headwaters of Livingston Reservoir during dry-weather periods consists of these partially stabilized effluents. As the Trinity River merges into Lake Livingston, the cross-sectional area increases, velocity decreases, travel-time increases, and the oxygen-demanding material in low flows and the natural debris in high flows are partially stabilized before the water enters the downstream reach of the reservoir.

The stabilization of oxygen-demanding wastes in the headwaters permits an increase of dissolved oxygen in the downstream half of the reservoir. However, oxygen utilized in the stabilization of unoxidized material from upstream sources by decaying algae and by pre-existing organic material along the bottom of the reservoir is not replaced during periods of summer stagnation; and water below depths of 25 to 35 feet (8 to 11 m) usually contains less than 1.0 mg/l dissolved oxygen.

Dissolved Iron and Dissolved Manganese

The occurrence and distribution of dissolved iron and manganese in waters of Livingston Reservoir are closely related to the dissolved-oxygen content (Figure 7). During summer stratification, the hypolimnion is unable to replenish dissolved oxygen utilized in the decomposition of organic matter. In the period of anaerobic decomposition that follows, reducing conditions often result in the solution of iron and manganese from sediments at the bottom of the reservoir. The concentrations of iron and manganese in the bottom waters at deep sites continue to increase throughout the duration of summer stagnation and eventually may reach high values before the fall overturn. After circulation begins in the fall and oxygen is replenished throughout the depth of the reservoir. most of the iron and manganese is oxidized to less soluble forms and settles to the bottom of the reservoir.

Figure 7.–Seasonal Profiles of Dissolved Iron, Manganese, and Oxygen for Site A_C

Throughout the year, water near the surface of the reservoir and water near the bottom during periods of winter circulation usually contain less than $100 \mu g/l$ of dissolved iron and $100 \mu g/l$ of dissolved manganese (Figures 8 and 9). However, during periods of summer stagnation, the concentrations of both constituents near the bottom of the reservoir increase in the downstream direction in response to increases in depth and decreases in the concentration of dissolved oxygen.

The iron concentrations near the bottom at site J_C , a shallow site in the headwaters of the reservoir, during the summer have ranged from 0 to 130 μ g/l and have averaged about 60 μ g/l. Manganese concentrations near the bottom at this site during summer have ranged from 0 to 220 μ g/l and have averaged about 150 μ g/l.

At site A_C, a deep site near Livingston Dam, the concentrations of iron in water near the bottom during summer have ranged from 80 to 2,300 μ g/l and have averaged about 750 μ g/l. The concentrations of manganese have ranged from 230 to 4,700 μ g/l and have averaged about 2,600 μ g/l.

The concentrations of both constituents at deep sites during summer stagnation have increased

Figure 9.–Variations of Concentrations of Dissolved Manganese During Summer and Winter Surveys

significantly since the first achievement of normal capacity in 1971 (Figure 10).

Samples collected at about quarterly intervals since 1970 from the Trinity River near Crockett have contained from 0 to $4,700 \,\mu g/l$ of dissolved iron and from 0 to 350 μ g/l of dissolved manganese, but seldom have contained more than 50 μ g/l of either constituent. However, data collected since November 1974 show that the concentrations of iron and manganese associated with suspended sediment during high flows are much higher than dissolved fractions. The solution of iron and manganese associated with sediment deposited after high flows, supplemented by solution from pre-existing bottom material and from deposits precipitated during winter circulation, probably account for the increase of dissolved iron and manganese in water at deep sites near the bottom of the reservoir during periods of summer stagnation since 1971.

Nitrogen and Phosphorus

A literature review by Greeson (1971, p. 75) has revealed that at least 21 elements in some chemical combination are essential nutrients in the biological productivity in waters of a lake or reservoir. Among these nutrients, dominant roles in controlling productivity in most lakes and reservoirs are assigned to nitrogen and phosphorus because their concentrations in water are most likely to be in limited supply.

Figure 10.-Variations of Concentrations of Dissolved Iron and Manganese at Site A_C, October 1969-August 1974

Sources that may contribute nitrogen and phosphorus to a reservoir include land drainage, sewage effluent, industrial wastes, precipitation, decomposing plant and animal debris, and bottom sediments. Both total nitrogen and total phosphorus in the inflow to a reservoir may consist of four major components, dissolved and particulate inorganic forms and dissolved and particulate organic forms. As the water enters the reservoir, most of the particulate nitrogen and phosphorus eventually settles to the bottom; whereas, part of the dissolved fractions is utilized by algae and other aquatic organisms as primary sources of energy. Eventually, these organisms die, settle to the bottom of the reservoir, and carry their cellular nitrogen and phosphorus with them.

During periods of summer stagnation, decay of aquatic organisms and chemical reduction of bottom sediments reduce the concentration of dissolved oxygen and release nitrogen and phosphorus to the hypolimnion where they remain until fall overturn. As nutrients in the inflowing water are incorportated into this seasonal cycle, most of the nitrogen and phosphorus may be trapped in the reservoir, and the concentrations available for release from bottom materials during summer stagnation may increase greatly as the reservoir ages. The concentrations of total phosphorus and total inorganic nitrogen (summation of total ammonia, nitrite, and nitrate nitrogen) in Livingston Reservoir vary seasonally and areally (Figures 11, 12, and 13). During periods of winter circulation, total phosphorus and total inorganic nitrogen concentrations are usually maximum in the headwaters and decrease progressively toward Livingston Dam. The concentrations of total phosphorus and total inorganic nitrogen at site J_C near the head of the reservoir average about 1.0 mg/l and 2.0 mg/l respectively, during winter. At site A_C near Livingston Dam, the phosphorus and nitrogen concentrations during the winter average about 0.2 mg/l and 0.7 mg/l, respectively.

The phosphorus and nitrogen concentrations in water near the bottom at deep sites near Livingston Dam are usually maximum during summer when the water is thermally stratified. The seasonal variation of phosphorus in water near the surface at these sites is insignificant; but assimilation by aquatic plants during the summer months reduces the inorganic nitrogen concentration. The concentrations of these nutrients at shallow sites near the head of the reservoir do not vary significantly with depth.

The concentrations of total phosphorus and total inorganic nitrogen in both the surface and bottom strata at site J_C average about 1.6 and 1.4 mg/l respectively, during the summer. The concentrations of phosphorus in the surface stratum at site A_C average about 0.2 mg/l during summer; those of the bottom stratum average about 2.0 mg/l. The concentrations of inorganic nitrogen in the surface stratum at this site average about 0.1 mg/l during summer; those of the bottom stratum average about 0.1 mg/l during summer; those of the bottom stratum average about 0.4 mg/l.

The chronological increase of both nutrients in the hypolimnion at deep sites during periods of summer stagnation (Figure 14) indicate that significant quantities of the nutrients are being trapped and recycled within the reservoir.

Figure 11.–Seasonal Profiles of Total Inorganic Nitrogen, Total Phosphorus, and Water Temperature for Site A_C

Figure 12.–Variations of Concentrations of Total Phosphorus During Summer and Winter Surveys

Figure 13.–Variations of Concentrations of Total Inorganic Nitrogen During Summer and Winter Surveys

Dissolved Solids, Chloride, Sulfate, and Hardness

Some of the more important properties or constituents that affect the utility of a reservoir as a water supply include dissolved solids, chloride, sulfate, and hardness.

Because the concentrations of these properties or constituents and specific conductance of a water are directly related, field measurements of specific conductance can be used to detect and document variations of the constituents in the water of a reservoir. Therefore, during each reservoir survey, the specific conductance of water at each data-collection site was determined at depth intervals of 5 to 10 feet (1.5 to 3 m). These data and results of analyses for dissolved solids, chloride, sulfate, and hardness for samples collected near the surface and bottom at selected sites (Tables 2 to 16) were used to estimate average concentrations of the dissolved constituents during each of the reservoir surveys (Figure 15).

Data on Figure 15 show that water in Livingston Reservoir usually is moderately hard or hard (61 to 180 mg/l as calcium carbonate) and that the concentrations of dissolved solids, chloride, and sulfate usually average less than 250 mg/l, 40 mg/l, and 50 mg/l, respectively. These data and data on Figure 2 show that the concentrations of these constituents vary seasonally and usually are maximum during the summer and fall when evaporation is high and inflow is low. A comparison of Figures 2 and 15 show that storage of water in Livingston Reservoir has resulted in a decrease in the range of concentrations of dissolved solids and principal chemical constituents.

The seasonal variation in concentrations of dissolved constituents in inflow to the reservoir or of water temperature has not resulted in significant stratification of the principal dissolved constituents within the reservoir. Data on Figure 16 and in Tables 2 to 16 show that the concentrations of dissolved solids in water at the surface of most sites usually differ from those at the bottom by less than 20 mg/l.

SUMMARY OF CONCLUSIONS

Thermal stratification in Livingston Reservoir usually begins to develop in March and persists until September or October. During June, July and August, thermal stratification usually results in three fairly distinct layers in deep areas: (1) the hypolimnion, a cold stagnant lower stratum, (2) the epilimnion, a warm freely circulating surface stratum, and (3) the

metalimnion, a middle stratum characterized by a rapid decrease in temperature with increase in depth.

The concentrations and distribution of dissolved oxygen, iron, and manganese and total phosphorus and inorganic nitrogen in Livingston Reservoir are related to the pattern of thermal stratification.

The depth-integrated concentration of dissolved oxygen at most sites in the downstream half of the reservoir averages about 4.0 mg/l during periods of summer stagnation and about 9.0 mg/l during periods of winter circulation. The concentration at most sites in the headwaters of the reservoir averages less than 3.0 mg/l during the summer and less than 8.0 mg/l during the winter. Water below depths of 25 to 35 feet (8 to 11 m) usually contain less than 1.0 mg/l dissolved oxygen during the summer.

The occurrence and distribution of dissolved iron and manganese in Livingston Reservoir are closely related to the dissolved-oxygen content of the water. Water throughout the reservoir during periods of winter circulation and water near the surface during periods of summer stagnation usually contain less than 100 μ g/l of dissolved iron and 100 μ g/l of dissolved manganese. The concentrations of both constituents in water near the bottom at deep sites increase greatly during periods of summer stagnation. At site A_C, a deep site near Livingston Dam, the concentrations of iron in water near the bottom have ranged from 80 to 2,300 μ g/l and have averaged about 750 μ g/l during the summer. Manganese

Figure 15.–Variations of Average Concentrations of Dissolved Solids, Chloride, Sulfate, and Hardness, October 1969-August 1974

concentrations in water near the bottom at this site during summer have ranged from 230 to 4,700 μ g/l and have averaged about 2,600 μ g/l.

The phosphorus and nitrogen concentrations in water near the bottom at deep sites near Livingston Dam are usually maximum during periods of summer stagnation when the decay of aquatic organisms and chemical reduction of bottom sediments reduce the concentration of dissolved oxygen and release nutrients to the water. The concentrations of total phosphorus and total inorganic nitrogen in the bottom stratum of water at site A_C during the summer average about 2.0 mg/l and 4.0 mg/l, respectively. Total phosphorus and total inorganic nitrogen concentrations in the surface stratum during the summer average about 0.2 mg/l and 0.1 mg/l, respectively.

Figure 16.-Variations of Concentrations of Dissolved Solids During Summer and Winter Surveys

Seasonal temperature and dissolved-oxygen cycles have resulted in significant quantities of dissolved iron, dissolved manganese, total phosphorus, and total inorganic nitrogen being trapped and recycled within the reservoir. The concentrations of these constituents in water near the bottom at deep sites in the reservoir during periods of summer stagnation have increased progressively since the beginning of impoundment.

The concentrations of dissolved solids, chloride, and sulfate in Livingston Reservoir vary seasonally and are usually maximum during the summer and fall when evaporation is high and inflow is low. Neither the seasonal variation of dissolved constituents in inflow nor that of water temperature has resulted in significant stratification of dissolved solids within the reservoir. The concentrations of dissolved solids, chloride, and sulfate usually average less than 250 mg/l, 40 mg/l, and 50 mg/l, respectively. The water is usually moderately hard or hard (61 to 180 mg/l as calcium carbonate).

- Dowell, C. L., and Petty, R. G., 1973, Engineering data on dams and reservoirs in Texas, Part II: Texas Water Devel. Board Rept. 126, 327 p.
- Greeson, P. E., 1971, The limnology of Oneida Lake with emphasis on factors contributing to algal blooms: U.S. Geol. Survey open-file rept., 185 p.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p., 12 figs.
- Rawson, Jack, Kunze, H. L., and Davidson, H. J., 1973, Water-quality records for selected reservoirs in Texas, 1970-71 water years: Texas Water Devel. Board Rept. 177, 102 p., 10 figs.

- Rawson, Jack, and Davidson, H. J., 1975, Water-quality records for selected reservoirs in Texas, 1972-73 water years: Texas Water Devel. Board Rept. 194, 135 p., 10 figs.
- Trinity River Authority of Texas, 1974, Trinity River basin water-quality management plan, basic information Trinity River basin, Texas: Trinity River Authority of Texas rept.
- Weast, R. C., 1975, Handbook of chemistry and physics (56th ed.): Cleveland, Ohio, CRC Press, 2,350 p.

Table 1.--Concentrations of Selected Dissolved Constituents and Hardness for the Trinity River Near Crockett, Texas

(Station 08065350)

		Concentration of constituents, in milligrams per liter, that was equalled or exceeded for indicated percentage of days							
Date	Constituent	10	25	50	75	90			
Oct. 1964 - Sept. 1968	Sodium (Na)	150	110	55	30	20			
(1461 days)	Chloride (Cl)	160	115	50	25	20			
	Sulfate (SO ₄)	95	85	55	40	35			
	Dissolved Solids	580	480	320	240	200			
	Hardness (Ca, Mg)	170	160	150	140	120			
Oct. 1969 - Sept. 1974	Sodium (Na)	100	80	55	30	20			
(1826 days)	Chloride (C1)	100	80	50	25	20			
	Sulfate (SO_4)	80	70	55	40	35			
	Dissolved Solids	460	400	310	240	200			
	Hardness (Ca, Mg)	170	160	150	140	120			

TABLE 2.--Chemical-quality survey of Livingston Reservoir, October 15, 1969

Elevation 99.85 ft. Contents 173,700 ac-ft.

TEM- PERA- TURE (°C)	22.0 22.0	222.00 222.00 222.00	24.5 24.0 23.0 23.0	25.0 25.0 24.0	26.0 25.5 25.5 25.5	25.5 24.0 24.0	26.0 25.5 25.5
PER- CENT SATUR- ATION	60 86 88	03 95 97 98	99 80 80 76	86 76 61	78 63 60	83 78 82	48 28 28
DIS- DLVED XYGEN MG/L)	0.88 0.99.8	888.6.1 .6.4.5.6	8.3 6.7 7.0 7.0	7.2 6.4 5.2	6.4 5.2 5.0	6.9 6.6 7.0	0.000 0.000 0.000
L C C C C C C C C C C C C C C C C C C C	10 4 01 0, 2 2 2	22004	4 വവവയ 4	50440	000-	404	8
(UN	7.7		0 0 0 0 0 L	ac ac ac ac	00 00 00 00	ac ac ac	ര്ത്ത്ത്
SPECIFI CONDUCT ANCE (MICRO- MHOS)	645 645 650	645 645 648 640 640	790 790 770 760 770 760	800 800 790 725	890 900 875	925 900 845	890 890 890 890
NON- CAR- BONATE HARD- NESS (MG/L)	110		8 1 1 1	¦ ¦ ¦ ∞	231 - 18	17 8	16 20
HARD- NESS (CA, MG) (MG/L)		170 170 170	170 170	 170	160 160	160 160	150 160
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	:::	348 352 342	454		518	542	532 528
TOTAL PHOS- PHORUS (P) (MG/L)	:::	0.16	:::::	::::	3.3-4 3.3-1	:::	::::
AMMO- NLA- NITRO- GEN (N) (MG/L)	:::	00.00 00.00 00.00	:::::	::::	00.1.1.00	:::	::::
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	:::	0.22	8 4	2.1	5.3 5.1	7.7	11 10
DIS- SOLVED FLUO- RIDE (F) (MG/L)	:::	0.5	L		6 6	6.	1.1 1.0
DIS- SOLVED CHLO- RIDE (CL) (MG/L)		65 64 64 62	100 92	100 86	120 120 120 120	120 110	100 100
DIS- SOLVED SUL- FATE (SO4) (MG/L)	:::	51 51 49	72	62	84 82	90	100
BICAR- BONATE (HCO ₃) (MG/L)		200 200 199	194 200	202	165 166	176 190	166 166
DIS- SOLVED POTAS- SIUM (K) (MG/L)	:::	::::	:::::	::::	::::	:::	::::
DIS- SOLVED SOLUED (NA) (MG/L)	:::	64 66 	100	1118	120 120	130	130 130
DIS- SOLVED MAGNE- SIUM (MG) (MG)	:::	5,2 5.0 5.0	5	5. .3.	5.6	8.11 8.11	5.3
DIS- SOLVED CAL- CIUM (CA) (MG/L)	:::	60 60 60	8		55 55	55	52 54
DIS- SOLVED MANGA- NESE (MN) (UG/L)	:::	20 50 70	:::::	::::	0 20 50	20	10
DIS- SOLVED IRON (FE) (UG/L)	:::	00000 3003 300	:::::	::::	30 20 20	10 10	20
DIS- SOLVED SILICA (SIO ₂) (MG/L)	:::	2.8	;;;;;;	::::	14 14	14	13 13
DE PTH (FT)	1 10 17	1 20 30 41	1 20 36 36	1 20 34	1 20 32	1 10 19	1 20 34
	1969						
DATE	15,	15	15	15	15	15	15
	Oct.	Oct.	Oct.	Oct.	Oct.	Oct.	Oct.
SITE	${}^{\rm A}{}_{\rm R}$	Ac	BC	c	DC	EC	FC C

118198 2.*--ruearratt drafatt orrada or frainkafon geserantt musica o

TABLE 3.--Chemical-quality survey of Livingston Reservoir, March 6, 1970

Elevation 104.22 ft. Contents 279,800 ac-ft.

TEM- PERA- TURE (°C)	17.0 16.5 16.0	16.5 16.5 16.0 16.0 16.0	17.0 17.0 17.0 17.0 17.0	17.0 17.0 17.0 17.0	$17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	17.0 17.0 15.5	$17.0 \\ 17.0 \\ 17.0 \\ 17.0 $
PER- CENT SATUR- ATION	70 67 62	69 65 47 46	66 64 64 64	64 64 63 63	67 67	68 64 57	67 67
DIS- SOLVED OXYGEN (MG/L)	6.8 6.6 6.2	6.8 6.4 4.7 7.7	6.2 6.2 6.2 6.2	$6.2 \\ 6.2 \\ 6.2 \\ 6.1 \\ 6.1$	6.5 6.5 6.5	6.6 5.8 5.8	6.5 6.5 6.5
Hd Hd	7.3 7.3 7.2	7.3 7.1 7.0 7.0	7.3 7.3 7.3	7.3 7.2 7.2	7.3 7.3 7.2	7.2	7.2 7.2 7.2
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	410 410 410	410 410 450 450	310 310 310 310 310	290 290 290	295 295 295	320 320 340	295 295 295
NON- CAR- BONATE HARD- NESS (MG/L)	33	31	10 1 1 1 1	24	:::	25	24
HARD- NESS (CA,MG) (MG/L)	120 120	120 -1 120	100	100	:::	100	100
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	:::	228 241	:::::	167	:::	::::	164
TOTAL PHOS- PHORUS (P) (MG/L)	:::	0.48 .50 .60	:::::	. 42 .49	:::	:::	.54
AMMO- NLA- NLTRO- GEN (N) (MG/L)	:::	0.21	:::::	. 05	:::	:::	.10
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	:::	2.3	:::::	.90 		111	.80
DIS- SOLVED FLUO- RIDE (F) (MG/L)		0.3	:::::	°! : : :	:::	°!	<u>ຕ</u> ີ
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	37 38	36	18	17 16	16	21	16
DIS- SOLVED SUL- FATE (SO4) (MG/L)	:::	45 47	:::::	34	:::	36	811
BICAR- BONATE (HCO _S) (MG/L)	105 104	104 104	96	96	97 	92	98
DIS- SOLVED POTAS- SIUM (K) (MG/L)	:::	:::::	:::::	::::	:::	:::	:::
DIS- SOLVED SODIUM (NA) (MG/L)	:::	34 36	:::::	18	:::	:::	16
DIS- SOLVED MAGNE- SIUM (MG/L)	4.0 	4.0 4.2	ຕ ເ	3.1	3.1	3.3	3.0
DIS- SOLVED CAL- CIUM (CA) (MG/L)	41 	40 42	36	36	36	35	37
DIS- SOLVED MANGA- NESE (MI) (UG/L)	:::	60 40 40 40	::::	4 0 40 40	111	:::	40 50 60
DIS- SOLVED IRON (FE) (UG/L)	:::	150 100 100 40	:::::	210 210 100	:::	:::	110 90 90
DIS- SOLVED SILICA (SIO ₂) (MG/L)	:::	7.6 8.4	:::::	7.3	() (8.1	7.1
DEPTH (FT)	1 10 20	10 20 30 45	1 20 30 40	1 20 34	1 17 32	1 10 20	1 17 35
23	1970						
DAT	Mar. 6,	Mar. 6	Mar. 6	Mar. 6	Mar. 6	Mar. 6	Mar. 6
SITE	AR	AC	BC	°C C	DC	EC	FC

TABLE 4.--Chemical-quality survey of Livingston Reservoir, August 26-27, 1970

Elevation 118.48 ft. Contents 908,100 ac-ft.

PER- DIS- CENT TEM- SOLVED SATUR- FEA- PH OXYCEN ATION TURE (UNITS) (MG/L) ATION (°C)	8.4 108 29.0 7.8 100 29.0 5.7 73 29.0 5.6 72 29.0 5.6 72 28.5 .2 2 27.5 .2 2 24.5	8 114 29.5 8 100 29.0 2 67 29.0 2 67 29.0	113 29.0 77 28.5 77 28.5 73 28.0 68 28.0 43 28.0	72 31.0 64 28.5 57 28.0 61 28.0 58 28.0	33 30.0 6 28.5 6 28.5 4 28.5 28.5 28.5 28.0 5 27.5	30.0 28.5 28.0 28.0 28.0
PER- DIS- CENT SOLVED SATUR HH OXYGEN ATION (UNITS) (MG/L)	8.4 108 7.8 100 5.7 73 5.6 72 5.6 72 5.6 72 5.2 2 2	8 114 8 100 2 67 2 67	1113 77 73 68 68	72 57 61 58	0 0 9 4 4 0	0.01 10
(T/5M) (SLINU) HA SOLVED -SIG	8.00 5.6 2.2 2 2 2	00 00 01 01		-	2000000	132 51 51 51 51
Hd Hd		. 1 0. 1 0. 1 0. 1	8.8 6.0 7.4 8.8 8.8 8.9 8.8 8.9 8.8 8.9 8.9 8.8 8.0 8.8 8.9 8.8 8.9 8.8 8.9 8.9 8.9 8.9 8.9	12.9 5.0 4.5 4.8	11.6 8.6 4.4 4.3 4.3 4.3	10.6 10.0 4.0 3.6
	8.3 8.2 7.7 7.7 7.2	8.2 8.2 7.8	8.4 7.8 7.7 7.7 7.5	8.5 7.6 7.6 7.6 7.6	8.4 8.1 7.6 7.6 7.6 7.6 7.6	8.4 8.2 7.6 7.6 7.6
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	4450 4450 4450 4450 4450 550 54450	445 445 445	465 465 465 465 465	455 460 470 470	460 460 460 460 465 465	465 470 480 480 480
NON- CAR- BONATE HARD- NESS (MG/L)	18	::::	::::::		14	:::::
HARD- NESS (CA,MG) (MG/L)	150	::::	::::::	:::::	160 170	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	244 223	::::	:::::	:::::	271 276	
(T) (T) TOTAL SUROPA TAOPA (P) (MG/L)	0.14	::::			.15 .13 	
AMMO- NIA- NITRO- GEN (N) (MG/L)	0.00	::::		:::::		:::::
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.00	::::		:::::	11.1.1.1.10	11111
DIS- SOLVED FLUO- RIDE (F) (F)	0 6 0 6 0	::::	:::::	:::::	4.11110	:::::
DIS- SOLVED CHLO- RIDE (CL) - (MG/L)	28	::::			37	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	40	::::	:::::		42	
BICAR- BONATE (HCO ₃) (MG/L)	166 160	::::	:::::		181 186	
DIS- SOLVED POTAS- SIUM (K) (MG/L)		::::		11,111		
DIS- SOLVED SOLVED SODIUM (NA) (MG/L)	31	::::			80 I I I I I 80 80 I I I I I 80	
DIS- SOLVED MAGNE- SIUM (MG/L)	4.6 4.5	::::	:::::	:::::	5.0	:::::
DIS- SOLVED CAL- CIUM (CA) (MG/L)	54	::::	:::::	:::::	57	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	60 40 80 120 240 230	::::		:::::	320 80 40 60 60	:::::
DIS- SOLVED IRON (FE) (UG/L)	00001008	::::	:::::		0 20 20 160 +	
DIS- SOLVED SILICA (SIO ₂) (MG/L)	2.2 7.6	::::	:::::		2.1 2.1 2.6	:::::
DEFTH (FT)	$\begin{array}{c} 1 \\ 10 \\ 35 \\ 35 \\ 55 \end{array}$	$\begin{smallmatrix}&1\\10\\20\\29\end{smallmatrix}$	1 20 30 55	$\begin{smallmatrix}&1\\10\\20\\30\\40\end{smallmatrix}$	1 5 10 20 30 40 48	1 5 10 25 25
	026					
DATE	26, 1	26	26	26	26	26
	Aug.	. and	. and	. and	Aug.	Aug.
SITE	AC	$^{\rm A}{}_{\rm L}$	BC	cc	DC	с в

- 21 -

TABLE 4.--Chemical-quality survey of Livingston Reservoir, August 26-27, 1970--Continued

Elevation 118.48 ft. Contents 908,100 ac-ft.

TEM- PERA- TURE (°C)	31.0 29.0 29.0 29.0 29.0	30.0 29.5 29.0 28.5 28.5	29.0 28.5 28.5 28.5 29.5 29.5 29.5	230.0 30.0 30.0 29.5 29.5
PER- CENT SATUR- ATION	151 37 3 3 3 3 3 3	47 26 21 15	92 65 10 10 10	24 25 19 19 33
DIS- SOLVED OXYGEN (MG/L)	11.3 2.9 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	3.6 2.0 1.6 1.6	7.2 5.1 2.2 .8 .8	1.5 1.5 1.5
PH (UNITS)	80000000000000000000000000000000000000	7.9 7.8 7.7 7.7 7.7 7.7	88.3 8.0 8.7 7.7 7.7 7.6	7.7 7.7 7.7 7.7 7.6 7.7 7.6 7.6
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	525 530 600 605 605	775 775 775 770 760 720	720 715 680 690 765 765 765	760 760 760 760 765 790
NON- CAR- BONATE HARD- NESS (MG/L)	:::::	0 0	0 0	0 1 1 1 1 0
HARD- NESS (CA,MG) (MG/L)	::::::	170 180	170 170 	160 170
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)		453 412		447 455
TOTAL PHOS- PHORUS (P) (MG/L)	:::::	1.2		2.7
AMMO- NITA- NITRO- GEN (N) (MG/L)	::::::	0.19 .52		29
TOTAL NITRITE PLUS NITRATE (N) (MG/L)		1.1 .27		1.9 1.1
DIS- SOLVED FLUO- RIDE (F) (MG/L)	:::::	0.7		· · · · · · · · · · · · · · · · · · ·
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	::::::	86 75	80	8811118
DIS- SOLVED SUL- FATE (SO4) (MG/L)		79	71	80 80 81 80
BICAR- BONATE (HCO ₃) (MG/L)		224 220	224 216 	201 201 224
DIS- SOLVED POTAS- SIUM (K) (MG/L)		<u>, , , , , , , , , , , , , , , , , , , </u>		
DIS- SOLVED SODIUM (NA) (MG/L)	:::::	100		99
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	:::::	5.9		2
DIS- SOLVED CAL- CIUM (CA) (MG/L)		60 		56
DIS- SOLVED MANGA- NESE (MN) (UG/L)		40 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0000
DIS- SOLVED IRON (FE) (UG/L)	:::::	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 0 .0000
DIS- SOLVED SILICA (SIO ₂) (MG/L)	:::::	6.8		13
DEFTH (FT)	1 20 30 45	1 5 10 20 30 40	1 10 28 28 10 28 20 20	32 5 10 15 26 26
DATE	Aug. 26, 1970	Aug. 27	Aug. 27 Aug. 27	Aug. 27
SITE	ъ Ч	C C	^H C ^I C	C

- 22 -

TABLE 5.--Chemical-quality survey of Livingston Reservoir, October 20, 1970

Elevation 120.88 ft. Contents 1,054,000 ac-ft.

TEM- PERA- TURE (°C)	20.0 19.5 19.5 19.5 19.5 19.5	20.0 119.5 119.5 119.5	20.0 119.5 119.0 118.5 18.5 18.5	20.5 19.5 19.0 19.0 19.0	20.5 18.5 18.0 18.0 18.5 18.5
PER- CENT SATUR- ATION	115 91 91 91 91 91 91	105 94 91 91	1110 102 88 83 83 81 81 81 80	1113 90 91 87 83 79	104 88 82 82 80 80 80
DIS- SOLVED OXYGEN (MG/L)	10.6 8.5 8.5 8.5 7 8.5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.7 8.6 8.6 8.7 8.6 8.6	10.1 9.5 8.3 7.7 7.8 7.7 7.6 7.5	10.3 9.4 8.5 8.6 7.8 7.8 7.4	9.5 8.3 7.8 7.5 7.5
Hd (STINU)	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.2 8.2 8.1 8.1	7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.00000 7.00000 7.00000 7.00000 7.000000 7.00000000	8.3 8.1 8.1 8.1 7.9 7.9	8.0 7.9 7.8 7.8 7.8 7.8 7.8
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	450 460 460 460 460 460 460 460	450 460 460 460	$\begin{array}{c} 460\\ 450\\ 470\\ 480\\ 480\\ 480\\ 480\\ 480\\ 480\\ 480\\ \end{array}$	450 450 450 450 460 470	500 500 490 490 490
NON- CAR- BONATE HARD- NESS (MG/L)	17	:::::			24
HARD- NESS (CA,MG) (MG/L)	140 160	:::::		::::::	140 150
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	242	:::::			281 275
TOTAL PHOS- PHORUS (P) (MG/L)	0.09	:::::		::::::	.51 .51
AMMO- NITRO- GEN (N) (MG/L)	00.0 00.0	:::::		::::::	00.11110.
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	00.0 0				1.8 1.8
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0 • • • • • • • • • • • • • • • • • • •				
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	£	:::::			40
DIS- SOLVED SUL- FATE (SO4) (MG/L)	40	::::			55
BICAR- BONATE (HCO _S) (MG/L)	156 171	::::		::::::	145 162
DIS- SOLVED POTAS- SIUM (K) (MG/L)		::::			
DIS- SOLVED SOLVED SOLUM (MA) (MG/L)	8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				45
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	4, 4, 	:::::			4.4
DIS- SOLVED CAL- CIUM (CA) (MG/L)	50	:::::			52
DIS- SOLVED MANGA- NESE (MN) (UG/L)	000000000	:::::			0000000
DIS- SOLVED IRON (FE) (UG/L)	000000000	:::::			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS- SOLVED SILICA (SIO_2) (MG/L)	2.0	:::::		::::::	7.2
DEPTH (FT)	1 5 20 30 40 60 67	$\begin{smallmatrix}&1\\10\\20\\30\\37\end{smallmatrix}$	1 20 30 58 58 58	1 5 10 20 30 46 46	1 5 10 20 48 48
	1970				
DATE	20,	. 20	50	50	50
54	0c1	0ct	Oct	Oct	Oct
SIT	AC	чг	BC	CC	DC

TABLE 5.--Chemical-quality survey of Livingston Reservoir, October 20, 1970--Continued Elevation 120.88 ft. Contents 1,054,000 ac-ft.

TEM- PERA- TURE (°C)	20.5 20.0 18.0 18.5	20.0 19.5 18.5 18.5 18.0 18.0	21.0 18.5 18.5 18.5 18.5 18.5 18.5	21.0 19.0 18.5 18.5 18.5	20.0 17.5 17.5 17.5 17.5	$19.5 \\ 17.0 \\ $
PER- CENT SATUR- ATION	122 114 66 63	60 55 81 80 80	88 55 51 51	149 74 66 64 61	30 30 31 31 31	61 53 54 55
DIS- SOLVED OXYGEN (MG/L)	11.1 10.5 6.3 5.9	5.5 5.5 7.6 7.6 7.6	7.9 5.2 4.9 4.8	13.4 7.0 6.2 6.0 5.7	7.4 2.9 3.0 3.0	5.7 5.1 5.2 5.3
(STINU)	8.2 8.1 7.5 7.4	7.5 7.7 7.7 7.8 7.8 7.8	С. С. С. С. С. С. С. С. С. С. С. С. С. С	8.6 7.7 7.5 7.5	7.3 7.3 7.3 7.3	7.5 7.5 7.5 7.5 7.5
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	490 500 480 480	450 450 500 490 480	430 410 390 380	460 450 470 450	450 430 420 420	360 320 310 310 310
NON- CAR- BONATE HARD- NESS (MG/L)	16	:::::::	25	115	:::::	14 -5
HARD- NESS (CA,MG) (MG/L)	 140		130 120	120	:::::	110 110
DIS- SOLVED SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	::::		249 216	:::::	:::::	214 170
TOTAL PHOS- PHORUS (P) (MG/L)	::::		0.54 .55 	:::::		.62 .57
AMMO- NLA- NLTRO- GEN (N) (MG/L)	::::		00.00 00.0	:::::	:::::	00.110.
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	::::		1.7 1.8 	:::::	:::::	1.9 1.8 1.6
DIS- SOLVED FLUO- RIDE (F) (MG/L)	::::		0.4	:::::	:::::	 4 4
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	41		38.	42	:::::	27 10
DIS- SOLVED SUL- FATE (SO4) (MG/L)			45 	40		36
BICAR- BONATE (HCO ₃) (MG/L)		::::::	125 114	 126	:::::	120 117
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::				:::::	:::::
DIS- SOLVED SOLVED (NA) (MG/L)	::::		32	:::::	:::::	32
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	::::		3.5	:::::	:::::	3.1
DIS- SOLVED CAL- CIUM (CA) (MG/L)	::::	::::::	44 	:::::	:::::	40
DIS- SOLVED MANGA- NESE (MN) (UG/L)	::::		000000000000000000000000000000000000000	:::::	:::::	00000
DIS- SOLVED IRON (FE) (UG/L)	::::	::::::	$\begin{smallmatrix}&&0\\1&0\\2&0\\3&0\\7&0\end{smallmatrix}$:::::	10 20 0 0
DIS- SOLVED SILICA (SIO ₂) (MG/L)	::::	:::::::	8.0 8.1 8.1	:::::	:::::	8.3
DEFTH (FT)	1 5 10 16	$\begin{array}{c} 1 \\ 5 \\ 3 \\ 5 \\ 5 \\ 1 \end{array}$	1 5 20 30 43	1 5 10 32 32	1 5 10 20 32	$\begin{array}{c}1\\5\\10\\20\\34\end{array}$
	1970					
)ATE	20,	20	20	20	20	20
H	Oct.	Oct.	Oct.	Oct.	Oct.	Oct.
SITE	EC	FC	CC CC	HC	IC	JC

- 24 -

TABLE 6.--Chemical-quality survey of Livingston Reservoir, February 25-26, 1971

Elevation 125.87 ft. Contents 1,391,000 ac-ft.

TEM- PERA- TURE (°C)	13.0 13.0 12.5 12.5 12.5 12.5 12.5	13.0 13.0 13.0 12.5 12.5 12.5	13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	13.0 13.0 13.0 13.0 13.0 13.0 13.0	14.0 14.0 14.0 13.5 13.0 13.0 13.0 13.0 13.0 13.0
PER- CENT SATUR- ATION	91 88 84 88 88 88 82 88 88 88 88 88 88 88 88 88	92 88 88 10 10 10 10 10 10 10 10 10 10 10 10 10	102 98 96 85 83 83 83 83	100 98 94 88 83 73	115 113 112 108 96 92 85 85 75
DIS- SOLVED OXYGEN MG/L)	9.0 9.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	8899.3 8899.3 8899.2	10.8 10.8 9.5 9.6 8.8 8.8 7.8	10.6 10.6 9.3 7.8	112.0 111.6 111.6 111.3 9.8 9.0 8.0
(SIINU) Hd	8.3 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	8.0 8.0 7.9 8.0 8.0 8.0 8.0	8.0 8.1 7.9 7.9 7.8 7.9 7.8 8.0 7.8 8.7 7.8 8 7.8 8 7.6 8 7.6 8 7.7 8 7.6 8 7.0 8 7.0 7.7 9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.1 8.1 8.1 8.1 8.0 7.9 7.9 7.4	8.5 8.4 8.8 8.2 8.2 8.2 7 7.8 7 7.8
SPECIFIC CONDUCT- ANCE (MLCRO- MHOS)	420 420 420 420 420 420	420 420 420 420 420 420	450 460 460 460 460 450 450 450	460 460 460 460 460 460	480 480 500 500 500 500
NON- CAR- BONATE HARD- NESS (MG/L)	16				15
HARD- NESS (CA,MG) (MG/L)	150 150 150	::::::		:::::::	150
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	256 257 257	::::::			222 8 1 1 1 1 1 22 8 1 1 1 1 1 1 2
TOTAL PHOS- PHORUS (P) (MG/L)	0,10				.21
AMMO- NLA- NLTRO- GEN (N) (MG/L)	00.00 0.11 00.0	00.	1 10.10.1111		00.1110.
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.20				.00 .12 .12 .46
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0 4			::::::	4
DIS- SOLVED CHLO- RIDE (CL) (MG/L)		::::::			35
DIS- SOLVED SUL- FATE (SO ₄) (MG/L)	46	::::::		::::::	46
BICAR- BONATE (HCO ₃) (MG/L)	162 160				160
DIS- SOLVED POTAS- SIUM (K) (MG/L)					
DIS- SOLVED SODIUM (NA) (MG/L)	37 36				38
DIS- SOLVED MAGNE- SIUM (MG/L)	4. 4. 6				4
DIS- SOLVED CAL- CIUM (CA) (MG/L)	22			::::::	5111111
DIS- SOLVED MANGA- NESE (MN) (UG/L)	310 310 310				00000000
DIS- SOLVED IRON (FE) (UG/L)					000000000000000000000000000000000000000
DIS- SOLVED SILICA (SIO ₂) (MG/L)	2.2 4.5			::::::	
DEPTH (FT)	$1 \\ 10 \\ 20 \\ 30 \\ 50 \\ 60 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	1 25 35 45 56	$1 \\ 15 \\ 15 \\ 20 \\ 25 \\ 30 \\ 50 \\ 60 \\ 60 \\ 80 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	1 55 35 57 57	$\begin{array}{c} 1 \\ 25 \\ 50 \\ 61 \end{array}$
	1971				
DATE	25,	25	22	25	22
	Feb.	Feb.	Feb.	Feb.	Feb.
SITE	U V	ч ^г	B	C C	DC

- 25 -

TABLE 6.---Chemical-quality survey of Livingston Reservoir, February 25-26, 1971--Continued

Elevation 125.87 ft. Contents 1,391,000 ac-ft.

TEM- PERA- TURE (°C)	14.0 13.5 13.5 13.0 13.0 13.0 13.0 13.0	15.0 14.0 13.5 13.5 13.0 13.0 13.0	14.5 14.5 13.5 13.0 12.5 12.5	15.0 14.0 14.0 14.0 13.5	15.0 15.0 14.0 14.0 14.0
PER- CENT SATUR- ATION	108 85 74 47 47 47	132 92 68 49 47	105 74 55 52 52	65 63 58 58 58	66 65 50 51
DIS- SOLVED OXYGEN (MG/L)	11.2 8.8 5.5 5.0 5.0	13.5 9.6 7.1 5.6 5.0 5.0	10.8 7.8 5.8 5.6 5.6	8.4 6.8 6.6 6.1	6.7 6.6 5.7 5.2 5.3
(SLINN) Hd	8.5 8.4 8.0 7.7 7.7 7.7 7.6	8.6 8.1 7.7 7.6 7.6 7.6 7.6	8.3 8.3 7.7 7.7 7.7	6.6 6.5 6.5 6.5	6.5 6.3 6.3 8 .3
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	490 500 590 600 600 600	650 690 750 750 750	580 580 620 650 650	750 750 750 750	760 760 750 750
NON- CAR- BONATE HARD- NESS (MG/L)	::::::	20	19	:::::	22 17
HARD- NESS (CA,MG) (MG/L)		150 160	 	:::::	150
DIS- SOLVED SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)		365 407	327 327 	:::::	424 418
TOTAL PHOS- (P) (P) (MG/L)	::::::	1.6 2.0 1.8	113111	:::::	3.2
AMMO- NLA- NLTRO- GEN (N) (MG/L)		0.00.48	. 05	:::::	.62
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	::::::	2.4 3.4 4.1	2.0	:::::	3.5 3.5 3.1
DIS- SOLVED FLUO- RIDE (F) (MG/L)		0.5	1 1 10 1 1 1	:::::	L
DIS- BOLVED CHLO- RIDE (CL) (MG/L)		68 78 78		:::::	89 87
DIS- SOLVED SUL- FATE (SO4) (MG/L)		71	63	:::::	82 79
BICAR- BONATE (HCO ₃) (MG/L)		162 166	150	:::::	158 160
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::::		:::::	:::::	:::::
DIS- SOLVED SOLUM (NA) (MG/L)	::::::	74	64	:::::	92 91
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)		5.7 6.2	5	:::::	6.6 6.2
DIS- SOLVED CAL- CIUM (CA) (MG/L)		52	1 1 4 8 1 1 1	:::::	50
DIS- SOLVED MANGA- NESE (MN) (UG/L)	:::::::	0000000		:::::	00000
DIS- SOLVED IRON (FE) (UG/L)		000000000000000000000000000000000000000		:::::	10 10 10 60
DIS- SOLVED SILICA (SIO ₂) (MG/L)	::::::		4.0	:::::	9.0
DEPTH (FT)	1 20 30 50 58	1 15 15 30 30 49	1 10 15 30 37	1 20 30 40	1 155 25 35
	1971				
DATE	25,	25	25	26	25
	Feb.	Feb.	Feb.	Feb.	Feb.
SITE	C H	C C	н _C	IC	JC

TABLE 7.--Chemical-quality survey of Livingston Reservoir, May 19, 1971

Elevation 126.85 ft. Contents 1,463,000 ac-ft.

TEM- PERA- TURE (°C)	23.5 23.0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5	23.5 23.0 23.0 23.0 23.0 23.0 21.5 21.5	$\begin{array}{c} 25.0\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.0\\$	$\begin{array}{c} 24.5\\ 23.0\\ 22.5\\ 222.5\\ 222.5\\ 222.5\\ 222.0$	23.00 20.00 20.000 20.000 20.00000000
FER- CENT SATUR- ATION	110 86 50 45 44 35 35 44	108 92 69 37	124 108 83 75 74 61 61 28 28 17	133 86 74 66 69 69 45 45	149 105 77 75 75 75 75 75 75 25 81 29 29
DIS- SOLVED OXYGEN	9.5 6.7 7.5 9.9 9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	$\begin{array}{c} 9.3\\ 7.9\\ 6.1\\ 3.3.3\end{array}$	$\begin{array}{c} 10.4\\ 9.4\\ 6.7\\ 6.5\\ 5.4\\ 2.5\\ 2.5\\ 1.5\end{array}$	$\begin{array}{c} 11.2\\ 7.5\\ 6.4\\ 5.8\\ 6.1\\ 6.1\\ 4.2\\ 4.2\\ 4.0\end{array}$	12.5 6.5 6.5 7.3 8.5 7.5 8.5 7.5 8.5 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8
H4 (SLINN)	888.0 0.77777888 0.367776 0.7778 0.450000000000	8.5 8.4 8.4 8.7 7.7 7.7 7.6	88.25777777779887.7	8.6 8.1 7.8 7.8 7.7 7.7 7.7 8 7.7 8	8 8 8 8 8 8 8 8 9 7 7 7 7 7 8 8 8 8 8 9 8 9
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	460 470 470 470 470 470 470 470 470	470 470 470 470 470 470	470 470 490 490 490 490 490 490	480 480 490 490 490 490	490 490 490 500 500 500 500 500
NON- CAR- BONATE HARD- NESS (MG/L)	191	:::::			15
HARD- NESS (CA,MG) (MG/L)	150 160	:::::			150 140
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	267	:::::			269111111111
TOTAL PHOS- PHORUS (P) (MG/L)	0.06	:::::			0.20
AMMO- NITA- NITRO- GEN (N) (MG/L)	0.00	:::::			0.00
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	0.000 20 	:::::			0.10
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0.4				0 4
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	40	:::::			44
DIS- SOLVED SUL- FATE (SO4) (MG/L)	4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4	:::::			4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BICAR- BONATE (HCO ₃) (MG/L)	168 175				163 153
DIS- SOLVED POTAS- SIUM (K) (MG/L)		:::::			
DIS- SOLVED SOLVM (NA) (MG/L)	42	:::::			42
DIS- SOLVED MAGNE- SIUM (MG/L)	4. 				4.9
DIS- SOLVED CAL- CIUM (CA) (MG/L)	56111111	:::::			52 4 1 1 1 1 1 1 1 1 1 1 1 8 8
DIS- SOLVED MANGA- NESE (MN) (UG/L)	0 0 20 30 40 40 40 1600	::::::			0 0 10 120
DIS- SOLVED IRON (FE) (UG/L)	0 10 10 10 190 190 200 200	:::::			10 10 10 10 10 10 20 20
DIS- SOLVED SILICA (SIO ₂) (MG/L)	1.0 	:::::			1.7
DE PTH (FT)	$\begin{array}{c} 1 \\ 1 \\ 250 \\ 650 \\ 650 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 7$	10 15 30 39	1 5 10 20 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$1 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	1 10 11 10 10 10 10 10 10 10 10 10 10 10
DATE	May 19, 1971	May 19	May 19	May 19	May 19
SITE	AC	$^{\rm T}{}_{\rm W}$	BC	CC	DC

- 27 -

TABLE 7.--Chemical-quality survey of Livingston Reservoir, May 19, 1971--Continued

Elevation 126.85 ft. Contents 1,463,000 ac-ft.

TEM- PERA- TURE (°C)	26.0 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	26.0 23.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0	25.5 24.0 23.5 23.5 23.5 23.0 23.5 22.5 21.5 21.5 21.5	26.5 26.0 23.0 22.5 21.5 21.5 21.5	25.0 22.5 21.5 21.5 21.5 21.5	25.5 23.5 21.0 21.0 21.0	
PER- CENT SATUR- ATION	157 107 67 64 63 3	163 53 39 17 1 1 2 2	193 71 56 5 5 5 1 1 2 2 2 2 2 2 2 2	238 57 35 1 2	86 2 2 - 1 - 9 2	120 45 1 1 4	
DIS- SOLVED OXYGEN (MG/L)	12.9 6.5 5.8 .5	13.4 6.6 1.5 1.5 1.5 2.1 2.2	16.0 6.0 1.9 .1 .2	19.5 16.0 5.0 3.1 .1	7.2 .8 .1 .1 .2 .2	10.0 3.9 .4 .1 .1	
(SLINU) Hd	8.9 8.6 8.0 8.0 7.9 7.3 7.3	8.98	9.0 7.7 7.1 7.1 7.1 7.1 7.1 7.1	9.4 9.1 7.5 6.9 6.9	7.6 7.0 7.0 7.0 7.0	8.1 7.2 7.0 7.0 7.0 7.0 7.0	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	470 480 490 490 420	500 500 510 510 510 510	510 510 510 490 480 480 480 460	460 470 480 460 440 440	450 460 460 460 470 470	450 450 460 470 470 470	
NON- CAR- BONATE HARD- NESS (MG/L)	14		2 23	21	::::::	32	
HARD- NESS (CA,MG) (MG/L)	140 120		130 	120 110	:::::	110	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	270 232		295	254 253	:::::	250	
TOTAL PHOS- PHORUS (P) (MG/L)	0.20		1.2	80. 		.88 .88 1.4	
AMMO- NLA- NLTRO- GEN (N) (MG/L)	0.00		.06			. 05	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.10		.97 1.8 	.30 .24		0101 0.01 1.1.00 1.1.100	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	••••••••••••••••••••••••••••••••••••••		0.111114	4 0	:::::	 4 4	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	44	:::::::::	50	47 46	:::::	45111	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	45 	:::::::::	0 0 0 1 1 1 1 1 1 1 0 0	54 58	::::::	50	
BICAR- BONATE (HCO ₃) (MG/L)	160 129	:::::::::	134 108	114 100	:::::	98 117	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::::		:::::::	:::::	::::::	::::::	
DIS- SOLVED SOLVED (NA) (MG/L)	44		55	47 45	:::::	43	
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	5.0 3.11110		5.0	4.8 5.0	:::::	4.3 4.0	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	50 41		45	3911113	::::::	38	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	30 1100		30 40 250 250 290	40 		10 10 30 40 40	
DIS- SOLVED IRON (FE) (UG/L)	2011112		1110 130 180 270 150 560	40	:::::	20 40 50 130 40	
DIS- SOLVED SILICA (SIO ₂) (MG/L)	2.6 14		7	5.5 11	:::::	8.3	
DE PTH (FT)	1 2 2 3 4 4 3 4	1 15 35 55 55 63	1 5 10 20 30 40 48	1 5 10 20 30 37	1 10 30 52 52	1 5 30 38 38	
DATE	ıy 19, 1971	ay 19	ay 19	ay 19	ay 19	ay 19	
ITE	^c Mi	^c w	°C W	H _C W	IC M	J _C h	
0	н	1	-	-			

- 28 -

0 B	$^{\mathrm{D}}\mathrm{L}$	Dc	c	ВС	AL	A C	SITE
SECCHI DISK TRANS SECCHI DISK TRANS	Feb. 10	Feb. 10	Feb. 10	Feb. 10	Feb. 10	Feb. 10, 1972	DATE
PARENC	1 10 20 26	10 20 40 50 62	$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	$10 \\ 10 \\ 20 \\ 30 \\ 40$	a1 10 20 50 60 75	DEPTH (FT)
Y (FEET) Y (FEET)	::::	6.9 6.6			:::::	7.4 7.4	DIS- SOLVED SILICA (SIO ₂) (MG/L)
22.0	::::	0 0 0 0 0 0 0 0			:::::	5000000	DIS- SOLVED IRON (FE) (UG/L)
	::::	0 10 10 70			:::::	60000000000000000000000000000000000000	DIS- SOLVED MANGA- NESE (MN) (UG/L)
	::::	411114 511115			:::::	42	DIS- SOLVED CAL- CIUM (CA) (MG/L)
		ω ω • • • • • • • • • • • • • •				ω	DIS- SOLVED MAGNE- SIUM (MG) (MG/L)
4	::::	16 21			:::::	18	DIS- SOLVED SODIUM (NA) (MG/L)
	::::				:::::		DIS- SOLVED POTAS- SIUM (K) (MG/L)
	:::;	126 130			:::::	124	BICAR- BONATE (HCO ₃) (MG/L)
	::::	3111129			:::::	2 1 1 1 1 1 1 2	DIS- SOLVED SUL- FATE (SO ₄) (MG/L)
	::::	19 22			:::::	17	DIS- SOLVED CHLO- RIDE (CL) (MG/L)
	::::						DIS- SOLVEI FLUO- RIDE (F) (MG/L)
		.71 .82				0.70 .70	TOTAL NITRITI PLUS NITRATI (N) (MG/L)
	::::					. 18	AMMO- E NIA- NITRO E GEN (N)) (MG/L)
						0.14	TOTAL PHOS- PHORUS (P) (MG/L)
		185 200				180 180	DIS- SOLVED SOLIDS (SUM 0 CONSTI TUENTS (MG/L)
	::::	130 130				120 120	F HARD - NESS) (CA, M (MG/L)
		N ! ! ! ! ! N				5111115	NON- CAR- BONAT HARI NESS (MG/L
	0 0 0 0 0 4 4 4 0				312 312	311	TE CONDU ANC (MICR MHO
	1 1 2 7 . 1 7 . 7 .	-997943 7777777		4 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7	77890897	FIC CT- E S) (UNI
	7 11.0 5 10.3 4 9.5 4 9.5	5 10.5 4 9.5 3 9.1 3 9.0 9.0	7 10.4 5 9.8 5 9.8 5 9.8 5 9.8 5 9.8	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	54445 9.9.9.8 9.6	4400000444 99999999999 8999999999	DIS SOLV OXYG TS) (MG/)
	103 85 86	97 79 79	8888889 887794	8 8 8 8 8 8 8 9	888888	888888888888	PER - CEN ED SATU EN ATIO
	12.5 11.0 10.5 11.0	12.0 10.5 10.0 9.5 9.5 9.5	11.0 10.0 10.0 10.0 10.0 10.0	111.0 10.5 10.5 10.5 10.0 10.0 10.0	10.5 10.5 10.5 10.5	10.5 10.5 10.5 10.5 10.5 10.5	R- PERA- N TURE (°C)

TABLE 8.--Chemical-quality survey of Livingston Reservoir, February 10, 1972

Elevation 131.07 ft. Contents 1,794,000 ac-ft.

TABLE 8,---Chemical-quality survey of Livingston Reservoir, February 10, 1972--Continued

Elevation 131.07 ft. Contents 1,794,000 ac-ft.

TEM- PERA- TURE (°C)	11.5 10.5 10.5 10.0 10.5	10.5 9.5 9.5 9.0 9.0	9.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	10.5 9.5 9.0 8.5 8.5	88888	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	
PER- CENT SATUR- ATION	96 91 86 83 83	82 77 75 75 75 75 71 71	82 75 75 75 75	92 82 73 73	77 76 76 76 76 76	79 75 75 75	
DIS- SOLVED OXYGEN (MG/L)	10.6 9.6 9.1 9.3	8888888 8999 8999 8999 8999 8999 8999	9.3 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	10.3 9.4 9.1 8.6 8.6	9.0 9.0 9.0 9.0	000000 000000 00000	
(SLINN) Hd	7.6 7.5 7.4 7.4	7.2 7.2 7.1	7.2 7.2 7.1 7.1	7.3 7.3 7.1 7.1	7.22	7.1 7.1 7.1 7.1 7.1 7.1	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	334 342 342 342 342	350 350 350 350 350 350 350 350 350 350	333 314 315 315 312 313 313	360 360 380 380 380 380	306 303 303 303 303 303	319 326 326 326 326 326	
NON- CAR- BONATE HARD- NESS (MG/L)	:::::		32	:::::	:::::	28	
HARD- NESS (CA,MG) (MG/L)	:::::	:::::::	120 	:::::		110	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	:::::	::::::	183 178	:::::		180 184	
TOTAL PHOS- PHORUS (P) (MG/L)	0.14 .03	::::::	.29	.19	:::::	.33 34	
AMMO- NITA- NITRO- GEN (N) (MG/L)	0.20		.27	.25		.31 	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.61	::::::	0.82	.21	:::::	.93 	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	:::::	::::::	0 2 - 1 - 1 - 2 2 - 1 - 1 - 2	:::::		011110	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	:::::	::::::	26 24	:::::	:::::	2611112	
DIS- SOLVED SUL- FATE (SO4.) (MG/L)	:::::		33	:::::		351 1 1 4	
BICAR- BONATE (HCO ₃) (MG/L)	:::::	::::::	102 98	:::::		98 100	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	:::::		:::::	:::::	:::::	::::::	
DIS- SOLVED SOLVED SODIUM (NA) (MG/L)	$\{1,1\}$		19	:::::	:::::	21	
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	:::::		3.0 .0 .0	:::::	::::::	3.9 4.0	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	:::::	1111111	40	:::::	:::::	37	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	° °		0000002	° °	:::::	000000	
DIS- SOLVED IRON (FE) (UG/L)	° ¦ ¦ °	::::::	0 0 0 0 0 0 0 0	40	:::::	80 50 40 40	$) 2.2 \\ 0.8 \\ 0.6 \\ 0.$
DIS- SOLVED SILICA (SIO ₂) (MG/L)			7.3			6.1 6.4	Y (FEET Y (FEET Y (FEET Y (FEET
DEFTH (FT)	c1 20 34 34	1 10 20 50 65	d 1 20 30 50 50	e1 10 30 30 41	1 10 30 46	fl 10 30 46 46	K TRANSPARENC K TRANSPARENC K TRANSPARENC K TRANSPARENC
DATE	10	10	10	10	10	10	
	Feb.	Feb.	Feb.	Feb.	Feb.	Feb.	SECCHI SECCHI SECCHI SECCHI
SITE	EC	FC	C CC	H _C	IC	JC	с ф е н

TABLE 9.--Chemical-quality survey of Livingston Reservoir, June 20, 1972

Elevation 130.68 ft. Contents 1,762,000 ac-ft:

TEM- PERA- TURE (°C)	31.0 29.0 24.5 24.0 24.0	32.0 29.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	31.5 29.0 24.5 24.0 23.0 23.0	$\begin{array}{c} 31.0\\ 29.0\\ 24.5\\ 24.0\\ 24.0\\ 24.0\\ 24.0\\ 24.0\\ \end{array}$	$\begin{array}{c} 31.0\\ 29.0\\ 27.5\\ 24.5\\ 24.0\\ 24.0\\ 24.0\\ \end{array}$	31.5 29.5 28.0	
PER- CENT SATUR- ATION	148 59 2 2 2 2	117 117 22 22 22 22 22 22 22 22 22 22 22 22 22	1132 118 2 2 2 2 2	141 67 22 22 22 22	141 69 22 22 22 22	149 73 3	
DIS- SOLVED OXYGEN (MG/L)	11.1 8.9 4.8 .2 .2	9.00 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.6 5.2 2.8 2.2 2.2	10.6 5.4 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	11.0 5.6 .2	
Hd (SLINN)	9.8 7.7 4.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	2222222 777778 882	9.0 8.8 7.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	9.0 7.7 7.3 7.3 7.2 7.3 7.2 7.3	9.0 6.8 6.8 8.8 6.8 8.8 8.8 8.8 8.8 8.8 8.8	9.1 8.5 7.4	
S PE CIFIC CONDUCT- ANCE (MI CRO- MHOS)	342 342 350 351 351	88888888888888888888888888888888888888	364 364 364 375 375 375	370 370 381 381 381 381 381	367 367 378 414 405 387 387	367 367 376	
NON- CAR- BONATE HARD- NESS (MG/L)	:::::	9 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
HARD- NESS (CA,MG) (MG/L)	:::::	110 120 	::::::		120 130	:::	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)		184 195 		::::::	201 210	:::	
TOTAL PHOS- PHORUS (P) (MG/L)	:::::	0.111 .14 			.16 .25 1.0		
AMMO- NITRO- NITRO- GEN (N) (MG/L)	:::::	0.00			00 · · · · · · · · · · · · · · · · · ·	:::	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)		0.01	::::::		. 02 03 03 03	:::	
DIS- SOLVED FLUO- RIDE (F) (MG/L)		°. 1 °. 1 1 1 1 °.			ຕ ເ	:::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)		181111122123			23	:::	
DIS- SOLVED SUL- FATE (SO ₄) (MG/L)		331 331 331 33			33	111	
BICAR- BONATE (HCO ₃) (MG/L)		117 130 			136 144	:::	
DIS- SOLVED POTAS- SIUM (K) (MG/L)						:::	
DIS- SOLVED SODIUM (NA) (MG/L)	:::::	251			26	:::	
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)					3.9	:::	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	:::::	38 411			43	:::	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	:::::	60 250 960 1500 1500 3000			60 630 1600 1300	111	
DIS- SOLVED IRON (FE) (UG/L)		40 60 440 300 660			50 50 50 560 150	:::	3.2
DIS- SOLVED SILICA (SIO ₂) (MG/L)		4.7 5.1 		::::::	4.9 6.1	:::	Y (FEET Y (FEET
DE PTH (FT)	1 20 30 47	al 10 20 20 50 60 77	1 20 30 50 61	$\begin{array}{c} 1 \\ 20 \\ 56 \\ 56 \end{array}$	b1 10 30 50 58	10 10	SPARENCY
	1972						K TRAN
DATE	June 20,	June 20	June 20	June 20	June 20	June 20	CCHI DISA
ITE	L.	0	202	20	2	, L	a SE(
5	-4	-4	-	-	1	-	

- 31 -

TABLE 9.---Chemical-quality survey of Livingston Reservoir, June 20, 1972---Continued

Elevation 130.68 ft. Contents 1,762,000 ac-ft.

TEM- PERA- TURE (°C)	31.5 29.0 27.5 26.0	31.0 229.0 224.5 24.5 24.5 24.5 24.5 24.5	31.5 29.0 28.0 28.0 26.0 26.0	31.0 29.0 28.0 25.5 25.5	30.0 30.0 28.5 26.5 24.5	30.0 28.5 28.0 24.5 24.5	
PER- CENT 7 ATUR- 1	142 77 2 2	107 54 10 22 22 22 22 22 22 22	108 13 10 10 10 10	85 44 10 10 10	96 96 112 12 12	108 96 31 28 10 10	
DIS- SOLVED S OXYGEN A (MG/L)	10.5 6.0 .2	0.4 0.01 80 01 01 01 01 01 01 01 01 01 01 01 01 01	8.0 .8 .8 .8 .8 .8 .8	000 44000000	7.3 7.3 1.0 1.0 1.0	8 7 7 8 7 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
(STINU)	9.1 8.5 7.4 7.0	880 7777777 777777 780 777777 780 777777 780 777777 780 777777 780 780	8.5 7.2 7.2 7.0 7.0	8.2 7.4 7.3 6.8 6.8	8.5 8.5 7.3 7.1 6.8	8.8 8.8 7.7 7.5 7.2 7.2	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	366 366 368 368	409 470 520 444 444 444	496 496 524 524 524	495 495 519 441 441	577 577 600 610 570 547	623 634 641 642 588 588 588	
NON- CAR- BONATE HARD- NESS (MG/L)	6 I 1 0	:::::::::		10		34	
HARD- NESS (CA,MG) (MG/L)	120 120			140 120	:::::	170	
DIS- SOLVED SOLIDS (SUM OF TUENTS) (MG/L)	202 202			271 238	:::::	358	
TOTAL PHOS- PHORUS (P) (MG/L)	0.15			.41 .43 1.4	:::::		
AMMO- NIA- NITRO- GEN (N) (MG/L)	0.00			.000		.000	
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	0.03			.02 .02 		.53 .83 1.8 .12	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0.3		111(1)	4	:::::	211119	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	24 24			44 		50 49	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	32			45	T E E E E	12 	
BICAR- BONATE (HCO ₃) (MG/L)	136 141			156 137		166	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::			:::::	:::::	::::::	
DIS- SOLVED SOLVED SODIUM (NA) (MG/L)	27 25		11111	46	:::::	62 54	
DIS- SOLVED MAGNE- SIUM (MG)L) (MG/L)	00 1 1 00 00 1 1 00 00 1 1 00		::::::	5.0 4.9	:::::	5.5.6	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	42 42		:::::	47		22	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	170 1600	1111111111	11111	20 300 1600		20 150 430	
DIS- SOLVED IRON (FE) (UG/L)	20			30 70 440		70 40 20 60	2.0
DIS- SOLVED SILICA (SIO ₂) (MG/L)	0.1 9.0		()))))	6.5 9.2	:::::	5.7	Y (FEET Y (FEET Y (FEET
DE PTH (FT)	cl 20 34	1 10 115 20 30 50 60 60 60	10 20 30 40 47	d1 10 30 40 46	1 5 10 30 30 43	el 5 10 30 30 42	SPARENC SPARENC SPARENC
DATE	une 20, 1972	une 20	June 20	June 20	June 20	June 20	CCHI DISK TRAN CCHI DISK TRAN CCHI DISK TRAN
SITE	D B C	C M	0 0	HC	IC	JC	c SE e SE

TABLE 10.--Chemical-quality survey of Livingston Reservoir, August 15-16, 1972

Elevation 130.20 ft. Contents 1,723,000 ac-ft.

TEM- PERA- TURE (°C)	30.0 29.0 28.5	29.52255.0222.0222.0222.0222.0222.0222.0	29.0 28.5 28.5 28.0 28.0 28.0 28.0 23.5 23.5 23.5 23.5	29.0 28.5 28.5 28.0 28.0 28.0 28.0 28.0 28.0 28.0 24.0	28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	28.5 28.5 28.5	
PER- CENT SATUR ATION	132 85 77 15	130 77 0 0 0 0 0 0	121 86 77 70 0 0 0	105 82 73 71 71 0 0	94 69 00 00 00 00 00	95 87 87	
DIS- SOLVED OXYGEN (MG/L)	10.0 6.6 1.2	10.0 8.4 6.0 3.5 .0 .0 .0 .0	9.4 6.0 5.5 .0 .0	88.8 6.7 0.0 0.0	7.3 4.3 .0 .0 .0 .0	7.4 6.8 6.8	
H4 H4	8.5 8.1 7.9 7.4	9.1 88.8 88.5 88.1 7777777777777777777777777777777777	8.7 8.8 8.0 7.7 7.3 7.3 7.0 7.0 7.0	8.1 7.7 7.7 6.8 6.8	8.5 8.1 8.1 7.0 7.0 7.0 7.0	8.2 8.1 7.8	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	374 375 375 379	371 371 375 375 375 375 375 397 397	3885 3885 3885 3885 3885 3885 3885 38555 3855	$\begin{array}{c} 390\\ 390\\ 390\\ 390\\ 398\\ 398\\ 398\\ 398\\ 398\\ 398\\ 398\\ 398$	$\begin{array}{c} 395\\ 395\\ 395\\ 396\\ 410\\ 415\\ 415\\ 403\end{array}$	396 396	
NON- CAR- BONATE HARD- NESS (MG/L)		⁶ 0			6 0	:::	
HARD- NESS (CA,MG) (MG/L)	::::	120 140			130 	:::	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	::::	208			²¹⁸ 222	:::	
TOTAL PHOS- PHORUS (P) (MG/L)	::::	0.18			.21 .24 .24 1.6	:::	
AMMO- NIA- NITRO- GEN (N) (MG/L)	::::	0.00			.00 .01 .01 .2.1		
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	::::	0.03			.00 	:::	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	::::	0			4	:::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	::::	29			2	:::	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	::::	1211111111130		111111	32	:::	
BICAR- BONATE (HCO ₃) (MG/L)	::::	144 			149 168	:::	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::					:::	
(T/5W) (NA) SOLVED SOLVED DIS-	::::	28			30	:::	
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	::::	3.8			4.0 4.0 4.0	:::	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	::::	4			46	:::	
DIS- SOLVED MANGA- NESE (MM) (UG/L)	::::	80 100 320 2400 2400 2400			30 50 300 3700 2800	:::	
DIS- SOLVED IRON (FE) (UG/L)	::::	0 170 80 80		nn a n	0 160 140	: : :	3.24
DIS- SOLVED SILICA (SIO ₂) (MG/L)	::::	4.6 21		тыдан	4.4 14	:::	Y (FEET) Y (FEET)
DEPTH (FT)	1 10 33	al 20 35 50 74 74 74	1 20 30 50 67 67	100 20 30 50 60	b1 10 35 35 50 64	1 10 22	SPARENC
	1972						K TRAN
DATE	16,	16	16	. 16	16	. 16	DIS
	Aug.	Aug	any	Aug	Aug	Aug	ECCHI
SITE	$^{\rm A}{ m R}$	AC	BC	° C	D _C	$^{\mathrm{D}}$	e d N N

- 33 -

TABLE 10.--Chemical-quality survey of Livingston Reservoir, August 15-18, 1972---Continued

Elevation 130.20 ft. Contents 1,723,000 ac-ft.

TEM- PERA- TURE (°C)	28.5 28.5 28.5 28.5	29.0 28.5 25.5 25.5 25.5 25.5	288.5 5 288.5 5 5 288.5 5 5 5 288.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30.0 28.5 28.5 28.5 28.5 28.5 28.5	30.5 29.0 29.0 29.0 29.0	30.0 29.5 29.0 29.0		
PER- CENT SATUR- ATION	88 81 78 0	100 91 0 0 0 0 0	33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95 54 0 0 0	72 54 0 0	87 82 00 0		
DIS- SOLVED OXYGEN (MG/L)	6.9 6.3 6.1	7.8 5.6 .0 .0	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	7.2 4.5 0.0	5.5 4.2 0.0	6.6 9.1 0.1		
(STINU)	8.2 7.9 7.1	8.2 6.7 6.6 6.7 6.6 6.7 6.6 6.7 7 6.5 6.7	8	8.0 7.7 7.5 4.4 4.4	7.7 7.5 7.5 7.5 7.1	7.57.5		
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	396 396 400	427 427 510 519 442 442	473 473 505 565 567 567	493 500 555 555	681 694 694 694 694	667 667 673 673 680		
NON- CAR- BONATE HARD- NESS (MG/L)	::::		8 4		:::::	10		
HARD- NESS (CA, MG) (MG/L)	::::		140 150			150 150		
DIS- SOLVED SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	::::		262 318			384 389		
TOTAL PHOS- PHORUS (P) (MG/L)	0.20		29			1.4 1.7 2.1		
AMMO- NLA- NITRO- GEN (N) (MG/L)	0.00			.45		.12 1.2		
TOTAL NITRITE FLUS NITRATE (N) (MG/L)	00.0 00.0			.00	:::::	1.1 .00 .00		
DIS- SOLVED FLUO- RIDE (F) (MG/L)	::::		0			L		
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	::::		40			77 77		
DIS- SOLVED SUL- FATE (SO4) (MG/L)	::::		39			67 62		
BICAR- BONATE (HCO ₃) (MG/L)	::::		166			166 186		
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::							
DIS- SOLVED SODIUM (NA) (MG/L)	::::		58 58 58 58		11111	80		
DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	::::		4.5			5.2		
DIS- SOLVED CAL- CIUM (CA) (MG/L)	::::		52			50		
DIS- SOLVED MANGA- NESE (MN) (UG/L)	10		200	470		0 130 140 170		
DIS- SOLVED IRON (FE) (UG/L)	0110		0 0 1 1 1 0 7	0		0 20 50 60	3.2	
DIS- SOLVED SILICA (SIO ₂) (MG/L)	13.11		8			18 20	Y (FEET	
DE PTH (FT)	1 20 34	1 20 50 70 70	c1 15 20 30 49	10 20 40 45	$\begin{smallmatrix}&1\\10\\30\\40\\\end{smallmatrix}$	d1 20 38 38	SPARENC	
	1972						SK TRAN	
DATE	16,	16	15	15	15	15	DIS	
	Aug.	Aug.	Aug.	Aug.	. gny	. and	SECCHI	
SITE	EC	C F	C C	HC	IC	JC	υro	

TABLE 11.--Chemical-quality survey of Livingston Reservoir, February 27, 1973

Elevation 131.10 ft. Contents 1,797,000 ac-ft.

TEM- PERA- TURE (°C)	11.5 11.5 11.5 10.5 10.5 10.0	$\begin{array}{c} 12.0\\11.5\\111.0\\111.0\\111.0\\111.0\\10.5\\10.5$	$\begin{array}{c} 12.0\\111.0\\111.0\\111.0\\10.5\\10.5\\10.5\end{array}$	$\begin{array}{c} 12.0\\ 12.0\\ 11.0\\ 111.0\\ 10.5\\ 10.5\\ 10.5\end{array}$	12.5 11.5 11.0	12.5 12.0 11.0 11.0 10.5	
PER- CENT SATUR- ATION	102 100 95 71 71 68 65 65	94 85 84 60 60	91 83 81 77 71 66 65	84 74 63 55 57	85 76 85	97 87 65 57	
DIS- DIS- OXYGEN (MG/L)	$\begin{array}{c} 111.2\\111.0\\111.0\\8.0\\7.9\\7.6\\7.4\\6.9\end{array}$	10.1 9.6 9.3 8.9 7.8 6.7	9.9.8 9.7777 9.60 7.74 8.60 7.77 7.34 7.34 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.0	9.1 8.9 6.4 1.8 6.2 6.2	9.1 8.4 8.0	10.4 9.4 7.6 6.4 6.4	
(SLINU) Hq	8.6 8.5 8.5 7.8 7.7 7.7 7.7 7.7	8.1 8.0 7.9 7.5 8.0 7.5 8 7.5 8	8.0 7.8 7.7 7.7 7.7 7.6 6 7.6	4.55.56.73.8	7.8 7.7 7.5	8.2 8.0 7.5 7.4	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	404 406 407 413 413 414 415 418	388 392 400 400	381 381 381 381 397 400	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	366 366 371	356 364 367 367 371	
NON- CAR- BONATE HARD- NESS (MG/L)	19			26	:::		
HARD- NESS (CA,MG) (MG/L)	120 130			110	;;;;		
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	227 234			209 210	:::	:::::	
TOTAL PHOS- (P) (MG/L)	0.25			. 40	:::	.34	
AMMO- NIA- NITRO- GEN (N) (MG/L)	0.23			30.	:::	.15	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.61 -51 			1.0	:::	.81 1.1	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0. 			<u></u>	:::	:::::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	33			28	:::		
DIS- SOLVED SUL- FATE (SO4) (MG/L)	42			46	:::		
BICAR- BONATE (HCO ₃) (MG/L)	129 			102 104	:::	:::::	
DIS- SOLVED POTAS- SIUM (K) (MG/L)					:::	::::	
DIS- SOLVED SOLVED SOLVED (MG/L)	8			30	:::		
DIS- SOLVED MAGNE- SIUM (MG/L)	4 4 4	::::::	::::::	4.2 4.1	:::	:::::	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	4		::::::	37	:::	:::::	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	10111001100		::::::	201010	:::	° °	
DIS- SOLVED IRON (FE) (UG/L)	3111333113	::::::	::::::	100 100 110 130	:::	90 	3.9 2.6
DIS- SOLVED SILICA (SIO ₂) (MG/L)	6 . 5 8				:::	:::::	(FEET) (FEET) (FEET)
DEPTH (FT)	al 10 20 20 20 20 20 20 70 70 70	1 10 20 50 62 62	1 20 30 50	b1 10 30 50 63	1 10 24	cl 10 30 45	SPARENCY SPARENCY SPARENCY
DATE	Feb. 27, 1973	Feb. 27	Feb. 27	Feb. 27	Feb. 27	Feb. 27	CCHI DISK TRANS CCHI DISK TRANS CCHI DISK TRANS
SITE	AC	BC	CC	DC	\mathbf{p}^{Γ}	EC	a SE SE SE C SE

- 35 -

,

TABLE 11.--Chemical-quality survey of Livingston Reservoir, February 27, 1973--Continued

Elevation 131.10 ft. Contents 1,797,000 ac-ft.

111.0 110.0 110.0 110.0 110.0 110.5 110.5 110.5 111.5 111.5 111.5 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 110.0 10.0 100.0 110.0 100.0 1 FERA-FURE (°C) PER-CENT SATUR-7.4 5.3 5.1 5.1 DIS-SOLVED OXYGEN (MG/L) 04000 ດ ດ ບ ດ ດ (UNITS) 4.7.7.4 SPECIFIC CONDUCT-ANCE (MICRO-MHOS) 153 160 161 161 244 246 374 374 454 454 473 473 473 NON-CAR-BONATE HARD-NESS (MG/L) HARD-NESS (CA,MG) (MG/L) DIS-SOLVED SOLIDS (SUM OF CONSTI-TUENTS) (MG/L) TOTAL PHOS-PHORUS (P) (MG/L) 21 27 25 60 1111111 AMMO-NLA-NLTRO-GEN (N) (MG/L) 0.32 23 32 42 74 1111111 TOTAL NITRITE PLUS NITRATE (N) (MG/L) 4 | | | 00 ...50 9 9 9 9 DIS-SOLVED FLUO-RIDE (F) (MG/L) 4 - - 4 DIS-SOLVED CHLO-RIDE (CL) (MG/L) DIS-SOLVED SUL-FATE (SO4) (MG/L) BICAR-BONATE (HCO₃) (MG/L) ::::::: DIS-SOLVED POTAS-SIUM (K) (MG/L) 1111111 DIS-SOLVED SODIUM (NA) (MG/L) DIS-SOLVED MAGNE-SIUM (MG/L) DIS-SOLVED CAL-CIUM (CA) (MG/L) 501110 DIS-SOLVED MANGA-NESE (MN) (UG/L) 220 DIS-SOLVED IRON (FE) (UG/L) 1.0 90 90 80 310 --160 110 1111111 TRANSPARENCY (FEET) TRANSPARENCY (FEET) TRANSPARENCY (FEET) 01 DIS-SOLVED SILICA (SIO₂) (MG/L) 8.11.9. 8.3 11111111 DEPTH (FT) 1973 DISK DISK DISK DATE 27, 27 27 27 27 SECCHI SECCHI SECCHI Feb. Feb. Feb. Feb. Feb. SITE с ц °. °C F 50 E ьed TABLE 12.--Chemical-quality survey of Livingston Reservoir, May 15, 1973

Elevation 131.17 ft. Contents 1,802,000 ac-ft.

1 1								
10. 10. <td>TEM- PERA- TURE (°C)</td> <td>23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5</td> <td>23.5 23.0 23.0 23.0</td> <td>22.5 22.5 22.5 22.0 22.0 21.5 21.0 21.0</td> <td>22.5 22.5 22.5 22.5 22.5 22.5 22.0 22.0</td> <td>22.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0</td> <td>22.0 22.0 22.0</td> <td></td>	TEM- PERA- TURE (°C)	23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	23.5 23.0 23.0 23.0	22.5 22.5 22.5 22.0 22.0 21.5 21.0 21.0	22.5 22.5 22.5 22.5 22.5 22.5 22.0 22.0	22.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0	
1 1	PER- CENT SATUR- ATION	85 83 81 81 81 81 81 81 81 81 82 81 82 81 82 82 82 82 82 82 82 82 82 82 82 82 82	8 9 9 9 9	78 78 77 73 47 33	76 75 75 75 75 75	67 64 64 56 56 56	72 70 68	
1 1	DIS- SOLVED OXYGEN (MG/L)	2.52 6.07 7.33 7.33 7.44 7.33 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.6 7.4 7.4 7.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.7 6.6 6.6 6.6 6.2	4 0.0.0.0.0 0.000000 0.000000	6.3 6.0	
1 1	PH PH (UNITS)	7 . 7 . 8 7 . 7 . 8 7 . 7 . 7 7 . 7 . 7 7 . 7 8 . 7 7 . 7 7 . 7 8 . 7 7 . 7 7 . 8 8 . 7 7 . 7 8 . 7 7 . 8 8 . 7 7 . 7 8 . 7 7 . 8 8 . 7 7 . 7 8 . 7 7 . 7 7 . 7 8 . 7 7 . 7 8 . 7 7 . 7 8 . 7 7 . 7 .	7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.7 7.8 7.7 7.5	7.8 7.8 7.8 7.8 7.7	7.6 7.6 7.6 7.5 7.5 7.5	7.6 7.6 7.5	
Line Line <thline< th=""> Line Line <thl< td=""><td>SPECIFIC CONDUCT- ANCE (MICRO- MHOS)</td><td>$\begin{array}{c} 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 290\\ 290\\ 290\\ 290\\ 280\\ 290\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 28$</td><td>280 280 280 280</td><td>280 280 280 280 280 280 280 280 280 280</td><td>280 280 280 280 280 280 280 280 280 280</td><td>331 331 331 331 331 331 296</td><td>318 318 318</td><td></td></thl<></thline<>	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	$\begin{array}{c} 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 290\\ 290\\ 290\\ 290\\ 280\\ 290\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 28$	280 280 280 280	280 280 280 280 280 280 280 280 280 280	280 280 280 280 280 280 280 280 280 280	331 331 331 331 331 331 296	318 318 318	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	NON- CAR- BONATE HARD- NESS (MG/L)	19	::::			20	:::	
Line Line <thline< th=""> Line Line <thl< td=""><td>HARD- NESS (CA,MG) (MG/L)</td><td>100</td><td>::::</td><td></td><td></td><td>120</td><td>:::</td><td></td></thl<></thline<>	HARD- NESS (CA,MG) (MG/L)	100	::::			120	:::	
Line Bits Bits <th< td=""><td>DIS- DIS- SOLUED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)</td><td>161 176</td><td>::::</td><td></td><td></td><td>189 173</td><td></td><td></td></th<>	DIS- DIS- SOLUED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	161 176	::::			189 173		
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	TOTAL PHOS- PHORUS (P) (MG/L)	0.24 .25 .32	::::			.27	:::	
Ab May 15, 1973 May 16, 1973 May 17, 1973 May 17, 1973 May 17, 1973 May 16, 1973 May 17, 1973	AMMO- NIA- NITRO- GEN (N) (MG/L)	0.00	::::			00.		
Ab May 15, bay 15, 1973 May 15, bay 16, bay 16, b	TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.80	::::		:::::	70 	111	
AL May 15, 1973	DIS- SOLVED FLUO- RIDE (F) (MG/L)	0.2	::::			<u>.</u>	:::	
DATE DIS- ENTER DIS- ENTER <td>DIS- SOLVED CHLO- RIDE (CL) (MG/L)</td> <td>15</td> <td>::::</td> <td></td> <td></td> <td>16</td> <td>:::</td> <td></td>	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	15	::::			16	:::	
ALT DIS- ENTRY SILTON DIS- EN	DIS- SOLVED SUL- FATE (SO4) (MG/L)	27 32	::::			201111 201111 201111 2011 2011 2011 201	:::	
	BICAR- BONATE (HCO ₃) (MG/L)	103	::::			127 118	:::	
Ac May 15 M15-	DIS- SOLVED POTAS- SIUM (K) (MG/L)		::::					
AC May 15 D15 D15 <thd15< th=""> <thd15< th=""> <thd15< th=""></thd15<></thd15<></thd15<>	DIS- SOLVED SOLVED (MG/L) (MG/L)	16	::::			18	:::	
	DIS- SOLVED MAGNE- SIUM (MG) (MG/L)		1111			8 0 8 0 8 0	:::	
AC May 15 DIS- SOLVED DIS- SOLVED <thdis- SOLVED DIS- SOLVED DIS- SOLVED</thdis- 	DIS- SOLVED CAL- CIUM (CA) (MG/L)	36	::::		:::::	44 		
	DIS- SOLVED MANGA- NESE (NN) (UG/L)	0 0 150	::::		:::::	10	:::	
BC May 15, 1973 BEFH (S102) AC May 15, 1973 BEFH (S102) AL May 15, 1973 a1 9.0 30	DIS- SOLVED IRON (FE) (UG/L)	60 80 100 220	::::			80 200	:::	1.4 1.1
SITE DATE DEFTH SITE DATE (FT) AC May 15, 1973 al 10 BC May 15 11 CC May 15 11 CC May 15 11 DC May 15 10 BC M	DIS- SOLVED SILICA (SIO2) (MG/L)	9.0				9.5	:::	((FEET)
site bare AC May 15, 1973 AL May 15 BC May 15 CC May 15 DC May 15 DC May 15 a SECCHI DISK TRANSP	DEPTH (FT)	al 10 20 30 50 60 74	$\begin{smallmatrix}&1\\10\\20\\36\end{smallmatrix}$	$1 \\ 10 \\ 20 \\ 30 \\ 50 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 6$	1 10 30 55	b1 10 20 30 50 65	$1 \\ 10 \\ 23$	ARENCY
sire Ac Mai Bc Mai Bc Mai C Mai Dc Mai	DATE	y 15, 1973	y 15	y 15	y 15	y 15	y 15	II DISK TRANSF
a DL C C C C C C C C C C C C C C C C C C	64	Ма	Ma	Ma	Ma	Ma	Maj	SECCI
	SITI	AC	AL	BC	°°	DC	DL	a q

TABLE 12.--Chemical-quality survey of Livingston Reservoir, May 15, 1973--Continued

Elevation 131.17 ft. Contents 1,802,000 ac-ft.

TEM- PERA- TURE (°C)	21.5 21.5 21.5 21.0	23.5 23.0 23.0 23.0 23.0 23.0 23.0	24.0 23.5 23.5 23.0 23.0 23.0 23.0	24.5 23.0 22.5 22.5 22.5	23.0 23.0 23.0 23.0 23.0	23.0 23.0 23.0 23.0	
PER- CENT SATUR- ATION	71 70 67 40	65 62 61 61 57	66 57 55 53	107 77 58 58 58	0 0 0 0 0 0 0 0 0 0 0 0	53 53 53 53 53 53 53 53 53 53 53 53 53 5	
DIS- SOLVED OXYGEN (MG/L)	6.3 6.2 3.6	5.9 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	5.6 4.9 4.8 4.8 4.8	9.0 6.7 5.1 4.9	4.6 4.6 4.6 6.6	4 4 6 4 6 6 6 6 6 6	
(STINU)	7.5 7.4 7.3 7.0	7.6 7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5	8.0 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	255 255 255 255	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340 340 340 340 340 340	2224 3335 3355 3355 3355 3355 3355 3355	344 344 344 344 344	347 347 347 347 347	
NON- CAR- BONATE HARD- NESS (MG/L)	16	:::::		2 2	:::::	24	
HARD- NESS (CA,MG) (MG/L)	91	:::::		69 130	:::::	130 130	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	147	:::::		130 192	:::::	198 197	
TOTAL PHOS- PHORUS (P) (MG/L)	0.22 .21 .29	:::::	.32.37	.21 .21 .31 .36	::::	.39	
AMMO- NLA- NLTRO- GEN (N) (MG/L)	0.00	:::::	.00 	.05		00.1110.	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.60 60 .60		.82 .81 .81 .72	.72		06.	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	0.2	:::::		5 1 1 1 5	:::::	01110	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	14	:::::		16	:::::	18	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	26	:::::		341113		35	
BICAR- BONATE (HCO ₃) (MG/L)	6			54 -1 127		130 130	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::			:::::	:::::		
DIS- SOLVED SODIUM (NA) (MG/L)	15	:::::		16	:::::	19 19	
DIS- SOLVED MAGNE- SIUM (MG/L)	5 1 1 1 8 1 1 1 8			3.4	::::	00 I I I 00 00 I I I 00 00 I I I 00	
DIS- SOLVED CAL- CAL (CA) (MG/L)	32	:::::		22 45	:::::	46	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	0 10 150			3010	:::::	10	
DIS- SOLVED IRON (FE) (UG/L)	80 170 110	11111		80 80 70	:::::	80 110	1.5 1.0 1.0 0.9
DIS- SOLVED SILICA (SIO ₂) (MG/L)	9,1			10 8.1		7.5	Y (FEET Y (FEET Y (FEET Y (FEET
DE PTH (FT)	cl 20 32	100 200 57	d1 20 30 54	e1 10 30 40	1 10 30 41	f1 20 30 42	PARENC PARENC PARENC PARENC
DATE	15, 1973	15	15	15	15	15	I DISK TRANS I DISK TRANS I DISK TRANS I DISK TRANS I DISK TRANS
	May	May	May	May	May	May	SECCH SECCH SECCH SECCH
SITE	EC	FC	0 U	HC	LC	JC	n h e d c

TABLE 13.---Chemical-quality survey of Livingston Reservoir, August 30, 1973

Elevation 131.16 ft. Contents 1,802,000 ac-ft.

TEM- PERA- TURE (°C)	30.5 28.5 28.0 28.0 28.0	30.5 28.5 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	30.0 28.5 28.5 28.5 28.5 28.0 26.5 26.5	31.0 29.0 28.5 28.5 28.5 26.5	31.0 29.0 29.0 29.0 29.0 29.0	29.5 29.0 29.0
PER- CENT SATUR ATION	113 69 43 39	116 95 39 30 30 22 22 22 22	137 63 56 3 3 2 2	101 56 56 56 33 2	125 92 69 69 69 69	125 77 69
DIS- SOLVED OXYGEN (MG/L)	8.6 3.4 3.1 4.6	8000−4000 8400−4000	10.4 4.9 4.4 22 22	7444 444 4444 202	9.2.5.5.5.0 9.4.4.4.4.2 2.2.4.4.4.4.2	9.6 5.4
(STINU)	8.6 7.9 7.5 7.4	8.8 8.3 7.5 7.7 7.5 7.7 7.5 6.9 6.9 6.9	8.6 7.8 7.7 7.1 7.1 7.1 6.9	8.6 7.7 7.7 7.7 7.0 6.9	8.6 8.3 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.0	8.8
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	296 302 302 302	296 296 296 306 312 312	3 0 8 3 3 0 8 3 3 0 8 3	3 08 3 08 3 08 3 08 3 08 3 08 3 08 3 08	310 310 310 310 310 310 312 312	310 310 310
NON- CAR- BONATE HARD- NESS (MG/L)	:::::	9 0	::::::		· · · · · · · · · · · · · · · · · · ·	:::
HARD- NESS (CA,MG) (MG/L)	:::::	100			110 110	:::
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	:::::	160 			171 172	:::
TOTAL PHOS- PHORUS (P) (MG/L)	:::::	0.13 -17 .17 .51 .51 .8			.15	:::
AMMO- NIA- NITRO- GEN (N) (MG/L)		0.00			00.111100.	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	:::::	0.01			. 00 	:::
DIS- SOLVED FLUO- RIDE (F) (MG/L)		0 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2			<i>i</i> i ii	:::
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	:::::	14			16	:::
DIS- SOLVED SUL- FATE (SO4) (MG/L)	:::::	24	::::::		26	:::
BICAR- BONATE (HCO ₃) (MG/L)		120 138			126 126	:::
DIS- SOLVED POTAS- SIUM (K) (MG/L)						:::
DIS- SOLVED SOLVED MAJ (MG/L)	:::::	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			20	:::
DIS- SOLVED MAGNE- SIUM (MG) (MG)						:::
DIS- SOLVED CAL- CAU- (CA) (MG/L)	:::::	38			40 	111
DIS- SOLVED MANGA- NESE (MN) (UG/L)		33011130			0 140	:::
DIS- SOLVED IRON (FE) (UG/L)		23001 - 1 - 0 23001 - 1 - 0 2			1201110	3.0 8.0 8.0
DIS- SOLVED SILICA (SIO ₂) (MG/L)	:::::	4.1 16			4	 (FEET)
DE PTH (FT)	1 20 30 42	a1 10 50 50 60 76 60 76	$1 \\ 10 \\ 20 \\ 50 \\ 50 \\ 60 \\ 60 \\ 60 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c} 1 \\ 20 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50$	b1 b1 2 10 2 30 63 64	1 10 24 IPARENCY
	1973					C TRANS
DATE	30,	30	30	. 30	. 30	. 30 [DISH
	Aug	Aug	Aug	Aug	Aug	Aug
SITE	$^{\rm A}{}_{\rm R}$	AC	BC	CC	DC	D L b S

PERA-FURE (°C) 229.0. 229.0. 229.0. 229.0. 229.0. 228.0. 200.0. 20 PER-CENT SATUR-ATION $\begin{array}{c}
10.2 \\
6.0 \\
6.0 \\
5.8 \\
5.8 \\
\end{array}$ 111.02.42.42.22.21.81.81.82.3 1.83.3 1. 2.08 2.88 2.88 2.08 2.08 12.2 3.8 3.8 3.8 3.8 3.8 $7.2 \\ 1.1$ DIS-SOLVED OXYGEN (MG/L) PH (UNITS) 8.4 7.5 7.1 7.0 6.6 8.2 8.2 7.9 SPECIFIC CONDUCT-ANCE (MICRO-MHOS) NON-CAR-BONATE HARD-NESS (MG/L) HARD-NESS (CA,MG) (MG/L) 1111 DIS-SOLVED SOLIDS (SUM OF CONSTI-TUENTS) (MG/L) TOTAL PHOS-PHORUS (P) (MG/L) 0.21 229 AMMO-NLA-NLTRO-GEN (N) (MG/L) 0.00 38010010 100100 23 TOTAL NITRITE PLUS NITRATE (N) (MG/L) 2001 2011 02 06 0.01 DIS-SOLVED FLUO-RIDE (F) (MG/L) DIS-SOLVED CHLO-RIDE (CL) (MG/L) DIS-SOLVED SUL-FATE (SO₄) (MG/L) BICAR-BONATE (HCO₃) (MG/L) 1 1 28 DIS-SOLVED POTAS-SIUM (K) (MG/L) 1111 DIS-SOLVED SODIUM (NA) (MG/L) 30111 33 1111 34 111 37 DIS-SOLVED MAGNE-SIUM (MG) (MG)L) DIS-SOLVED CAL-CAL-CAL (CA) (MG/L)
 4
 DIS-SOLVED MANGA-NESE (MN) (UG/L) 2.2 2.6 1.9 DIS-SOLVED IRON (FE) (UG/L) (FEET) (FEET) (FEET) (FEET) DIS-SOLVED SILICA (SIO₂) (MG/L) 1111 0011110 °. | | | TRANSPARENCY TRANSPARENCY TRANSPARENCY TRANSPARENCY TRANSPARENCY (FT) 1973 DISK DISK DISK DISK DATE 30, 30 30 30 30 30 SECCHI SECCHI SECCHI SECCHI Aug. Aug. Aug. Aug. Aug. Aug. C Ъ, SITE ч Н പ്പ <u>ں</u> 50 u n e e

13. --Chemical-quality survey of Livingston Reservoir, August 30, 1973--Continued

TABLE

Elevation 131.16 ft. Contents 1,802,000 ac+ft.

12.0 11.5 11.5 200 ດວດເດດເດດເວດ 22220 0000 ເດເດເດ ເດເດເດ TEM-PERA-TURE (°C) 112. PER-CENT SATUR-ATION DIS-SOLVED OXYGEN (MG/L) 10.0 9.8 9.4 9.4 10.0 10.0 10.0 9.8 9.8 9.8 0 0 0 0 0000004444 9.7 തരംഗം 0 00 00 01 0.000.000000000 0.00.0 (STINU) $\frac{7}{7}$.4 7.4 7.3 4.77.7.7.4.4 4.77.7.7.7.4 4.7.3 5.7.7.7 5.7.7.7 5.7.7.7 5.7. $7.2 \\ 7.1$ 7.27.27.2 SPECIFIC CONDUCT-ANCE (MICRO-MHOS) 225 225 225 225 259 259 259 259 NON-CAR-CAR-BONATE HARD-NESS (MG/L) 1111 23 HARD-NESS (CA,MG) (MG/L) :::: 993 DIS-SOLVED SOLIDS (SUM OF CONSTI-TUENTS) (MG/L) TOTAL PHOS-PHORUS (P) (MG/L) AMMO-NLA-NLTRO-GEN (N) (MG/L) 1111 01111010 TOTAL NITRITE FLUS NITRATE (N) (MG/L) 732 DIS-SOLVED FLUO-RIDE (F) (MG/L) DIS-SOLVED CHLO-RIDE (CL) (CL) DIS-SOLVED SUL-FATE (SO4) (MG/L) BICAR-BONATE (HCO₃) (MG/L) DIS-SOLVED POTAS-SIUM (K) (MG/L) DIS-SOLVED SODIUM (NA) (MG/L) DIS-SOLVED MAGNE-SIUM (MG/L) 9.11 DIS-CAL-CAL-CIUM (CA) MG/L) DIS-SOLVED MANGA-NESE (MN) (UG/L) DIS-SOLVED IRON (FE) (UG/L) 100150 1111 001130 11111 11111 00100 11111 1.2 (FEET) (FEET) (FEET) DIS-SOLVED SILICA SILICA SIO₂) (SIO₂) 1111 <u>211111</u> 2112 1111 L TRANSPARENCY TRANSPARENCY TRANSPARENCY EPTH (FT) $^{10}_{26}$ 330101 1974 DISK DISK DISK DATE 12, 12 12 12 12 12 12 SECCHI I SECCHI I SECCHI I Feb. Feb. Feb. Feb. Feb. Feb. Feb. SITE ⁴R J. _س 0 പ പ് ď c p a

1974

14.--Chemical-quality survey of Livingston Reservoir, February 12,

TABLE

Contents 1,783,000 ac-ft.

Elevation 130.94 ft.

- 41 -

TABLE 14.--Chemical-quality survey of Livingston Reservoir, February 12, 1974--Continued

Elevation 130.94 ft. Contents 1,783,000 ac+ft.

11.511.011.011.011.011.011.0112.5 112.5 112.5 111.5 111.5 111.5 111.5 111.5 111.5 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 111.5 11.5 TEM-PERA-TURE (°C) PER-CENT SATUR-ATION 80 77 76 DIS-SOLVED OXYGEN (MG/L) 9.8 9.3 8.7 8.7 8.7 9.1 8.3 8.1 8.1 8.1 9699 0000000 00 00 00 00 (UNITS) 7.2 7.1 7.1 7.1 SPECIFIC CONDUCT-ANCE (MICRO-MHOS) $242 \\ 242$ 242 259 259 305 310 319 378 417 417 417 417 417 125 125 125 125 309 315 351 351 351 351 NON-CAR-BONATE HARD-NESS (MG/L) HARD-NESS (CA,MG) (MG/L) 1150 1150 1150 1150 1150 1150 DIS-SOLVED SOLIDS (SUM OF CONSTI-TUENTS) (MG/L) 1176 TOTAL PHOS-PHORUS (P) (P) (MG/L) AMMO-NLA-NLTRO-GEN (N) (MG/L) 00.00 00.00 11111 0110 TOTAL NITRITE PLUS NITRATE (N) (MG/L) والم اللل DIS-SOLVED FLUO-RIDE (F) (MG/L) DIS-SOLVED CHLO-RIDE (CL) (MG/L) DIS-SOLVED SUL-FATE (SO4) (MG/L) BICAR-BONATE (HCO₃) (MG/L) DIS-SOLVED POTAS-SIUM (K) (MG/L) DIS-SOLVED SODIUM (NA) (MG/L) DIS-SOLVED MAGNE-SIUM (MG/L) DIS-SOLVED CAL-CIUM (CA) (CA) DIS-SOLVED MANGA-NESE (MN) (UG/L) DIS-SOLVED IRON (FE) (UG/L) 0.8 (FEET) (FEET) (FEET) DIS-SOLVED SILICA (SIO₂) (MG/L) 9.4 --9.4 TRANSPARENCY (TRANSPARENCY (TRANSPARENCY (DEPTH (FT) 10 10 33 33 1974 DISK DISK DISK DATE 12, 12 12 12 12 SECCHI I SECCHI I SECCHI I Feb. Feb. Feb. Feb Feb SITE °1 JC с. <u></u>с CH p e 4

- 42 -

TABLE 15.---Chemical-quality survey of Livingston Reservoir, April 30-May 1, 1974

Elevation 131.29 ft. Contents 1,812,000 ac-ft.

TEM- PERA- TURE (°C)	21.0 20.5 20.0 20.0 19.5	21.0 20.5 20.0 20.0 19.5 118.5 118.5 18.5	21.5 21.0 21.0 20.5 20.5 20.0 19.0	22.0 21.5 21.5 21.5 21.0 20.5 20.0	22.5 22.0 22.0 22.0 22.0 22.0 22.0	22.5 22.0 22.0	
PER- CENT SATUR- ATION	96 87 78 53	98 633 338 21 238 238 23 338 23 338 23 338 23 338 338	96 93 88 73 70 35	98 92 55 55 10	111 98 95 95 93	122 106 91 91	
DIS- SOLVED OXYGEN (MG/L)	8.6 7.9 6.4 4.9	200400400 000887788 000887788	8.5 6.6 3.2 4.6 1.0 1.0	8.8 8.5 6.1 5.0 .9 0 .9	0 8 8 8 8 8 8 8 8 9 9 4 4 6 6	10.7 9.3 8.8 8.0	
(SIINU) Hd	7.8 7.5 7.0 6.7	$\begin{array}{c} 7 \\ 7 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$	7.9 7.7 7.3 6.8 6.8	8.0 8.0 7.9 7.1 8 7.1 6.7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888 8999	
SPECIFIC CONDUCT- ANCE (MLCRO- MHOS)	294 294 294 294	294 294 300 300 300 300 300 300 300 300 300 30	310 310 310 310 310 310 310	320 320 320 320 320 320 320 320 320 320	319 319 319 319 319 319	319 319 319 319	
NON- CAR- BONATE HARD- NESS (MG/L)	:::::	19			21	::::	
HARD- NESS (CA,MG) (MG/L)	:::::	6 6			110	::::	
DIS- SOLVED SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	:::::	163 172			181 173	1111	
TOTAL PHOS- PHORUS (P) (MG/L)	:::::	0.13			.15	::::	
AMMO- NIA- NITRO- GEN (N) (MG/L)	:::::	0.21			.18	::::	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	:::::	0.35 -48 61			.09	::::	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	:::::					::::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	:::::				26	::::	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	:::::	3311111113			35111138	::::	
BICAR- BONATE (HCO ₃) (MG/L)	:::::	96			103	::::	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	:::::	4.2 4.1			4.4 	::::	
DIS- SOLVED SODIUM (NA) (MG/L)	:::::	18 19			22	::::	
DIS- SOLVED MAGNE- SIUM (MG/L)	:::::	3.4 3.2			ຕ ຕ	::::	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	:::::	34			3111113	::::	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	:::::	0 20 20 260 1000			0 0 0		
DIS- SOLVED IRON (FE) (UG/L)	:::::	30 30 350 350 350			30		4.0
DIS- SOLVED SILICA (SIO ₂) (MG/L)	:::::	2.9			-:::::::::	::::	(FEET) (FEET)
DE PTH (FT)	$\begin{smallmatrix}&1\\10\\20\\30\\45\end{smallmatrix}$	al 10 20 50 60 80 80	$\begin{array}{c} 1 \\ 20 \\ 30 \\ 50 \\ 65 \end{array}$	1 20 30 50 60	b1 10 20 30 59 59	1 10 25 25	PARENCY
м	1974						C TRANSI
DATF	ay 1,	ay 1	ay 1	ay 1	pr. 30	pr. 30	II DISE
LTE	W	W	W	W	ł	Ϋ́	SECCE
IS	AR	AC	BC	5	DC	DL	a, a

TABLE 15.--Chemical-quality survey of Livingston Reservoir, April 30-May 1, 1974--Continued

Elevation 131.29 ft. Contents 1,812,000 ac-ft.

TEM- PERA- TURE (°C)	23.0 22.5 22.0 22.0 21.0 21.0	23.0 22.5 22.5 22.5 22.5 22.5 22.5	23.5 23.0 23.0 23.0 23.0 23.0 23.0	23.0 22.5 22.5 21.5 21.5	23.5 23.0 23.0 23.0 23.0	23.0 23.0 23.0 23.0 23.0	
PER- CENT SATUR- ATION	1113 95 89 17 17 0	93 74 67 64 52 51	105 76 69 68 61	101 77 73 70 17	43 41 39 38	18 14 14 14	
DIS- SOLVED OXYGEN (MG/L)	9.8 8.4 7.8 6.8 1.5	8.0 6.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	9.0 6.6 5.3 3.3	8.8 6.8 6.2 1.5	33.6 33.6 33.6	1.2 1.2 1.2 1.2	
(STINU)	8.8 8.0 7.8 6.9	7.5 7.5 7.5 7.5 7.5 7.5	8.1 7.5 7.7 7.3 7.3	7.8 7.1 6.9 6.4	7.0 7.0 7.0 6.9 6.8	6.8 6.8 6.7 6.7	
SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	320 320 320 320 320 401	460 460 460 460 460 490 490	599 599 599 599 599 599	562 490 470 465	540 540 540 540	501 501 501 501	
NON- CAR- BONATE HARD- NESS (MG/L)	16 21	::::::	44	42	:::::	11	
HARD- NESS (CA,MG) (MG/L)	99 120		160 150	150 120	:::::	120 130	
DIS- SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	172 223		333 337	314 254	:::::	277 273 273	
TOTAL PHOS- PHORUS (P) (MG/L)	0.12		.82 1.0 1.1	.66 .20 .18	:::::	1.4 1.4 1.4	
AMMO- NIA- NITRO- GEN (N) (MG/L)	0.12	::::::	.22	.24 .24 .43	:::::	1.3	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.03	::::::	.98 1.6 1.8	.67 .11 .05	:::::	2.2 2.2 2.1	
DIS- SOLVED FLUO- RIDE (F) (MG/L)			:::::	:::::	:::::	:::::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	361 1 1 25		66 	71	:::::	43 42	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	34	:::::::	73	62 70	::::	55	
BICAR- BONATE (HCO ₃) (MG/L)	102 122	::::::	140 132	130 90	:::::	136 137	
DIS- SOLVED POTAS- SIUM (K) (MG/L)	4.4 4.7		5.6	6.0 4.8	:::::	6.0 6.6	
DIS- SOLVED SOLVED (NA) (NG/L)	21 30	:::::::	54	51	:::::	50 46	
DIS- SOLVED MAGNE- SIUM (MG/L)	3.5 4.1.1		7.0	7.0 6.3	:::::	4.4 4.4 4.4	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	34	111111	52 	48 37	:::::	42 43	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	50 50 680	::::::	0 0 9	10 30 130 840		170 140 	
DIS- SOLVED IRON (FE) (UG/L)	40 40 80		20 60 30	20 100 60	:::::	80 160 30	3.4 1.4 1.6
DIS- SOLVED SILICA (SIO ₂) (MG/L)	0.1	::::::	6.5 9.0	5.0	:::::	7.9 7.9	(FEET) (FEET) (FEET) (FEET)
(LJ) HL(J)	74 c1 10 20 30 37	1 1 2 0 3 0 5 0 6 0	d1 20 30 52	e1 10 30 43	1 10 20 30 41	f1 10 30 43	RANSPARAUSY RANSPARENCY RANSPARENCY RANSPARENCY RANSPARENCY
ATE	80, 19	0	30	30	30	30	ISK T ISK T ISK T ISK T
ũ	Apr. 3	Apr.	Apr.	Apr.	Apr.	Apr.	ECCHI D ECCHI D ECCHI D ECCHI D
SITE	EC	FC	U B	HC	IC	JC	f e d c

TABLE 16.--Chemical-quality survey of Livingston Reservoir, August 28-29, 1974

Elevation 129.88 ft. Contents 1,697,000 ac-ft.

1 1								
1 1	TEM- PERA- TURE (°C)	27.5 27.0 27.0 27.0	27.5 27.5 27.0 27.0 26.5 25.5 23.5 23.5 23.0 23.0	27.5 27.5 27.5 27.5 25.5 25.5 25.5 25.0	27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	28.0 28.0 28.0	
Image: intermediate i	PER- CENT SATUR- ATION	46 45 42	56 289 289 289 289 289 289 289 289 289 289	$\begin{array}{c} 6 \\ 6 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89 84 57 54 44	91 91 91	
10 10<	DIS- SOLVED OXYGEN (MG/L)	3.7 3.6 .3	4 n a n o n o o o a a a a	30.001 30.001 30.001 30.001	44444 0444014	7.0 6.6 4.5 3.5 3.5	7.2 7.2 7.2	
Matrix Matrix<	Hd Hd	7.9 7.8 7.8	88.0 88.0 84.7 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 7.7 6.8 6.8	7.77.77.7	8.1 8.1 8.0 7.8 7.6 7.3	8.1 8.1 8.1	
Matrix Matrix<	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	375 375 375 375	375 375 380 380 380 380 390	375 375 375 380 380 380 380	390 390 390 390 390 390 390	389 389 390 395 405 410	389 389 389	
Late Late <th< td=""><td>NON- CAR- BONATE HARD- NESS (MG/L)</td><td>::::</td><td>14 </td><td></td><td></td><td>8 8 8</td><td>:::</td><td></td></th<>	NON- CAR- BONATE HARD- NESS (MG/L)	::::	14 			8 8 8	:::	
Late Late <th< td=""><td>HARD- NESS (CA, MG) (MG/L)</td><td>::::</td><td>1110 120</td><td></td><td></td><td>120 130</td><td>:::</td><td></td></th<>	HARD- NESS (CA, MG) (MG/L)	::::	1110 120			120 130	:::	
Ab Abs: 3b,	SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	::::	208			220 230	:::	
Ab Abs: 20, 103*1 Bits	TOTAL PHOS- (P) (P) (P) (P) (P) (P) (P) (P) (P) (P)	::::	0.20 .20 .43 .43			0.21	:::	
The second sec	AMMO- NLA- NITRO- GEN (N) (MG/L)	::::	0.09			0.03	:::	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	TOTAL NITRITE PLUS NITRATE (N) (MG/L)	::::	0.06			0.01	:::	
Alie Alie Base Base <th< td=""><td>DIS- SOLVED FLUO- RIDE (F) (MG/L)</td><td></td><td></td><td></td><td></td><td></td><td>:::</td><td></td></th<>	DIS- SOLVED FLUO- RIDE (F) (MG/L)						:::	
Mat. Date Date <th< td=""><td>DIS- SOLVED CHLO- RIDE (CL) (MG/L)</td><td>::::</td><td>31</td><td></td><td></td><td>32</td><td>:::</td><td></td></th<>	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	::::	31			32	:::	
Alse Date: Date: <thd< td=""><td>DIS- SOLVED SUL- FATE (SO4) (MG/L)</td><td>::::</td><td>13111111111</td><td></td><td></td><td>39</td><td>:::</td><td></td></thd<>	DIS- SOLVED SUL- FATE (SO4) (MG/L)	::::	13111111111			39	:::	
Alian Date Date <t< td=""><td>BICAR- BONATE (HCO₃) (MG/L)</td><td>::::</td><td>122 </td><td></td><td></td><td>136 136</td><td></td><td></td></t<>	BICAR- BONATE (HCO ₃) (MG/L)	::::	122 			136 136		
AB Mag: 29, 1974 Dis- entrope	DIS- SOLVED POTAS- SIUM (K) (MG/L)	::::	4.9			4.9 5.0	:::	
BL DLE DLE <thdle< th=""> <thdle< th=""> <thdle< th=""></thdle<></thdle<></thdle<>	DIS- SOLVED SODIUM (NA) (MG/L)	::::	27			311112		
BL Date Dis- souves Dis- souv	DIS- SOLVED MAGNE- SIUM (MG) (MG/L)	::::	4.6			4.8 	:::	
BL DIS- SOUVED SOUVED SOUVED SOUVED SOUVED AR DIS- SOUVED	DIS- SOLVED CAL- CIUM (CA) (MG/L)	::::	4.1.1.1.1.1.38			40 	:::	
	DIS- SOLVED MANGA- NESE (MN) (UG/L)	::::	10 30 1000 1000 4700			10 10 90	:::	
	DIS- SOLVED IRON (FE) (UG/L)	::::	50 30 180 530			40 50 110	:::	5.0 2.4
	DIS- SOLVED SILICA (SIO ₂) (MG/L)	::::	3.4			8	:::	(FEET) (FEET)
sire dare dare dare dare dare dare dare da	DE PTH (FT)	$\begin{smallmatrix}&1\\10\\20\\30\end{smallmatrix}$	al 10 20 30 50 60 70 70	$\begin{smallmatrix}&1\\10\\20\\50\\60\\60\\60\\$	1 10 10 58 50 58	b1 10 30 54 64	1 10 17	ARENCY
sitte DATE A _R Aug. 29, B _C Aug. 29 C _C Aug. 29 D _C Aug. 28, D _L Aug. 28,		1974						TRANSP TRANSF
site A _R Aug B _C Aug C _C Aug b _L Aug	DATE	. 29,	. 29	. 29	. 29	. 28	. 28	DISK
D C C C C C C C C C C C C C C C C C C C		Aug	Aug	Aug	Aug	Aug	Aug	ECCHI
	SITE	$^{\rm A}_{ m R}$	P C	BC	cc	DC	$^{\mathrm{D}\Gamma}$	a S S

TABLE 16.--Chemical-quality survey of Livingston Reservoir, August 28-29, 1974--Continued

Elevation 129.88 ft. Contents 1,697,000 ac+ft.

H H ()	8.58.5	0.020.020.0 0.020.020.0 0.020.020.020.02	8.8.9.0	8.000	0.00 88.0 88.0 88.0 88.0	88.50	
R- NT TEN UR- PEF ON TUF (°(2222 8178 8222 8222	555 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 277 332 39 29 29 29 29 29 29 29 29 29 29 29 29 29	99 51 43 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	899999 899999	122339	
PE CE SAT SAT SAT	P 6 P 0		1001001	1-01048	98000	00000	
DIS- DIS- DIS- DIS- DIS-	7. 3.	10 10 4 4 4 4 4		9.4 6. 3.9		4.1.1	
Hd Hd	8.2 8.0 7.4 7.3	7.3.7.367.37.37.37.37.37.37.37.37.37.37.37.37.37	7.7.3 7.7.3 7.4 4.7 7.3 7.3	7.9 7.2 7.2	8.1 7.7 7.4 7.7 7.3	7.23	
S PECIFIC CONDUCT- ANCE (MICRO- MHOS)	399 399 405 405	440 440 445 445 445 450 450 450	476 476 550 550 569	496 480 471 471	710 710 660 660	710 710 710 701 701	
NON- CAR- BONATE HARD- NESS (MG/L)	9 - 1 4		10 0	0	:::::	01110	
HARD- NESS (CA,MG) (MG/L)	120 120	::::::	140 150	130 130	:::::	160 160	
DIS- SOLVED SOLVED SOLIDS (SUM OF CONSTI- TUENTS) (MG/L)	224 224		312	275 258	:::::	400 393	
COTAL PHOS- PHORUS (P) (MG/L)	0.23 .23 		.40 .48 	.41 .33 		1.9 1.8 1.8	
AMMO- NLA- NLTRO- CEN (N) (MG/L)	0.10 .12 .33	::::::	.21	.05		.19 .36 	
TOTAL NITRITE PLUS NITRATE (N) (MG/L)	0.02 .00 .03		.01 .14 .14	.00 .01 	:::::	2.0 1.7 1.4	
DIS- SOLVED FLUO- RIDE (F) (MG/L)	::::			:::::	:::::	:::::	
DIS- SOLVED CHLO- RIDE (CL) (MG/L)	31133		40 54	43	:::::	74	
DIS- SOLVED SUL- FATE (SO4) (MG/L)	42 38		42	47 45	:::::	70	
BICAR- BONATE (HCO ₃) (MG/L)	135 138		160 182	164 150		181 188	
DIS- SOLVED POTAS- SIUM (N) (MG/L)	4.9 5.1		5.5 6.1	5.7	:::::	80 80 1 1 1 60	
DIS- SOLVED SODIUM (NA) (MG/L)	29 31		40	43 41	:::::	8 1 1 8	
DIS- SOLVED MAGNE- SIUM (MG)L)	4.9 4.1		5.2	4.4 5.4	:::::	5.2	
DIS- SOLVED CAL- CIUM (CA) (MG/L)	40 40		46	46 43	:::::	54 54	
DIS- SOLVED MANGA- NESE (MN) (UG/L)	10 10 90	::::::	20 1 10	20 20 300	:::::	0 20 160	
DIS- SOLVED IRON (FE) (UG/L)	80 40 60		50 50 130	50 120 260		50 50 130	1.9
DIS- SOLVED SILICA (SIO ₂) (MG/L)	4.0 4.5		4.0	4.5 3.9	:::::	11 	Y (FEET) Y (FEET)
DE PTH (FT)	1 20 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 30 52 52	$^{c1}_{20}$	$\begin{smallmatrix}&1\\10\\30\\320\\42\end{smallmatrix}$	d1 20 39	PARENC'
	1974						TRANS
ATE	28,	28	28	28	28	28	DISK
E-4	Aug.	Aug.	Aug.	Aug.	Aug.	Aug	ECCHI
SITE	EC	D Br	C C	н _C	IC	JC	0.0 0.0