TEXAS WATER DEVELOPMENT BOARD

REPORT 181

GROUND-WATER RESOURCES OF DUVAL COUNTY, TEXAS

By

G. H. Shafer United States Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Water Development Board

March 1974

Reprinted November 1986

TEXAS WATER DEVELOPMENT BOARD

John H. McCoy, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman W. E. Tinsley Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711

ne ne **n**e internet

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Purpose and Scope of the Investigation	3
Location and Extent of the Area	3
Previous Investigations	3
Economic Development	4
Topography and Drainage	4
Climate	5
Well-Numbering System	5
Acknowledgments	7
GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER	. 7
General Stratigraphy and Structure	7
Physical Characteristics and Water-Bearing Properties of the Geologic Units	7
Jackson Group	7
Frio Clay	7
Catahoula Tuff	8
Oakville Sandstone	8
Fleming Formation	8
Goliad Sand	8
Lissie Formation	24
South Texas Eolian-Plain Deposits	24
Alluvium	24
GROUND-WATER HYDROLOGY	24
Source and Occurrence of Ground Water	24

TABLE OF CONTENTS (Cont'd.)

	Page
Movement and Discharge of Ground Water	24
Aquifer Tests	27
GROUND-WATER DEVELOPMENT	29
Public Supply	29
Irrigation	29
Industrial Use	30
Rural-Domestic and Stock Use	30
Changes in Water Levels	31
CONSTRUCTION OF WELLS	33
QUALITY OF GROUND WATER	34
Chemical-Quality Standards and Suitability of Water For Use	34
Public Supply	34
Irrigation	39
Industrial Use	40
Pesticides Content of Water	40
PROBLEMS	40
Salt-Water Disposal	40
Improperly Cased Wells	44
AVAILABILITY OF GROUND WATER	45
Quantity of Ground Water Available for Development	45
Catahoula Tuff	45
Oakville Sandstone	45
Goliad Sand	45
Areas Most Favorable for Future Development	46
NEEDS FOR CONTINUED DATA COLLECTION	46
DEFINITIONS OF TERMS	53
REFERENCES CITED	55

TABLE OF CONTENTS (Cont'd.)

Page

TABLES

1.	Well Numbers Used in This Report and Corresponding Numbers	
	Previously Used in Duval County by Sayre (1937)	ο 4
2.	Geologic Formations and Their Water-Bearing Properties	23
3.	Summary of Aquifer Tests	28
4.	Use of Ground Water, 1955-70	31
5.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	37
6.	Methods of Disposal and Quantity of Salt Water Disposed in 1967	43
7.	Records of Water Wells	57
8.	Oil and Gas Wells Selected as Data-Control Points	85
9.	Water Levels in Wells	88
10.	Drillers' Logs of Wells	102
11.	Chemical Analyses of Water From Wells	112

FIGURES

1.	Map Showing Location of Duval County	3
2.	Graphs Showing Average Monthly Precipitation and Temperature at Falfurrias and Average Monthly Gross Lake-Surface Evaporation in Duval County	5
3.	Diagram Showing Well-Numbering System	6
4.	Map Showing Geology of Duval County	9
5.	Chart Showing Correlation of Geologic Units Along Line A-A'	11
6.	Chart Showing Correlation of Geologic Units Along Line B-B'	13
7.	Chart Showing Correlation of Geologic Units Along Line C-C'	15
8.	Map Showing Approximate Altitude of the Top of the Catahoula Tuff	17
9.	Map Showing Approximate Altitude of the Top of the Oakville Sandstone	19
10.	Map Showing Approximate Altitude of the Base of the Goliad Sand	21
11.	Map Showing Approximate Altitude of Water Levels in Wells in the Catahoula Tuff and Goliad Sand, 1969-70	25

TABLE OF CONTENTS (Cont'd.)

12.	Graph Showing Relation of Drawdown to	29
	Transmissivity and Distance	
13.	Graph Showing Relation of Drawdown to Time and Distance	30
14.	Hydrographs of Water Levels in Wells Tapping the Goliad Sand and	
	Graph Showing Annual Precipitation at Falfurrias, 1931-70	32
15.	Diagrams Showing Typical Construction of Rural-Domestic,	
	Stock, Public-Supply, Industrial, and Irrigation Wells	33
16.	Map Showing Depth or Screened Intervals of Wells and	
	Chloride and Dissolved-Solids Content of Water From Wells	35
17.	Diagram Showing the Classification of Irrigation Waters	39
18.	Map Showing Brine-Producing Areas	41
19.	Map Showing Thickness of Sand Containing Fresh to	-
	Slightly Saline Water in the Catahoula Tuff	47
20.	Map Showing Thickness of Sand Containing Fresh to	
	Slightly Saline Water in the Oakville Sandstone	49
21.	Map Showing Thickness of Sand Containing Fresh to	
	Slightly Saline Water in the Goliad Sand	51
22.	Map Showing Locations of Wells	119

GROUND-WATER RESOURCES OF DUVAL COUNTY, TEXAS

By

G. H. Shafer United States Geological Survey

ABSTRACT

The geologic formations that yield fresh to moderately saline water in Duval County are, from oldest to youngest, the Catahoula Tuff, Oakville Sandstone, and Goliad Sand. All other geologic formations underlying the county are not known to yield water to wells or they yield only saline water.

About 5.3 mgd (million gallons per day) of ground water was used in 1970. Of this amount 0.6 mgd was pumped from the Catahoula Tuff, 0.7 mgd from the Oakville Sandstone, and 4.0 mgd from the Goliad Sand. Most of the large ground-water supplies are obtained from wells in the Goliad Sand.

During 1931-69, water levels declined as much as 55 feet in the artesian zone of the Goliad Sand in the east-central and southeastern parts of the county, as a result of pumping for irrigation, public supply, and industrial use. Changes in water levels in wells in the Catahoula Tuff have been relatively small. Probably only slight changes in water levels have occurred regionally in the Oakville Sandstone. The ground water is characteristically high in dissolved solids, chloride, and hardness. Most of the water sampled does not meet the quality standards of the U.S. Public Health Service for drinking water, although water having chemical constituents in excess of the standards is used in the county for drinking. Water from the Goliad Sand is more suitable for irrigation than water from the Oakville Sandstone and Catahoula Tuff; however, water from any of the three aquifers should be used with careful management and as a supplement to rainfall.

The ground-water resources of the county are only partly developed. A total of 23 mgd (6 mgd from the Catahoula, 7 mgd from the Oakville, and 10 mgd from the Goliad) of fresh to slightly saline water is available, on a long-term basis without depleting the supply. This total is slightly more than four times as much water as was used for all purposes in 1970. 승규는 승규는 집에 가장 이 것 같아. 이 것 같아. 이 가지 않는 것 않는 것 같아. 이 가지 않는 것 같아. 이 가 있는 것 같아. 이 가 있

GROUND-WATER RESOURCES OF DUVAL COUNTY, TEXAS

INTRODUCTION

Purpose and Scope of the Investigation

The purpose of the investigation, which was made by the U.S. Geological Survey in cooperation with the Texas Water Development Board, was to determine the occurrence, availability, dependability, quality, and quantity of the ground-water resources of Duval County, with particular reference to the sources of water suitable for public supply, industrial use, and irrigation, and to identify areas of present or potential ground-water problems. The results of the study are presented as guides for developing, protecting, and obtaining maximum benefits from the available ground-water supplies.

The investigation specifically included: A delineation of the location and extent of sands containing fresh to slightly saline water (less than 3,000 milligrams per liter dissolved solids); a determination of the chemical quality of the water; a compilation of the quantity of water being withdrawn and an assessment of the effect of these withdrawals on water levels and water quality; a determination of the hydraulic characteristics of the important water-bearing sands; an estimate of the quantity of ground water available for development; and a consideration of all significant ground-water problems in the county.

The report includes records of 509 water wells (Table 7), 85 oil and gas wells (Table 8), water levels in 58 wells (Table 9), 37 drillers' logs (Table 10), and 174 chemical analyses of water samples (Table 11).

The technical terms used in discussing the ground-water resources of the area are defined in the section entitled "Definitions of Terms."

Location and Extent of the Area

Duval County is in the West Gulf Coastal Plain of south Texas. It is bounded on the south by Brooks and Jim Hogg Counties, on the west by Webb County, on the north by McMullen and Live Oak Counties, and on the east by Jim Wells County. San Diego, the county seat, is about 55 miles west of Corpus Christi. The county has an area of about 1,800 square miles (Figure 1).

Figure 1.-Location of Duval County

Previous Investigations

Prior to this investigation, few comprehensive studies had been made of the ground-water resources of Duval County. The earliest significant ground-water investigation was made by Sayre (1937) who described the geology and ground-water resources of the county. The public water supplies of the towns of Benavides, Freer, and San Diego were described briefly by Broadhurst, Sundstrom, and Rowley (1950, p. 50-52). A reconnaissance of the ground-water resources of the Gulf Coast region, including Duval County, was made by Wood, Gabrysch, and Marvin (1963).

Detailed reports have been published on the ground-water resources of several neighboring counties, including Webb County, Lonsdale and Day (1937); Live Oak County, Anders and Baker (1961); Alice area of Jim Wells County, Mason (1963); La Salle and McMullen Counties, Harris (1965); Brooks County, Myers and Dale (1967); Kleberg, Kenedy, and southern Jim Wells Counties, Shafer and Baker (1973).

Water levels in observation wells in Duval County have been measured periodically since about 1931 as part of a statewide observation-well program undertaken jointly by the Texas Water Development Board and the U.S. Geological Survey. Some of the water-level measurements have been published in annual water-level reports of the Geological Survey, and many are included in Table 9.

Some of the data collected during previous well inventories are included in this report. Table 1 shows the well numbers used in Duval County by Sayre (1937) and corresponding numbers used in this report. dome since 1934, is being used in large quantities by chemical industries at Corpus Christi as a basic raw material.

The county, which is served by numerous hard-surfaced roads and highways and one railroad, had a population of 11,722 in 1970. San Diego, the county seat, and largest town in the county, had a population in 1970 of 4,490 (including the part of the town in Jim Wells County).

Table 1.-Well Numbers Used in This Report and Corresponding Numbers Previously Used in Duval County by Sayre (1937)

NEW NUMBER		NEW NUMBER		NEW NUMBER	OLD NUMBER
JB-84-02-601	1	JB-84-29-308	145	JB-84-44-101	269
03-102	4	501	158	601	276
601	6	30-101	173	45-101	271
801	5	201	188	102	272
12-201	80	202	189	304	289
13-801	73	203	188 <u>a</u> /	305	287
802	72	301	187	307	290
901	69	401	191	501	292
902	68	501	190	603	291 <u>a</u>
903	70	34-301	260	701	281
904	71	36-901	230	46-101	304
14-403	61	37-104	240	301	318
404	61 <u>a</u>]	301	218 <u>a</u> j	401	301
701	59	704	229	402	302
801	55	901	209 <u>a</u>	602	319
22-801	185	38-601	201	603	315
902	183	701	211	901	325 <u>a</u> j
903	184	702	209	902	322aj
29-305	175	801	207	903	322Ы
306	143	902	204	47-702	325
307	144	903	203	703	325Ь

Economic Development

The economy of Duval County depends mainly on oil and gas production, large-scale ranching and farming, and the production of brine. According to the Texas Mid-Continent Oil and Gas Association, more than 450 million barrels of oil were produced in Duval County from 1905 through 1968. Grain sorghum, peanuts, forage crops, and a variety of vegetables are grown locally. Brine, which has been produced at Palangana salt

Topography and Drainage

The topography of Duval County varies from nearly flat in the southeastern part to gently rolling and hilly in the western and northern parts. The altitude ranges from about 200 feet above mean sea level in the valley of Cibolo Creek (southeastern part of the county) to more than 800 feet at a few places in the extreme western part of the county. Physiographic features include cuestas, "knobs", plains, gravel hills, and escarpments, mainly in the western and northwestern parts of the county, many of which have been described by several of the earlier geologists working in the area. Much of the terrain in Duval County consists of open prairie grasslands. The brushy areas are covered with mesquite, cactus or prickly pear, scrub oak, cenizo, huisache, black chaparral, and other vegetation commonly found in south Texas.

All the stream channels in the county are dry except during and briefly after periods of heavy rainfall. The Nueces River and its tributaries drain a part of the terrain in the northwestern part of the county; the rest of the county is drained by several intermittent streams that flow eastward or southeastward toward the Gulf of Mexico.

Climate

The records of the National Weather Service for the town of Falfurrias in adjoining Brooks County provide the most complete climatological data that apply to Duval County. The average annual precipitation during 1940-69 was 24.15 inches (Figure 2). Thunderstorms in the spring and tropical disturbances in early fall result in peak monthly rainfall totals in May and September. Records show that as a result of Hurricane Beulah, 32.78 inches of rain fell in Falfurrias during September 1967; and for all of 1967, 55.15 inches of precipitation were recorded. Generally, March is the driest month.

The average annual temperature at Falfurrias during the period 1940-69 was $73.1^{\circ}F$ ($23^{\circ}C$). The average monthly temperature for the same period was lowest, $56.7^{\circ}F$ ($14^{\circ}C$), during January and highest, $86.5^{\circ}F$ ($30^{\circ}C$), during July (Figure 2). The average growing season is 298 days.

The average monthly gross lake-surface evaporation in Duval County for the period 1940-65 (Kane, 1967, p. 107) ranged from 2.7 inches in January to 10.3 inches in August (Figure 2). Average monthly evaporation was 5.9 inches, and the average annual was 70.9 inches.

Well-Numbering System

The well-numbering system used in this report is the one adopted by the Texas Water Development Board for use throughout the State (Figure 3). Under this system, each 1-degree quadrangle in the State is given a number consisting of two digits from 01 to 89. These are the first two digits in the well number.

Each 1-degree quadrangle is divided into 7½-minute quadrangles which are given 2-digit numbers

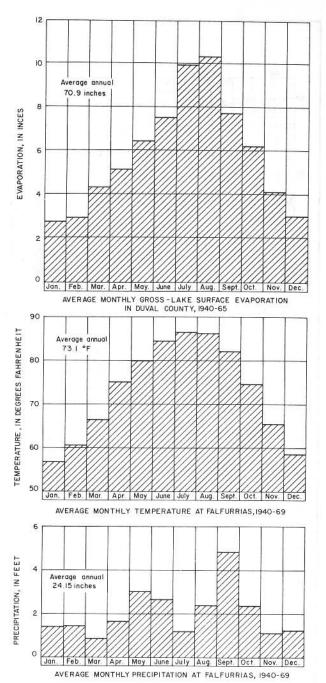
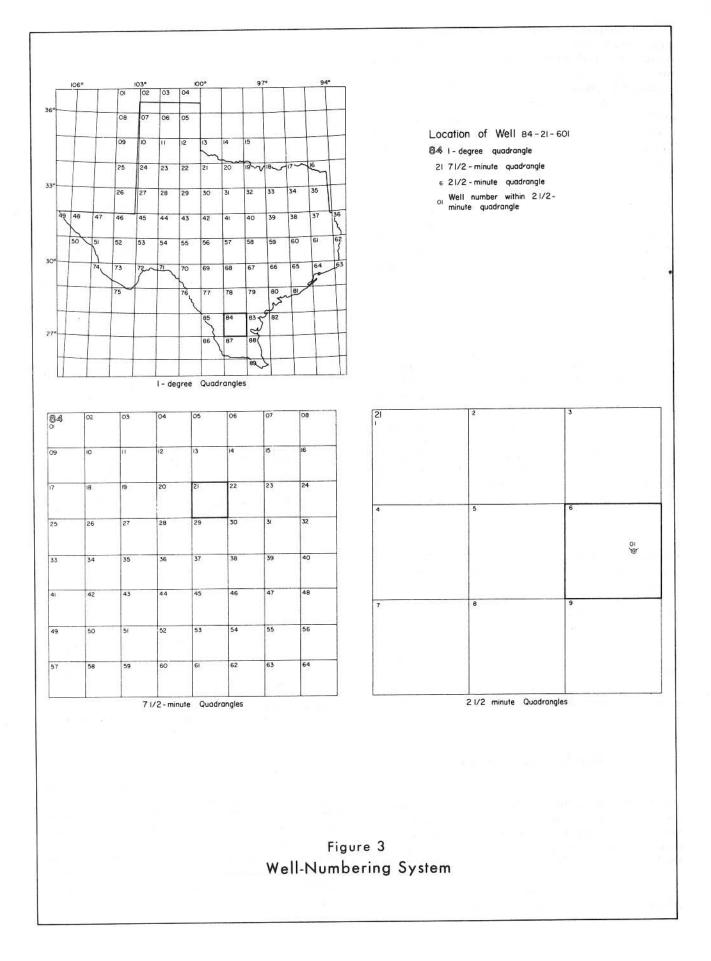



Figure 2.—Average Monthly Precipitation and Temperature at Falfurrias and Average Monthly Gross Lake-Surface

Evaporation in Duval County

from 01 to 64. These are the third and fourth digits of the well number. Each 7½-minute quadrangle is divided into 2½-minute quadrangles which are given a single-digit number from 1 to 9. This is the fifth digit of the well number. Each well within a 2½-minute quadrangle is given a 2-digit number in the order in which it is inventoried. These are the last two digits of the well number. In addition to the 7-digit well number, a 2-letter prefix is used to identify the county. The prefix for Duval County is JB.

On the well-location map in this report (Figure 22), the 1-degree quadrangles are numbered in large bold numerals. The 7½-minute quadrangles are numbered in the northwest corners where possible. The 3-digit number shown with the well symbol contains the number of the 2½-minute quadrangle in which the well is located and the number in the order in which it is inventoried within that quadrangle.

Acknowledgments

The writer wishes to express his appreciation to the property owners in Duval County for granting access to their properties and for supplying information about their water wells; to the well drillers for providing logs and other information on water wells; to oil companies for their generous cooperation; and to State, county, town, and federal officials for their assistance. Many records used in this report were collected previously by personnel of the U.S. Geological Survey and the Texas Water Development Board.

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

General Stratigraphy and Structure

The geologic units that yield fresh to moderately saline water to wells are, from oldest to youngest, the Catahoula Tuff and Oakville Sandstone of Miocene age and the Goliad Sand of Pliocene age. All of these units are exposed in Duval County. The Frio Clay of Oligocene (?) age, Fleming Formation of Miocene age, Lissie Formation of Pleistocene age, south Texas eolian-plain deposits of Pleistocene (?) and Holocene age, and alluvium of Holocene age are also exposed in Duval County, but are not known to yield water to wells.

The formations crop out in belts that trend roughly northeastward and parallel to the coast (Figure 4). Younger rocks crop out near the coast and successively older units crop out farther inland. Because of the different ages of the formations, the outcrops are progressively eroded and dissected inland. For example, the outcrop of the Lissie Formation is comparatively uneroded in contrast to the uneven and dissected outcrops of the Frio Clay and Catahoula Tuff.

The formations are composed chiefly of clay, silt, sand, and gravel, but because of the method of deposition, they vary in lithology and thickness. The sand beds, which may grade laterally into clay or silt within short distances, and other beds containing water are vertically interconnected with similar beds on a different level; therefore, a group of water-bearing beds within a formation may be in hydrologic continuity. A summary of the lithology, age, thickness, and water-bearing properties of the geologic units is given in Table 2.

The water-bearing units in Duval County form a monocline that dips gently toward the coast (Figures 5, 6, and 7). Dips of the formations generally range from 12 to 80 feet per mile. In the west-central part of the county, the Goliad Sand overlaps the upper part of the Catahoula Tuff and completely overlaps the Oakville Sandstone and Fleming Formation. At some places, the monoclinal structure is disrupted by doming, faulting, and folding.

Two salt domes are known to underlie the surface of Duval County; the Piedras Pintas dome, 2 miles northeast of Benavides, and the Palangana dome, 9 miles north of Benavides. The Palangana dome is the larger of the two. The Goliad Sand is continuous across the tops of these domes. The Oakville Sandstone and older formations have been more noticeably deformed. The extent to which the movement of ground water has been affected in the vicinity of these domes is not known, although Austin (1959, p. 5) reports poor quality water in the Oakville just east of Palangana dome.

Faults are fairly common in many of the formations (Figure 4). Displacements vary greatly among the faults, but the effect on movement and quality of the ground water probably is only local.

Physical Characteristics and Water-Bearing Properties of the Geologic Units

Jackson Group

The Jackson Group of Eocene age does not crop out in Duval County, but it underlies the entire county and is encountered in wells at increasingly greater depths southeastward. The Jackson Group consists of an estimated 1,000-1,600 feet of brown to buff sandy shale, fossiliferous sandstone, and beds of volcanic ash. The unit is reported to yield small quantities of moderately saline water to a few wells in the northwestern part of the county.

Frio Clay

The Frio Clay of Oligocene (?) age crops out in the northwestern part of the county where it has an estimated thickness of 400-600 feet. The Frio consists of gypsiferous clay and thin beds of sand and silt. At the outcrop, the Frio is distinguished from the Jackson by its clay content and by the general absence of fossils. The Frio is distinguished from the overlying Catahoula Tuff by the nonvolcanic character of the clay. It is not known to yield water to wells in Duval County.

Catahoula Tuff

The Catahoula Tuff of Miocene age crops out in a broad and irregular belt ranging in width from about 12 to 18 miles. It consists mainly of beds of tuffaceous clay and tuff that range in thickness from 0 to about 1,400 feet. Locally, the formation contains lenticular sandy clay and thin to thick beds of sand and conglomerate. The conglomerate consists of scoriaceous lava and pumice, pebbles of other types of igneous material, opalized wood, chalcedony, quartz, and chert.

The Catahoula dips southeastward at about 80 feet per mile. Near the southeast corner of the county, the top of the formation has an altitude of 2,200 feet below mean sea level (Figure 8).

In Duval County, the Catahoula Tuff is one of the major aquifers. It yields small to moderate quantities of fresh to moderately saline water to wells for public supply, rural-domestic supply, and stock use.

Oakville Sandstone

The Oakville Sandstone of Miocene age crops out in an irregular belt from 1 to 10 miles wide in the north-central part of Duval County. In places in the west-central part of the county, the Oakville is exposed as a thin narrow fringe bordering the Goliad Sand. Because the exposure is small, this fringe of Oakville is not shown on the geologic map (Figure 4).

The Oakville ranges from 0 to about 600 feet in thickness and consists of medium to fine sand, sandstone, silt, bentonitic clay, and small amounts of ash. Sayre (1937, p. 43) describes the Oakville along a county road about 10 miles northeast of Freer as follows: "a shallow section of thin-bedded, firmly cemented, dirty-buff, medium-grained Oakville Sandstone, consisting mostly of grains of clear quartz but with numerous grains of black chert and igneous rocks. It contains numerous tubular molds of silt or clay (possibly worm holes) and many pellets of ashy clay."

The Oakville dips southeastward 60-80 feet per mile. Altitude of the top of the formation near the southeast corner of the county is about 1,600 feet below mean sea level (Figure 9).

The Oakville Sandstone yields small to moderate quantities of fresh to slightly saline water to rural-domestic, stock, and industrial wells in the county. Near the Palangana dome, industrial well JB-84-22-401 was reported to produce about 460 gpm (gallons per minute) of water from a depth of 1,106 to 1,252 feet; the water contains 1,550 mg/l (milligrams per liter) of dissolved solids. Near the southern boundary of the county, a stock well (JB-84-45-301) which taps the Oakville flowed 40 gpm of water containing 1,000 mg/l dissolved solids. Because the Oakville occurs at a greater depth than the Goliad Sand, which is a more productive aquifer, and because the water from wells in the Goliad Sand is generally of better quality, the development of ground water supplies from the deeper Oakville Sandstone has been slow.

Fleming Formation

The Fleming Formation of Miocene age overlies the Oakville Sandstone and is completely overlapped by the Goliad Sand, except in a small area in the northeastern part of the county where the formation is exposed in tributaries to Lagarto Creek. The Fleming consists mainly of yellow to green calcareous or marly clay. Generally, it is massive, laminated, and tough. Locally, it contains thin seams of silty sand and lentils of coarse sand and gravel. The formation ranges in thickness from 0 to about 1,000 feet.

The Fleming Formation is not known to be tapped by wells in Duval County. Locally, some of the sand beds probably are capable of yielding small quantities of slightly saline water.

Goliad Sand

The outcrop of the Goliad Sand of Pliocene age makes up more than half of the land surface in Duval County. A large part of the outcrop consists of caliche, which is sufficiently indurated at some places to form a "cap rock." In some places, the outcrop is red and sandy, and in the extreme western part of the county, the hills developed on the Goliad Sand are capped by coarse gravel. In west-central Duval County, the Goliad completely overlaps the Oakville and upper part of the Catahoula Tuff. At some places northwest of the main outcrop, the Goliad is present as outliers that form mesas.

The Goliad consists of fine to coarse, mostly gray, calcareous sand interbedded with sandstone, gravel, and varicolored calcareous clay. Sayre (1937, p. 51-52) described a 17-foot section of outcrop in northeastern Duval County as light-gray to buff or grayish-brown sand, sandstone, and gravel with some buff to green clay. In this section, the sand and sandstone are fine to coarse-grained, crossbedded, and contain numerous caliche fragments. Electrical logs of wells in Duval County show that the Goliad Sand consists mainly of sand or sandstone with smaller amounts of finer clastic sediments.

The formation ranges in thickness from 0 to about 600 feet. In structurally undisturbed areas, the base of the Goliad dips east-southeastward at about 35 to 45 feet per mile. The altitude of the base of the Goliad in the southeastern part of the county is between 500 and 600 feet below mean sea level (Figure 10).

Table 2.–Geologi	Formations and	Their	Water-Bearing	Properties
------------------	----------------	-------	---------------	------------

SYSTEM	SERIES	GEOLOGIC FORMATION	APPROXIMATE THICKNESS (FT)	LITHOLOGY	WATER-BEARING PROPERTIES
	Holocene	Alluvium	2	Very fine to fine sand, silt, and calcareous clay.	Not known to yield water to wells in the county.
Quaternary	Holocene and Pleistocene (?)	South Texas eolian plain deposits	0- 10	Fine to very fine, tan to white sand.	Not known to yield wate to wells in the county.
i i i i i i i i i i i i i i i i i i i	Pleistocene	Lissie Formation	0- 100	Variegated red to brown cal- careous clayey sand, some gravel near base.	Not known to yield water to wells in the county.
	Pliocene	Goliad Sand	0- 600	Fine to coarse, mostly gray, calcareous sand interbedded with sandstone, gravel, and varicolored calcareous clay. An abundance of cal- iche over most of the outcrop.	Principal aquifer in the county. Yields small to large quantities of fresh to slightly saline water to public-supply, indus- trial, irrigation, rural- domestic, and stock wells
		Fleming Formation	0-1,000	Yellow to green calcareous or marly clay and some local seams of silty sand and lentils of coarse sand and gravel.	Not known to yield water to wells in the county.
Tertiary	Miocene	Oakville Sandstone	0- 600	Medium to fine sand, sand- stone, silt, bentonitic clay, and small amount of ash.	Yields small to moderate quantities of fresh to slightly saline water to industrial, rural-domestic, and stock wells.
		Catahoula Tuff	0-1,400	Pink tuffaceous clay and tuff. Local lenses of sandy clay and thin to thick beds of sand and conglomerate.	Yields small to moderate quantities of fresh to moderately saline water to public-supply, rural- domestic, and stock wells.
	Oligocene (?)	Frio Clay	400- 600	Gypsiferous clay and thin beds of sand and silt.	Not known to yield water to wells in the county.
	Eocene	Jackson Group	1,000-1,600	Brown to buff, sandy shale, fossiliferous sandstone, and beds of volcanic ash. Does not crop out in the county.	Reported to yield small quantities of moderately saline water to a few wells in the northwest part of the county.

The Goliad Sand is the principal aquifer in Duval County. Wells tapping the formation yield small to large quantities of fresh to slightly saline water for public supply, industrial use, irrigation, and rural-domestic and stock use. The towns of Benavides, Concepcion, Realitos, and San Diego are supplied with water from wells in the Goliad. All of the wells in these towns are from 210 to 750 feet deep, and yield water having 730 to 1,390 mg/l dissolved solids. The wells have yields that range from 18 to 420 gpm. Some of the irrigation wells in the Goliad have reported yields as high as 1,800 gpm.

Lissie Formation

The Lissie Formation of Pleistocene age overlies the Goliad Sand and crops out in a narrow band which extends from near the southeastern corner of the county northward to near San Diego. The Lissie ranges in thickness from 0 to possibly 100 feet and consists of variegated red to brown calcareous clayey sand, and some chert gravel near the base. It dips east at about 12 feet per mile (Sayre, 1937, p. 64).

The Lissie is not known to yield water to wells in Duval County except for small quantities of slightly saline to moderately saline water that are obtained from a few stock wells in counties east of the report area.

South Texas Eolian-Plain Deposits

A sheet of fine to very fine tan to white windblown sand covers about 2,800 square miles in Kenedy, Brooks, Duval, Jim Hogg, Willacy, and Hidalgo Counties. According to Sayre (1937, p. 65) the sand covers only a small area in the southeastern part of Duval County. These deposits are not shown on the geologic map (Figure 4) because of their small areal extent. Part of the surface of this area is almost flat, but in adjacent counties, the sand forms sand dunes, some of which are about 40 or 50 feet above the surrounding terrain. The deposits in Duval County range in thickness from 0 to possibly 10 feet. The exact age of the deposits is not known. Price (1958, p. 49-50) assigned the age as Holocene to possible Pleistocene; Sayre (1937, p. 65) and Fisk (1959, p. 120) assigned the age as Holocene.

The eolian deposits are not an important source of water in Duval County, but they yield small quantities of slightly saline water and even brine with chloride concentrations as high as 28,000 mg/l in Kenedy County (Shafer and Baker, 1973, p. 40).

Alluvium

The alluvium of Holocene age consists mostly of very fine to fine sand, silt, and calcareous clay. Although not shown on the geologic map (Figure 4), the alluvium occurs along the channels of some of the larger streams.

The age of part of the alluvium may be Pleistocene, but in this report, the deposits are considered to be Holocene. The alluvium is not known to yield water to wells in Duval County.

GROUND-WATER HYDROLOGY

Source and Occurrence of Ground Water

The general principles of the occurrence and movement of ground water in all types of rocks have been described in detail by many writers including Meinzer (1923, p. 2-142; 1942, p. 385-477) and Tolman (1937).

The source of ground water in Duval County is precipitation on the outcrops of the aquifers in the county and in adjacent counties to the west and north. A large part of the precipitation either runs off, is dissipated by evapotranspiration, or is stored in the soil until evaporated or transpired. A small part of the water infiltrates the soil and subsoil, moves downward to the water table, and becomes part of the ground water in storage. Factors affecting recharge include the intensity and amount of rainfall, the slope of the land surface, the type of soil, the type of material between the land surface and the water table, the hydraulic conductivity of the aquifer, and the rate of evapotranspiration.

Generally, water-table (unconfined) conditions prevail at shallow depths in the outcrop areas of the aquifers, and artesian (confined) conditions prevail downdip from the outcrop where the aquifers are overlain by less permeable sediments. Where the altitude of the land surface at a well is considerably below the general level of the area of outcrop, the pressure may be sufficient to cause the water to rise above the land surface, and the well will then flow. A few wells in Duval County flow, such as well JB-84-19-903 on the J. R. Dougherty Ranch west of Benavides, well JB-84-35-505 west of Realitos, and several other wells, mainly in the western part of the county.

Movement and Discharge of Ground Water

Ground water in the county moves normally from areas of natural recharge to areas of natural discharge. This pattern, however, has been interrupted in some areas because of large-scale pumping, which also has the effect of increasing the hydraulic gradient and rate of movement and causing water to move from all directions toward the center of pumping.

Figure 11, which shows the approximate altitude of water levels in wells tapping the Catahoula Tuff and the Goliad Sand in 1969-70, indicates in a general way the direction of movement of ground water. The water moves at right angles to the contours and in the direction of decreasing altitude. The general direction of movement in the Catahoula and Goliad is southeastward, but this general direction of movement is significantly interrupted by concentrated pumping. A large cone of depression has developed in the Catahoula south of Freer as a result of pumping for public supply. Water is moving into this area from all directions. In the Goliad, the normal southeastward direction of movement has been noticeably altered a few miles north of Benavides near the Palangana dome as a result of heavy pumping for industrial purposes. Here a large northward component of movement has been developed. The depression of water levels around San Diego also reflects significant pumpage there.

Transpiration, evaporation, and interformational leakage are the principal means of natural discharge in Duval County. Some plants, including mesquite, whose roots reach the water table, remove water by transpiration. Extensive deposits of caliche near the surface prevent water in some places from infiltrating deep into the ground, and consequently, much of this water is lost by evaporation. Because the annual gross lake-surface evaporation in Duval County is about three times the average annual rainfall, losses of water by significant. evaporation are Interformational leakage-the transfer of water from one aquifer to another-is the principal means of subsurface discharge of ground water. As pressure in the aquifer is increased, as a result of recharge, larger quantities of water are discharged by this means.

Ground water is also discharged artificially in the report area, by pumping wells. In 1970 about 5.3 mgd was discharged in this manner.

Aquifer Tests

Aquifer tests in six wells tapping the Oakville Sandstone and Goliad Sand were made to determine the capacity of the sands to transmit and store water. The results of the tests are shown in Table 3. No tests were made in wells tapping the Catahoula Tuff because suitable wells were not available. All the test data were analyzed by the Theis non-equilibrium method (Theis, 1935) and the Theis recovery method (Wenzel, 1942, p. 95).

Aquifer tests in wells JB-84-21-502, JB-84-21-601, JB-84-21-603, and JB-84-21-801 tapping the Goliad Sand, and well JB-84-22-401 tapping the Oakville Sandstone were made during December 1965 and January 1966 by William F. Guyton and Associates, consulting ground-water hydrologists, Austin, Texas. During this investigation, aquifer tests were made in wells JB-84-29-309 and JB-84-29-310, which tap the Goliad Sand and supply water for Benavides.

The average transmissivity (for definition, see p. 54) of the Goliad Sand in the county is 700 square

feet per day. In Jim Wells County, Mason (1963, p.29) reported an average transmissivity of 660 square feet per day from tests in 12 wells tapping the Goliad Sand. He states, however, that based on considerations of the test data, the construction of the wells tested, and the distribution of sand thickness, a figure of 1,000 square feet per day for the average transmissivity is probably more representative for the Goliad in the Alice area.

The transmissivity of the Oakville Sandstone was determined to be 2,000 square feet per day. This was determined by testing well JB-84-22-401, which is screened from 1,106 to 1,252 feet. Mason (1963, p. 22) reports that an aquifer test made in a well tapping the Oakville in the Alice area indicated a transmissivity of 950 square feet per day, and an aquifer test of the Oakville Sandstone near Premont in southern Jim Wells County indicated a transmissivity of 1,000 square feet per day.

Only one storage coefficient, 0.00062, was determined in Duval County. This was determined at well JB-84-29-310 tapping the Goliad Sand at Benavides.

The transmissivities and storage coefficients determined from aquifer tests may be used to predict the drawdown of water levels caused by pumping a well or by a general increase in pumping in an area. Figure 12 shows the theoretical relation of drawdown of water levels to distance and different transmissivities. The calculations of drawdown were based on a well or group of wells pumping 500 gpm continously for one year from an extensive aquifer having a storage coefficient of 0.0005 and transmissivites as shown on the different curves. As a result of pumping 500 gpm continuously for one year from an aquifer having a transmissivity of 1,300 square feet per day, the water level would decline about 44 feet at a distance of 1,000 feet from the pumped well; it would decline about 25 feet at 5,000 feet and about 10 feet at 20,000 feet. Because drawdown is directly proportional to the pumping rate, the drawdown for rates other than 500 gpm can be determined by multiplying the drawdown values shown in Figure 12 by the proper multiple or fraction of 500.

Figure 13 shows the theoretical relation of drawdown of water levels to time and distance. The calculations are based on a well or group of wells pumping 100 gpm from an extensive aquifer having a storage coefficient of 0.0005 and a transmissivity of 1,300 square feet per day. The figure shows that the rate of drawdown decreases with time, but the water level will continue to decline indefinitely until a source of recharge or point of discharge is intercepted to offset the pumpage and reestablish equilibrium in the aquifer. Because the drawdown is directly proportional to the pumping rate, the drawdown for rates other than 100 gpm can be determined by multiplying the drawdown values shown in Figure 13 by the proper multiple or fraction of 100.

Table 3.-Summary of Aquifer Tests

		SCREENED	AVERAGE DISCHARGE		SPECIFI CAPACIT			
WELL	AQUIFER*	INTERVAL (FT)	DURING TEST (GPM)	TRANSMISSIVITY (FT ² /DAY)	(GPM PER FT)	TIME (HOURS)	STORAGE COEFFICIENT	REMARKS
B-84-21-502	Tg	258-296 303-367 369-486 495-543 605-625	300	800	4.6	3	-	Recovery in pumped well after pumping 24 hours.
601	Тg	256- 276 288- 349	78	300	2.4	3	8	Recovery in pumped well after pumping 50 hours.
603	Тg	268- 286 297- 380	102	270	2.1	3	-	Recovery in pumped well after pumping 24 hours.
801	Τg	250- 350 352- 432 450- 530 595- 635	285	870	5.0	3	÷	Recovery in pumped well after pumping about 24 hours.
22-401	То	1,106-1,202 1,212-1,252	500	2,000	9.5	3	ind en a	Recovery in pumped well after pumping 29 hours.
29-309	Тg	332- 442 462- 527 552- 607	349	960	3.2	3	-	Drawdown in pumped well after pumping 3½ hours.
310	Тg	322- 422 442- 507 532- 596	-	990	-	- 1	0.00062	Drawdown interference from pumping well JB-84-29-309 at 349 gpm.

* To, Oakville Sandstone; Tg, Goliad Sand.

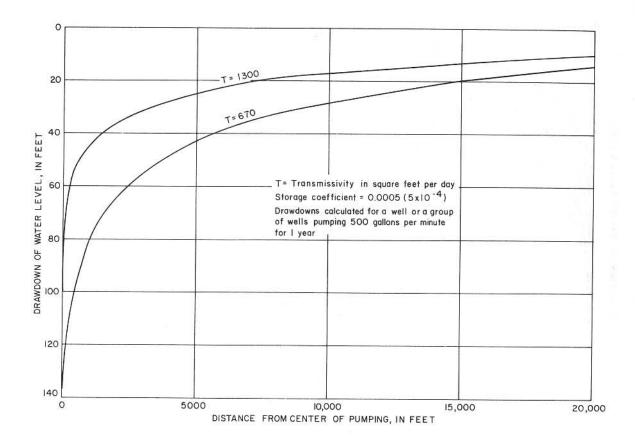


Figure 12.-Relation of Drawdown to Transmissivity and Distance

The specific capacity is useful in estimating the yield of a well at various drawdowns. The specific capacities of wells penetrating the same aquifer may vary widely, depending upon the thickness of sand screened, hydraulic conductivity, well construction, and duration of pumping. Specific capacities determined from tests on five wells in the Goliad Sand averaged 3.5 gallons per minute per foot of drawdown over a 3-hour period; the specific capacity determined from testing a well in the Oakville Sandstone was 9.5 gallons per minute per foot of drawdown for the same time period.

GROUND-WATER DEVELOPMENT

The well inventory made during this investigation included all the municipal, industrial, and irrigation wells, and a representative number of rural-domestic and stock wells. Records of 509 water wells are given in Table 7.

Table 4 gives the quantities of ground water pumped for different uses from 1955 to 1970. During 1970, about 5.3 mgd of ground water was used for all purposes in the report area. Of this amount, 0.6 mgd was supplied by the Catahoula Tuff, 0.7 mgd by the Oakville Sandstone, and 4.0 mgd by the Goliad Sand. Most of the large ground-water supplies are obtained from wells in the Goliad Sand.

Public Supply

The pumpage of ground water for all public supply increased from about 0.67 mgd in 1955 to about 0.99 mgd in 1970, an increase of about 48 percent in 15 years (Table 4). The 0.99 mgd of ground water used for public supply in 1970 was pumped by the towns of Benavides, Concepcion, Freer, Realitos, and San Diego. This is 19 percent of the ground water pumped for all purposes during that year. Water wells at oil-field camps generally are used for industrial and public-supply purposes, but the quantity used for public supply in these camps is insignificant.

Irrigation

Records indicate that prior to about 1958 there was very little irrigation from wells in Duval County. According to a report by Gillett and Janca (1965), only four irrigation wells were in use in the county in 1958, during which time about 0.12 mgd (140 acre-feet) of water was used; in 1964, the quantity of ground water

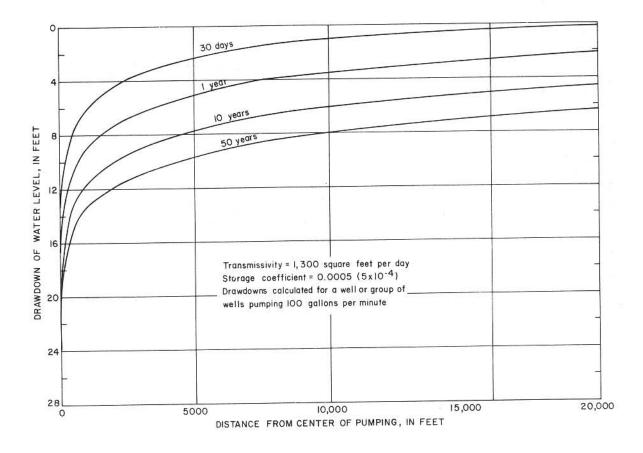


Figure 13.-Relation of Drawdown to Time and Distance

used had increased to about 0.86 mgd (960 acre-feet). Records of the Texas Water Development Board indicate that in 1969 the number of irrigation wells had increased to 32, and the pumpage to about 2.14 mgd (2,400 acre-feet), which is 41 percent of the ground water used for all purposes during that year (Table 4). The values shown in Table 4 for 1958, 1964, and 1969 were determined by inventory; the values for irrigation for the other years are estimates.

All ground water used for irrigation in the county is obtained from wells in the Goliad Sand. Most of the wells are concentrated in the southeastern part of the county because the Goliad is capable of yielding larger quantities of water in that area, the land is more suitable for irrigation, and the quality of the water is relatively good.

The acreage irrigated with ground water increased from about 300 acres during 1958 to about 4,100 acres during 1969. Irrigated crops included peanuts, hay, vegetables, cotton, grain sorghum, and forage crops.

Industrial Use

In 1970, 1.32 mgd of ground water was pumped from wells in Duval County for industrial use. This is 25

percent of the total quantity pumped for all purposes during that year (Table 4). The principal industrial use of ground water was for the production of brine by solution mining. Smaller amounts were used by the oil and gas industry mainly for cooling purposes.

Rural-Domestic and Stock Use

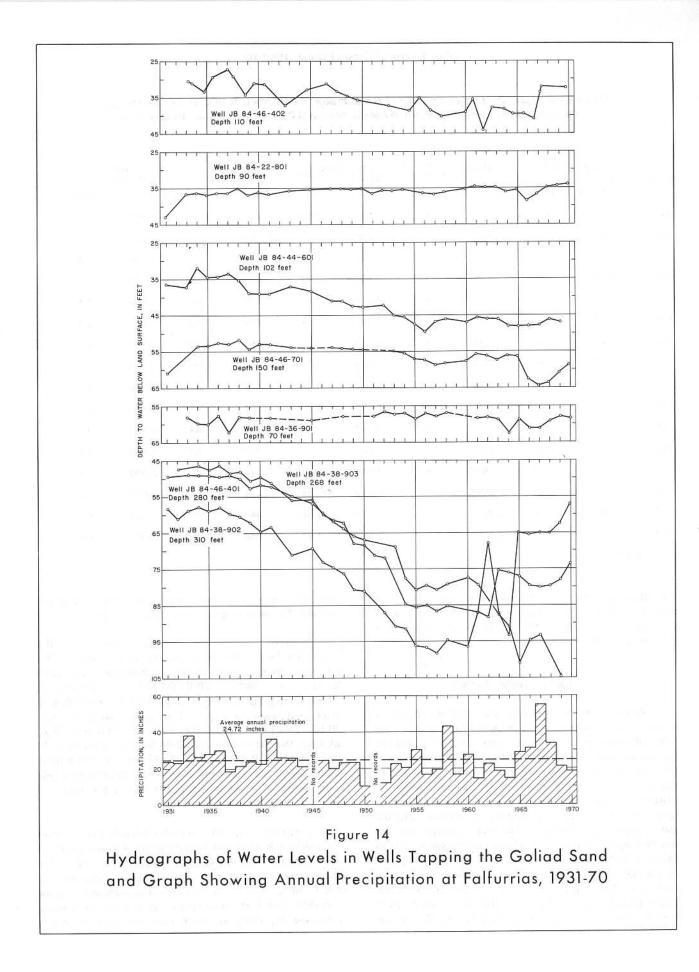
Rural-domestic and stock use of ground water in Duval County in 1970 was estimated to be 0.76 mgd. This is 14 percent of the total ground water used for all purposes that year (Table 4). Most of the wells that supply water for rural-domestic and stock needs are equipped with windmills, small gasoline engines, or electric pumps designed to pump only a few gallons a minute. In some areas, small ponds provide water for stock. A few ranchers in the extreme northwestern part of the county, where ground water is scarce or not available, depend upon water that is relayed through distribution pipes from wells in outlying areas.

The estimates of rural-domestic and stock use as given in Table 4 are based chiefly on the census of stock in the counties as of 1954, 1959, and 1964, and on the number of stock in 1969 as estimated by the U.S. Department of Agriculture and Texas Department of Agriculture. Estimates of ground water use by stock for

	UPPLY		TION		RIAL	AND ST		Contract of the local division of the local	AL
PER YR	MGD	PER YR	MGD	PER YR	MGD	PER YR	MGD	PER YR	MGD
750	0.67	100*	0.1 *	1,060	0.95	570	0.51	2,500	2.2
900	.80	100*	.1 *	1,060	.95	590	.53	2,700	2.4
900	.80	100*	.1 *	1,060	.95	610	.54	2,700	2.4
1,270	1.13	130	.12	1,090	.97	630	.56	3,100	2.8
1,060	.94	1,000*	.9 *	1,210	1.08	650	.58	3,900	3.5
730	.65	800*	.7 •	1,280	1.14	650	.58	3,500	3.1
610	.54	1,000*	.9 *	1,180	1.05	660	.59	3,500	3.1
1,000	.89	1,000*	.9 *	1,220	1.09	670	.60	3,900	3.5
770	.69	1,000*	.9 •	1,300	1.16	680	.61	3,800	3.4
880	.78	960	.86	1,350	1.20	680	.61	3,900	3.5
900	.80	800*	.7 •	1,460	1.30	720	.64	3,900	3.4
920	.82	800*	.7 •	1,430	1.28	750	.67	3,900	3.5
890	.80	700*	.6 *	1,410	1.26	770	.69	3,800	3.4
900	.78	800*	.7 *	1,500	1.34	760	.68	4,000	3.5
1,050	.94	2,400	2.14	1,550	1.38	840	.75	5,800	5.2
1,110	.99	2,500*	2.2 *	1,480	1.32	850	.76	5,900	5.3
	AC-FT PER YR 750 900 1,270 1,060 730 610 1,000 770 880 900 920 890 900 1,050	PER YR MGD 750 0.67 900 .80 900 .80 900 .80 900 .80 1,270 1.13 1,060 .94 730 .65 610 .54 1,000 .89 770 .69 880 .78 900 .80 920 .82 890 .80 900 .78 1,050 .94	AC-FT AC-FT PER YR MGD PER YR 750 0.67 100* 900 .80 100* 900 .80 100* 900 .80 100* 900 .80 100* 900 .80 100* 900 .80 100* 1,270 1.13 130 1,060 .94 1,000* 730 .65 800* 610 .54 1,000* 1,000 .89 1,000* 770 .69 1,000* 880 .78 960 900 .80 800* 920 .82 800* 890 .80 700* 900 .78 800* 1,050 .94 2,400	AC-FT AC-FT PER YR MGD AC-FT PER YR MGD 750 0.67 100* 0.1* 900 .80 100* .1* 900 .80 100* .1* 900 .80 100* .1* 900 .80 100* .1* 900 .80 100* .1* 900 .80 100* .1* 1,270 1.13 130 .12 1,060 .94 1,000* .9* 730 .65 800* .7* 610 .54 1,000* .9* 1,000 .89 1,000* .9* 770 .69 1,000* .9* 880 .78 960 .86 900 .80 800* .7* 890 .80 700* .6* 900 .78 800* .7* 1,050 .94 2,400	AC-FT AC-FT AC-FT PER YR MGD PER YR MGD PER YR MGD PER YR MGD PER YR PER YR MGD PER YR P	AC-FT AC-FT AC-FT PER YR MGD PER YR MGD Operation AC-FT PER YR MGD Operation Operation AC-FT PER YR MGD Operation AC-FT PER YR MGD Operation Operation Operation AC-FT I,060 Operation Operation Operation Operation AC-FT I,060 Operation Operation AC-FT I,060 Operation Operation AC-FT I,060 Operation Operation Operation AC-FT I,060 Operation Operation AC-FT I,060 Operation Operation AC-FT I,060 Operation Operation AC-FT I,060 Operation Intertword Intertword Intertword Intertword Intertword Intertword Interword Intertword Interword	PUBLIC SUPPLY AC-FT PER YRIRRIGATION AC-FT PER YRINDUSTRIAL AC-FT PER YRAND ST AC-FT PER YRAND ST AC-FT 	AC-FT PER YR MGD PER YR MGD AC-FT PER YR MGD Out AC-FT PER YR MGD AC-FT PER YR MGD Out AC-FT PER YR MGD AC-FT PER YR MGD AC-FT	PUBLIC SUPPLY AC-FTIRRIGATION AC-FTINDUSTRIAL AC-FTAND STOCK* AC-FTTOT/ AC-FTPER YRMGDPER YRMGD 0.1 * $1,060$ 0.95 570 0.51 $2,500$ 900.80 100^* .1 * $1,060$.95 590 .53 $2,700$ 900.80 100^* .1 * $1,060$.95 610 .54 $2,700$ $1,270$ 1.13 130 .12 $1,090$.97 630 .56 $3,100$ $1,060$.94 $1,000^*$.9 * $1,210$ 1.08 650 .58 $5,900$ 730 .65 800^* .7 * $1,280$ 1.14 650 .58 $3,500$ $1,000$.99 $1,000^*$.9 * $1,180$ 1.05 660 .59 $3,500$ $1,000$.89 $1,000^*$.9 * $1,220$ 1.09 670 .60 $3,900$ 770 .69 $1,000^*$.9 * $1,300$ 1.16 680 .61 $3,900$ 900 .80 800^* .7 * $1,460$ 1.30 720 .64 $3,900$ 900 .80 800^* .7 * $1,460$ 1.34 760 .68 $4,000$ 900 .80 70^* .6 * $1,410$ 1.26 770 .69 $3,800$ 900 .80 800^* .7 * $1,500$ 1.34 760 .68 $4,000$ 900 .80 $2,400$ 2.14 $1,550$

(Figures are approximate because some of the pumpage is estimated. Totals are rounded to two significant figures. Other figures are shown to nearest 0.01 mgd and nearest 10 acre-feet).

* Estimated


the other years listed in the table are subject to error because of lack of data. Rural-domestic usage was based on census of rural population for 1960 and 1970 and on estimates for other years.

Changes in Water Levels

Water levels in wells in the aquifers in Duval County rise or fall mainly in response to changes in the rates of recharge or discharge and rates of pumpage. During periods of drought, recharge to the aquifers is reduced and generally pumpage of water is increased, thereby reducing the quantity of ground water in storage—and the water levels decline; during periods of above normal rainfall, the process is reversed and the water levels rise. Periodic water-level measurements in selected observation wells in Duval County were made as early as 1931 (Table 9). These measurements were part of the statewide observation well program conducted by the U.S. Geological Survey and the Texas Water Development Board. Most of the observation wells having long records of measurements tap the Goliad Sand. Only relatively short records of measurements are available for wells tapping the Catahoula Tuff.

Periodic water-level measurements in the Catahoula Tuff were begun mostly in the 1960's. The relatively short period of record indicates that water levels in wells JB-84-04-701. JB-84-04-707. JB-84-12-101, JB-84-12-301, and JB-84-12-401 (Table 9) fluctuated considerably. The water level in well JB-84-12-401 rose 28.85 feet between 1960 and 1970. whereas the water level in JB-84-04-707 declined 4.82 feet between 1964 and 1970. Figure 11 shows that water levels are relatively low in the Catahoula a few miles south of Freer where public-supply pumpage has created a large cone of depression.

Little information is available regarding water-level fluctuations in the Oakville Sandstone. A flowing well in the Oakville (JB-84-45-301) had been used for observation purposes during recent years; however, by 1969 only three water-level measurements were available. The first measurement in the well was made February 25, 1967, at which time the water level was

3.8 feet above land surface. On March 20, 1969, the time of the last available measurement, the water level was 4.1 feet above land surface, indicating a rise of 0.3 feet. Water-level changes in other wells that tap the Oakville Sandstone in the report area are not known, but probably only slight changes in water levels have occurred regionally in Duval County. In Jim Wells County, however, Mason (1963, p. 33) states that the water level in an Oakville well used by Mobil Oil Corporation in southern Jim Wells County declined about 405 feet between 1947 and 1960.

Moderate to large declines in water levels have occurred in the Goliad Sand. These declines are mainly attributed to pumpage by irrigation, public-supply, and industrial wells that tap the Goliad Sand in the east-central and southeast part of the county.

Figure 14 shows the fluctuations in water levels in eight wells in the Goliad Sand and the annual precipitation at Falfurrias during the period 1931-70.

The water level in well JB-84-46-401, which taps the artesian zone, declined slowly during the 1930's and more rapidly thereafter. The increase in water-level decline is attributed to an increase in ground-water withdrawals in the southeastern part of the county and is not directly related to precipitation. The net water-level decline of 55 feet from 1931 to 1969 represents almost entirely a decrease in artesian pressure rather than a dewatering of the aquifer. This is contrasted by well JB-84-46-402 (110 feet deep) which taps that part of the Goliad under water-table conditions. This relatively shallow well, about half a mile from well JB-84-46-401, had a net decline in water levels of only 2 feet from 1933 to 1970.

Water levels in wells JB-84-38-902 and JB-84-38-903, which are about 1 mile apart and which tap the artesian zone, behaved similarly to those in well JB-84-46-401; however, in the 1960's the water level in the two wells rose substantially, indicating perhaps that salt water under higher head had entered the wells from above by way of leaky casings. Further evidence of this is shown by the change in the quality of water in well JB-84-38-902. When sampled in 1931, the water contained 771 mg/l of dissolved solids; on December 13, 1969, the water had a field conductance of about 3,300 which is equivalent to about 2,100 mg/l of dissolved solids.

Only small changes in water levels have occurred in those wells shown in Figure 14 that are less than about 150 feet deep. Sayre (1937, p. 63) observed that the water levels in some wells fluctuated very significantly, whereas water levels in other wells of similar depth showed very little fluctuation, and that water levels in some of the deeper wells showed greater fluctuations than in many of the shallower wells. He further stated, "the shallower wells, however, should respond rather quickly to recharge from precipitation, provided they are not separated from the surface by a more or less impermeable bed of caliche." Fluctuations of water levels in most of the shallow wells (Figure 14) less than about 150 feet deep show little relationship or response to precipitation.

CONSTRUCTION OF WELLS

Most of the water used for domestic purposes in Duval County during pioneer days was obtained from dug wells, some of which are still in existence. Generally, it was not necessary to install casings in the wells because much of the surface is covered by a hard caliche cap that is sufficiently indurated to serve as a natural well casing. The dug wells usually penetrated only a few feet of the saturated zone and yielded small supplies of water. Most of the wells completed since about 1930 have been drilled wells.

Figure 15 illustrates the construction of the two most common types of present-day wells, the straight-walled well and the underreamed and gravel-packed well. The straight-walled type is generally used for rural-domestic and stock wells, and to a lesser extent, for small irrigation, industrial, and public-supply wells. The underreamed and gravel-packed type is generally used where larger yields are desired.

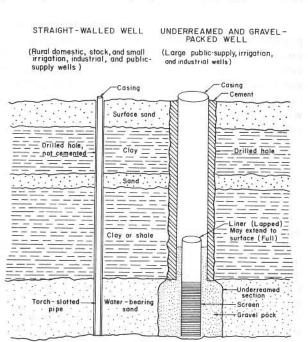


Figure 15.-Typical Construction of Rural-Domestic, Stock, Public-Supply, Industrial, and Irrigation Wells

Some of the municipal wells in Duval County that tap the Goliad Sand are underreamed, screened, and gravel packed in the water-bearing sands. The gravel pack increases the effective diameter of the wells and allows more water to enter at a reduced velocity. This reduces the drawdown and helps to prevent sand from entering the wells.

The industrial wells, some of which are underreamed and gravel packed, are generally designed to pump large quantities of water. In many wells, large-diameter casing (12-inch) is set in the upper parts of the wells, and 6- or 8-inch casing is set in the lower parts.

In most irrigation wells, torch-slotted casing is installed in the water-bearing sands, but a few wells are equipped with commercial screens. Little effort usually is made to correlate the width of the torch slots with the diameter of the sand particles. If slots are too large, sand enters freely, resulting in wear of the pumps and casing. If the slots are too small, or too few, excessive drawdowns of water levels result and the specific capacities of the wells are abnormally low.

At some places in Duval County, saline or moderately-saline water overlies fresh to slightly saline water. Wells drilled in these places should be cemented from the top of the fresh-water sands to the land surface to prevent the more saline water from corroding the casing, entering the wells, and contaminating the usable water.

Some abandoned oil or gas wells that have been properly plugged are later converted into water wells for various uses. The well construction is based on an examination of the well logs. The most productive water-bearing sands are selected and the well casing is "shot" or gun-perforated in these sands, allowing the water to enter the well. Several flowing wells in the report area have been completed by this method.

QUALITY OF GROUND WATER

All ground water contains dissolved chemical constituents. The chemical constituents in the ground water in Duval County are derived principally from the materials in the soil and rocks through which the water has moved. The difference in the quality of the water reflect, in a general way, the types of soil and rocks that have been in contact with the water and the length of time in contact. Usually, most deep ground water is free from contamination by organic matter; but, normally, the dissolved-solids content increases with depth. The source and significance of the dissolved-mineral constituents and properties of the water are summarized in Table 5, which is modified from Doll and others (1963, p. 39-43). The chemical analyses of water from 165 selected wells in Duval County are given in Table 11. The wells from which samples were taken are identified on the well-location map (Figure 22) by bars

over the well numbers. Figure 16 shows the variation in chemical content of the sampled water throughout the report area.

Chemical-Quality Standards and Suitability of Water for Use

Various requirements have been established for most categories of water quality including bacterial content; physical characteristics such as turbidity, color, odor, and temperature; chemical substances; and radioactivity. However, the suitability of a water supply depends largely upon the chemical quality of the water and the limitations associated with the contemplated use of the water. Generally, the problems of bacteria and physical characteristics can be remedied economically, but the removal or neutralization of undesirable chemical constituents may be difficult and expensive.

The dissolved-solids or "total-salts" content is a major limitation on the use of water for many purposes. The classification of water based on the dissolved-solids content in milligrams per liter as used in this report is as follows (Winslow and Kister, 1956, p. 5):

DESCRIPTION	DISSOLVED-SOLIDS CONTENT (MG/L)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

Public Supply

Water used for public supply should not contain excessive amounts of harmful chemical substances; should be free of turbidity, odor, and color to the extent that it is not objectionable to the user; and must not be excessively corrosive to the water-supply system.

The U.S. Public Health Service has established and periodically reviews the standards for drinking water used on common carriers engaged in interstate commerce. The standards are designed to protect the public and are used to evaluate public water supplies. According to the standards, chemical substances should not be present in a water supply in excess of the listed concentrations whenever more suitable supplies are available or can be made available at reasonable cost. The principal chemical standards adopted by the U.S. Public Health Service (1962, p. 7-8) are as follows:

CONSTITUENT	SOURCE OR CAUSE	SIGNIFICANCE
	from practically	
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Ca high pressure boilers to form deposits of Inhibits deterioration of zeolite-type water
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground wate brown precipitate. More than about 0.3 n utensils reddish-brown. Objectionable for tile processing, beverages, ice manufactur processes. U.S. Public Health Service (standards state that iron should not exo quantities cause unpleasant taste and f bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale- water; soap consuming (see hardness). Wat magnesium desired in electroplating, tar textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chlor Moderate quantities have little effect on t for most purposes. Sodium salts may can bollers and a high sodium content may lim irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkali calcium and magnesium decompose in s water facilities to form scale and release con gas. In combination with calcium and mag ate hardness.
Sulfate (SO4)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms boilers. In large amounts, sulfate in combin gives bitter taste to water. Some calcium beneficial in the brewing process. U.S. P (1962) drinking-water standards recomm content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodiu drinking water. In large quantities, increase water. U.S. Public Health Service (1962) dards recommend that the chloride conte 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the inci- when the water is consumed during th caloffication. However, it may cause mo depending on the concentration of fluoride amount of drinking water consumed, and individual. (Maier, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soll.	Concentration much greater than the local pollution. U.S. Public Health Service (1 standards suggest a limit of 45 mg/l. Wo content have been reported to be the ca binemia (an often fatal disease in infants) not be used in infant feeding. Nitrate ha helpful in reducing inter-crystalline crackil encourages growth of algae and other organ undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and solls. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drint recommend that waters containing more tha solids not be used if other less mineralized a Waters containing more than 1000 mg/l unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form, E bathtubs, Hard water forms scale in boiler pipes. Hardness equivalent to the bicarbons called carbonate hardness. Any hardness called non-carbonate hardness. Waters of ha ppm are considered soft; 61 to 120 mg/l, r to 180 mg/l, hard; more than 180 mg/l, very
Specific conductance (micromhos at 25ºC)	Mineral content of the water.	Indicates degree of mineralization. Specif measure of the capacity of the water to current. Varies with concentration and dec the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution 7.0 denote increasing alkalinity; values low increasing acidity. pH is a measure of hydrogen ions. Corosiveness of water gen decreasing pH. However, excessively alkali attack metals.

pipes and boilers. Carried over in steam of to form deposits on blades of turbines. of zeolite-type water softeners.

ir, iron in ground water oxidizes to reddish. More than about 0.3 mg/lstains laundry and own. Objectionable for food processing, tex-verages, ice manufacture, brewing, and other ublic Health Service (1962) drinking-water at iron should not exceed 0.3 mg/l, Larger unpleasant taste and favor growth of iron

hardness and scale-forming properties of g (see hardness). Waters low in calcium and n electroplating, tanning, dyeing, and in

mbination with chloride, give a salty taste. nave little effect on the usefulness of water Sodium salts may cause foaming in steam Jium content may limit the use of water for

oonate produce alkalinity. Bicarbonates of um decompose in steam boilers and hot n scale and release corrosive carbon dioxide vith calcium and magnesium, cause carbon-

taining calcium forms hard scale in steam mits, sulfate in combination with other ions water. Some calcium sulfate is considered wing process. U.S. Public Health Service r standards recommend that the sulfate ceed 250 mg/l.

mbination with sodium, gives salty taste to ge quantities, increases the corrosiveness of ealth Service (1962) drinking-water stan-the chloride content should not exceed

vater reduces the incidence of tooth decay consumed during the period of enamel r, it may cause mottling of the teeth, centration of fluoride, the age of the child, water consumed, and susceptibility of the i0)

h greater than the local average may suggest blic. Health Service (1962) drinking-water a limit of 45 mg/l. Waters of high nitrate reported to be the cause of methemoglo-fatal disease in infants) and therefore should ant feeding. Nitrate has been shown to be inter-crystalline cracking of boiler steel. It of algae and other organisms which produce nd odors.

irposes. Service (1962) drinking-water standards s containing more than 500 mg/l dissolved ther less mineralized supplies are evailable tre than 1000 mg/l dissolved solids are

re a lather will form. Deposits soap curd on er forms scale in boilers, water heaters, and ivalent to the bicarbonate and carbonate is ardness. Any hardness in excess of this is a hardness. Waters of hardness as much as 60 soft: 61 to 120 mg/l, moderately hard; 121 nore than 180 mg/l, very hard.

ineralization. Specific conductance is a ty of the water to conduct an electric oncentration and degree of ionization of

eutrality of a solution. Values higher than alkalinity: values lower than 7.0 indicate t is a measure of the activity of the iveness of water generally increases with er, excessively alkaline waters may also

- 37 -

SUBSTANCE	CONCENTRATION MG/L
Chloride (Cl)	250
Fluoride (F)	.8 *
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (NO ₃)	45
Sulfate (SO4)	250
Dissolved solids	500

ARLING ATION

* The permissible upper limit of fluoride is based upon the annual average of maximum daily temperature of 84.9°F (29.5°C) measured at Falfurrias over a 30-year period.

All the ground water presently used for public supplies in the report area is obtained from wells in the Goliad Sand and Catahoula Tuff.

Less than 20 percent of the water samples taken from wells in the county contained less than 250 mg/l chloride. The chloride concentration in 54 water samples from wells in the Catahoula Tuff ranged from 25 to 3,980 mg/l. All but six of the samples had a chloride content that exceeded 250 mg/l. Of the 14 wells sampled in the Oakville Sandstone, the minimum chloride concentration was 89 mg/l in well JB-84-05-602 (depth 65 feet), and the maximum was 2,010 mg/l in well JB-84-05-502 (depth 450 feet). The chloride content of 98 water samples from wells in the Goliad Sand in the report area ranged from 8.7 to 3,220 mg/l, exceeding 250 mg/l in 75 samples. Figure 16 shows that of the Goliad wells sampled, generally, the chloride concentration was lowest in water from those wells having a depth from 200 to about 700 feet.

The fluoride content of 89 water samples ranged from 0.1 to 5.2 mg/l, exceeding 0.8 mg/l in about half the samples. In 14 samples, the concentration exceeded 1.4 mg/l, a level which if exceeded constitutes grounds for rejection of a public water supply (U.S. Public Health Service, 1962, p. 8). The fluoride content in 28 samples from the Catahoula Tuff ranged from 0.1 mg/l to 5.2 mg/l and exceeded 0.8 mg/l in 18 samples. The maximum fluoride concentration of 5.2 mg/l was from a water sample taken from a flowing well, JB-84-44-104, which produces from a screened interval of 1,730 to 1,772 feet. In nine samples from wells in the Oakville Sandstone, the fluoride concentration ranged from 0.4 to 1.4 mg/l, exceeding 0.8 mg/l in three samples. The fluoride content of 52 samples from the Goliad Sand ranged from 0.2 to 2.0 mg/l, exceeding 0.8 mg/l in 24 samples.

The total iron content in water from 40 samples ranged from 0.00 to 4.3 mg/l, exceeding 0.3 mg/l in 10 samples. In 17 samples from wells in the Catahoula Tuff, the iron content exceeded 0.3 mg/l in five samples. Only four samples from the Oakville Sandstone were analyzed for iron; in two of these samples the iron content exceeded 0.3 mg/l. In 18 samples from wells in the Goliad Sand, the iron content exceeded 0.3 mg/l in only three samples.

The nitrate content in 100 water samples ranged from 0.00 to 226 mg/l. Of the 100 samples, 14 had nitrate concentrations exceeding 45 mg/l. Of the 14, five were from the Catahoula Tuff and nine were from the Goliad Sand. The water in wells JB-78-60-701, JB-84-37-401, and JB-84-45-104 contained nitrate contents of 133 mg/l, 134 mg/l, and 226 mg/l, respectively.

The sulfate content of 156 water samples ranged from 6.8 to 2,800 mg/l, exceeding 250 mg/l in 44 samples. Of 47 determinations of sulfate in water from wells tapping the Catahoula Tuff, slightly less than half exceeded 250 mg/l. Samples from eight of 13 wells in the Oakville Sandstone had a sulfate content that exceeded 250 mg/l. Of 92 determinations of sulfate in water from wells tapping the Goliad Sand, slightly less than 20 percent exceeded 250 mg/l.

The dissolved-solids content in 102 water samples ranged from 247 to 7,060 mg/l. Almost all of these samples were from wells in the Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The dissolved solids exceeded 500 mg/l in 97 samples and exceeded 1,000 mg/l in 70 samples. The dissolved-solids content in water from seven public-supply wells in the Goliad Sand ranged from 730 to 1,540 mg/l; water from three public-supply wells in the Catahoula Tuff had dissolved solids that ranged from 1,290 to 1,480 mg/l. Only one of the 10 public-supply wells had water with dissolved solids less than 1,000 mg/l.

The hardness of water is important in a public water supply, although no limits for hardness have been established by the U.S. Public Health Service. Water used for ordinary domestic purposes does not become particularly objectionable until it reaches the level of about 100 mg/l (Hem, 1970, p. 225). A commonly accepted classification of water hardness is given in Table 5.

The hardness in 165 water samples ranged from 5 to 2,640 mg/l, exceeding 60 mg/l in 150 samples. In 15 samples, the hardness was less than 60 mg/l, and in 120 samples, the hardness was more than 180 mg/l. Generally, the softer water was obtained from relatively deep wells, most of which were from about 900 to 1,800 feet deep.

In summary, most of the ground water sampled from the Catahoula Tuff, Oakville Sandstone, and Goliad Sand in Duval County does not meet the quality standards of the U.S. Public Health Service for drinking water. Dissolved-solids and chloride contents were especially excessive. Water having chemical constituents in excess of the established limits, nevertheless, is used for drinking without any obvious adverse effects.

Irrigation

The suitability of water for irrigation depends upon the chemical quality of the water and other factors such as soil texture and composition, type of crops, irrigation practices, and climate. The most important chemical characteristics of water used for irrigation are the sodium concentration, the concentration of soluble salts, residual sodium carbonate, and the concentration of boron. Sodium is significant in evaluating the quality of irrigation water because of its potential deleterious effect on the soil. A high percentage of sodium in water tends to make soil plastic, thus restricting the movement of water and giving rise to problems of drainage and cultivation.

A system of classification commonly used for judging the quality of water for irrigation was proposed by the U.S. Salinity Laboratory Staff (1954, p. 69-82). The classification is based on the salinity hazard as measured by the electrical conductivity of the water and the sodium or alkali hazard as measured by the sodium adsorption ratio (SAR). The U.S. Salinity Laboratory Staff's classification of irrigation water is diagrammed in Figure 17, and results of analyses of water from 22 representative wells in the Catahoula Tuff, Oakville Sandstone, and Goliad Sand are plotted on the diagram.

The diagram indicates that the samples (10 from irrigation wells, 10 from domestic and stock wells, one from a public-supply well, and one from an industrial well) had a range in sodium and salinity hazards from low to very high and high to very high, respectively. Although water from each of the three aquifers represented on the diagram had a high to very high salinity hazard, the Goliad water had the lowest sodium hazard (low to medium range). On the basis of the diagram, irrigation in Duval County should be practiced with careful management, especially if water from the Oakville or Catahoula is used.

An excessive concentration of boron renders water unsuitable for irrigation. Scofield (1936, p. 286) indicated that boron concentrations of as much as 1 mg/l are permissible for irrigating most boron-sensitive crops, and that concentrations of as much as 3 mg/l are permissible for the more boron-tolerant crops. The boron concentration in water samples from 13 wells ranged from 0.63 to 2.1 mg/l. In nine samples from irrigation wells in the Goliad Sand, which supplies all the water for large-scale irrigation in the county, the boron concentration ranged from 0.63 to 2.0 mg/l, exceeding 1.0 mg/l in four samples.

Another factor used in assessing the suitability of water for irrigation is the residual sodium carbonate (RSC). Excessive RSC will cause the water to be alkaline. The organic material of the soil is dissolved by strong alkaline solutions, and the soil takes on a grayish-black color.

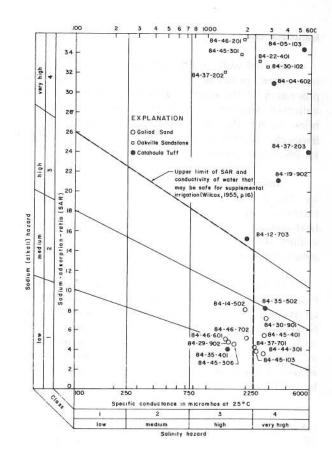


Figure 17.-Classification of Irrigation Waters

The soil thus affected is referred to as "black alkali." Wilcox (1955, p. 11) states that laboratory and field studies have resulted in the conclusion that water containing more than 2.5 me/l (milliequivalents per liter) RSC is not suitable for irrigation; water containing from 1.25 to 2.5 me/l is marginal; and water containing less than 1.25 me/l probably is safe. However, good irrigation practices and proper use of soil amendments might make it possible to use marginal water successfully. Furthermore, the degree of leaching will modify the permissible limit to some extent (Wilcox, Blair, and Bower, 1954, p. 265).

The RSC of 113 samples from wells ranged from 0.00 to 15.4 me/l. About one-fourth of the samples contained more than 2.5 me/l, and about two-thirds of the samples contained less than 1.25 me/l. Most of the high RSC values were associated with the Catahoula Tuff and Oakville Sandstone. RSC in water from the Goliad Sand generally was low.

In summary, the water from wells in the Goliad Sand is more suitable for irrigation than the water from wells in the Oakville Sandstone and the Catahoula Tuff; however, water from any of the three aquifers should be used with careful management and as a supplement to rainfall.

Industrial Use

Ground water used by industry may be classified into three principal categories—cooling, boiler, and processing. In the report area most of the water used for industrial purposes is used in the processing or mining of brine in the Palangana brine field, 6 miles north of Benavides; smaller quantities of industrial water are used for cooling at gas-cycling plants.

Cooling water generally is selected on the basis of its chemical quality and temperature. Silica, iron, and hardness may cause scale which adversely affects the heat-exchange surfaces in the cooling process; and sodium chloride, acids, oxygen, and carbon dioxide are among substances that make water corrosive.

Boiler water should be noncorrosive and should have a very low concentration of scale-forming constituents such as silica, calcium, and magnesium. Silica is particularly undesirable in boiler water because its tendency to form a hard scale increases with pressure in a boiler. The following table shows the maximum suggested concentrations of silica for water used in boilers (Moore, 1940, p. 263).

BOILER PRESSURE (POUNDS PER SQUARE INCH)		
Less than 150		
150 to 250		
251 to 400		
More than 400		

In Duval County the concentration of silica in 79 water samples ranged from 16 to 100 mg/l, exceeding 20 mg/l in 74 (about 94 percent) of the samples.

Water used as process water in manufacturing is subject to a wide range of quality requirements, which generally are rigidly controlled. For example, water used in textile manufacturing must be low in dissolved solids and free from the stain effects of precipitated iron and manganese. The beverage industry requires water that is free from iron, manganese, and organic substances. The chemical quality of water used in the process of brine production is not as critical as for cooling water or boiler water.

Most of the ground water in Duval County is alkaline. Of the 154 determinations of pH, all but six exceeded 7.0, which is neutral.

The odor of hydrogen sulfide gas (H_2S) was noticeable from many wells during the time they were being pumped. Although H_2S is an objectionable constituent, it can be removed by aeration. Concentrations of iron, hardness, and dissolved solids, which also affect the suitability of water for industrial use, have been discussed in the section on suitability for public supply.

Pesticides Content of Water

To provide information on the presence of pesticidal contamination, samples of ground water from four wells in the report area were analyzed for the insecticides and herbicides recommended by the Subcommittee on Pesticide Monitoring of the Federal Committee on Pest Control (Green and Love, 1967, p. 13-16). The wells, which were sampled August 20, 1970, were JB-78-62-901, JB-84-35-101, JB-84-36-901, and JB-84-46-405 having depths of 39, 90, 70, and 42 feet, respectively (Figure 22). No pesticides were found in the water samples from any of these wells.

PROBLEMS

Salt-Water Disposal

A tabulation of the questionnaires that the Texas Railroad Commission sent to oilfield operators indicates that 104,035,676 barrels, or about 13,400 acre-feet, of salt water was produced in conjunction with the production of oil and gas in Duval County in 1967. The methods of disposal and the quantity disposed of are shown in Table 6. The locations of the brine-producing areas are shown on Figure 18.

Of the total amount of salt water disposed of in 1967, 13,336,236 barrels (13 percent) was placed in unlined surface pits and 90,699,440 barrels (87 percent) was injected into the zone from which it was produced (called water flooding) or into other zones below the base of fresh to slightly saline water. During the 1969-70 period of field study in Duval County, very few unlined surface pits were observed. The sparsity of pits is attributed to a no-pit order by the Texas Railroad Commission which went into effect throughout Texas on January 1, 1969.

The disposal of salt water into unlined surface pits is the most hazardous method with respect to contamination of shallow fresh water. Salt water in a pit seeps into the ground and eventually may contaminate the water in a shallow aquifer. The time required for the salt water to affect the quality of water in nearby wells may vary from a few months to several years, depending upon the permeability of the soil and the consequent rate of movement of the salt water. Generally, contamination of the fresh water is indicated by a significant increase in the salinity of the water, principally in the chloride content, without an accompanying increase in the sulfate content. Once a

Table 6.-Methods of Disposal and Quantity of Salt Water Disposed in 1967

(From Texas Railroad Commission)

AREA SHOWN		BRINE DISPOSAL IN BARRELS		
ON FIGURE 18	FIELD	TOTAL	UNLINED PITS	DISPOSAL OR INJECTION WELL
1	Casa Blanca	1,241,819	12,459	4 000 000
	Charamousca	1,867,828	56,701	1,229,360
-	Neely, East	3,566,454	525,967	1,811,127
	Total	6,676,101	595,127	3,040,487 6,080,974
2	Brelum			0,000,014
2	Eagle Hill	2,051 1,535,380	2,051	0
	Hagist Ranch	1,121,688	1,887	1,533,493
	Piedre Lumbre	8,612,907	104,851	1,016,837
Pro F	Total	11,272,026	<u>94,483</u> 203,272	8,518,424 11,068,754
			200,272	11,008,754
3	Labbe Seven Sisters	31,019	730	30,289
	Total	8,988,141 9,019,160	2,507,926 2,508,656	6,480,215
			2,508,050	6,510,504
4	Gormac	103,827	1,398	102,429
The second se	Lovia Petrox	7,200 482,359	7,200	0
	Welder	1,095	323,050 1,095	159,309
	Total	594,481	332,743	261,738
5	D. C. R. 79	and a second second		1000100 (T100A2A)
5	D. C. R. 79 Seventy-Six	856,440 2,929,063	0	856,440
	Total	3,785,503	1,170,908 1,170,908	<u>1,758,155</u> 2,614,595
2			1,170,508	2,614,595
6	Government Wells, North	13,066,657	582,183	12,484,474
	Government Wells, South Loma Novia	1,703,989	283,847	1,420,142
	Lundell	5,443,351	1,074,690	4,368,661
	Total	7,940,447 28,154,444	96,283	7,844,164
		20,134,444	2,037,003	26,117,441
7	Herbst	3,995	3,995	0
	Kreis	164,165	164,165	
	Total	168,160	168,160	<u>0</u>
8	Rosita	30,385	1,080	29,305
	Squire	219,000	0	219,000
	Strake	2,920	2,920	213,000
10.00	Total	252,305	4,000	248,305
9	Bridwell	330,724	220 724	
12.01	Chiltipin	2,555	330,724	0
	Fitzsimmons	21,600	2,555	0
	Johns	1,405,894	21,600 413,192	0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total	1,760,773	768,071	<u>992,702</u> 992,702
10	A. & H.	15 000		
10	Agua Prieta	15,330 144,345	15,330	0
	Cadena	111,750	144,345	0
	Lockhart, Thomas	1,182,600	111,750 1,182,600	0
	Robinson	147,460	147,460	0
	Tesoro	2,880	2,880	0
	Total	1,604,365	1,604,365	<u>0</u>
11	Hoffman	28,308,981	675 440	
	Musgo	400	675,410 400	27,633,571
	Parilla	1,477	1,477	0
(C)	Sarnosa	599,183	573,623	25,560
	Tarancahuas	2,224,000	0	_2,224,000
S	Total	31,134,041	1,250,910	29,883,131
12	Cedro Hill	2,641,485	167 747	
	Colmena	1,585,233	167,747 235,425	2,473,738
	Forty-Nine	29,160	29,160	1,349,808 0
	Peters	430,756	430,756	0
	Rowden	4,890	4,890	0
	Tiger Total	69,832	69,832	0
-112.5	. otta	4,761,356	937,810	3,823,546
13	Lopez	926,754	0	006 354
	Total	926,754	<u>0</u> 0	<u>926,754</u> 926,754

Table 6.-Methods of Disposal and Quantity of Salt Water Disposed in 1967-Continued

AREA SHOWN ON FIGURE 18	FIELD	BRINE DISPOSAL IN BARRELS		
		TOTAL	UNLINED PITS	DISPOSAL OR INJECTION WELL
14	Kohler	215,598	0	215,598
14	Rancho Solo	39,755	39,755	0
	Zaragosa	183	183	0
	Total	255,536	39,938	215,598
15	Gruy	341,634	341,634	0
15	Rosalia	43,036	43,036	0
	Total	384,670	384,670	0
16	Cole	16,200	3,600	12,600
10	Thanksgiving	198,000	183,600	14,400
27 m	Total	214,200	187,200	27,000
17	Cox and Hamon	299,550	299,550	0
17	Elva	900	900	<u>0</u>
Total		300,450	300,450	0
18	Conoco-Driscoll	1,928,398	<u>0</u>	1,928,398
10	Total	1,928,398	0	1,928,398
19	Atlee	2,190	2,190	0
15	Benavides	34,312	34,312	0
	Buena Suerte	1,460	1,460	0
	Longhorn	9,835	9,835	0
	Peidras Pintas Dome	189,814	189,814	0
Southland	· · · · · · · · · · · · · · · · · · ·	12,775	12,775	0
	Woodley	40,150	40,150	<u>0</u>
	Total	290,536	290,536	0
20	Good Friday	27,375	27,375	0
Jaboncillos Creek La Huerta Mesquite Bonita Orcones Total		106,583	106,583	0
	10 A A A A A A A A A A A A A A A A A A A	167,170	167,170	0
		10,605	10,605	0
		11,133	11,133	0
		322,866	322,866	0
21 Sejit	Sejita	229,551	229,551	<u>0</u>
	Total	229,551	229,551	0
	County totals	104,035,676	13,336,236	90,699,440

(From Texas Railroad Commission)

source of contamination is eliminated, flushing and dilution of the contamination may require a considerably longer time than the period of original contamination.

No conclusive evidence of salt-water contamination was found during the investigation. This should not, however, be construed to mean that contamination is not occurring or did not occur during previous years when most or all salt water was disposed of in unlined pits and water-courses.

Improperly Cased Wells

Aquifers may be contaminated by the invasion of salt water through improperly cased oil or gas wells. In recent years, the Texas Water Development Board has made recommendations to the oil operators concerning the depths to which water-bearing formations are to be protected by cemented casing; however, the Oil and Gas Division of the Railroad Commission is responsible for protection of aquifers bearing fresh to slightly saline water from contamination in connection with oilfield operations. The Commission issues rules governing the depth of cemented surface casing required to protect such strata for many oilfields throughout the State, and often revises the rules when additional subsurface information becomes available.

An examination of the Commission's field rules indicates that the field rules for surface-casing requirements are adequate in most of the oilfields and gasfields in Duval County. The areas (Figure 18) that apparently are not protected adequately and the amount of unprotected strata containing fresh to slightly saline water are: Area 2, from 250 to 500 feet; area 8, about 500 feet in the Strake field; area 9, from 200 to 300 feet; area 10, from 650 to 800 feet (the 1,150-foot field rule for the A&H field is adequate); area 18, about 1,200 feet: and area 21, about 550 feet. Several fields in Duval County do not have field rules. These fields are regulated on an individual-well basis, which usually provides adequate protection.

AVAILABILITY OF GROUND WATER

The Catahoula Tuff, Oakville Sandstone, and the Goliad Sand are the important aquifers in Duval County and are the sources of the fresh to slightly saline ground water presently being pumped. Of the three aquifers, the Goliad Sand is, by far, the most heavily tapped by wells. The Catahoula Tuff is hydrologically important because it is the only available source of fresh to slightly saline water in the northwestern part of the county. The Oakville Sandstone, although it contains fresh to slightly saline water in the eastern part of the county, is tapped by a relatively few wells.

Quantity of Ground Water Available for Development

The quantity of water that can be withdrawn from the aquifers on a long-term basis, without depleting the existing supply, can be determined from the amount of recharge or replenishment that the aquifers receive. Studies to determine precisely the amount of recharge were not a part of the present investigation, but estimates can be made by determining the amount of water that originally moved through the aquifers. The estimate of recharge can be computed by using the equation

Q = T I L

where Q = quantity of water, in gallons per day, moving through the aquifer;

T = transmissivity, in square feet per day;

I = original hydraulic gradient of the potentiometric surface, in feet per mile; and

L = length of the aquifer, in miles, through which the water moves.

Catahoula Tuff

The amount of water available for development from the Catahoula Tuff is difficult to determine because of a lack of appropriate data on the aquifer in Duval County. An approximation of the quantity of water originally moving through the aquifer can be made, however, with some assumptions.

Data are not available to determine the original hydraulic gradient of the potentiometric surface of the Catahoula Tuff. But assuming that the gradient, based on water-level measurements made in 1969-70, was about the same as the original gradient, then the hydraulic gradient was about 15 feet per mile. This gradient was determined for the area south of the well field that supplies water to Freer.

The average transmissivity of the sands bearing fresh to slightly saline water in the Catahoula is assumed to be about 1,200 square feet per day. This approximation was derived from an average sand-thickness of 80 feet along a north-south line through Freer and from an average hydraulic conductivity of 15 feet per day. Because aquifer tests could not be made in the Catahoula, the hydraulic conductivity of 15 feet per day was calculated from two tests on the Catahoula made in Karnes County, about 50 miles north-northeast of Duval County.

Based on a transmissivity of 1,200 square feet per day and a hydraulic gradient of 15 feet per mile, the quantity of ground water that originally moved through the Catahoula across the 48-mile length of western Duval County was about 6 mgd.

Oakville Sandstone

The original hydraulic gradient of the potentiometric surface in the Oakville was approximated by using water levels measured after 1946 in Duval and Jim Wells Counties. Although the potentiometric surface is depressed around a few centers of moderate to heavy pumping, water levels regionally are believed to have changed only slightly. On the basis of water levels that probably are not significantly affected by heavy pumping, the hydraulic gradient was about 10 feet per mile in 1969.

The average transmissivity of the sands bearing fresh to slightly saline water in the Oakville in eastern Duval County is 1,680 square feet per day. This was derived from an average sand-thickness of 120 feet along the Duval County-Jim Wells County line and from an average hydraulic conductivity of 14 feet per day. The 14 feet per day is the average of the hydraulic conductivities determined from three aquifer tests in Duval and Jim Wells Counties.

Based on the transmissivity of 1,680 square feet per day and on a hydraulic gradient of 10 feet per mile, the quantity of ground water that originally moved through the Oakville across the 56-mile length of eastern Duval County was about 7 mgd.

Goliad Sand

The original hydraulic gradient of the potentiometric surface of the Goliad Sand can be approximated by using water levels measured in Duval, Jim Wells, and Kleberg Counties in 1932 and 1933 before pumping began to affect the water levels regionally. In this way, the approximate hydraulic gradient was determined to be 9 feet per mile.

The average transmissivity of the sands bearing fresh to slightly saline water in the Goliad Sand along the Duval County-Jim Wells County line is about 2,650 square feet per day. This is derived from an average sand-thickness of 240 feet at the county line and from an average hydraulic conductivity of 11 feet per day. The 11 feet per day is the average of the hydraulic conductivities determined from 15 aquifer tests in Duval, Jim Wells, and Brooks Counties.

Based on a transmissivity of 2,650 square feet per day and a hydraulic gradient of 9 feet per mile, the quantity of ground water that originally moved through the Goliad Sand across the 56-mile length of Duval County was 10 mgd. This total quantity compares favorably with the 6 mgd that originally moved from southern Duval County into southern Jim Wells and Kleberg Counties as calculated by Shafer and Baker (1973, p. 106) plus the 3 mgd determined by Mason (1963, p. 50) to be flowing from northern Duval County through the Goliad Sand into the Alice area of northern Jim Wells County.

Areas Most Favorable for Future Development

The ground-water resources of Duval County are only partly developed. A total of 23 mgd of fresh to slightly saline water from the Catahoula, Oakville, and Goliad aquifers is available on a long-term basis without depleting the supply. This is slightly more than four times as much water as was used for all purposes in the county in 1970. Thus relatively large quantities of ground water remain for future development. The development of 23 mgd, however, would cause the aquifers to undergo hydrologic adjustments. Among these adjustments would be a lowering of water levels, changes in the rates of natural recharge or discharge, and possible encroachment of inferior quality water. Generally, the areas where sand thicknesses are large have the greatest potential for additional development of large quantities of ground water. Other factors should be considered, however, such as whether or not large quantities of ground water are already being pumped in the area.

Of the 6 mgd of ground water that may be considered to be available from the Catahoula Tuff, only 10 percent was used in 1970. The areas most favorable for development of large quantities of additional ground water from the Catahoula are along a line extending corner of the county southwest from the north-northeastward through Freer. This line may be considered to be the axis of thick accumulations of sand containing fresh to slightly saline water. From 5 to 20 miles east of this line, the thickness of sand containing fresh to slightly saline water decreases to zero.

The thickest accumulations of sand (at least 120 feet) are in a 12-square-mile area along State Highway 16 from 4 to 10 miles south of Freer and in a similarly sized area about 20 miles west of Benavides (Figure 19). The former area includes the well field for Freer, where concentrated pumping (0.3 mgd in 1970) has lowered the water levels and created an extensive cone of depression in the potentiometric surface (Figure 11). Additional large development in this area of concentrated pumping should be avoided if possible. The latter area is undeveloped.

Of the 7 mgd of ground water that may be considered perennially available from the Oakville Sandstone, only about 10 percent was used in 1970. Areas most favorable for development of large quantities of additional ground water from the Oakville are along the eastern side of the county where the sand section containing fresh to slightly saline water is thickest (Figure 20).

South of San Diego, an area of about 150 square miles contains a sand section in excess of 120 feet thick. Moderate to heavy pumping in southern Jim Wells County, however, has created cones of depression that probably extend into this area of thick sand in Duval County. Westward from the Duval County-Jim Wells County line in the direction of the outcrop or subcrop beneath the Goliad Sand, the thickness of sand in the Oakville decreases and development of ground water becomes less favorable. Water from the Oakville is not available in the area overlying the Palangana salt dome because of the absence of the aquifer on the dome.

Of the 10 mgd of ground water that may be considered available from the Goliad Sand, about 40 percent was used in 1969. Areas most favorable for development of large quantities of additional ground water from the Goliad are in the southeastern part of the county where the sand containing fresh to slightly saline water is thick. The thickest accumulation of sand (in excess of 340 feet) underlies an area a few miles southeast of Benavides. Westward from near the Duval County-Jim Wells County line in the direction of the edge of the Goliad outcrop, the sand gradually decreases in thickness, and the availability of large quantities of water becomes less favorable (Figure 21). Additional large developments of ground water in the area from 6 to 8 miles north of Benavides should be avoided, as large amounts of water currently are being pumped from the Goliad in this area.

NEEDS FOR CONTINUED DATA COLLECTION

The collection of basic data such as an inventory of pumpage, observations of water levels, and collection of water samples should be continued periodically in Duval County. Collection of water samples from selected wells for chemical analysis will provide up-to-date information on the status of possible salt-water encroachment.

The program for the observations of water levels should be expanded to include more wells in the Catahoula Tuff and Oakville Sandstone so that any trend in the water-level fluctuations can be established prior to any large-scale development. The number and distribution of observation wells in the Goliad Sand seems adequate at least for the present time.

DEFINITIONS OF TERMS

In this report certain technical terms, including some that are subject to different interpretations, are used. For convenience and clarification, these terms are defined as follows:

Acre-foot—The volume of water required to cover 1 acre to a depth of 1 foot (43,560 cubic feet), or 325,851 gallons.

Acre-foot per year—One acre-foot per year equals 892.13 gallons per day.

Alluvial deposits-Sediments deposited by streams; includes floodplain deposits and stream-terrace deposits.

Aquifer-A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer test, pumping test-The test consists of the measurement at specific intervals of the discharge and water level of the well being pumped and the water levels in nearby observation wells. Formulas have been developed to show the relationships of the yield of a well, the shape and extent of the cone of depression, and the properties of the aquifer such as the specific yield, porosity, hydraulic conductivity, transmissivity, and storage coefficient.

Artesian aquifer, confined aquifer-Artesian (confined) water occurs where an aquifer is overlain by rock of lower hydraulic conductivity (e.g., clay) that confines the water under pressure greater than atmospheric. The water level in an artesian well will rise above the level at which it was first encountered in the well. The well may or may not flow.

Brine-Water containing more than 35,000 mg/l dissolved solids (Winslow and Kister, 1956, p. 5).

Cone of depression—Depression of the water table or potentiometric surface surrounding a discharging well or group of wells and is more or less shaped as an inverted cone. Dip of rocks, attitude of beds-The angle or amount of slope at which a bed is inclined from the horizontal; direction is also expressed (for example 1 degree southeast; or 90 feet per mile southeast).

Drawdown-The lowering of the water table or potentiometric surface caused by pumping (or artesian flow). In most instances, it is the difference, in feet, between the static level and the pumping level.

Electric log-A graph showing the relation of the electrical properties of the rocks and their fluid contents penetrated in a well. The electrical properties are natural potentials and resistivities to induced electrical currents, some of which are modified by the presence of the drilling mud.

Evapotranspiration—Water withdrawn by evaporation from a land area, a water surface, moist soil, or the water table, and the water consumed by transpiration of plants.

Fresh water—Water containing less than 1,000 mg/l dissolved solids (Winslow and Kister, 1956, p. 5).

Ground water—Water in the ground that is in the saturated zone from which wells, springs, and seeps are supplied.

Head, static—The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the static pressure at a given point.

Hydraulic gradient—The change in static head per unit of distance in a given direction.

Hydraulic conductivity—The rate of flow of a unit volume of water in unit time at the prevailing kinematic viscosity through a cross section of unit area, measured at right angles to the direction of flow, under a hydraulic gradient of unit change in head over unit length of flow path. Formerly called field coefficient of permeability.

Moderately saline water-Water containing 3,000 to 10,000 mg/l dissolved solids (Winslow and Kister, 1956, p. 5).

Potentiometric surface—A surface which represents the static head. As related to an aquifer, it is defined by the levels to which water will rise in tightly cased wells. The water table is a particular potentiometric surface.

Slightly saline water-Water containing 1,000 to 3,000 mg/l dissolved solids (Winslow and Kister, 1956, p. 5).

Specific capacity—The rate of discharge of water from a well divided by the drawdown of water level in the well. It is generally expressed in gallons per minute per foot of drawdown. Storage coefficient—The volume of water an aquifer releases from or takes into storage per unit of surface area of the aquifer per unit change in the component of head normal to that surface.

Transmissivity—The rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient. It replaces the term "coefficient of transmissibility" because by convention it is considered a property of the aquifer, which is transmissive, whereas the contained liquid is transmissible. Transmissivity can be converted to the formerly used coefficient of transmissibility by multiplying by the factor 7.48.

Very saline water-Water containing 10,000 to 35,000 mg/l dissolved solids (Winslow and Kister, 1956, p. 5).

Water level; static level, or hydrostatic level-In an unconfined aquifer, the distance from the land surface to the water table. In a confined (artesian) aquifer, the level to which the water will rise either above or below land surface.

Water table—That surface in an unconfined water body at which the pressure is atmospheric.

Water-table aquifer (unconfined aquifer)-An aquifer in which the water is unconfined; the upper surface of the zone of saturation is under atmospheric pressure only and the water is free to rise or fall in response to the changes in the volume of water in storage. A well penetrating an aquifer under water-table conditions becomes filled with water to the level of the water table.

Yield—The rate of discharge, commonly expressed as gallons per minute, gallons per day, or gallons per hour. In this report, yields are classified as small, less than 50 gpm (gallons per minute); moderate, 50 to 500 gpm; and large, more than 500 gpm.

- Anders, R. B., and Baker, E. T., Jr., 1961, Ground-water geology of Live Oak County, Texas: Texas Board of Water Engineers Bull. 6105, 119 p., 7 figs., 5 pls.
- Austin, A. M., 1959, Occurrence of ground water in the Palangana Brine Field, Duval County, Texas: Texas Water Devel. Board duplicated rept., 12 p., 2 pls.
- Broadhurst, W. L., Sundstrom, R. W., and Rowley, J. R., 1950, Public water supplies in southern Texas: U.S. Geol. Survey Water-Supply Paper 1070, 114 p., 1 pl.
- Doll, W. L., and others, 1963, Water resources of West Virginia: West Virginia Dept. of Natural Resources, Div. of Water Resources, 137 p.
- Fisk, H. N., 1959, Padre Island and the Laguna Madre Flats, coastal south Texas, *in* Second Coastal Geography Conference, April 6-9, 1959, Coastal Studies Institute, Louisiana State University: Office Naval Research and Natl. Acad. Sci., Washington, D.C., p. 103-151.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p., 6 pls.
- Green, R. S., and Love, S. K., 1967, Network to monitor hydrologic environment covers major drainage rivers: Pesticides Monitoring Jour., v. 1, no. 1, p. 13-16.
- Harris, H. B., 1965, Ground-water resources of La Salle and McMullen Counties, Texas: Texas Water Comm. Bull. 6520, 96 p., 16 figs., 5 pls.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 2nd ed., 363 p., 51 figs., 2 pls.
- Kane, John W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p., 7 pls.
- Lonsdale, J. T., and Day, J. R., 1937, Geology and ground-water resources of Webb County, Texas: U.S. Geol. Survey Water-Supply Paper 778, 104 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Asso. Jour., v. 42, pt. 1, p. 1120-1132.
- Mason, C. C., 1963, Availability of ground water from the Goliad Sand in the Alice area, Texas: Texas Water Comm. Bull. 6301, 107 p.

- Meinzer, O. E., 1923, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply Paper 489, 321 p., 110 figs., 31 pls.
- ____1942, Ground Water, in Hydrology, v. 9 of Physics of the Earth: New York, McGraw-Hill Book Co., Inc., p. 385-477.
- Moore, E. W., 1940, Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 263.
- Myers, B. N., and Dale, O. C., 1967, Ground-water resources of Brooks County, Texas: Texas Water Devel. Board Rept. 61, 87 p.
- Price, W. A., 1958, Sedimentology and Quaternary geomorphology of south Texas: Gulf Coast Assoc. Geol. Soc. Trans., v. 8, p. 41-75.
- Sayre, A. N., 1937, Geology and ground-water resources of Duval County, Texas: U.S. Geol. Survey Water-Supply Paper 776, 116 p.
- Scofield, C. A., 1936, The salinity of irrigation water: Smithsonian Inst., Ann. Rept., 1934-35, p. 286.
- Shafer, G. H., and Baker, E. T., Jr., 1973, Ground-water resources of Kleberg, Kenedy, and southern Jim Wells Counties, Texas: Texas Water Devel. Board Rept. 172, 170 p., 21 figs.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., pt. 2, p. 519-524.
- Tolman, C. F., 1937, Ground water: New York, McGraw-Hill Book Co., Inc., 539 p.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p., 1 fig.
- U.S. Salinity Laboratory Staff, 1954, p. 69-82, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p.
- Wenzel, L. K., 1942, Methods of determining permeability of water-bearing materials with special reference to discharging well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p., 17 figs., 6 pls.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agriculture Cir. 969, 19 p., 4 figs.

- Wilcox, L. V., Blair, C. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Science, v. 77, no. 4, p. 259-266.
- Winslow, A. G., and Kister, L. R., 1956, Saline water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Comm. Bull. 6305, 123 p., 18 figs., 15 pls.

Table 7. --Records of Wells

All wells are drilled unless otherwise noted in remarks column.

Water level : Reported water levels given in feet; measured water levels given in feet and tenths. Method of lift and type of power: A, airlift; B, bucket; C, cylinder; E, electric; G, gasoline, oil, butane, or diesel engine; H, hand; J, jet; N, none; S, submergible; T, turbine; W, windmill: Number indicates horsepower. Use of water : D, domestic; Ind, industrial; Irr, irrigation; N, none; P, public supply; S, livestock. Water-bearing unit : Tg. Goliad Sand; To. Oakville Sandsicne; Tc. Carahoula Tuff; Tj, Jackson Group.

	REMARKS	Converted oil test well. Re- ported strong supply.		Converted oil test well.	Reported weak supply.	ю.	Do.	1	Aquilas mill.	Pump setting, 210 ft.	Reported water not used for drinking.	Reported weak supply.	Do.	1	Rincon mill.	1	Slotted casing from 159 to 212 ft. \underline{y}		Slotted casing from 290 to 306 ft.	Originally supplied water for drilling oil wells.	Reported water salty. Probable source Frio Clay.
	USE OF WATER	S	s	s	s	s	s	Ind	s	s	P	D, S	D, S	s	s	ം	s	ß	s,D	N	z
	METHOD OF LIFT	C, W	C, W	C, W	C, W	c, w	C, W	S, E, 1 1/2	C, W	C,W	C, E	C,W	C, W	C, E, 1/2	C, W	c, G	C, E, 1	C, W	C, W	N	N
WATER LEVEL	DATE OF MEASUREMENT	l	Sept. 30, 1970	3	Sept. 10, 1970	do.	do.	1	Aug. 25, 1970	Sept: 30, 1970	1	Sept. 10, 1970	1	1	Sept. 15, 1970	do.	ł	July 14, 1970	1966	I	Mar. 13, 1931
WAT	ABOVE (+) OR BELOW LAND SUR - FACE DATUM (FT)	I	43.8	100	33.0	28.5	35.8	40	107.3	50.4	I.	160.8	1	1	211.0	123.2	I	33.0	132	ī	129
	ALTI- TUDE OF LAND SURFACE (FT)	425	394	386	530	ł	1	I	465±	414	1	535	1	634	546	141	1	368	1	1	I
	WATER BEARING UNIT	Tct	do.	Tct?	Tct	do.	do.	.ob	do.	do.	.ob	do.	do.	Tct	To	Τg	To	Τg	.ob	ı	ı
	DIAMETER OF CASING (IN)	I	4 1/2	4 1/2	80	64	4 1/2	9	1	4 1/2	1	9	5	4	9	4 1/2	4 1/2	36	4 1/2	1	7
	DEPTH OF WELL (FT)	1	63	1	102	104	280	170	360	250±	2 00±	220	240	835	227	140	212	39	306	1	300
	DATE COM- PLET- ED	I	old	1	PIO	PIO	1	01d	1967	plo	01d	1924	1938	1967	ł	;	1969	01d	1966	T	01d
	DRILLER	Magnolia Petroleum Co.	1	I	L	3	1		Buck Page & Company	ł	ł	Charles Wright	Alonzo King	Martin Water Well Service	I	1	Richardson Water Well Service	1	Buck Page & Company	Humble Oil & Refining Co.	ł
	OWNER	Duval County Ranch Co.	John Martin Ranch	do.	James Foster	do.	do.	Atlantic Richfield Corp.	J.F. Welder Estate	John Martin Ranch	Z. Campos Heirs	J.R. Foster	do.	V.E. Cook	J.R. Dougherty Ranch	Gardner	Charles Houlihan	M.B. Fernandez	Pat Rogers	84-02-301 Duval County Ranch Co.	do.
	TIAM	* JB-78-59-901	107-09	402	* 701	702	703	* 704	* 801	802	* 901	902	* 903	106-19	62-701	702	703	* 901	63-701	84-02-301	601

wtt wtt <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>LAW</th> <th>WATER LEVEL</th> <th>LI I</th> <th></th> <th></th> <th></th>									LAW	WATER LEVEL	LI I			
The field of the field o	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	DI	ATE OF SUREMENT	METHOD OF LIFT	USE OF WATER	REMARKS
10: - do. 5. n. C. Company 19:1 0.1 - - - - - - - - 1 <th< td=""><td>IB-84-03-101</td><td></td><td>Humble Oil & Refining Co.</td><td>1</td><td>ł</td><td>ŀ</td><td>:</td><td>1</td><td>1</td><td></td><td>-1</td><td>И</td><td>s</td><td>Reported water sand from about 1,200 to 1,300 ft.</td></th<>	IB-84-03-101		Humble Oil & Refining Co.	1	ł	ŀ	:	1	1		-1	И	s	Reported water sand from about 1,200 to 1,300 ft.
201 do.	102		S.R.C. Company	1931	617	Ŷ	ζĹΤ	1	а "		1	N	z	Formerly supplied water for SRC Camp. Reported water salty.
301 doi. boil 01 Gampary <	201		1	I	65±	4	Tct	I	26.3	Nov.	19, 1970 -	S, E, 1/2	S	Reported water from about 46 to 60 ft.
00 0 $$ $$ 10 <th< td=""><td>301</td><td></td><td>Mobil Oil Company</td><td>ł</td><td>ł</td><td>I</td><td>1</td><td>4</td><td>16.4</td><td></td><td>do.</td><td>c, w</td><td>S</td><td>1</td></th<>	301		Mobil Oil Company	ł	ł	I	1	4	16.4		do.	c, w	S	1
60 $n, n, dottoriet 01d 01d 01d 01d$	501		Pursley	1959	750	5	TJ?	1	3		1	z	s	1
Dival Contrix Rateh 1936 510 4 10 533.6 69.6 8-r 17, 1970 C,W 5 5 5 do. 101 216 2 2 40.1 23.7 8-r 10,1 5	601		1	PIO	1	60	Tct	ł	37.3	Apr.	21, 1931	C, W	S	•
Henry Maderkeht 1936 210 4 do. 539.6 69.6 No. 17, 1970 C, M D, J do. 01d 216 8 do. 497.1 32.7 No. 19, 1970 C, M D, Merry Match do. 011 Company 13272 100 400.4 - 40.5 197.0 C, M S Neoretal Dval Contry Ranch 1305 100 40.2 85.6 Nov. 197.1970 C, M S Neoretal J.F. Weider Estere 100 40.2 60.4 Aus. 25.1970 C, M S Neoretal J.F. Weider Estere 1936 212 6 To To To To S S S S S S S S S S S S S S S S S S S	801		1	;	300	2	do.	1	24.6	Mar.		с, и	s	I
do. 01d 216 8 do. 49.1 32.7 Nov. 18, 1970 C_{W} 5 Secondary latents do. 011 Company 1922 10 40.4 - 40. 5 5 Secondary latents Dual County Ranch 10 201 201 201 201 5 5 Secondary latents J.F. Weider Exterte - 449.2 85.6 800.2 5 8 Secondary latents do. - - 177.0 849.1 7 0.0 5 8 Secondary latents do. - - 177.0 849.2 85.1 7 9 5 8 6 8 Secondary latent multicles do. B.C. Hubble 1936 232 6 7 8 6 5 5 8 6 8 8 8 8 8 8 8 <	106		1	1958	210	4	do.	539.6	69.6	Nov.	17, 1970	C,W	D,S	
do. 011 Company 1272 10 40.4 \cdot 40.4 \cdot 40.4 \cdot 40.4 \cdot Hold	902	8		old	216	8	do.	487.1	32.7	Nov.	18, 1970	C, W	ß	
Dural County Ranch Co. 3504 Tct 449.2 85.6 Nov. 19, 1970 C,W S J.F. Welder Eatate calloway 1956 365 $4 1/2$ do. 177.00 Aus. 25, 1970 C,W S do. 410 $41/2$ do. 177.00 Aus. 25, 1970 C,W S do. E.C. Hubble 1936 232 6 Tct $$	606		0il Company	1927±	ł	10	F	:	40.4		do.	C,W	s	Formerly drilled as oil test. Reported water salty.
J.F. Welder EatateCalloway195636541/2do177.0Aug. 25, 1970C,WSdo.dodo.653204.5do.C,W,6SSHumble 011 &19362326TctC,W,6SSMomble 011 &19362326TctC,W,6SSMumble 011 &19362326TctC,W,6SSdo.Refining Co193541/2doAug. 25, 1970C,W,6SSdo.Refining Co1952400±6dodo.C,W,6SSdo1952400±6do.654.7208.0do.C,WSMat.do1952400±6do.10Mat.SMat.Sdo1952400±6do400C,WSdo1952400±41/2do400C,WSdo.Buck Fage & Co.195419641964S,F,1/2D,SMat.SMat.Sdo.Service19482056400SSSSSdo.Buck Fage & Co.19641,000	04-102		1	I	350±	I	Tct	449.2	85 . 6	Nov.	19, 1970	c, w	S	4
do.do.do.do. 504.5 do. $6,5,5$ 6 Humble Oll & Refining Co.L.C. Hubble1936 232 6 Tct $$ $$ $$ $$ $$ $$ $C, W, 6$ S do.Humble Oll & Refining Co. $$ 1936 232 6 Tct $$ $$ $$ $$ $C, W, 6$ S $do.$ Humble Oll & Refining Co. $$ 1935 $41/2$ $do.$ $$ $$ $$ $$ $C, W, 6$ S N $J.F. Welder Estate1932400\pm6do.C, W, 6SNJ.F. Welder Estate1932400\pm6do.C, W, 6SSJ.F. Welder Estate1932400\pm6do.C, W, 6SJ.F. Welder Estate1925400\pm6do.C, W, 6SJ.F. Welder Estate1925200\pm0$	201		Calloway	1956	365	4 1/2	do.	1	177.0	Aug.	25, 1970	C,W	s	Barena mill.
Humble 011 & L.C. Hubble 1936 232 6 Tet C, E, 5 N Refining Co. Humble 011 & 129 4 1/2 do. 2, E, 5 130 C, E, 5 Ind J.F. Welder Estate 1952 400± 6 do. 4us. 25, 1970 C, E, 5 Ind J.F. Welder Estate 1952 400± 6 do. 248.5 do. C, M S do. 1952 420 4 1/2 do. - 248.5 do. C, M S do. 248.5 1000 4 1/2 do. 440 S, E, 1/2 D, S du. Buck Page & Co. 1964 1,000 4 1/2 do. - 440 S, E, 1/2 D, S Humble 011 & Buck Page & Co. 1964 1,000 4 1/2 do.	301		do.	ł	410	E	do.	663	204.5		do.	C, W, 6	s	San Cajo mill.
do. Humble 011 & 729 4 1/2 do. Aug. 25, 1970 C,E,5 Ind J.F. Welder Estate 1952 400± 6 do. 654.7 208.0 do. C,W S do. Calloway 1953 420 4 1/2 do. 654.7 208.0 do. C,W S do. Calloway 1953 420 4 1/2 do. 248.5 do. C,W S do. buck Page & Co. 1964 1,000 4 1/2 do. 410 May 13, 1964 S, E, 1/2 D,S Humble 011 & Buck Page & Co. 1964 1,000 4 1/2 do. 66.4 Mar. 25, 1964 N N Humble 011 & Service 1948 205 6 66.4 Mar. 25, 1964 N N N	401	Contraction of the second s	E.C. Hubble	1936	232	9	Tct	1	1		1	C, E, 5	z	Perforated casing from 148 to 232 ft. Formerly used for camp supply.
J.F. Welder Estate 1952 400± 6 do. 654.7 208.0 do. C,W S do. Calloway 1953 420 4 1/2 do. 248.5 do. C,W S do. buck Page & Co. 1954 1,000 4 1/2 do. 410 May 13, 1964 S,F,1/2 D,S Humble 011 & Buck Page & Co. 1964 1,000 4 1/2 do. 410 May 13, 1964 S,F,1/2 D,S Humble 011 & Reynolds Weil 1948 205 6 do. 66.4 Mar. 25, 1964 N N N	501		Humble Oil & Refining Co.	1	729		do.	ł	I	.guk	25, 1970	C, E, 5	Ind	1
do. Calloway 1955 420 4 1/2 do. 248.5 do. C,W S do. Buck Page & Co. 1964 1,000 4 1/2 do. 410 May 13, 1964 S,F,1/2 D,S Humble 011 & Reynolds Well 1948 205 6 do. 66.4 Mar. 25, 1964 N N	502	22	l	1952	400	ę	do.	654.7	208.0		.ob	C, W	s	Alto mill. Reported weak supply.
do. Buck Page & Co. 1964 1,000 4 1/2 do. 410 May 13, 1964 5, 5, 1/2 D, S Humble 011 & Reyrolds Well 1948 205 6 do. 66.4 Mar. 25, 1964 N N Refining Co. Service 60.3 Mar. 18, 1970 N N	601		Calloway	1955	420	4 1/2	do.	I	248.5		do.	C, W	S	Gato mill.
Humble Oil & Reynolds Well 1948 205 6 do 66.4 Mar. 25, 1964 N N Refining Co. Service 60.3 Mar. 18, 1970	602		Buck Page & Co.	1964	1,000	4 1/2	do.	ł	410	May	13, 1964	S, E, 1/2	D, S	4 1/2 casing, 0-615 ft; perforated 531-553 and 615- 665 ft. <u>U</u>
	102		Reynolds Well Service	1948	205	9	do.	1	66.4 60.3	Mar. Mar.	25, 1964 18, 1970	N	z	Observation well. $\underline{2}$ Performed the form that to 205 ft.

٢

- 58 -

	REMARKS	Perforated casing from 136 to 203 ft.	Perforated casing from 136 to 204 ft.	Observation well. $\underline{2}$	Observation well. Perforated casing from 413 to 486 ft.	Perforated casing from 437 to 506 ft.	Ferforated casing from 468 to 510 ft.	Estimated discharge 15 gpm. Perforated casing from 460 to 516 ft.	Measured discharge 15 gpm. Perforated casing from 458 to 519 ft. Temp. 88°F (31°C)	Estimated discharge 15 gpm. Perforated casing from 453 to 507 ft.	Reported not used for drink- ing. Pump set at 358 ft.	Dry at 190 ft when visited.	Reported water salty.	Perforated casing from 430 to 452 ft.	:	Perforated casing from 742 to 780 ft. \underline{y}	1	Reported strong supply.	Pump set at 200 ft.	Do.
	USE OF WATER	N	N	ß	D	A	D	Q	A	Q	D, S	N	S	ß	s	D, S	D,S	s	s	s
	METHOD OF LIFT	z	И	C, E, 3	C, E, 5	C, E, 5	C, E, 5	C, E, 5	C, E, 5	C, E, 5	C, E, 1/4	N	S,E	C, E	S, E, 1/4	S, E, 3/4	C, W	C, W	C, E, 1	C, E, I
WATER LEVEL	DATE OF MEASUREMENT	Sept. 17, 1969	do.	Mar. 24, 1964 Mar. 18, 1970	Mar. 24, 1964	l	Sept. 18, 1969	I	ī	Ĩ	ĩ	I	July 9, 1970	July 13, 1967	July 8, 1970	1	ł	ł	1	1
WAT	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	53.1	59.2	105.9 110.7	326.6	ſ	345.6	I	1	I	310	I	312.2	415	124.5	ı	I	60	1	1
	ALTI- TUDE OF LAND SURFACE (FT)	1	1	1	ł	ł	1	L	1	1	ł	1	663	ł	574	1	I	1	1	581
	WATER BEARING UNIT	Tct	do.	do.	do.	do.	do.	•op	•op	do.	.op	.op	do.	.op	To	Tct	To	To	Io	do.
	DIAMETER OF CASING (IN)	7	2	7	5 1/2	5 1/2	6	9	6	9	e	4	4	4 1/2	4	4 1/2	4	4 1/2	4	١
	DEPTH OF WELL (FT)	204	206	270	496	507	510	517	520	510	410	190	835	460	140	780	300	200	450	450
Contraction of the	DATE COM- PLET- ED	1940	1940	1	1937	1937	1935	1936	1935	1935	1968	014	1966	1967	plo	1966	1963	01d	1	I
	DRILLER	Humble Oil & Refining Co.	do.	:	E.C. Hubble	do.	E.C. Hubble	do.	do.	do.	"Pops" Reynolds	:	Martin Water Well Service	Buck Page & Company	ł	Buck Page & Company	Raul Barrera	1	1	ł
	OWNER	Humble Oil & Refining Co.	do.	Whittaker	Humble Oil & Refining Co.	do.	do.	do.	do.	do.	Bob Hill	V.E. Cook	do.	R.C. Hoover	V.E. Cook	V.H. Lehman	D. Serna	J.W. Davidson	V.E. Cook	do.
	MELL	JB-84-04-702	703	707	801	802	803	804	805	806	05-101	102	103	104	301	105	402	403	501	502

•

- 59 -

	REMARKS	1	1	•	1	1	1	1	1	Orcones mill.	•	Slotted casing from 460 to 480 ft. \underline{y}	Slotted casing from 255 to 301 ft.		Slotted casing from 400 to 425 ft.		Slotted casing from 127 to 150 ft.	1	Measured discharge, 8 gpm Sept. 17, 1969. Temp. 81°F (27°C).	I	Observation well. 2	r
	USE OF WATER	S	D, S	ŝ	s	N	w	s	D, S	s	D, S	ŝ	D, S	S	ŝ	ŝ	ß	D	A	A	z	P
	METHOD OF LIFT	C, E, 1/2	С, Е	C, W	C, W	N	C, E, 1/4	c, w	с, и	с, и	C, E, 1	c,w	s, E, 1	c, w	C, W	S, E, 1	S, E, I	C, E, 5	C, E, 5	C, E, 5	N	C, E, 2
WATER LEVEL	DATE OF MEASUREMENT	July 8, 1970	July 9, 1970	I	May 5, 1970	.ob	July 8, 1970	Sept. 15, 1970	July 14, 1970	Sept. 15, 1970	do.	1967	July 29, 1970	1964	July 30, 1970	I	Aug. 5, 1970	Sept. 17, 1969	I	ł	Mar. 25, 1964 Mar. 18, 1970	I
WATE	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	87.3	1	1	101.5	275.2	70.8	133.5	95.0	85.5	157.6	235	189.2	226	210.6	:	72.6	3.8	I	1	166.9 148.3	I
	ALTI- TUDE OF LAND SURFACE (FT)	511	480	ł	600	670	488	476	420	406	445	1	460	I	451	ł	658.5	1	1	1	1	1
	WATER BEARING UNIT	Зŝ	To	do.	do.	do.	цв	do.	.ob	Tg	do.	To	Ig	do.	do.	Tct	Tct?	do.	Tct	do.	do.	.ob
	DIAMETER OF CASING (IN)	4	4	4	4 1/2	4 1/2	4	5	4	5 1/2	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	8	80	8	7	4 1/4
	DEPTH OF WELL (FT)	120	65	90	125	7007	83	142	120	105	175	480	301	261	425	150±	150	237	1	079	500±	255
	DATE COM - PLET - ED	1965	PIO	01d	1968	1950	1	ł	1950	1	1	1967	1969	1964	1959	;	1967	PIO	ł	ß	3	1970
	DRILLER	Martin Water Well Service	1	;	Raul Barrera	do.	Martin Water Well Service	;	Е. Рейа	:	1	Rader Equipment Co.	Buck Page & Co.	Maley Well Service	Horne Drilling Co.		Buck Page & Company	0.L. Boone	I	I	Kelly Drilling Co.	Johnny Rader
	OWNER	V.E. Cook	do.	do.	Raul Serna	Benjamin Salinas	V.E. Cook	06-101 J.R. Dougherty Ranch	F. Benavides	J.R. Dougherty Ranch	do.	Ed Canales	do.	John Mew	Isabel García	Duval County Ranch Co.	do.	Humble Oil & Refining Co.	do.	do.	W.C. Kelley	Kenneth Zuber
	TIAM	JB-84-05-601	* 602	603	703	704	* 902	* 06-101	* 301	* 302	501	901	* 602	801	901	11-201	* 501	109	602	603	12-101	* 102

- 60 -

Table 7.--Records of Wells--Continued

									WAT	TER LEVEL			
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASUREMENT '	METHOD OF LIFT	USE OF WATER	REMARKS
JB	-84-12-103	"Shorty" McNare	Dillard Wied	1967	347	5 1/2	Tct		87	Apr. 18, 1967	S.E,1	D	Pump set at 157 ft in 1967. Perforated casing from 160 to 192 and 300 to 347 ft.
	201	William Hubbard		Old	130	62	do.		116.4	Sept. 19, 1969	c,w	S	Dug well with rock curb. Observation well. Temp. 79°F (26°C).
÷	301	Percy Howard	E.E. Hood	1959	503	7	do.		120 145.0	Feb. 1959 Dec. 11, 1970	S, E, 1	D, S	Observation well. 2 Slotted casing from 160 to 190, 300 to 330, and 473 to 503 ft.
	302	do.		1966	465	7	do.	-	135.3	Sept. 19, 1969	S,E,3/4	D	Perforated casing from 120 to 465 ft.
	303	Bodine Ranch	9 9	Old	282	7	do.		88.3	Aug. 5, 1970	с, W	S	
	401	Ponciano Ruiz		Old	315	5	do.	659.5	150.3 121.4	Mar. 10, 1960 Mar. 18, 1970	с, w	D,S	Observation well. 2/ Temp. 82°F (28°C).
¥	701	Freer W.C.I.D. #1 Well 6	H.&S. Water Well Service	1962	620	10 3/4	do.	686	354	Apr. 25, 1969	s, E, 40	P	8 3/4-in. casing perforated from 518 to 608 ft. Reported discharge 200 gpm. Pump set at 483 ft. City Well 6. <u>1</u> , <u>3</u>
∵n	702	Freer W.C.I.D. #1 Well 4	do.	1962	590	10 3/4	do,	642	310	do.	S, E, 40	Р	8 3/4 in. casing perforated from 473 to 573 ft. Reported discharge 160 gpm. Pump set at 441 ft. City Well 4. <u>1</u> 3/
	703	Freer W.C.I.D. #1 Well 8	do.	1962	640	10 3/4	do.	695	360	Jan. 31, 1969	S,E,40	Р	8 3/4-in. casing from 534 to 629 ft. Reported dis- charge 160 gpm. Pump set at 500 ft. City Well 8. <u>1</u> <u>3</u>
	801	Hoffman Ranch			330	4	do.			(***)	c,w	s	
at.	901	Perez Ranch			2 98	4 1/2	do.	538	288.4	Aug. 19, 1970	c,w	s	1 (<u>11</u>
: #	13-101	Jose Angel Ruiz	Ben Mendez	1939	267	6	То	520	172.9	May 4, 1970	c,w	D,S	
32	201	Galo B. Castillo	Labbe	1962	300		do.	540	134.0	May 5, 1970	c,w	D,S	
*	401	Ramon P. Perez	Alonzo De La Fuente	01d	115	8	do.	484	93.8	May 4, 1970	C.E,1	D, S	Reported weak supply.
	402	Juan Hasette	Dillard Wied	1967	133	5	do.	22	78	Mar. 20, 1967	S,E	D,S	Perforated casing from 110 to 133 ft. 1
	501	Keith Cook	Rader Equipment Co.	1964	800	4 1/2	Tct		300		Е	S	Perforated casing from 520 to 600 ft.
*	502	Jose A. Canales	Richardson Water Well Service	1968	280	4 1/2	То	451	90.1	May 4, 1970	C. W	S	Perforated casing from 425 to 280 ft. Pump set at 140 ft. 1

See footnotes at end of table.

- 61 -

	REMARKS	Dug well. 2/	Formerly used as observation well. $\underline{2}l$	1	Formerly used as observation well. $\underline{2}\underline{i}$	Observation well. $\underline{2}/$	Formerly used as observation well. $\underline{2}\underline{j}$	Do.	Reported strong supply. Pump set at 80 ft.	1	ł	1	Dug well, formerly used as observation well. $\underline{2}/$	Formerly used as observation well, $\underline{2}/$	Measured discharge 720 gpm. Pump set at 440 ft. Perfor- ated casing from 200 to 500 ft. Temperature 79°F (26°C).	Measured discharge 720 gpm. Pump set at 440 ft. Perfor- ated casing from 200 to 500 ft.	1	Perforated casing from 150 to 184 ft. \underline{y}	4 1/2-in. casing from 0 to 300 ft; perforated from 280 to 300 ft.
	USE OF WATER	D, S	D	D, S	D, S	s	I	ŝ	D, S	ŝ	D, S	D, S	D, S	И	гı	Irr	ß	Q	A
	METHOD OF LIFT	С, W	В, Н	C, W	c, w	C,W	C, W	Τ, Ε	S, E	C,W	С, И	с, и	В, Н	N	T,G, 300	T, G, 300	с, и	C, W	s, E, 1 1/2
WATER LEVEL	DATE OF MEASUREMENT	Sept. 26, 1933 Mar. 18, 1970	Apr. 2, 1931 Mar. 6, 1945	Oct. 6, 1970	Sept. 26, 1933 May 1, 1970	Sept. 6, 1931 Mar. 18, 1970	June 9, 1931 July 13, 1960	June 9, 1931 May 1, 1970	May 6, 1970	do.	July 30, 1970	do.	Sept. 26, 1933 July 13, 1960	Feb. 12, 1947 Feb. 10, 1955	1	I	1	ł	1
WATI	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	35.0 33.1	37.6 35.3	106.8	74.8 57.4	79.0	56.0 54.0	43.5 36.1	84.4	175.7	147.5	168.0	45.5 25.7	83.7 84.1	(1)	ł	1	100	150
	ALTI- TUDE OF LAND SURFACE (FT)	445±	Ĩ	483±	777	425	1		404	425	456	430	1	ı	I.	:	1	ł	t
	WATER BEARING UNIT	ыр Н	T 00	do.	do.	do.	.ob	.ob	Io	.ob	Ig	do.	.ob	Tg?	Тg	do.	do.	do.	do.
	DIAMETER OF CASING (IN)	72	ę	4 1/2	4 1/2	5	ŝ	60	4 1/2	4 1/2	;	9	60	4	14	14	4	4 1/2	4 1/2
	DEPTH OF WELL (FT)	07	20	135	140	190	110	110	200≞	350±	180	250	100±	I	515	500±	300	184	300
	DATE COM- PLET- ED	blo	PIO	PIO	01d	old	1926	plo	1930±	1961	1937	1961	E	1	1964±	1965±	1966	1968	I
	DRILLER	ł	1	;	1	1	1	3	1	Maley		;	I	1	Archer Parr	do.	Raul Barrera	Buck Page & Company	Rader Equipment Co.
	OWNER	Severo Rangel	Cecilio Valerio	N. Gonzales	Juan Peralez	Cantu Estate	do.	Helena De Peña	Mrs. Ben G. Mew, Jr.	do.	Guadalupe Garza, Jr.	Berta Garcia Estate	J.M. Sepulveda	Taylor Refining Company	Archer Parr	do.	A.E. Garcia	C.M. Robinson	Minerva C. Casas
	MELL	JB-84-13-801	* 802	803	106	902	903	904	* 14-101	102	* 201	301	403	404	201	* 502	601	602	603

- 62 -

	REMARKS	Formerly used as observation well. 2	Dug well, formerly used as observation well, 2	Reported discharge 800 gpm. Pump set at 460 ft. 110 ft of perforated casing Letween 222 and 442 ft. Open hole from 460 to 607 ft.	Drilled to supply water for irrigation. 110 ft of per- forated casing between 222 and 442 ft.	Screen intervals: 269-369; 384-400; 446-484; 504-547 ft. Reported discharge 330 gpm. <u>3</u> 6-in. col. pipc	Screen intervals: 330-405; 443-478; 498-548 ft. 16-in. casing. 0 to 330 ft. Re- ported 220 ft. drawdown after pumping 310 gpm for 17 hts.	1	I	1	1	Screen: 402-468 and 454-595 ft. Observation well. \underline{L} $\underline{2}$	Measured discharge 150 gpm. July 17, 1961. Pump set at JOD ft. Screen setting: 291 to 544 ft. Temperature 82°F (28°C).	Measured discharge, 60 gµm in 1961. Pump set at 260 ft. Screen: 210-370; 390-440; 460-510, and 660-740 ft.	
	USE OF WATER	ł	z	Irr	И	<u>م</u>	<u>م</u>	s	ß	D, S	S	z	<u>م</u>	Δ,	ß
	METHOD OF LIFT	с, и	Z	т, с, 310	×	S, E, 60	s, E, 60	C, W	c, w	S,E	c, w	z	T, E, 50	T, E, 50	c.ĸ
WATER LEVEL	DATE OF MEASUREMENT	June 9, 1931 Feb. 3, 1941	June 8, 1931 Mar. 15, 1961	I	Осс. 11, 1969	I	1 -	July 14, 1970	Mar. 1, 1961	July 14, 1970	I	Mar. 24, 1964 Dec. 11, 1970	I	Oct. 31, 1960	July 14, 1970
TAN	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	61.4 61.4	73.0 35.4	l	158.3	1	Į.	50.7	103.2	92.3	I	236.1 264.0	I	182.7	52.1
	ALTI- TUDE OF LAND SURFACE (FT)	ł	1	E	352±	<u>)</u>	Ē	330	Ę	367=	ł	298	315	298	330
	WATER BEARING UNIT	00 I-1	do.	do.	do.	do.	do.	do.	do.	do.	do.	.ob	do.	de.	do.
	DIAMETER OF CASING (IN)	1	72	14	14	16. 10 3/4	16 10 3 4	4	4 1/2	4	4	13 3/8 6 5/8	12 3/4	10 3/4	4
	DEPTH OF (FT)	150	80	607	500:	548	556	170	245	160	212	509	544	672	150
	DATE COM- PLET- ED	ŀ	014	1964	1963	1966	1966	old	1945	1952	:	1937	1947	1959	1948
	DRILLER	I	l	Archer Parr	do.	Flournoy Drilling Co.	do.	Bryan Patterson	Barrera	Alonzo King	do.	Layne Texas Company	do.	Louis Labbe	Alonzo King
	OWNER	Cuellar Estate	L.N. Garcia	Archer Farr	do.	City of San Diego, Well l	City of San Dlego, Well 2	F.N. Schroeder	Robert Hoffman	F.N. Schroeder	do.	City of San Diego, Uld Well I	City of San Diego, Well 4	City of San Diego, Well 3	F.N. Schroeder
	MELL	JB-84-14-701	801	802	803	206	903	15-105	105	* 402	403	* 702	703	* 704	705

- 63

		ported		s oil rted to									at	8 jts. me	12 jts. one	ed strong				y plugged	as oil erted to
REMARKS		Honco mill. Water reported unfit for drinking.	1	Originally drilled as oil test and later converted to water well.	Buena Suerte mill.	Perez mill.	Relief mill.	Leones mill.	1	Creek Pasture mill.	High mill.	Booboo mill.	Well is not in use at present.	Converted oil test. 8 jts. col. pipe. Hell N Gone mill #2.	Converted oil test. 12 jts. col. pipe. Hell N Gone mill #1.	Venado mill. Reported strong supply.	En Medio mill.	I	Hdqrs. well.	12-in. casing partly plugged with timber.	Originally drilled as oil test and later converted to water well.
USE OF	WATER	Ś	D, S	Q	s	ŝ	s	s	s	s	S	s	N	S	ß	s	s	s	D, S	S	S
METHOD OF	LIFT	c, w	C, E, 1/2	C, E, 1/2	с, и	C, W	c, w	C, W	S, E, 1/2	c, w	c, w	c,w	c,w	c, w	S, E, 1/2	C, W	C, W	C,W	S, E	Flows	с, и
WATER LEVEL DATE OF MEASUREMENT		Oct. 7, 1970	do.	do.	July 16, 1970	do.	.ob	ł	E	Aug. 18, 1970	do.	Oct. 8, 1970	Aug. 18, 1970	I	ı	I	Oct. 7, 1970	Aug. 6, 1970	ł	1	Oct. 28, 1970
WATER ABOVE (+) OR BELOW LAND SUR-	FACE DATUM (FT)	123.9 0	125.2	123.7	55.5 J	178.0	77.9	ł	20	70.1 A	128.0	147.0 0	1.001	I	ı	200±	50.3	98.6	I	+	94.0
ALTI- TUDE OF LAND	SURFACE (FT)	623	ł	ł	161	762±	697	ł	I	596	663	750	676	ï	1	I	7669	627±	I	I	572
WATER BEARING	TINU	Tct	do.	1	Tct	do.	do.	.ob	Tct?	Tct	Tct?	Tct	do.	ł	Tct?	Tct	do.	do.	.ob	ł	Tct
DIAMETER OF CASING	(II)	4 1/2	9	Q	4	4	4	4 1/2	4	ø	4 1/2	4	4 1/2	Ø	10	10	s	ł	4 1/2	12	10
Ŧ		160	160±	E	300≖	475	300±	448	;	80	;	187±	277±	I	I	359	170	170	292	ſ	242?
DATE COM- PLET-	۵	01d	ł	PIO	ł	1970	ł	1969	1	plo	PIO	1931	plo	1930±	PTO	;	old	PIO	ł	ł	9
DRILLER		I	Sid Katz	0il Company	1	Buck Page & Sons	1	Buck Page & Sons	;	ſ	E	1	1	0il Company	1	3	l	1	1	I	0il Company
NANNA		Caldwell Las Lomas Ranch	do.	do.	Viggo Gruy Ranch	do.	do.	Keith E. Cook	do.	J.R. Dougherty Ranch	do.	Caldwell Las Lomas Ranch	J.R. Dougherty Ranch	Keith E. Cook	do.	do.	Caldwell Las Lomas Ranch	J.R. Dougherty Ranch 5	do.	do.	J.F. Stockwell
T LIAM		JB-84-18-601	602	603	106	902	* 903	* 19-101	201	* 202	301	* 401	501	* 502	503	504	801	106	* 902	606	* 20-101

	REMARKS	Dug well.	Barrica mill.	Monte mill.	Test hole drilled to 483 ft. Slotted casing from 340 to 463 ft. <u>J</u>	Hdqrs. well.	Little mill.	Paisano mill.	Pita mill. Reported weak supply.	Toro Gracho mill.	Yeguas mill.	Javelina mill.	Blanco mill.	Alto mill.	1	ı	254 ft of 13 3/8-in. casing 103 ft of 8-in. casing slotted from 256 to 359 ft. Pump set at 210 ft. Reported discharge, 95 gpm.	257 ft of 13 3/8-in. casing: 8-in. casing slotted from 250 to 361 ft. Pump set at 230 ft. Reported discharge 73 gpm.	Test hole drilled to 1,344 ft and plugged back to 370 ft. 266 ft of 13 3/8-in. casing; 8-in. casing slotted from 266 to 368 ft. Used by company as observation well.
	USE OF WATER	ß	ŝ	ß	Q	D, S	s	S	ß	s	S	s	s	s	ŝ	s	Ind	Ind	Ind
	METHOD OF LIFT	c, w	c, w	C, W	S, E, 1 1/2	c, w	с, и	C, W	c, w	C, W	C, W	c, w	C, W	c, w	C, E, 1/2	c, w	T, E, 15	T, E, 15	z
WATER LEVEL	DATE OF NEASUREMENT	Oct. 28, 1970	do.	Nov. 10, 1970	Feb. 16, 1967	Sept. 9, 1970	Nov. 10, 1970	;	Aug. 6, 1970	do.	do.	do.	I	Sept. 9, 1970	Sept. 17, 1970	Oct. 6, 1970	T	1968	Oct. 14, 1969
TAW	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	43.2	143.5	81.6	135	111.9	199.3	a	139.8	73.9	50.3	105.1	1	185.3	125.7	147.5	1	1	124.7
	ALTI- TUDE OF LAND SURFACE (FT)	567	594	584	640±	536	599	614	651	602	521	615	578	561	484	514	420	423	430
	WATER BEARING UNIT	Tct	.op	.op	1	Tet	.ob	.ob	.ob	.op	do.	do.	.ob	Tg	du.	ł	дg	.ob	do.
	DIAMETER OF CASING (IN)	1	ł	ę	5 1/2	4	6?	4 1/2	4 1/2	4 1/2	9	5	5	4 1/2	1	12	8, 13 3/8	8, 13 3/8	8, 13 3/8
	DEPTH OF WELL (FT)	74	208	89?	463	300-	452	150±	148	285±	168	196	200	320	166	1	376	375	370
	DATE COM- PLET- ED	old	01d	old	1967	01d	ł	plo	old	plo	old	old	014	1	ł	old	1936	1937	1938
	DRILLER	l	1	1	Dillard Wied	1	1	I	ł	1	I	I	I	l	ł	ł	Layne Texas Company	Fawcett	Layne Texas Company
	OWNER	D.C. Chapa	do.	Hoffman Ranch	Michel Shamoun	M.B. Forbes	Hoffman Ranch	J.R. Dougherty Ranch 5	do.	do.	do.	do.	do.	M.B. Forbes	L	Linwood Bland	P.P.G. Industries, Well 5	P.P.G. Industries, Well 6	P.P.G. Industries, Well 7
	TIBW	☆ JB-84-20-102	201	* 202	301	* 302	303	401	402	* 403	501	101	801	21-101	201	* 202	301	302	303

- 65 -

	REMARKS	404 ft of 13 3/8-in. casing; 8-in. casing slotted from 404 to 520 ft, and 530 to 566 ft. Pump set at 300 ft. Reported discharge 96 gpm.	440 ft of 13 3/8-in. casing; 8-in. casing slotted from 439 to 578 ft.	Corrales mill.	Vibora mill.	Arroyo mill.	Hdqrs. well.	Drilled as oil test, plugged back to 500 ft and completed as water well. Reported water sands at 260 and 280 ft.	16-in. casing from 0 to 226 ft. Slotted casing: 238 to 293, 317 to 362, 377 to 458, 478 to 533, and 568 to 638 ft. <u>J</u> <u>3</u>	Test well drilled to 2,179 ft and plugged back to 640 ft. Pump set at 240 ft. Re- ported discharge 293 gpm. Slotted casing: 258-269, 303- 367, 369-486, 495-543, 605- 625 ft.	<pre>16-in. casing from 0 to 240 ft. Slotted casing: 247-298, 318-368, 370-480, 499-539, 599-640. Pump set at 240 ft. Reported discharge 290 gpm.</pre>	I	1	255 ft of 12 1/2-in. casing Sein. casing slotted from 256 to 276 and 288 to 349 ft. Reported discharge 74 gpm in 1965.
	USE OF WATER	puI	z	s	S	s	D,S	S	z	puI	Ind	N	s	Ind
	METHOD OF LIFT	T, E, 15	И	С, W	C, W	C,W	C, E	C, W	Z	T, E, 40	T, E, 40	и	C, W	T, E, 15
WATER LEVEL	DATE OF MEASUREMENT	I	Oct. 14, 1969	Sept. 9, 1970	Nov. 10, 1970	do.	1	I.	Oct. 14, 1969	1968	Oct. 14, 1969	I	Oct. 27, 1970	1
WATH	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	1	141.2	135.0	128.9	108.3	1	1	136.7	1	147.9	1	145.9	I.
	ALTI- TUDE OF LAND SURFACE (FT)	432	432	500	524	492	1	l	677	437	434	437	492	425
	WATER BEARING UN IT	Ig	do.	.ob	.ob	.ob	.ob	do.	-op	op	do.	do.	.ob	do.
	DIAMETER OF CASING (IN)	8 5/8, 13 3/8	8, 13 3/8	4 1/2	9	80	1	I	8, 10, 16	8, 10, 16	8, 10, 16	6 5/8	4 1/2	8, 12 1/2
	DEPTH OF WELL (FT)	568	578	320	225	120+	280	500	648	640	650	440±	180	451
	DATE COM- PLET- ED	1938	1939	1	PIO	old	1948	plo	1951	1939	1941	1932±	old	1933
	DRILLER	Layne Texas Company	do.	1	I	:	Upton	0il Company	Layne Texas Company	do.	do.	l	1	Layne Texas Company
	OWNER	P.P.G. Industries, Well 8	P.P.G. Industries, Well 9	M.B. Forbes	M.E. Wiederkehr	do.	do.	do.	P.P.G. Industries, Well 13	P.P.G. Industries, Well 10	P.P.G. Industries, Well 11	P.P.G. Industries, Well 10A	Linwood Bland	P.P.C. Industries, Well 1
	TIEM	JB-84-21-304	305	* 401	* 402	403	* 404	405	501	\$ 502	503	504	505	* 601

		om 0-323 o 455 ted from 55 ft.	to 264 sing 297 to 230 ft. 0 gpm.	om 0 to d casing 323 to				to 244 0 to 352 52 to ng from 0-530				60 gpm. See ' Slot- 6-1,202			g at		
	REMARKS	12 1/2-in. casing from 0-323 ft; 8-in. from 183 to 455 ft (40 overlap) slotted from 223-293 and 314 to 355 ft.	12-in. casing from 0 to 264 ft; 8-in. slotted casing from 268 to 286 and 297 to 380 ft. Pump set at 230 ft. Reported discharge 90 gpm.	12 1/2-in. casing from 0 to 252 ft; 8-in. slotted casing from 252 to 312 and 323 to 365 ft. \underline{y}	Indio mill. Dug well.	Blanco mill.	Caso mill.	16-in. casing from 0 to 244 ft; 10 3(4-in. from 0 to 352 ft; 8 5(8-in. from 352 to 637 ft; slotted casing from 250-350, 352-432, 450-530 and 595-635 ft.	Test well No. 2. 3	1	ł	Reported discharge 460 gpm. Pump set at 340 ft. See geologic section C-C'. Slot- ted casing from 1,106-1,202 and 1,212-1,252. <u>J</u>	ł	1	80' perforated casing at bottom.	Water test #7.	Hdqrs. well.
	USE OF WATER	z	Ind	z	s	s	s	puI	z	D, S	D, S	Ind	D, S	s	D, S	z	D, S
	METHOD OF LIFT	1	T, E, 15	N	c,w	C, E, 1/2	с, и	Т, Е, 40	z	s, e, 1	C,W	T, E, 75	S, E, 1	c, w	C, E, 1/2	f	S,E
LEVEL	DATE OF MEASUREMENT	t. 14, 1969	o. 10, 1968	t. 14, 1969	v. 10, 1970	do.	do.	v. 14, 1969	1	ł	v. 11, 1970	1955	t. 27, 1970	do.	ł	1	1970
WATER LEVEL	7	Oct.	Feb.	Oct.	Nov.		-	Nov.			Nov.		Oct.				
	ABOVE (+) OR BELOW LAND SUR - FACE DATUM (FT)	125.3	1	119.7	57.7	40.5	52.8	133.4	1	60	116.3	207	105.6	107.4	100	ŀ	40
	ALTI- TUDE OF LAND SURFACE (FT)	420	416	415	455	433	451	427	425±	F	T	397	398±	395	ł	451	ł
	WATER BEARING UNIT	oû E⊣	.op	do.	do.	do.	do.	do.	ı	Tg	do.	To	Tg	do.	do.	1	Ц В
	DIAVETER OF CASING (IN)	8, 12 1/2	8, 12	8, 12 1/2	72	I	80	8 5/8, 10 3/4, 16	:	ł	4	8 5/8 14	4 1/2	ę	4 1/2	1	9
	DEPTH OF WELL (FT)	455	455	450	69	59	230	637	1,394	310	330	1,264	180?	176	336	1,271	350
	DATE COM- PLET - ED	1933	1934	1933	blo	old	1935:	1948	1955	1966	1969	1955	;	;	1966	1955	1961
	DRILLER	Layne Texas Company	.ob	do.	Ī	I	Corkill	Layne Texas Company	Columbia Southern Chemical Corp.	Luther Casey	Rader Equipment Co.	Layne Texas Company	1	l	Disbro Water Well Service	Columbia Southern Chemical Corp.	Maley
	OWNER	P.P.G. Industries, Well 2	P.P.G. Industries, Well 3	P.P.G. Industries, Well 4	M.E. Wiederkehr	do.	do.	P.P.G. Industries, Well 12	Columbia Southern Chemical Corp.	Gerald A. 0'Hanlon	Willie Davila	P.P.G. Industries, Well 14	Linwood Bland	do.	J.D. Glover	Columbia Southern Chemical Corp.	John Martin, Jr.
	MELL	JB-84-21-602	603	604	10/	702	703	801	802	22-103	* 104	*	* 402	403	404	405	501

· 67 ·

								TAN	WATER LEVEL	EL.			
MELL	OWNER	DRILLER	DATE COM - PLET - ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	D	DATE OF MEASUREMENT	METHOD OF LIFT	USE OF WATER	REMARKS
-84-22-601	JB-84-22-601 John Martin, Jr.	1	old	70±	40±	Tg	325	58.3	Apr.	30, 1970	C, W	ß	Beecher mill. Dug well with rock curb.
602	do.	1	old	47	40±	.ob	316	36.1		do.	c, w	S	Clemente mill. Dug well with rock curb.
703	do.	1	;	300≞	ę	.ob	387	68.7	May	1, 1970	c, W	S	Cadena mill.
704	do.	1	014	50	72	do.	367	43.3		do.	c, w	S	Ebano mill. Dug well with rock curb.
801	C. Saenz	Antonio Garcia	old	1 06	9	do.	320±	41.0 33.5	May Mar.	25, 1931 18, 1970	C, E, W	D, S	Observation well. $2/$
802	John Martin, Jr.	1	ł	300±	3	.op	I	1		I	c,w	ŝ	Blanco mill.
803	do.	1	014	60	-1	do.	357	51.7	Apr.	30, 1970	c, w	s	Ranchito mill, Dug well.
804	do.	Î	ł	400±	ę	.ob	400±	151.7		do.	C, W	ß	Alto mill.
805	Pablo C. Saenz	Saenz	1902	40	36±	.ob	345	32.4	Apr.	29, 1970	c, w	D, S	Dug well with rock curb.
902	Garcia	1	PIO	80	7	do.	ł	57.5	May Feb.	15, 1931 5, 1953	c, w	P	Formerly used as observation well. $\underline{2}$
903	Alaniz Estate	1	plo	06	9	do.	I	45.5 42.9	Sept. Feb.	. 28, 1933 5, 1953	C, W	S	ю.
904	John Martin, Jr.	1	1942±	300±	9	.ob	341	49.5	Apr.	30, 1970	C, W	ŝ	South Beecher mill.
305	do.	ı	I	300±	9	do.	343	69.0		do.	с, и	S	Gudjillo mill.
23-401	Hart Mussey	1	1935 ±	175	7	.ob	١	94.5	Feb.	23, 1961	с, и	s	1
704	M.L. Saenz	ſ	1959	±00‡	4	do.	297	120.3 117.4 125.4	Oct. Mar. Mar.	31, 1960 26, 1964 20, 1969	c, w	S	Observation well. Formerly supplied water for oil well drilling rigs.
26-301	26-301 Viggo Gruy Ranch	ł	01q	500±	4	Tct	780	165.5	July	16, 1970	C,W	s	Callejon mill. Reported strong supply.
601	J.H. Dinn	E.R. David	014	400±	7	.ob	797	150.0	Apr.	10, 1970	C, W	ß	1
602	do.	do.	014	400±	7	Tct?	;	ł		1	S,E	D, S	Hdqrs. well.
603	Viggo Gruy Ranch	3	PIO	350±	4	Tct	705	124=		ľ	C, W	s	Salado mill.
604	+ do.	Humble Oil & Refining Co.	I	350±	ł	.ob	730±	160±		I	s, E	w	1
605	. do.	1	010	500±	4	do.	162	146.6	July	16, 1970	C, W	s	No. 2 mill.
902	2 J.H. Dinn	;	blo	400±	4 1/2	do.	1	1		1	c, w	s	Antonio mill.

- 68 -

				-						WATER LEVEL	_		
MELL		OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF MELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASUREMENT	METHOD OF LUFT	USE OF WATER	REMARKS
* JB-84-26-903		J.H. Dinn	E.R. David	014	400	4 1/2	Tct	735	87.0	Apr. 10, 1970	c, W	ß	United Gas mill.
	904	do.	1	plo	300±	ł	do.	728	121.8	do.	с, и	S	Muerto mill.
* 27	7-101 V:	27-101 Viggo Gruy Ranch	:	plo	1 00 1	4	do.	755	1	1	S, E	D, S	Hdqrs. well.
	102	do.	Ramido Molina	1964	580	4	do.	810	138.0	July 16, 1970	c, w	ß	Mellones mill.
*	201	do.		PIO	350±	4	do.	702	1	L	c, w	S	Javelina mill. 10 jts. col. pipe.
	301	do.	1	PIO	350±	4	do.	704	140.7	July 15, 1970	C,W	s	Nuevo mill.
*	401 R.	R.C. Perez	:	1954	100	4 1/2	do.	169	62.0	Mar. 23, 1970	C, W	D, S	1
	402 Cc	Consuela Perez	1	1956	90	4 1/2	do.	1	I	L	C, W	D, S	1
*	403 Vi	Viggo Gruy Ranch	:	Very old	1 00 1	4	do.	765	186.4	July 16, 1970	с, м .	S	Pita mill.
	501 Jo	Josephine B. Musgrave	ı	PTO	I	4 1/2	F	201	I	1	c, w	Ø	Originally drilled as oil test. Plugged back.
	502 Vi	Viggo Gruy Ranch	1	old	250±	4	Tct	670	75.7	July 15, 1970	C, W	s	Chapa mill.
	503	do.	1	P10	350±	S	do.	700	76.8	July 16, 1970	C, W	s	Piedra mill.
*	504 Ar	Argo Oil Corp.	Argo Oil Corp.	ł	1, 317	I	do.	ł	1	I	I	A	Equipped with 1 HP submer- gible pump in 1960. Per- forated casing from 1,307 to 1,317 ft.
*	701 J.	J.H. Dinn	1	P10	300±	1	do.	765	154.5	Apr. 9, 1970	C,W	s	Chapote mill.
	702	do.	0il Company	PIO	1	Ĩ	Tct?	710	19.0	Apr. 10, 1970	c, w	ß	Originally drilled to 1,700 ft and later plugged back. Formerly flowed. Temperature 93°F (34°C).
	703	do.	ł	PIO	300±	;	Tct	:	1	1	C, W	ŝ	Conejo mill.
*		Josephine B. Musgrave	1	PIO	160	4 1/2	Tg	659	115.5	Mar. 19, 1970	c, w	s	North mill.
	802	do.	1	1	I	1	ł	637	52.1	ф	c, w	ß	Originally drilled as oil test, later converted to water well. Strong supply reported.
*	106	do.	ſ	014	1	ł	Tct?	660	15.8	do.	c,w	s	Charlie mill, formerly flowed.
	902	do.	Dillard Wied	1	443	4 1/2	Tct	665	84	1	C, W	s	10 jts. 2-in. col. pipe.

- 69 -

	OF METHOD USE EMENT OF OF REMARKS LIFT WATER	N Reported dry from 0 to 416 ft.	C,W S Savage mill.	C,W S	, 1970 C,W S	. C,E,3/4 S	r, 1970 C,W S	, 1970 C,W D,S J	Flows Ind Estimated flow 10 gpm.	 Flows Ind Drilled as oil test and later converted to water well. Water reported brackish. Temp. 86'F (30°C). 	- C,W S Reported weak supply.	 Flows N Drilled as oil test. Flugged and gun perforated from 2,115 to 2,125 ft. Reported weak supply. 	13, 1970 C,W S Curva mill.	- C,W S Tresquillas mill.	16, 1970 C,W D,S	T,E,20 P Measured discharge 270 gpm.	16, 1970 C,W S	25, 1964 N N <u>2</u> ! Perforated casing: 209- 18, 1970 <u>244</u> ; 259-275; 327-356; 450- 462; 483-518 ft. <u>U</u>	T,E,20 P Perforated casing from 420 to 520 ft.	27, 1933 S Formerly used as observation 25, 1967 well, <u>2</u> /	26, 1933 B.H D.S Observation well, 2/
WATER LEVEL	 PATE OF NEASUREMENT REASUREMENT 	3	;	1	Mar. 24,	do.	Sept. 16, 1970	Mar. 24,	1	1	1		Apr.	1	Sept.		Sept.	Mar. Mar.		Sept. Feb.	Oct.
	D LAND SUR (+) OR BELOW LAND SUR- E FACE DATUM (FT)	I	1	1	122.7	180±	116.0	95.1	+	+	205	+	143.0	1	71.7	1	58.1	93.9 62.7	3	50.4 49.1	41.4
	ALTI- TUDE OF LAND SURFACE (FT)	1	;	I	503	1	465	521	1	1	528	1	467	459	420	380≐	425	379	379	ł	;
	R WATER BEARING UNIT	Tct	.ob	do.	Tg	.ob	do.	.ob	Tct	1	Tg	Tct	Tg	do.	do.	do.	.ob	, do.	.op	do.	-op
	DIAMETER OF CASING (IN)	ł	4 1/2	4 1/2	5 1/2	3 7/8	4	5 1/2	2 -	5	7	1	22	3	4 1/2	æ	4	8 5/8, 12 3/4	12 3/4	48	36
	DEPTH OF WELL (FT)	416	400=	300±	156	420±	140=	186	1,850	1	208	2,125	300	300±	110	328	150±	615	520	80	07
	DATE COM- PLET- ED	1969	old	plo	1958	P10	010	1968	DID	1925=	014	1	01d	PIO	1965	1938	01d	y 1943	1952	010	
	DRILLER	Dillard Wied	t	3	0'Neal	Cliff Whitman	I	Dillard Wied	Continental Oil Company	E.R. David	do.	Continental 011 Co.	E.R. David	do.	Morris	Gus Delaney	1	Layne Texas Company	Carl Vickers	1	;
	OWNER	Josephine B. Musgrave	Driscoll Estate	do.	Joe Garza	Francisco Vaello	Vela	Joe Garza	Continental Oil Company	Driscoll Estate	do.	Continental 011 Co.	Driscoll Estate	do.	E. Carrillo, Jr.	City of Benavides, Well 4	Santos Hinojosa	City of Benavides, 01d well 2	City of Benavides, Well 3	Mrs. Tom Cavanaugh	
	MELL	JB-84-27-903	904	506	28-201	301	302	501	101	801	802	803	106	902	29-101	201	203	302	303	305	200

- 70 -

			DATE	DEPTH			ALTT -	AROVE (1)	WATER LEVEL			
8	OWNER	DRILLER	PLET- ED	OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	TUDE TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASUREMENT	METHOD OF LIFT	USE OF WATER	REMARKS
Ramon Peña	Peña	ł	1	48	6 5/8	Ig	ł	45.0 34.8	Sept. 20, 1933 Feb. 18, 1954	Z	N	Formerly used as observation well, $\underline{2}/$
	do.	1	6	48	48	do.	I	45.7 35.5	Sept. 20, 1933 Feb. 13, 1947	N	Z	Do.
Well Well	City of Benavides, Well 1	Flournoy Drilling Co.	1966	618	10 3/4, 16	do.		166.3	Oct. 22, 1970	S, E, 60	Ω4	Perforated casing from 332- 442; 462-527; and 552-607 ft. Pump set at 310 ft Sept. 23, 1969.
Wel.	City of Benavides, Well 2	do.	1966	600	10 3/4	do.	I	165.3	do.	S, E, 50	<u>р</u> ,	Perforated casing from 322- 422; 442-507; and 522-596 ft. Pump set at 300 ft Sept. 23, 1969.
M. Gomez	шег	ł	I.	132	5 3/16	do.	I	95.2 91.8	Sept. 27, 1933 Mar. 22, 1962	C, W	D, S	Formerly used as observation well. $\underline{2}$
Floyd	Floyd Emerson		1	140	5 3/16	do.	426	93.3 113.9	Sept. 9, 1933 Mar. 18, 1970	С, W	D,S	Observation well. 2^{\prime}
Atlee	Atlee Parr	Flournoy Drilling Co.	1967	500±	1	do.	385	,	I	T,G,200	Irr	Measured discharge 820 gpm.
	do.	do.	1967	500±	1	do.	385	ŧ	I	T, G, 40	Irr	Measured discharge 990 gpm. Temp. 81°F (27°C).
	do.	1	ł	1	12	1	3	116.5	Nov. 2, 1969	T,G	Irr	1
Ч. М.	M.M. Miller & Sons	I	b10	118	4	Τg	386	95.2	Oct. 30, 1969	с, ч	D, S	Temp. 79°F (26°C).
	do.	ł	1	:	4	do.	363	ł	I	S, E, 3/4	S	Temp. 81°F (27°C).
	do.	Hiawatha Oil Company	1967	542	9 7/8	do.	383	1	1	S, E, 3/4	ß	Drilled as oil test, Plugged 542-572 for water well, Pump set at 168 ft. Temp, 82°F (28°C).
Ismae	Ismael Garcia	1	I	80±	48	do.	l	44.9 55.0	Sept. 28, 1933 Feb. 6, 1950	z	R	Formerly used as observation well, $\underline{2} J$
Ansel	Anselmo Elizondo	Buck Page & Company	1966	1, 155	5 1/2	To	397	227.5	Sept. 29, 1970	S, E, 1	D, S	5 $1/2$ -in. casing from 0 to 1,000 ft; perforated from 1,000 to 1,155 ft. <u>1</u>
Encar	Encarnacion Peña	Hinojosa	1932	130	ω	Tg	336±	74.6 75.8	Sept. 28, 1933 Feb. 14, 1950	N	N	Formerly used as observation well. $\underline{2}/$
lateo	Mateo Lopez	I	1922	100	9	do.	1	63.0 66.8	May 15, 1931 Feb. 18, 1954	s, E, 1/4	D, S	Do.
Garcia	cia	H	ł	240	Ì	do.	337±	136.0	Jan. 15, 1970	C, E, 1	s	1

- 71 -

REMARKS	Observation well. 2^j	Formerly used as observation well.	Observation well. $\underline{2}$	I	1	4 1/2-in. casing from 0 to 328 ft. Packer set at 278 ft.	1	1	ł	Measured discharge 450 gpm. Y	Reported water salty.	Hílburn míll.	Dug well with caliche walls.	Lauderbach well.	Hdqrs. well. Pump set at 94 ft.	Hdqrs. well.	Turkey mill.	Estimated flow 8 gpm. Drilled as oil test and converted to water well. "Artesian #4."	011 test converted to water well. 4-in. discharge. 55- timated discharge 10 to 15 gpm. Temperature 99°F (37°C). "Artesian #3."	Working on well when visited Mar. 18, 1970.
USE OF WATER	z	D, S	D, S	D,S	D, S	D, S	Irr	ŝ	S	Irr	N	ŝ	S	s	D, S	D,S	s	ß	ω	10
METHOD OF LIFT	N	c, w	C, W	S, E, 3/4	с, и	s, E, 1/2	T, G	C, W	c, w	T, G	N	C, W	С, W	с, и	S, E, 3/4	c, w	N	Flows	Flows	C, W
WATER LEVEL	May 25, 1931 Mar. 18, 1970	May 28, 1931 Sept. 28, 1933	Oct. 26, 1933 Mar. 18, 1970	I	Sept. 29, 1970	Jan. 17, 1970	1	Nov. 1, 1969	do.	Sept. 21, 1969	1	Apr. 9, 1970	Apr. 8, 1970	Apr. 9, 1970	1963	Î	Mar. 20, 1970	.ob	.o.p	Mar. 18, 1970
WATE ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	40.5 39.2	53.0 29.7	38.1 44.6	ł	136.9	124.2	1	91.3	68.5	134.9	1	53.9	67.2	104.0	60	1	71.4	+	+	70.3
ALTI- TUDE OF LAND SURFACE (FT)	285±	Ē	300±	269	300	287	ī	337	318	ł	1	1	684	722	∓ <i>1</i> 49	1	555	585	583	1
WATER BEARING UNIT	Ig	do.	do.	do.	do.	do.	:	Tg	do.	do.	Tct?	Tct	Tg	Tct	â	.ob	.op	Ict	1	;
DIAMETER OF CASING (IN)	36	20	60	4 1/2	4 1/2	4 1/2	œ	4	9	10 3/4	9	4 1/2	1	4 1/2	I	1	4,10	10	ł	1
DEPTH OF WELL (FT)	70	107	90	300	360	328	1	103?	121	340	306	300±	90	300±	101	185	225±	1,300±	1,500±	1
DATE COM- PLET- ED	old	1928	01d	1968±	1968	1967	;	plo	l	1964	ł	014	01d	PIO	014	1965	ł	014	PIO	PIO
DRILLER	1	Domingo Ramirez	l	Raul Barrera	do.	Dillard Wied	1	1	I	Disbro Water Well Service	ľ	0il Company	1	1	:	Dillard Wied	1	Oil Company	do.	I
OWNER	Mrs. Veronica Cuellar	M. Bazan Estate	Saenz	Fred Quinn	Raul Barrera	E.C. Cude	do.	Atlee Parr	do.	Mrs. Luther Reese	Houston 011 Company	J.H. Dinn	Roach Estate	J.H. Dinn	.ob	Josephine B. Musgrave	do.	Josephine B. Musgrave	do .	do.
MELL	JB-84-30-301	107	501	601	602	603	604	101	702	106	34-301	302	35-101	102	103	201	301	302	303	304

- 72 -

		DATE	nuqau			1 1 1 1		WATER LEVEL	VEL			
	DRILLER	DALE COM- FLET- ED	DEFIH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	WE	DATE OF MEASUREMENT	METHOD OF LIFT	USE OF WATER	REMARKS
	I	1954	946	1	Tct	069	28.5	Mar.	25, 1970	S,E	D,S	Hdqrs. well.
ŗ.	J. Long	1930±	360	ł	do.	704	6.96	Apr.	7, 1970	C, W	S	North mill.
	1	P10	100	ł	Тg	590	76		1	s, E, 1/3	D, S	I
К.	R. Molina	1969	403	2	do.	1	65		1969	S, E, 1	D, S	Hdqrs. well. Perforated casing 110-120 ft; 170-175 ft; 260-270 ft.
Dil	Dillard Wied	1969	1,200	1	Tct	ł	ı		1	N	N	Reported supply not adequate for windmill. <u>J</u>
	1	1	260	5 1/2	.ob	979	87.5	Mar.	25, 1970	С, W	S	1
011	0il Company	1949	960±	I	do.	632	÷		do.	Flows	s	Formerly supplied water for oil well drilling rigs. Measured flow 9 gpm.
В.	R. Molina	I	430	3	do.	673	I		I	с, w	s	Rogers mill.
-R	Ramirez	1927	260	1	Tg	622	1		I	- C, W	s	1
Pat C	Patterson Drilling Co.	1956	507	4 1/2	To	583	205.7	Mar.	19, 1970	C, W	s	Janero mill.
	1	ł	225±	7	Тg	ł	100		1	C, E, 1/2	D, S	Melones well.
Josephine B. Musgrave	1	old	550	4 1/2	To	I	1		I	C, W	s	Sulphur well.
Hermando Benavides R.	R. Molina	1967	430	4 1/2	To	1	I		1	с, ч	م	Palo Blanco mill.
Е. В	E.R. David	old	360	4 1/2	do.	628	I		1	с, и	s	Agua Negra mill.
Fri	Fritz Volmering	1945±	460	7	Tct	561	177.9	Mar.	19, 1970	с, и	S	Pump set at 200 ft.
Herberto Benavides Dil	Dillard Wied	1969	344	4	To	635	185	Sept.	1969	C, W	S	Guiterrez mill.
V	ł	ł	234	7	Tg	545	214.5	Dec.	18, 1969	C, W	S	1
E.R	E.R. David	DId	185	ł	do.	545	175.1	Apr.	14, 1970	C, W	S	Haner mill. Reported weak supply.
	do.	old	500	I	Το	904	290±		do.	с, и	ŝ	Longoria mill.
	Ļ	plo	I	4 1/2	ł	534	186±		do.	c,w	ŝ	Huerta mill.
	1	1	185	5	Tg	495	164.7	Dec.	18, 1969	C, W	S	1
	1	plo	300±	7	do.	210	186.1	Apr.	14, 1970	c, W	S	Palo Blanco mill.
E.R.	E.R. David	blo	300±	7	do.	520	192.4	aŭ,	do.	C, W	s	Cuatros mill.

	REMARKS	Slotted casing from 187 to 255 ft. Pump set at 197 ft.	Pump set at 207 ft.	Slotted casing from 504 to 540 ft. Pump set at 210 ft. \underline{y}	Reported discharge 710 gpm. Pump set at 200 ft.	Measured discharge at 5.3 gpm. Pump set at 189 ft. Temp. 79°F (26°C).	Reported 18 ft drawdown after pumping 30 hrs. at 270 gpm. Pump set at 180 ft.	Measured discharge 15 gpm.	I	Pump set at 128 ft.	Temp. 79°F (26°C).	Pump set at 221 ft. Temp. 82°F (28°C).	Temp. 79°F (26°C).	1	Dug well. Pump set at 69 ft.	Observation well. 2^{\prime}	Perforated casing from 172 to 280 ft. Reported discharge 825 gpm.	Perforated casing from 230 to 290 ft. Reported discharge 1,200 gpm. Temp. 81°F (27°C).	Perforated casing from 186 to 345 ft. Reported discharge 1,000 gpm. Pump set at 180
	USE OF WATER	α	ß	S	Ind	S	đ	s	s	s	ß	s	s	s	S	s	Irr	Itr	Irr
	METHOD OF LIFT	s, E, 1/3	S, E, 1/3	C, W	T, E, 125	S, E, 1/3	T, E, 25	S, E, 3/4	C, W	C,W	c, w	S, E, 1/3	C, W	C, E, 1/2	C,W, S,E,1/3	С, W	T,G,210	T, G	T, G
WATER LEVEL	DATE OF MEASUREMENT	Sept. 7, 1968	July 27, 1968	July 22, 1968	1	1969	Sept. 23, 1969	Nov. 5, 1969	do.	do.	Dec. 17, 1969	do.	do.	Dec. 18, 1969	.ob	Oct. 30, 1933 Mar. 19, 1970	Oct. 6, 1969	do.	Oct. 11, 1969
WAT	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	181	155	113	1	173	121.7	112.0	128.0	109.7	174.8	206.3	181.1	181.9	67.0	57.7 58.7	111.2	100.5	104.6
	ALTI- TUDE OF LAND SURFACE (FT)	514	512	527	I	501	7777	422	445	435	531	536	510	510	477	643	I	425±	423
	WATER BEARING UNIT	80	do.	To	do.	Ig	.ob	do.	do.	do.	.ob	To	Tg	.ob	•op	do.	do.	do.	do.
	DIAMETER OF CASING (IN)	5	2	5 1/2	8, 12	4 1/2	10	53	5?	9	5	S	5	S	72	72	16	16	12 3/4
	DEPTH OF WELL (FT)	255	213	540	÷068	228	210	114±	145	137	192±	429	195±	199±	75	70	286	290	345
	DATE COM- PLET- ED	1968	ł	1968	1964	old	I	1915±	1920±	old	1	1	1967?	1	1850±	01d	1968	1967	1967
	DRILLER	Dillard Wied	1	Dillard Wied	Vickers Water Well Service	1	1	1	1	ł	I	I	I	1	ī	I	Buck Page & Company	Molina	Vickers Water Well Service
	OWNER	Oscar Wyatt	do.	do.	Wright Brothers Materials Company	Oscar Wyatt	City of Realitos, Well 1	Bob Victor	D.P. McBride	Emede Guerra	Oscar Wyatt	do.	ł	1	Charles S. Williams Estate	Leroy Denman	Southwestern Fruit Co.	Douglas Risinger	P.S. Wright
	NELL	JB-84-36-401	402	403	* 501	502	* 601	602	* 603	604	101	702	703	801	802	106 *	902	903	906

- 74 -

MELL									WA	WALER LEVEL	E		20	
	н	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	D	DATE OF MEASUREMENT	METHOD OF LIFT	USE OF WATER	SNARMCIA
JB-84-36-905	36-905	Douglas Risinger	Dillard Wied	1967	225	2	ао Ц	427	113	Mar.	8, 1967	S, E, 3/4	w	Perforated casing from 192 to 225 ft. \underline{y}
*	37-101	M.M. Miller & Sons	1	ł	156	4	do.	677	114.7	Oct.	31, 1969	Ċ, W	ß	:
	102	do.	ł	ł	ł	4	.ob	425	-		:	c,w	S	Temp. 79°F (26°C).
*	103	do.	ſ	Ĩ	400±	10 3/4	do.	426	117,4	Oct.	30, 1969	c, w	ŝ	1
	104	Gus Minges	I	1928	154	4 1/2	.ob	418	93.0 100.0	Feb.	22, 1933 4, 1969	C, W	s	Formerly used as observation well. $\underline{2}$
*	201	M.M. Miller & Sons	1	1936±	112	4	do.	379	64.6	Oct.	30, 1969	C,W	s	1
*	202	do.	Longhorn Drilling Co.	1930±	1,600±	1	To	374	60.1		do.	c, w	s	ı
*	203	do.	1	I	2,300	2	Tct	371	+		1	Flows	s	Measured flow 90± gpm. Drilled as oil test; conver- ted to water well.
	204	do.	1	Ł	102	4	Тg	369	67.5	Oct.	30, 1969	c, w	s	Temp. 79°F (26°C).
	205	do.	ł	ł	102±	4	1	379	69.4		do.	c,w	S	Temp. 77°F (25°C).
	206	Leroy Denman	:	1935±	1001	1	Tg	369	57.4	Nov.	4, 1969	C, W	s	Temp. 77°F (25°C).
	207	Atlantic Richfield Co.	Hiawatha Oil Co.	1951	350	4	.ob	350	:		1	J, A	Ind	Perforated casing from 334 to 350 ft.
*	301	Atlee Parr	do.	1	282±	2	do.	378	75.9 88.3	Feb. Mar.	5, 1948 18, 1970	z	N	Observation well, $\underline{\mathcal{Y}}$
	302	Refugio Garcia	;	1	:06	4	.ob	359	79.6	Oct.	29, 1969	C,W	s	:
	303	Atlee Parr	;	Ę	269	9	do.	363	107.5	Nov.	1, 1969	с, и	s	Temp. 78°F (26°C).
	304	do.	ł	E.	138	9	.ob	343	80.2		do.	С, W	s	Temp. 75°F (24°C).
	305	do.	1	1963±	233	9	.op	340	80.0	21	do.	C, W	s	Temp. 77°F (25°C).
	306	do.	1	I	200	9	.ob	352	82.8		do.	с, w	s	Temp. 78°F (26°C).
*	105	Leroy Denman	ł	1916±	150±	42	.ob	I	81.6	Nov.	4, 1969	c, w	s	1
*	402	do.	;	1903±	2,300±	7?	Tct	396	+		do.	Flows	S	Measured flow 25 gpm.
	403	do.	1	1905	111	5?	Tg	403	91.5		do.	С, W	ß	Venado mill.
	707	do.	1	1932	126±	4	do.	427	84.0		do.	с, и	s	Chopete mill.
	405	do.	1	1900±	93	72	do.	379	52.9		.ob	c, w	S	Louis mill.
See foot	notes al	See footnotes at end of table.												

- 75 -

	REMARKS	Perforated casing from 200 to 450 ft. Reported drawdown 50 ft after pumping for 48 hrs. at 1,200 gpm. Pump set at 250 ft.	Reported drawdown 40 ft after pumping 48 hrs. at 500 gpm.	1	Temp. 79°F (26°C).	1	1	Perforated casing from 348 to 353 ft and 355-360 ft.	1	Ferforated casing from 190 to 300 ft. Measured discharge 1,100 gpm.	Perforated casing from 180 to 347 ft. Reported discharge 1,000 gpm.	Temp. 75°F (24°C).	3	I	Temp. 77°F (25°C).	Temp. 79°F (26°C).	Perforated casing from 200 to 450 ft. Reported draw- down 60 ft after pumping 48 hrs. at 1,200 gpm.	Temp. 79°F (26°C).	Observation well. 2/	Reported water salty. Temp. 75°F (24°C).
	USE OF WATER	Irr	Irr	s	ŝ	S	D	Q	D, S	Irr	Irr	S	D, S	s	ŝ	s	Irr	D	ເນ ເນ	Q
	METHOD OF LIFT	T, G, 100	T, E	c, w	C,W	c,w	C,W	S, E	S, E, 1/2	T, G	Т, G	с, и	S, E, 3/4	C, W	C, W	c, w	T,G	c, W	с, и С, и	C, W
WATER LEVEL	DATE OF MEASUREMENT	1	Nov. 5, 1969	Nov. 4, 1969	Nov. 5, 1969	Nov. 4, 1969	Oct. 30, 1969	а. Г	Nov. 5, 1969	Oct. 6, 1969	1	Nov. 6, 1969	1969	Nov. 6, 1969	.ob	do.	l	Nov. 6, 1969	Feb. 6, 1948 Mar. 17, 1970	Nov. 6, 1969
WATE	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	50	73.6	68.5	82.0	78.9	40.2	ſ	65.3	103.6	E	86.5	60	75.9	81.9	53.3	60	70.7	49.2 47.1	45.4
	ALTI - TUDE OF LAND SURFACE (FT)	375	375	378	384	391	335	340	352	421	413	434	707	407	415	382	366	404	328	345
	WATER BEARING UNIT	Tg	do.	do.	do.	.ob	do.	do.	do.	do.	.op	do.	.ob	.ob	.op	.ob	do.	do.	do.	.ob
	DIAMETER OF CASING (IN)	10	6?	9	5	4	:	2	5	16	12 3/4	S	9	5?	5	5?	10	9	5	۲
	DEPTH OF WELL (FT)	450	270	140	103	150±	120±	827	125	301	347	111	130	120	105?	83	450	105	66	06
	DATE COM- PLET- ED	1960	1960	1935±	1	1916±	01d	1941	1906±	1965	1965	ł	plo	I	plo	ł	1960?	1960	blo	01d
	DRILLER	Adcock Supply Company	Disbro Water Well Service	I	ł	l	ł	M.M. Miller & Sons	I	Mopac Drilling Co.	Vickers Water Well Service	l	1	1	1	1	Koch Oil Company	ł		I
	OWNER	Dr. George Estes	do.	Leroy Denman	Dr. George Estes	Leroy Denman	M.M. Miller & Sons	do.	Pedro H. Saenz	W.O. Skidmore	P.S. Wright & Henry Berry	H.O. Miller	William Mann	R.G. Garcia	do.	do.	Dr. George Estes	E. Ramirez	- <u>385</u> .0	Mrs. H.P. Salinas
	MELL	JB-84-37-501	502	503	504	505			603		702	703	* 704	* 705	706	707	801	802	* 401	902

· 76 ·

			ł					WAI	WATER LEVEL				
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASUREMENT	OF MENT	METHOD OF LIFT	USE OF WATER	REVARKS
JB-84-37-903	3 H. Ramirez	1	014	93	Q	Tg	329	55.3	Nov. 21,	1969	C, W	D, S	Open hole from 0 to 93 ft. Temp. 77°F (25°C).
904	4 Charles Cruz	1	1935	86	S	.ob	336	60.2	do.		c, w	D, S	Open hole from 60 to 86 ft. Temp. 77°F (25°C).
38-10	38-101 Atlee Parr	1	ł	152	vD	do.	32.8	82.7	Nov. 1,	1, 1969	C, W	ŝ	1
102	2 do.	1	1	142	4	.ob	323	87.0	do.		с, и	S	;
103	3 do.	1	;	155	4	do.	322	102.1	do.		с, и	S	ł
104	4 Atlee Parr	1	ł	150	5?	.ob	332	87.3	Nov. 1,	1969	c, w	S	Temp. 79°F (26°C).
105	5 do.	1	ł	124	ŝ	.ob	343	93.4	do.		C, W	S	;
201	1 Y. Valadez	1	1953	127	ý	.ob	287	60.9	Dec. 12,	1969	C, W	S	1
202	2 A.B. Canales	ł	ł	136	5	.ob	280	63.2	do.	ä	C, W	ß	1
301	1 I. Garcia	ł	Dld	300	4	.ob	252	73≟		1969	C, W, E, 3/4	S	Pump set at 84 ft.
302	2 Madro Rios	1	PIO	100	4	.ob	242	24.1	Dec. 13,	1969	C, E, 3/4	D, S	1
401	1 Atlee Parr	ł	I	158	5?	.ob	294	67.0	Nov. 1,	1969	C, W	ß	Temp. 77°F (25°C).
402	2 do.	l	old	150	9	.ob	315	68.5	.ob		C,W	s	
403	3 do.	1	1	130	Ą	.op	327	74.4	do.		C, W	s	Temp. 77°F (25°C).
501	1 Francisca Chapa	R. Barrera	1949	285	4	.ob	283	112.6	Dec. 12,	1969	S, E, 3/4	D, S	Reported strong supply.
502	2 Mrs. F. Salinas	l	01d	100	9	.ob	278	65.8	- do.		с, и	S	Reported water salty.
109	l Eluterio Saenz	18 -	1916	ł	4	do.	253	77.8 83.6	May 26, July 13,	1931 1960	N	z	Originally drilled to 125, but partially filled in 1969. Formerly used as observation well. 2
602	2 Guadalupe Vera	John Rader	1966±	105?	4	.ob	255	71.1	Dec. 12,	1969	S, E, 1/2	D	I
603	3 Mariana Saenz	Raul Barrera	1955±	350	4	.ob	256	124.6	Dec. 13,	1969	с, и	Q	I
604	A Mateo Rios	do.	1962	257	4	do.	257	123.9	do.		C,W	D, S	Temp. 79°F (26°C).
102	l J. Carrilo	Santiago Barrera	1927	63	5 3/4	•op	295	49.5 37.0	May 29, May 17,	1931 1970	N	N	Observation well. 2/
702	C.S. Hinojosa, Jr.	Guillermo Perez	1631	114=	9	do.	297	44.3 37.2	May 29, Dec. 10,	1931 1969	C, E	s	Formerly used as observation well. 2/
607	<pre>3 Concepcion Cumminity Flournoy Drlg. Co. Well 1</pre>	Flournoy Drlg. Co.	1966	350	10 3/4.	.ob	302	78.5	Sept. 23,	1969	T, E, 40	P4	Perforated casing from 267 to 370 ft. Measured discharge 370 orm. Tenn. 81 or (7701) 30

- 77 -

WELL JB-84-38-801 G * 802 G 806 803 805 806 803 805 806 803 806 806 806 806 806 806 806 806 806 806								MAT	WATER LEVEL	'EL			
JB-84-38-801 802 804 805 807 808 809 901 902	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAMETER OF CASING (IN)	WATER BEARING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	I ME/	DATE OF MEASUREMENT	METHOD OF LIFT	USE OF WATER	REMARKS
802 804 805 805 808 808 809 901	Guadalupe Silva	1	I	81	ę	Tg	ł	60.5 50.3	Feb. Mar.	22, 1933 7, 1945	ч	N	Filled. Formerly used as observation well. 2/
803 805 805 808 808 809 901	C.G. Glasscock	E	1937	350±	د	.ob	272	107.6	Nov.	24, 1969	C, E, 1	q	1
804 805 807 808 808 901 901	do.	1	1	350?	80	do.	270	1		1	T, E, 15	Irr	4-in. disch. pipe. Estimated discharge 250 gpm.
805 807 808 808 901 901	do.	R. Barrera	1945	148	4	do.	266	59.6	Dec.	10, 1969	C, W	S	Slotted casing from 128 to 148 ft.
806 807 808 809 901 902	do.	ł	1937±	155	9	.ob	252	68.4		do.	c, w	s	Tecolote mill.
807 808 809 901 902	do.	1	1937±	150±	4	.ob	263	95.5		do.	C, W	S	Pila Blanca mill.
808 809 901 902	do.	0il Company	1941	227	4 3/4	.ob	261	98.7		do.	C, W	s	Reported strong supply.
809 901 902	E. Manlado	l	1900±	73	5	do.	267	40.8	Dec.	11, 1969	C, W	S	Temp. 77°F (25°C).
901	Manuel S. Saenz	1	1914	75	S	.ob	277	52.1		do.	с, и	S	Temp. 77°F (25°C).
902	Mrs. Brigeda Moreno	Disbro Water Well Service	1963	264	4 1/2	do.	240	106.4	Dec.	13, 1969	c, w	D, S	-Fi
	Hilario Saenz Estate	I	1927	3107	٢	do.	253	58.4 68.6	May Mar.	26, 1931 17, 1970	C, W	D, S	Observation well. $2l$
606	Santos Canales	Fermin Sauceda	1	268?	4	do.	244	46.6 57.0	Jan. Mar.	7, 1933 17, 1970	c, w	D	Observation well. 2
904	Roosevelt Martinez	Richardson Water Well Service	1964	517	10	do.	253	137.2	Dec.	13, 1969	T, E, 40	Irr	Estimated discharge 300 gpm; 6-in. disch. pipe.
902	C.G. Glasscock	R. Barrera	1951	280	4	do.	261	0.66	Dec.	10, 1969	C, W	S	20 ft. perforated casing at bottom.
606	Ernesto Vera	Disbro Water Well Service	1967	273	S	do.	I	:		1	S, E, 3/4	Q	Reported salty water at 66 ft. \underline{J}
* 907	Saturnino Vera	do.	1961	257	4	.ob	242	111.2	Dec.	11, 1969	S, E, 3/4	D, S	Estimated discharge 12 gpm.
* 908	Gregoria V. Rios	R. Barrera	1961	197	5?	do.	238	109.0	Dec.	12, 1969	C, E, 1/2	D	Reported not used for drinking.
606	Thomas Gonzales	Buck Page & Co.	1966	281	4 1/2	do.	246	107.5		.ob	S, E, 1/2	D	Slotted casing from 241 to 281 ft. \underline{y}
610	Augustine Cantu	1	1875±	80	5	.ob	241	53.2		do.	c, w	ß	3
43-101	Adalberto Trevino Est.	Valor Oil Company	1959	3,190	ı	I	656	I		1	I	I	Oil test. \underline{y}
* 44-101	Oscar Wyatt	ſ	1913 ±	1,600	4	Tct	496	+	Dec.	17, 1969	Flows	D, S	Measured flow 15 gpm June 12, 1931; 8 gpm Dec. 17, 1969.

- 78 -

	REMARKS	Perforated casing from 420 to 440 and 560 to 588 ft. Pump set at 210 ft.	Perforated casing from 212 to 232 ft. Pumpset at 210 ft.	Originally drilled to 1,800 ft. Plugged back to 1,772 ft. Perforated casing from 1,730 to 1,772 ft. Measured flow 12 gpm.	Reported water unfit for drinking.	Drilled as oil test and converted to water well by plugging back to 1,680 ft. Casing perforated from 1,640 to 1,680 ft. Water level re- ported 37 ft above G.L. in 1968.	Perforated casing from 350 to 450 ft. Reported discharge 12 gpm. Pump set at 273 ft.	Pump set at 147 ft.	60 ft perforated casing at bottom. Pump set at 150 ft. Reported discharge 1,200 gpm.	Perforated casing from 230 to 290 ft. Pump set at 150 ft. Reported discharge 1,200 gpm.	Observation well. 2/	Filled and abandoned, For- merly used as observation well, 2/	Dug well, partially filled. Formerly used as observation well. <u>2</u> /	Perforated casing from 200 to 370 ft. Pump set at 200 ft. Measured discharge 875
	USE OF WATER	۵	Ś	ß	D, S	S	D, S	D, S	Ir	Irr	s	N	N	Irr
	METHOD OF LIFT	S, E, 1	c, E, 1/2	Flows	s, E, 1/2	Flows	S, E, 1 1/2	C, E, 3/4	T, G	T, G	с, и	N	N	Т, Е, 75
WATER LEVEL	DATE OF MEASUREMENT	1962	Dec. 15, 1969	Dec. 17, 1969	1968	Dec. 18, 1969	1	1969	1	Oct. 6, 1969	May 30, 1931 Mar. 20, 1969	Sept. 28, 1933 Feb. 25, 1967	Sept. 28, 1933 July 16, 1937	I
	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	50	197.3	+	175	+	1	126	1	107.4	36.6 46.9	75.9 85.5	83.8 84.2	ł
1.000	ALTI- TUDE OF LAND SURFACE (FT)	550±	538	509	535	500	515±	0770	1	425	421	415	418	428
NG	DEPTH (FT)	To	Ig	Tct	To?	Tct	To	Tg	-op	do.	do.	.ob	do.	do.
CASING	DIAM- ETER (IN)	3 1/2, 5 1/2	4	4 1/2, 10 3/4	4	ίΩ	5 1/2	S	16	16	Q	5 3/16?	I	12
	DEPTH OF WELL (FT)	6 04	232	1,772	557	1,680	450	150±	240	290	102?	206	100±	370
	DATE COM- FLET- ED	1962	1951	1960	1	1	1969	1	1964	1967	1914	1	I	1967
	DRILLER	Dillard Wied	do.	Lone Star Producing Co.	ł	La Gloria Corporation	Dillard Wied	I	Johnson	Molina	T.M. Coleman	I	I	Mopac Drilling Company
	OWNER	Dillard Wied	do.	Oscar Wyatt	do.	Tom Arnold	Perry Wied	Alberta Garcia	Douglas Risinger	ųo.	A.C. Jones	J. Mann	and	Cliff V. Harborth
	TIEM	* ЈВ-84-44-102	103	104	105	106	107	201	301	302	109	45-101		103

ş2

Table 2.--Records of Wells and Test Holes in Galveston County--Countinued

	REMARKS	Reported supplies water for 2 houses.	Temp. 75°F (24°C).	<pre>Perforated casing from 215 to 250 ft. Temp. 79°F (26 1/2°C). <u>U</u></pre>	Temp. 77°F (25°C).	:	Perforated casing from 1,340 to 1,400 ft. Observation well. Measured flow 40 gpm. 3	Reported plugged in in 1969. Formerly flowed. Casing per- forated from 1,325 to 1,385 ft.	Reported plugged in in 1968. Formerly flowed. Casing per- forated from 1,350 to 1,400 ft.	Observation well. 2	Observation well. 2/	Perforated casing from 274 to 425 ft. Pump set at 160 ft. Measured discharge 45 gpm. $\underline{\mathcal{Y}}$	Formerly used as observation well. $\underline{2}\underline{j}$	Supplies water for school and 3 families.	Temp. 77°F (25°C).	1	
	USE OF WATER	D	S	S	s	D, S	ŝ	z	z	S	Ð	Ind	D	P4	s	ß	
	METHOD OF LIFT	s, E, 3/4	с, и	s, E, 1/3	c, w	J, E, 1/2	Flows	I	I	C, W	J, E, 3/4	J,G	C, W	S, E, 3/4	C,W	c,w	
WATER LEVEL	DATE OF NEASUREMENT	I	Nov. 6, 1969	Nov. 18, 1969	Nov. 19, 1969	Nov. 20, 1969	Feb. 25, 1967 Feb. 20, 1968 Mar. 20, 1969	1	I	Aug. 22, 1933 Mar. 20, 1969	June 3, 1931 Nov. 6, 1969	I	June 3, 1931 Nov. 19, 1969	Nov. 19, 1969	.ob	Nov. 21, 1969	
WAT	ABOVE (+) OR BELOW LAND SUR - FACE DATUM (FT)	1	57.9	77.2	58.9	31.0	+ + + 3.9 4.1	ł	I	45.7 23.8	48.3 39.7	1	52.0 21.8	18,1	31.0	52.1	
	ALTI- TUDE OF LAND SURFACE (FT)	305	378	390	380	347	297	305	304	330	353	304	330	325	344	326	
	WATER BEARING UNIT	Tg	Tg?	B	do.	do.	To	da.	.op	Tœ	do.	do.	.ob	.ob	.ob	do.	
	DIAMETER OF CASING (IN)	ø	ł	4 1/2	5?	S	9 5/8	7 7/8 6 3/4	7 7/8 6 3/4	4	ę	7.4	ę	9	5	5	
	DEPTH OF UELL (FT)	150±	ł	250	83±	120	1,527	1.522	1,520	80±	71±	425	115	150	62	145	
	DATE COM- PLET- ED	1946±	1927±	1968	plo	1962	1944	1944	1944	01d	1931±	1968	blo	P10	ł	1	
	DRILLER	1	ł	Dillard Wied	ł	ł	Fritz Vollmer	do.	Trinity Gas Corpor- ation	;	1	Richardson Water Well Drilling Co.	ł	1	Ĩ	I	
	OWNER	R.G. Garcia	do.	Hofstetter Bros.	R.G. Garcia	Octavio Guerra	Trinity Gas Corp. Well 3	Trinity Gas Corp. Well 2	Trinity Gas Corp. Well 1	Abraham Garcia	Gilberto Ramírez	Trinity Gas Corp., Well 4	Mrs. H.B. Salinas	Duval County School Dist. #5 Ramirez School	Adolph Garcia	C. Palacios	
	TIBN	* JB-84-45-104	105	106	201	* 202	* 301	302	303	* 304	* 305	* 306	307	* 308	309	310	

- 80 -

	REMARKS	Perforated casing from 245 to 260, 270 to 290, 296 to 339, and 345 to 407 ft. Pump set at 408 ft. Estimated discharge 1,000 gpm. <u>U</u>	Originally drilled as oil test to 5,350 ft. Plugged back to 500 ft in 1967. Puni- set at 240 ft. Reported dis- charge 650 gpm.	Temp. 77°F (25°C).	1	Observation well. 2^{\prime}	Slotted casing from 190 to 420 fr. Pump set at 240 fr. Reported discharge 1,250 gpm.	Slotted casing from 240 to 370 ft. \underline{y}	ľ	1	Temp. 77°F (25°C).	ł	Formerly used as observation well.	1	Destroyed. Formerly used as observation well.	1	Pump not installed when visited. Perforated casing from 265 to 410 ft. Temp. 82°F (28°C).
	USE OF WATER	Irr	Irr	S	ß	ŝ	Irr	Irr	D	s	s	D, S	z	D, S	N	S	Irr
	METHOD OF LIFT	e G	T, G, 100	C, W	c,w	C, W	т, с	T,G	J, E, 1/2	1	C, W	C,W	Z	C, W	N	C, W	1
WATER LEVEL	DATE OF MEASUREMENT	Apr. 14, 1967	Oct. 7, 1969	Nuv. 18, 1969	do.	May 29, 1931 Mar. 19, 1970	Oct. 7, 1969	Oct. 8, 1969	Nov. 18, 1969	Nov. 19, 1969	Nov. 20, 1969	do.	Feb. 14, 1957 Mar. 4, 1958 July 13, 1960 Mar. 15, 1961	Nov. 21, 1969	May 30, 1931 Aug. 21, 1933 Feb. 17, 1934 Apr. 14, 1935	Nov. 18, 1969	Oct. 8, 1969
TAW	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	7.76	84.4	62.7	30.7	28.5 31.7	66.7	59.1	30.3	61.4	31.5	50.8	59.6 57.9 59.8	86.0	36.5 34.5 30.6 31.6	36.8	49.7
	ALTI- TUDE OF LAND SURFACE (FT)	414	905	375	383	344	365	345	369	340	330	352	327	318	374	399	347
	WATER BEARING UNIT	З	do.	.ob	.ob	.ob	do.	.op	.op	.op	do.	do.	.ob	.ob	•op	do.	do.
	DIAMETER OF CASING (IN)	12	10 3/4	4	9	ł	12	12 3/4	4	ę	Q	5?	4	4	ъ	9	12
	DEPTH OF WELL ((FT)	409	500	168	70	67	422	374	123	130±	150±	134	155	250	117	:11	410
	DATE COM- PLET- ED	1967	1953	1	:	plo	1965	1966	PIO	1	1	ł	I	1958	1914	1	1969
	DRILLER	H.AS. Mater Well Service	Pontiac Refining Co.	I	ı	1	H.&S. Water Well Service	do.	1	1	1	1	I	I	T.M. Coleman	1	Ramido Molino
	OWNER	Gilberto Villa	Abraham Guerra	Benito Villarreal	Ysidoro Almaraz	Mills Bennett	Garl Hofstetter	W.H. Armstrong	Charles Goates	Fred Bowman	A. Ramirez	Fred Bowman	Trinity Gas Corp.	0. Garcia	Leroy Denman	do.	Oscar Carrillo
	TTEM	* JB-84-45-401	402	403	707	* 501	502	503	* 504	505	601	602	603	604	* 701	703	802

- 81 -

	REMARKS	Pump not installed when visited. Perforated casing from 265 to 410 ft.	:	Water reported salty.	Perforated casing from 262 to 412 ft. Pump set at 261 ft.	Temp. 77°F (25°C).	:	Temp. 77°F (25°C). 2/	Measured flow 20 gpm.	Temp. 77°F (25°C).	Temp. 77°F (25°C).	Formerly used as observation well.	Drilled for irrigation, but never used. Slotted casing from 268 to 444 ft. Water reported salty from 131-146 ft. \underline{y}	1	Temp. 77°F (25°C).	Pumping level 128.7, Nov. 24, 1969.	Observation well. 2	Do.	Perforated casing from 236 to 276 ft.	Drilling in progress when visited Oct. 10, 1969.
	USE OF WATER	Irr	s	D,S	Irr	s	S	S	S	s	s	И	Z	μ	s	ß	D, S D, S	ŝ	Irr	Irr
	METHOD OF LIFT	ł	c,w	S, E, 1/3	н	:	c, W	a, c,	Flows	c, w	c, w	z	N	T, E, 15	c, c, 3	c,w	с, w с, w	с, и	T, G	I
WATER LEVEL	DATE OF MEASUREMENT	I	Nov. 17, 1969	1969	Oct. 8, 1969	Nov. 20, 1969	Nov. 21, 1969	May 28, 1931 Mar. 17, 1970	Nov. 24, 1969	Dec. 10, 1969	Nov. 24, 1969	May 26, 1931 Sept. 10, 1933 Dec. 16, 1969	Oct. 10, 1969	Oct. 9, 1969	Nov. 24, 1969	I	June 29, 1931 Nov. 22, 1969	Sept. 29, 1933 Mar. 17, 1970	1	ł
WATE	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	ł	22.8	30	7.67	44.5	39.6	62.6 60.3	+	98.5	106.6	26.7 26.8 58.8	112.5	115.0	4 4	1	49.6 104.8	30.5 32.4	I	1
-	ALTI- TUDE OF LAND SURFACE (FT)	ł	348	366	328	319	308	312	275	273	279	225	243	215	240	256	283	285	303	310
	WATER BEARING UNIT	â	.ob	do.	do.	do.	do.	.ob	To	Tg	do.	do.	do.	.ob	.ob	do.	do.	do.	•op	do.
	DIAMETER OF CASING (IN)	12	Ŋ	6	12	Q	ø	9	12	4	9	4	12 3/4	!	9	5 1/2	9	9	10 3/4	1
Ĩ	DEPTH OF WELL (FT)	410	80	90±	412	325?	125±	705	1,200±	150	134	240	448	ł	100	145	280±	115±	276	ł
	DATE COM - PLET - ED	1969	01d	1910±	1969	1969	1929	t	1950	1937	1937±	ł	1967	1	1937±	1940±	1917	P10	1963	1969
	DRILLER	Ramido Molíno	1	1	Ramido Molino	I	Barrera?	ł	C.G. Classcock	do.	I	I	H.&S. Water Well Service	Richardson Bros.?	ł	:	1	:	Disbro Water Well Service	Vickers Water Well Service
	OWNER	Oscar Carrillo	Mills Bennett	Eulalio Carbajal, Jr.	Horatio Ramirez	Mills Bennett	0.C. Garcia	Rafael Garcia	C.G. Glasscock	do.	do.	A. Saenz	Ben Schutz	Jose Mendez	C.G. Glasscock	do.	Mrs. Virginia Garcia	Rafael Garcia	Tony Jataine	do.
	WELL	JB-84-45-803	804	805	902	903	* 905	46-101	* 201	202	203	301	302	303	304	305	* 401	402	604	404

- 82 -

	REMARKS	Dug well with 8 x 5 ft curb.	Perforated casing from 290 to 300 ft.	Temp. 79°F (26°C).	Pump removed for repairs.	Perforated casing from 248 to 405 ft. Reported discharge 1,500 gpm. Temp. 79°F (26°C). <u>1</u>	Temp. 79°F (25 1/2°C).	Temp. 77°F (25°C).	Slotted casing from 264 to 314 ft. Pump set at 175 ft. Measured discharge 1,470 gpm. Observation well.	Perforated casing at 180 ft and 300 ft. Destroyed. For- merly used as observation well. 2/	Destroyed. Formerly used as observation well. 2	Observation well, $\underline{2}y$	Perforated casing 140 to 280 ft. Pump set at 240 ft. Maasured discharge 760 gpm. Measured drawdown 70 ft pumping 760 gpm for 5 hours.	Dug well with 5 x 8 ft curb.	Perforated casing from 230 to 300 ft. Pump set at 260 ft. Reported discharge 900 gpm. \underline{y}	Irrigated 50 fruit trees in 1969. Slotted casing 287 to 317 ft. Reported discharge 15 gpm. <u>y</u>
	USE OF WATER	ംഗ	Q	ŝ	Irr	Irr	s	ŝ	S, Irr	R	N	ŝ	Irr	ŝ	Irr	S, Irr
	METHOD OF LIFT	C, W	C, E, 3	с, и	ł	T, G	C, W	C, W	т, с	I L	N	C, W	Т, Е, 75	С, И	т, с, 75	s, E, 1 1/2
WATER LEVEL	DATE OF MEASUREMENT	Nov. 22, 1969	1969	Nov. 24, 1969	Oct. 11, 1969	1	Nov. 24, 1969	do.	June 20, 1960 Feb. 25, 1967 Feb. 20, 1968 Mar. 21, 1969	May 27, 1931 Feb. 8, 1956	Dec. 9, 1932 Feb. 15, 1957	May 29, 1931 Mar. 17, 1970	Oct. 9, 1969	Nov. 21, 1969	Oct. 11, 1969	Dec. 15, 1969
WATI	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	31.2	70	117.3	119.7	1	93.0	42.4	84.3 87.9 86.6 84.4	23.1 66.5	47.6 56.1	60.5 58.4	127.8	23.5	144,2	126.6
	ALTI- TUDE OF LAND SURFACE (FT)	277	I	282	258	255	270	266	232	202	1	292	290	289	286±	245
	WATER BEARING UNIT	Дg	.op	do.	do.	do.	do.	do.	do.	do.	.ob	do.	.ob	do.	•op	do.
	DIAMETER OF CASING (IN)	1	4	4	12	12 3/4	9	9	12	و	9	4 1/2	12	ſ	12 3/4	2
	DEPTH OF WELL (FT)	42	300	127±	280	405	120	100±	314	340	280	150	280	34	315	317
	DATE COM- PLET- ED	1880's	1956	1953	1966	1967	1937±	1937±	1956	ī ×	1	01d	1965	1900=	1965	1967
	DRILLER	;	Houston Nat, Gas Co.	Oil Company	Richardson Bros.	do.	1	1	Disbro Water Well Service	Ĩ	:		Richardson Water Well Service	ł	Richardson Water Well Service	Disbro Water Well Service
	OWNER	Virginia Garcia	Houston Nat. Gas Co.	C.G. Glasscock	D.O. Frazier	Marvin Dismukes	C.G. Glasscock	do.	M.T. Dismukes, Well I	Leroy Denman	Ruben Schultz	San Antonio Loan and Trust Company	D.O. Frazier	0.C. Garcia	Walter Blumer	Antonio Recio
	WELL	# JB-84-46-405	* 406	407	201	502	503	504	*	602	603	* 701	* 702	* 703	802	803

- 83 -

	REMARKS	Observation well. 2^{\prime}	Perforated casing from 440 to 444 ft. Originally drilled to 970 ft and plugged back to 444 ft. Drilled to 63 ft when visited in 1999. Formerly used as observation well.	Formerly used as observation well, $\underline{2}^{\prime}$	<pre>Perforated casing from 308 to 533 ft. 30-in. casing from 0 to 245 ft; 12-in. from 0 to 537 ft. Reported discharge 1,300 gpm. <u>U</u></pre>	Perforated casing from 348 to 380 ft, and 393 to 460 ft. Pump set at 200 ft. Re- ported discharge 1,000 gpm.	Perforated casing from 377 to 517 ft. Temp. $81^{\circ}F$ (27°C).	Destroyed. Formerly used as observation well. $\underline{2}$	Formerly used as observation well. $\underline{2}$	Perforated casing from 375 to 407 ft. Pump set at 147 ft. \underline{J}	500 ft surface casing. Con- verted to water well in 1965. Estimated discharge 700 gpm.
	USE OF WATER	N	z	S	Irr	Itr	S	z	D,S	D, S	Itr
	METHOD OF LIFT	N	z	C, W	T, G	T, G	S, E, 2	ł	S, E, 1/2	S, E, 1 1/2	T, G
EV EL	DATE OF MEASUREMENT	6, 1948 17, 1970	14, 1947 6, 1948 20, 1949	. 5, 1953 . 15, 1969	. 16, 1968	do.	. 15, 1969	. 6, 1932 . 18, 1954	. 6, 1948 . 18, 1934	18, 1968 14, 1969	1
WATER LEVEL	R.	Feb. Mar.	Feb. Feb.	Feb. Dec.	Jan.	l.	Dec.	Jan. Feb.	Feb.	Jan. Dec.	
MA	ABOVE (+) OR BELOW LAND SUR- FACE DATUM (FT)	53.7 96.1	60.4 64.5 68.8	81.3 121.7	0.111	113.8	0,111	36.5 76.2	57.4 76.2	121.4 120.3	I
	ALTI- TUDE OF LAND SURFACE (FT)	197	226	230	200	190	198	198	198	186	197
	WATER BEARING UNIT	Ig	do.	.ob	do.	do.	.ob	do.	.ob	do.	do.
	DIAMETER OF CASING (IN)	4 1/2	m	S	30, 12	I	12	5 3/4	5 1/2	2	10 3/4
	DEPTH OF WELL (FT)	200±	63±	330±	537	460	517	295	180?	412	1
	DATE COM- PLET- ED	I	1938	1953	1965	1961±	1963	1915	1948	1963	1
	DRILLER	Argo Oil Company	Q	Rupp Water Well Service	H.6S. Water Well Service	A. Porter & Son	H.&S. Water Well Service	I	ł	A. Porter & Son	Argo Oil Company
	OWNER	Rufino Carcia, Jr.	Santana Hinojosa Estate	do.	Walter Storm	do.	Ramon Garza	Clyde Crook	do.	Clyde Burdette	Rufino Garcia, Jr.
	TTAM	JB-84-46-901	902	606	47-404	406	407	702	703	710	711

Chemical analysis available, see Table 11.
 Priller's log available, see Table 10.
 Additional water levels available, see Table 9.
 Electric log available in U.S. Geological Survey or Texas Water Development Board files.

- 84 -

Table 8.-Oil and Gas Wells Selected as Data-Control Points

WELL	OPERATOR	LEASE AND WELL	SURVEY SECTION OR GRANT	DATE OF LO
JB-78-58-801	Texita Oil Company and E. W. Gill	F. L. Friedrichs No. 1	J. N. Gibson No. 344	Jan. 13, 19
60-705	Atlantic Refining Company	J. R. Foster No. 30	J. R. Foster No. 200	Mar. 17, 19
61-501	Gorman Drilling Company	Ferguson-State No. 2	Labbe No. 104	Sept. 17, 19
701	Gorman and DeLange	Gray Ranch No. 1	E. R. Gray No. 560	May 15, 19
62-501	Morgan and Wynne	T. M. Brookshire No. 1	J. Poitevent No. 79	Nov. 16, 194
84-02-302	Richardson Oil Company	Warden and Drought No. 2	Juan L. Saen No. 154	Apr. 19, 19
901	Magnolia Petroleum Co.	D.C.R.C. No. 1	G.C. & S.F. No. 273	June 23, 194
03-602	Sun Oil Co.	L. Wiederkehr No. 134	J. Poitevent No. A-430	Nov. 23, 19
701	Magnolia Petroleum Co.	D.C.R.C. No. 9	C.C.S.D. & G.N.G. A-699	Apr. 2, 19
04-103	The Texas Co.	D.C.R.C. "B" NCT 32 No. 1	J. Poitevent No. 203	Sept. 11, 195
302	Blanco Oil Co. & Al Buchanan	Jas. F. Welder Heirs No. W-1	J. Poitevent No. 385	June 27, 19!
901	J. W. Gorman	Leo Welder No. 1	Arnold and Barrett A-47 No. 551	Feb. 8, 195
05-404	Gorman Drilling Co.	Farmers Life Insurance Co.	S.K. & K. No. 557	Feb. 13, 194
901	Camp Oil Co. & R. L. Kirkwood	J. F. Welder No. 1	A. J. Ridder No. 222	May 6, 195
06-201	Leavitt Corning, Jr.	Duwel Co. No. 3	E. G. Garza No. 92	Sept. 25, 195
401	H. & J. Drilling Co. and S. E. Thomas	Duwel Co. No. 1	E. G. Garza No. 142	Aug. 19, 196
701	H. J. Porter	D. Fitzsimmons C-1	J. Poitevent No. 293	Sept. 20, 195
802	Clardy & Barnett	First Natl. Bank of Mathis No. 1	S. Blankenship A-1593	May 6, 195
11-604	Duval Oil Company	Bishop Cattle Co. No. 39	G.B. & C.N.G. No. 135	July 28, 195
12-104	The Texas Company	D.C.R.C. (NCT 54) No. 1	Gonzalo Garza No. 76	Mar. 10, 195
802	Sun Oil Company	W. K. Hoffman No. 2	B.S. & F. No. 115	July 6, 195
13-202	American Republics Corporation	Duwel Co. No. 4	Julian Reyes No. 550	Aug. 20, 194
403	H. L. Hunt	C. G. Palacios No. 1	F. R. Knight No. 8	June 27, 195
601	J. B. Blanchard	E. A. Parr No. 1-134	N. Rogers No. 134	Mar. 5, 194
602	Bridwell Oil Co.	Parr B-1	E. Pena No. 64	Jan. 28, 194
804	Argo Oil Company	M. H. Cohn Est. No. 1	A. Cantu No. 184	Dec. 10, 194
905	J. B. Blanchard	V. Carrillo Heirs No. 1	A. Cantu No. 310	Sept. 16, 194
906	The Texas Co.	Cenobia Cantu, Jr. No. 1	Benito Ramos No. 11	Apr. 4, 194
14-103	C. C. Winn	C. G. Rogers No. 6	J. Poitevent No. 273	June 27, 195
503	Taylor Rfg. Co.	Parr Moffett No. G-2	S.A. & M.G. No. 6	Dec. 9, 195
702	G. L. Rowsey	Mrs. A. B. Cuellar No. 1	B.S. & F. No. 305	Mar. 1, 195
904	Sun Oil Co.	E. B. Garcia No. 1	San Diego de Arriba Grant	Aug. 25, 195
19-203	Gasoline Prod. Co. et al	Arnstine (Weil) No. 1	B. Elizondo No. 568	Oct. 23, 1949
402	Tiger Minerals, Inc. et al	W. R. Peters No. B-2	G.B. & C.N.G. No. 37	Jan. 9, 195

Table 8.-Oil and Gas Wells Selected as Data-Control Points-Continued

WELL	OPERATOR	LEASE AND WELL	SURVEY SECTION OR GRANT	DATE	OF LOG
B-84-19-505	Jake L. Hamon	Dougherty Unit HG-56	B.S. & F. No. 195	Oct.	15, 1958
701	Humble Oil & Refining Co.	V. Kohler No. A-63	J. Poitevent No. 163	Aug.	26, 1950
20-103	George D. Weatherston et al	O. Carrillo, Sr. et al No. 1	J. Poitevent No. 493	Aug.	25, 1957
601	Oliver Oil Co.	K. L. Shaeffer No. 1	A. Collins No. 146		-2010
702	Cox and Hamon	C. Driscoll No. 1	Santa Rosalia Grant	Aug.	22, 1944
	Russell Maguire	A, J. Wiederkehr No. 1	J. Poitevent No. 129	May	2, 1939
21-102 203	Luling Oil & Gas. Company	Danciger Oil & Refining Co. No. 1	J. Salinas No. 18	Oct.	19, 1941
306	Argo Oil Company	Carrillo Heirs No. 1	A.B. & M. No. 183	Mar.	4, 1945
	H. H. Howell	Jane Schallert No. 1	S.M. & S. No. 255	Dec.	21, 1946
506	do.	Lizzie Singer C-1	S.K. & K. No. 247	Sept.	20, 1947
507		Lizzie Singer No. 3	Geo. Cumberland No. 4	July	28, 1946
605	do.	J. P. Luby No. 1	S.G.I. Co. No. 147	Dec.	3, 195:
704	O, Neathery, Jr.		S.A. & M.G. No. 111	Apr.	7, 193
22-603	Magnolia Pet. Co.	W. K. Hoffman No. 1	J. Broyles No. 245	Aug.	7, 193
705	Frank J. Gravis	J. C. Megerle No. 1		Nov.	20, 195
26-302	Hiawatha Oil & Gas Company	Gruy Estate No. 1	Jas. Stephenson No. 251	May	26, 195
27-202	Hamon, Cox, & Coates	Dagmar-Gruy No. 1	N. Gussett No. 28		
404	Pantex Corporation	A. Perez et al	T. & N.O. No. 141	Nov.	29, 194
601	The Texas Company	D. C. Chapa No. 6	J. Poitevent No. 149	Dec.	27, 195
906	Argo Oil Corp.	J. M. Bennett No. 19	C.E.P.I. & M. Co. No. 37	June	20, 195
28-101	Hamon, Camp, Maguire, and Cox	C. Driscoll Est. A-8	Santa Rosalia Grant 476	Feb.	10, 195
804	Continental Oil Company	C. Driscoll Est. B-42	U. Lott No. 484	Nov.	2, 194
29-204	Lee Corkill	Mrs. R. G. Tonkin No. 1	P. Benavides No. 428	May	2, 193
503	Pratt-Hewitt Oil Corp.	V. M. Hooper No. 1	Sweden Farm Lots Sec. No. 17	Jan.	1, 199
30-103	Mills Bennett-DelMar Drilling Company	Oliveria No. 1	H. & G.N. Sec. 373	May	30, 195
402	Sun Oil Company	Hermilio Salinas No. 1	San Andreas Grant	Aug.	16, 19
403	Sun Oil Company	L. Garcia "B" No. 1	San Andreas Grant	Sept.	18, 19
502	Ussery Drilling Co.	A. McNeil Est. 1-A	Las Anaguas Vicente Ynojosa Grant	June	20, 19
902	Lewis Maples	F. C. and C. C. Allen No. 1	Las Anaguas Vicente Ynojosa Grant	July	9, 19
34-901	Graham & McClain	Juan Benavides et al	Mesquite Oil & Gas and J. Carpenter Subd. 1 Sh5	Feb.	2, 19
35-403	Hamill & Smith	Juan Benavides No. 2	Mesquite Oil & Gas and J. Carpenter Subd. 3	Aug.	19, 19;
508	Cox and Hamon	Juan Benavides No. 1	B.S. & F. No. 462	Nov.	17, 194
604	Frank Zoch, Jr.	John Dunn No. 1	Diego Ynojosa Grant A-629	July	11, 19
903	C. G. Glasscock	Mary Dunn No. 1-A	do.	Nov.	19, 19
36-503	W. L. Cotton et al	K. L. Shaeffer No. 1	Jas. Luby Sh.3, Tr. 7	Sept.	4, 19

WELL	OPERAT	TOR	LEASE A	NDWELL	5	URVEY SECTION OR GRANT	DAT	E OF LOC
JB-84-36-704	John F. Camp		E. J. Miller No.		and the second sec	lo Hinojosa Grant A 628	Apr.	6, 195
37-105	M. M. Miller & So	ns	Miller Fee No.	E 1 Contractor (State	Ball R	anch Subd os Flores Grant	Apr	26, 195
406	Southern Minerals Corporation		Leroy Denman		Copita	a Farms and ens Subd. Blk. 84	June	10, 194
506	F. William Carr		M. M. Miller No	5.1 (1977) we		anch Subd., Andreas Grant	Nov	21, 196
38 106	Synura Corporatio	on	Atlee Parr No.	E-2		, Wheeler ne Subd.	Apr.	7, 195
303	Daubert & Dolch	100-2	Thomas Saenz	No. 1	La Hu	erta Grant Blk. 6	June	18, 195
810	Finley Company		Alfredo Stillma	in No. 1	La Hu	erta Grant Share 8	Sept.	9, 195
43-101	Valor Oil Co.		J. T. Rogers No	5. 1	The Provide States of	Maria de los les de Abajo	TRACE INC.	
44-202	Farenthold & Pitc	airn	E. Canales No.	1 ANNE TH		o Hinojosa t, Share 28	June	6, 195
45-605	Trinity Gas Corp.	100	Guerra No. 1	2.54	Pedro	de Charco Redondo	Feb.	20, 194
704	Frank Zoch, Jr.		Leroy Denman	No. 2		Farm and en Tracts	June	12, 195
46-306	Head, Welsh & Lut	fkin	H. Wolfe No. 1	1997 I.M.		ancisco Grant 5, Lot 5	Aug.	23, 195
307	Appell Drilling Co.	£	T. S. Del Mende		San Fr	ancisco Grant A-216	Jan.	17, 195
408	Don H. Marsh et al		O. G. de Olivare			Cruz de la epcion Blk. 7	Nov.	7, 195
505	Santa Clara Oil Coi	mpany	Glasscock No. 1			Cruz de la apcion Grant	Mar.	13, 193
604	Argo Oil Company	1.64	Kuntz Lumber (Company No. 1	Los Oli	mos Grant A-346	Oct.	7, 194
906	do.	-	R. Garcia No. 1			do.	Sept.	26, 194
	1	1 K	14	19-51 / S.	22.1	- T	211.4.10	
出 化用口				11.55 7				0
				1801				
			1011-0110					
				10446				
				2011/1 51				
				Print St.				
			(1819) 11	$h \oplus c_*(i)$				

Table 8.-Oil and Gas Wells Selected as Data-Control Points-Continued

Table 9.-Water Levels in Wells

(Depth to water in feet below land surface)

D	ATE	WATER	D	ATE	WATER	DA	ATE	WATER
U				B-84-12-301-0	Continued		Well JB-84-12-	401
	Well JB-84-04-				138.21	0	wner: Poncian	o Ruiz
Owner	r: Humble Oil 8	75 1921-1924	Мау	20, 1965	139.28	Mar.	10, 1960	150.27
Mar.	25, 1964	66.44	July	26, 1965	169.60	Mar.	25, 1964	122.50
Feb.	15, 1965	63.78	Sept.	24, 1965	139.86	Feb.	15, 1965	117.28
Feb.	21, 1966	64.59	Nov.	20, 1965	139.80	Feb.	21, 1966	119.67
Feb.	25, 1967	64.88	Jan.	27, 1966	139.37	Feb.	25, 1967	121.24
Feb.	21, 1968	65.09	May	23, 1966		Feb.	21, 1968	118.68
Mar.	19, 1969	63.82	July	29, 1966	138.83	Mar.	19, 1969	118.17
Mar.	18, 1970	60.33	Sept.	23, 1966		Sept.	19, 1969	129.90
	Well JB-84-04	-707	Nov.	17, 1966	136.92	Mar.	18, 1970	121.42
	Owner:Whit	taker	Jan.	23, 1967	139.29		Well JB-84-13	
Mar.	24, 1964	105.93	Feb.	25, 1967	137.44			
Feb.	15, 1965	103.04	Mar.	10, 1967	139.00		wner: Severo	
Feb.	21, 1966	106.30	Мау	27, 1967	149.25	Sept.	26, 1933	35.02
Feb.	25, 1967	113.64	July	21, 1967	143.87	Feb.	16, 1934	36.23
Feb.	21, 1968	108.88	Oct.	19, 1967	171.60	Dec.	11, 1934	37.73
Oct.	19, 1969	139.0	Nov.	17, 1967	142.81	Apr.	12, 1935	37.40
Mar.	18, 1970	110.75	Feb.	1, 1968	144.09	Jan.	31, 1936	36.32
	Well JB-84-12	-101	Mar.	23, 1968	149.49	July	15, 1937	34.86
	Owner: W. C. I	Kelley	May	25, 1968	146.26	Jan.	25, 1938	35.82
Mar.	25, 1964	166.90	July	9, 1968	138.15	Oct.	14, 1938	37.29
Feb.	15, 1965	156.80	Sept.	12, 1968	136.26	Apr.	6, 1939	36.06
Feb.	21, 1966	161.19	Nov.	19, 1968	140.16	Oct.	5, 1939	35.21
Feb.	25, 1967	162.34	Jan.	23, 1969	147.29	Feb.	12, 1940	36.17
Feb.	21, 1968	159.92	Mar.	19, 1969	139.94	Feb.	3, 1941	34.20
Mar.	19, 1969	156.83	Мау	19, 1969	138.89	Feb.	9, 1943	31.34
Mar.	18, 1970	148.32	July	23, 1969	144.81	Mar.	6, 1945	33.45
	Well JB-84-1	2-301	Sept.	24, 1969	143.39	Feb.	12, 1947	33.81
	Owner: Percy I	Howard	Oct.	13, 1969	143.09	Feb.	5, 1948	34.80
Feb.	1959	120	Dec.	9, 1969	144.02	Feb.	5, 1949	34.06
Mar.	24, 1964	150.00	Feb.	13, 1970	138.70	Feb.	6, 1950	35.67
May	28, 1964	154.08	Apr.	10, 1970	138.82	Feb.	26, 1951	35.60
July	23, 1964	145.69	June	19, 1970	141.12	Feb.	7, 1952	34.81
Oct.	3, 1964	139.76	Aug.	11, 1970	144.80	Feb.	5, 1953	36.58
Nov.	19, 1964	146.28	Oct.	20, 1970	143.89	Feb.	18, 1954	34.66
Feb.	15, 1965	137.42	Dec.	11, 1970	145.04	Feb.	10, 1955	34.88
Mar.	26, 1965	167.94				Feb.	8, 1956	36.12
	077471.00437427.37							

	DATE	WATER LEVEL		DATE	WATER LEVEL	I	DATE	WATER
Well	I JB-84-13-801-	-Continued	Well	JB-84-13-901-	Continued	Well	JB-84-13-902-	Continued
Feb.	14, 1957	35.51	Apr.'	6, 1939	75.44	Feb.	6, 1950	51.21
Mar.	4, 1958	29.71	Feb.	12, 1940	72.16	Feb.	26, 1951	58.51
July	13, 1960	30.27	Feb.	3, 1941	72.49	Feb.	7, 1952	55.90
Mar.	15, 1961	31.88	Feb.	9, 1943	75.44	Feb.	5, 1953	60.53
Mar.	23, 1962	32.92	Mar.	6, 1945	75.79	Feb.	18, 1954	60.89
Feb.	14, 1963	34.20	Feb.	12, 1947	67.34	Feb.	10, 1955	61.62
Mar.	24, 1964	34.47	Feb.	5, 1948	69.83	Feb.	8, 1956	65.44
Feb.	15, 1965	35.70	Feb.	15, 1949	69.50	Feb.	14, 1957	66.15
Feb.	21, 1966	36.43	Feb.	6, 1950	67.67	Mar.	14, 1958	61.27
Feb.	25, 1967	34.65	Feb.	7, 1952	69.70	July	13, 1960	62.74
Oct.	19, 1967	31.91	Feb.	5, 1953	73.05	Mar.	15, 1961	50.53
Nov.	17, 1967	32.61	Feb.	18, 1954	74.88	Mar.	23, 1962	53.00
Feb.	21, 1968	33.81	Feb.	10, 1955	77.09	Feb.	14, 1963	48.00
Mar.	19, 1969	29.91	Feb.	8, 1956	76.75	Mar.	24, 1964	49.80
Mar.	18, 1970	33.06	Feb.	14, 1957	78.06	Feb.	15, 1965	51.71
	Well JB-84-13	3-802	Mar.	4, 1958	70.76	Feb.	21, 1966	57.24
	Owner: Cecilio	Valerio	July	13, 1960	73.02	Feb.	25, 1967	56.82
Apr.	2, 1931	37.60	Mar.	15, 1961	61.50	Feb.	21, 1968	55.13
Aug.	22, 1933	38.41	Mar.	23, 1962	83.88	Mar.	19, 1969	54.44
Feb.	16, 1934	37.71	Feb.	14, 1963	64.54	Mar.	18, 1970	41.12
Apr.	12, 1935	39.08	May	1, 1970	57.41		Well JB-84-13	-903
Feb.	18, 1936	37.50		Well JB-84-13	3-902		Owner: Cantu	Estate
July	15, 1937	37.14		Owner: Cantu	Estate	June	9, 1931	56.00
Jan.	25, 1938	37.13	Sept.	6, 1931	79.00	Aug.	22, 1933	49.18
Apr.	6, 1939	39.12	Oct.	25, 1933	60.80	Feb.	16, 1934	48.97
Feb.	12, 1940	35.70	Feb.	16, 1934	59.87	Feb.	18, 1936	45.95
Feb.	3, 1941	35.56	Dec.	11, 1934	62.50	July	15, 1937	46.42
Feb.	9, 1943	33.51	Apr.	12, 1935	62.62	Jan.	25, 1938	53.14
Mar.	6, 1945	35.35	Jan.	31, 1936	55.84	Apr.	6, 1939	51.79
	Well JB-84-13	3-901	July	15, 1937	54.69	Feb.	12, 1940	51.11
	Owner: Juan P	eralez	Jan.	25, 1938	54.45	Feb.	3, 1941	51.47
Sept.	26, 1933	74.79	Мау	3, 1938	61.90	Feb.	5, 1948	48.44
Feb.	16, 1934	74.58	Apr.	6, 1939	57.27	Feb.	15, 1949	51.17
Apr.	12, 1935	75.63	Oct.	5, 1939	61.10	Feb.	6, 1950	47.53
Feb.	18, 1936	74.15	Feb.	12, 1940	58.56	Feb.	26, 1951	52.16
July	15, 1937	71.40	Feb.	3, 1941	58.82	Feb.	7, 1952	52.10
Jan.	25, 1938	71.54	Feb.	9, 1943	49.66	Feb.	5, 1953	56.10

C	DATE	WATER LEVEL	C	DATE	WATER LEVEL	C	DATE	WATER LEVEL
Well	JB-84-13-903-	Continued		Well JB-84-14	-403	Well	JB-84-14-701-	Continued
Feb.	18, 1954	54.76	Owr	ner: Jose Maria	Sepulveda	Nov.	16, 1933	60.74
Feb.	10, 1955	56.31	Sept.	26, 1933	45.46	Dec.	11, 1934	63.61
Feb.	8, 1956	57.10	Feb.	16, 1934	43.49	Apr.	12, 1935	64.12
Feb.	14, 1957	56.83	Apr.	12, 1935	54.28	Jan.	31, 1936	57.20
Mar.	4, 1958	52.63	Jan.	31, 1936	30.52	Feb.	18, 1936	57.62
July	13, 1960	53.96	July	15, 1937	41.06	July	15, 1937	57.88
	Well JB-84-13	-904	Jan.	25, 1938	43.83	Jan.	31, 1938	59.31
c)wner: Helena c	le Peña	Oct.	5, 1939	43.20	Oct.	14, 1938	62.13
June	9, 1931	43.50	Feb.	12, 1940	43.40	Apr.	6, 1939	61.27
Aug.	22, 1933	40.27	Feb.	3, 1941	45.25	Oct.	5, 1939	60.85
Feb.	16, 1934	37.89	Feb.	9, 1943	36.87	Feb.	12, 1940	62.10
Apr.	12, 1935	45.06	Mar.	6, 1945	46.28	Feb.	3, 1941	61.38
Jan.	31, 1936	40.75	Feb.	12, 1947	36.06		Well JB-84-14	4-801
July	15, 1937	29.31	Feb.	5, 1948	39.85		Owner: L. N.	Garcia
Jan.	25, 1938	29.80	Feb.	15, 1949	43.66	June	8, 1931	73.00
Apr.	6, 1939	41.00	Feb.	7, 1952	44.87	Aug.	22, 1933	53.63
Feb.	12, 1940	40.63	Feb.	18, 1954	34.90	Feb.	16, 1934	49.72
Feb.	3, 1941	44.23	Feb.	10, 1955	40.56	Apr.	12, 1935	48.14
Feb.	9, 1943	27.39	Feb.	8, 1956	42.10	Jan.	31, 1936	39.40
Mar.	6, 1945	28.60	Feb.	14, 1957	41.91	July	15, 1937	57.71
Feb.	12, 1947	41.28	Mar.	14, 1958	22.46	Jan.	25, 1938	41.03
Feb.	5, 1948	39.48	July	13, 1960	25.72	Apr.	6, 1939	49.90
Feb.	15, 1949	40.49		Well JB-84-14	1-404	Feb.	12, 1940	54.35
Feb.	6, 1950	39.23	Owner	: Taylor Refin	ng Company	Feb.	3, 1941	50.47
Feb.	26, 1951	45.77	Feb.	12, 1947	83.73	Mar.	6, 1945	48.38
Feb.	7, 1952	41.11	Feb.	5, 1948	85.28	Feb.	12, 1947	61.82
Feb.	5, 1953	44.40	Feb.	15, 1949	87.00	Feb.	5, 1948	50.02
Feb.	18, 1954	42.65	Feb.	7, 1952	87.22	Feb.	15, 1949	50.27
Feb.	10, 1955	44.02	Feb.	18, 1954	81.85	Feb.	6, 1950	52.93
Feb.	8, 1956	44.77	Feb.	10, 1955	84.10	Feb.	5, 1953	50.42
Feb.	14, 1957	44.45		Well JB-84-14	1-701	Feb.	18, 1954	44,44
Mar.	4, 1958	39.65		Owner: Cuellar	Estate	Feb.	10, 1955	48.72
July	13, 1960	42.60	June	9, 1931	64.00	Feb.	8, 1956	49.87
Mar.	15, 1961	34.90	Aug.	22, 1933	61.58	Feb.	14, 1957	50.23
Mar.	23, 1962	35.54	Sept.	9, 1933	61.51	Mar.	4, 1958	44.26
Feb.	14, 1963	37.20	Sept.	25, 1933	61.20	July	13, 1960	45.17
Мау	1, 1970	36.07	Oct.	11, 1933	60.77	Mar.	15, 1961	35.41

•

Table 9.-Water Levels in Wells-Continued

ļ	DATE	WATER LEVEL	ļ	DATE	WATER LEVEL	. 3	DATE	WATER LEVEL
	Well JB-84-1	5-702	Well	JB-84-15-702-	Continued	Well	JB-84-22-801-	Continued
Owne	r: City of San I	Diego, old well 1	Feb.	13, 1970	211.10	Feb.	21, 1966	37.96
Mar.	24, 1964	238.11	Apr.	10, 1970	225.18	Feb.	25, 1967	36.20
May	28, 1964	238.22	June	19, 1970	244.90	Oct.	19, 1967	34.00
July	23, 1964	255.08	Aug.	11, 1970	203.22	Nov.	17, 1967	34.63
Oct.	3, 1964	234.44	Oct.	20, 1970	258.92	Feb.	19, 1968	34.17
Nov.	19, 1964	255.88	Dec.	11, 1970	264.00	Mar.	20, 1969	33.68
Feb.	15, 1965	227.42		Well JB-84-22	-801	Mar.	18, 1970	33.50
Mar.	26, 1965	235.39	c	Owner: Cervand	o Saenz		Well JB-84-22	-902
May	20, 1965	255.73	May	25, 1931	41.00		Owner:Ga	rcia
Sept.	24, 1965	286.50	Oct.	27, 1933	35.62	May	15, 1931	57.50
Nov.	20, 1965	244.67	Feb.	16, 1934	35.52	Aug.	22, 1933	56.08
Jan.	27, 1966	216.20	Apr.	13, 1935	36.00	Feb.	16, 1934	55.80
Feb.	21, 1966	229.88	Feb.	1, 1936	35.30	Feb.	1, 1936	53.15
Mar.	28, 1966	229.58	July	16, 1937	35.48	July	16, 1937	52.52
May	23, 1966	234.75	Jan.	25, 1938	34.10	Jan.	25, 1938	52.89
July	29, 1966	244.25	Apr.	6, 1939	36.05	Apr.	6, 1939	53.55
Sept.	23, 1966	241	Feb.	13, 1940	35.28	Feb.	13, 1940	54.34
Nov.	17, 1966	194.98	Feb.	3, 1941	35.83	Feb.	4, 1941	55.27
Jan.	23, 1967	181.11	Feb.	9, 1943	34.88	Feb.	9, 1943	52.22
Feb.	25, 1967	178.10	Mar.	6, 1945	34.68	Mar.	6, 1945	49.61
Mar.	10, 1967	184.91	Feb.	13, 1947	34.28	Feb.	13, 1947	49.27
May	27, 1967	233.07	Feb.	5, 1948	34.31	Feb.	5, 1948	50.80
July	21, 1967	260.10	Feb.	15, 1949	34.70	Feb.	15, 1949	52.29
Oct.	19, 1967	242.90	Feb.	6, 1950	34.50	Feb.	6, 1950	59.41
Nov.	17, 1967	225.80	Feb.	26, 1951	35.77	Feb.	26, 1951	56.34
Feb.	1, 1968	227.68	Feb.	7, 1952	34.98	Feb.	7, 1952	53.70
Mar.	23, 1968	233.41	Feb.	5, 1953	35.02	Feb.	5, 1953	57.50
May	25, 1968	230.60	Feb.	18, 1954	34.70		Well JB-84-22	903
July	9, 1968	227.85	Feb.	8, 1956	35.66		Owner: Alaniz I	Estate
Sept	2, 1968	228.68	July	14, 1957	36.04	Sept.	28, 1933	45.45
Nov	19, 1968	225.91	Mar.	4, 1958	35.47	Oct.	15, 1933	45.78
Jan	23, 1969	229.22	July	13, 1960	34.60	Feb.	16, 1934	46.45
Mar.	19, 1969	228.81	Mar.	15, 1961	33.90	Apr.	13, 1935	46.90
vlay	19, 1969	211.22	Mar.	22, 1962	34.21	Feb.	17, 1936	41.35
Sept.	22, 1969	248.00	Feb.	14, 1963	34.31	July	16, 1937	42.99
Oct.	13, 1969	213.48	Mar.	24, 1964	35.38	Jan.	25, 1938	43.52
Dec.	9, 1969	214.22	Feb.	15, 1965	34.84	Apr.	6, 1939	46.32

Table 9.-Water Levels in Wells-Continued

D	ATE	WATER LEVEL	D	ATE	WATER	DA	ATE	WATER LEVEL
Well J	B-84-22-903-0	Continued	Well J	B-84-29-305C	Continued	Well J	B-84-29-306—	Continued
Feb.	13, 1940	45.53	Feb.	13, 1947	43.74	Feb.	6, 1950	34.34
Feb.	3, 1941	45.87	Feb.	5, 1948	44.85	Feb.	26, 1951	35.90
Feb.	9, 1943	38.63	Feb.	15, 1949	46.34	Feb.	7, 1952	36.34
Mar.	6, 1945	39.79	Feb.	7, 1950	46.31	Feb.	5, 1953	33.85
Feb.	13, 1947	39.30	Feb.	26, 1951	57.78	Feb.	18, 1954	33.58
Feb.	5, 1948	41.11	Feb.	4, 1952	46.40	Feb.	10, 1955	34.42
Feb.	15, 1949	42.83	Feb.	5, 1953	47.37	Feb.	8, 1956	34.00
Feb.	6, 1950	40.88	Feb.	18, 1954	45.08	Feb.	14, 1957	35.71
Feb.	26, 1951	43.75	Feb.	10, 1955	46.38	Mar.	4, 1958	32.69
Feb.	7, 1952	37.89	Feb.	18, 1956	46.07	July	3, 1960	31.17
Feb.	5, 1953	42.85	Feb.	14, 1957	47.20	Mar.	15, 1961	32.82
	Well JB-84-29	-302	Mar.	4, 1958	44.24	Mar.	22, 1962	33.97
Owner	: City of Benav	vides, old well 2	July	13, 1960	44.52	Feb.	14, 1963	34.66
Mar.	25, 1964	93.91	Mar.	16, 1961	44.11	Mar.	24, 1964	34.80
Feb.	15, 1965	86.16	Mar.	22, 1962	44.69	Feb.	15, 1965	36.16
Feb.	22, 1966	83.45	Feb.	14, 1963	43.80	Feb.	21, 1966	44.88
Feb	25, 1967	69.24	Mar.	24, 1964	45.46	Feb.	25, 1967	36.31
Feb.	19, 1968	67.02	Feb.	15, 1965	48.26	Oct.	19, 1967	34.15
Mar.	20, 1969	67.72	Feb.	21, 1966	51.32	Nov.	17, 1967	34.00
Mar.	18, 1970	62.66	Feb.	25, 1967	49.14	Feb.	19, 1968	34.64
	Well JB-84-29	9-305		Well JB-84-29	-306	Mar.	20, 1969	34.39
Ow	ner: Mrs. Tom	Cavanaugh		Owner: S. R	luiz	Mar.	18, 1970	38.44
Sept.	27, 1933	50.43	Oct.	26, 1933	41.43		Well JB-84-2	9-307
Oct.	26, 1933	48.14	Feb.	5, 1934	40.50		Owner: Ramo	n Peña
Feb.	11, 1934	48.39	Apr.	13, 1935	41.08	Sept.	20, 1933	45.00
Dec.	7, 1934	51.01	Jan.	31, 1936	40.00	Feb.	5, 1934	44.10
Apr.	13, 1935	52.15	July	15, 1937	39.96	Apr.	13, 1935	45.15
Jan.	31, 1936	42.92	Jan.	25, 1938	40.11	Jan.	31, 1936	43.65
July	16, 1937	42.55	Oct.	17, 1938	40.17	July	16, 1937	41.82
Jan.	25, 1938	43.56	Apr.	6, 1939	41.29	Jan.	25, 1938	42.63
Oct.	17, 1938	44.39	Feb.	13, 1940	39.88	Oct.	6, 1939	41.97
Apr.	7, 1939	44.49	Feb.	3, 1941	38.02	Feb.	13, 1940	40.64
Oct.	6, 1939	45.54	Feb.	9,1943	36.70	Feb.	3, 1941	39.99
Feb.	13, 1940	42.98	Mar.	7, 1945	34.44	Feb.	9, 1943	35.40
Feb.	3, 1941	46.48	Feb.	13, 1947	35.16	Mar.	7, 1945	35.15
Feb.	9, 1943	40.07	Feb.	5, 1948	35.75	Feb.	13, 1947	34.98
Mar.	7, 1945	40.36	Feb.	15, 1949	36.35	Feb.	5, 1948	36.16

Table 9.—Water Levels in Wells—Continued

DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	Ē	WATER
Well JB-84-29-307-	Continued	Well JB-84-29-501	-Continued	v	/ell JB-84-30	-101
Feb. 15, 1949	36.88	Feb. 8, 1956	93.9 0	Ow	ner: Ismael (Garcia
Feb. 6, 1950	34.28	Feb. 14, 1957	95.35	Sept. 2	8, 1933	44.85
Feb. 18, 1954	34.78	Mar. 4, 1958	91.79	Feb. 1	7, 1934	45.17
Well JB-84-29	9-308	July 13, 1960	92.37	Apr. 1	3, 1935	48.05
Owner: Ramor	n Peña	Mar. 22, 1962	91.75	Feb.	1, 1936	44.52
Sept. 20, 1933	45.67	Well JB-84-	29-502	July 1	6, 1937	44.80
Feb. 5, 1934	45.30	Owner: Floyd	Emerson	Jan. 2	5, 1938	46.96
Apr. 13, 1935	46.30	Sept. 9, 1933	93.27	Apr.	6, 1939	48.99
Feb. 17, 1936	43.76	Feb. 5, 1934	92.09	Feb. 1	3, 1940	48.57
July 16, 1937	42.76	Apr. 13, 1935	92.45	Feb.	3, 1941	49.83
Jan. 25, 1938	43.45	Jan. 30, 1936	90.90	Feb.	3, 1943	46.30
Apr. 6, 1939	43.90	July 16, 1937	91.38	Mar.	7, 1945	46.81
Feb. 13, 1940	41.54	Jan. 25, 1938	90.27	Feb. 1	3, 1947	46.56
Feb. 3, 1941	41.11	Apr. 7, 1939	89.65	Feb.	5, 1948	48.43
Feb. 9, 1943	36.06	Feb. 14, 1940	90.65	Feb. 1	5, 1949	50.26
Mar. 7, 1945	36.29	Feb. 4, 1941	90.61	Feb.	6, 1950	49.95
Feb. 13, 1947	35.52	Mar. 7, 1945	88.42	W	ell JB-84-30	-201
Well JB-84-29	-501	Feb. 5, 1948	89.28	Owne	r: Encarnaci	on Peña
Owner: M. Go	omez	Feb. 15, 1949	88.47	Sept. 2	8, 1933	74.61
Sept. 27, 1933	95.15	Feb. 7, 1950	88.57	Feb. 1	7, 1934	74.54
Feb. 5, 1934	96.14	Feb. 26, 1951	90.63	Apr. 1	3, 1935	74.71
Apr. 13, 1935	96.13	Feb. 7, 1952	90.15	Feb.	1, 1936	74.32
Feb. 17, 1936	95.68	Feb. 5, 1953	89.08	July 1	6, 1937	73.57
July 16, 1937	94.56	Feb. 18, 1954	85.68	Jan. 2	5, 1938	74.57
Jan. 26, 1938	96.12	Feb. 10, 1955	87.90	Apr.	6, 1939	74.39
Apr. 6, 1939	94.53	Feb. 8, 1956	88.37	Feb. 1	3, 1940	74.56
Feb. 13, 1940	94.51	Feb. 14, 1957	87.48	Feb.	3, 1941	74.75
Feb. 3, 1941	94.41	Mar. 4, 1958	86.33	Feb.	9, 1943	74.82
Feb. 9, 1943	92.00	July 13, 1960	85.03	Mar.	6, 1945	74.71
Mar. 7, 1945	92.63	Mar. 15, 1961	86.61	Feb. 1	3, 1947	74.52
Feb. 5, 1948	92.20	Feb. 14, 1963	89.45	Feb.	5, 1948	74.59
Feb. 15, 1949	92.26	Mar. 24, 1964	109.80	Feb. 1	5, 1949	74.57
Feb. 26, 1951	93.10	Feb. 15, 1965	90.20	Feb.	6, 1950	75.72
Feb. 7, 1952	90.60	Feb. 22, 1966	107.98	Feb. 2	6, 1951	80.79
Feb. 5, 1953	92.25	Feb. 25, 1967	114.00	Feb.	7, 1952	75.06
Feb. 18, 1954	91.90	Feb. 19, 1968	110.21	Feb.	5, 1953	74.34
Feb. 10, 1955	93.12	Mar. 20, 1969	107.88	Feb. 1	8, 1954	73.70
		Mar. 18, 1970	113.88			

D	ATE	WATER LEVEL	D	ATE	WATER	DA	TE	WATER LEVEL
Well J	B-84-30-201-0	continued	Well J	B-84-30-301–C	ontinued	Well J	8-84-30-501-0	Continued
Feb.	10, 1955	76.47	Feb.	3, 1941	42.49	Feb.	4, 1941	43.57
Feb.	8, 1956	74.16	Feb.	9, 1943	42.24	Feb.	9, 1943	41.37
Feb.	14, 1957	75.84	Mar.	6, 1945	42.56	Mar.	7, 1945	41.54
	Well JB-84-30-	202	Feb.	5, 1948	43.73	Feb.	13, 1947	40.93
1	Owner: Mateo l		Feb.	15, 1949	45.19ª/	Feb.	5, 1948	42.52
May	15, 1931	63.00	Feb.	6, 1950	45.48	Feb.	15, 1949	43.57
Aug.	22, 1933	61.84	Feb.	26, 1951	42.91	Feb.	6, 1950	43.73
Dec.	12, 1934	61.27	Feb.	7, 1952	43.23	Feb.	26, 1951	43.92
Apr.	13, 1935	61.26	Feb.	5, 1953	46.41	Feb.	7, 1952	42.39
Feb.	1, 1936	60.94	Feb.	18, 1954	43.52	Feb.	5, 1953	43.73
July	16, 1937	60.50	Feb.	10, 1955	43.73	Feb.	18, 1954	43.52
Jan.	25, 1938	60.31	Feb.	8, 1956	42.30	Feb.	10, 1955	44.13
Apr.	6, 1939	61.05	Feb.	14, 1957	43.06	Feb.	8, 1956	44.32
Feb.	13, 1940	60.70	Mar.	4, 1958	42.64	Feb.	14, 1957	44.69
Feb.	4, 1941	61.36	July	13, 1960	41.92	Mar.	4, 1958	42.25
Feb.	9, 1943	61.17	Mar.	15, 1961	41.92	July	13, 1960	41.73
Mar.	7, 1945	60.84	Mar.	22, 1962	42.18	Mar.	15, 1961	43.26
Feb.	13, 1947	60.73	Feb.	14, 1963	43.16	Mar.	22, 1962	43.39
Feb.	5, 1948	60.13	Mar.	24, 1964	44.79	Feb.	14, 1963	44.26
Feb.	15, 1949	61.28	Feb.	15, 1965	43.55	Mar.	24, 1964	44.84
Feb.	6, 1950	62.03	Feb.	21, 1966	43.21	Feb.	15, 1965	45.10
Feb.	27, 1951	60.19	Feb.	25, 1967	43.60	Feb.	21, 1966	45.40
Feb.	7, 1952	64.94	Oct.	10, 1967	44.52	Feb.	25, 1967	45.56
Feb.	5, 1953	66.70	Nov.	17, 1967	43.74	Oct.	18, 1967	40.46
Feb.	18, 1954	66.76	Feb.	19, 1968	41.68	Nov.	17, 1967	37.54
	Well JB-84-30)-301	Mar.	20, 1969	38.97	Feb.	19, 1968	39.11
Ow	ner: Mrs. Veron	ica Cuellar	Mar.	18, 1970	39.17	Mar.	20, 1969	37.61
May	25, 1931	40.50		Well JB-84-30	-501	Mar.	18, 1970	44.60
Aug.	22, 1933	49.68		Owner:Sae	anz		Well JB-84-3	6-901
Dec.	12, 1934	42.38	Oct.	26, 1933	38.12	c)wner: Leroy I	Denman
Apr.	13, 1935	42.32	Dec.	12, 1934	42.27	Oct.	30, 1933	57.70
July	16, 1937	41.67	Apr.	13, 1935	42.88	Feb.	17, 1934	59.70
Jan.	25, 1938	41.83	Feb.	1, 1936	41.10	Apr.	14, 1935	59.82
Oct.	16, 1938	42.49	July	16, 1937	41.79	Feb.	1, 1936	57.58
Apr.	6, 1939	44.08	Jan.	25, 1938	43.42	July	16, 1937	62.33
Oct.	6, 1939	42.68	Apr.	6, 1939	43.37	Jan.	26, 1938	57.96
Feb.	13, 1940	42.96	Feb.	13, 1940	42.44	Apr.	7, 1939	58.23

		WATER LEVEL	D		WATER LEVEL	D	ATE	WATER
Well	JB-84-36-901–Cont	inued	Well .	IB-84-37-104-Cont	tinued	Well .	JB-84-37-301-Co	ontinued
Feb.	13, 1940	63.672/	Feb.	13, 1940	94.40	Feb.	20, 1968	85.74
Feb.	4, 1941	58.28	Feb.	3, 1941	93.40	Mar.	20, 1969	85.25
Feb.	10, 1943	63.44ª/	Feb.	10, 1943	92.83	Mar.	18, 1970	88.17
Mar.	7, 1945	59.09	Mar.	7, 1945	94.55		Well JB-84-37-9	01
Feb.	13, 1947	57.24ª/	Feb.	13, 1947	95.22	c	wner: G. R. Mar	tinez
Feb.	5, 1948	57.78	Feb.	5, 1948	92.80	Feb.	6, 1948	49.18
Feb.	15, 1949	62.25ª/	Feb.	15, 1949	97.97	Feb.	20, 1949	48.42
Feb.	7, 1950	58.43ª/	Feb.	7, 1950	94.07	Feb.	4, 1950	49.17
Feb.	26, 1951	57.96	Feb.	5, 1953	94.94	Feb.	27, 1951	49.96
Feb.	7, 1952	56.65	Feb.	18, 1954	94.47	Feb.	7, 1952	49.25
Feb.	5, 1953	57.40	Feb.	8, 1956	95.64	Feb.	5, 1953	51.60
Feb.	18, 1954	57.10	Feb.	14, 1957	97.02	Feb.	18, 1954	50.62
Feb.	10, 1955	58.70	Mar.	4, 1958	96.92	Feb.	10, 1955	48.20
Feb.	8, 1956	57.11	July	13, 1960	97.50	Feb.	8, 1956	49.67
Feb.	14, 1957	57.75	Mar.	15, 1961	96.58	Feb.	14, 1957	49.36
Mar.	4, 1958	56.87	Mar.	21, 1962	97.15	Mar.	4, 1958	48.57
Mar.	15, 1961	58.40		Well JB-84-37-301		July	13, 1960	49.35
Mar.	21, 1962	58.08		Owner: Atlee Parr		Mar.	15, 1961	43.66
Feb.	14, 1963	58.65	Feb.	5, 1948	75.93	Feb.	14, 1963	48.32
Mar.	24, 1964	62.46	Feb.	20, 1949	77.25	Mar.	24, 1964	50.25
Feb.	15, 1965	58.89	Feb.	7, 1950	76.97	Feb.	15, 1965	51.64
Feb.	21, 1966	61.25	Feb.	27, 1951	77.76	Feb.	22, 1966	52.40
Feb.	25, 1967	61.40	Feb.	7, 1952	77.70	Feb.	25, 1967	53.22
Oct.	18, 1967	59.90	Feb.	5, 1953	78.62	Feb.	20, 1968	51.81
Nov.	17, 1967	58.47	Feb.	18, 1954	79.08	Mar.	20, 1969	51.07
Feb.	20, 1968	59.32	Feb.	10, 1955	80.04	Mar.	17, 1970	47.15
Mar.	20, 1969	58.18	Feb.	8, 1956	80.22		Well JB-84-38-6	01
Mar.	19, 1970	58.67	Feb.	14, 1957	80.63	о	wner: Eluterio S	aenz
	Well JB-84-37-104		Mar.	4, 1958	80.14	May	26, 1931	77.80
	Owner: Gus Minges		July	13, 1960	80.48	Aug.	22, 1933	77.31
Feb.	22, 1933	93.05	Mar.	15, 1961	79.81	Feb.	5, 1934	77.10
Feb.	5, 1934	92.03	Mar.	22, 1962	81.98	Apr.	15, 1935	76.60
Apr.	13, 1935	93.08	Feb.	14, 1963	82.41	Feb.	2, 1936	75.20
Jan.	30, 1936	92.65	Mar.	24, 1964	84.23	July	17, 1937	73.30
July	16, 1937	92.54	Feb.	15, 1965	86.45	Jan.	26, 1938	73.62
Jan.	25, 1938	93.20	Feb.	22, 1966	86.40	Apr.	7, 1939	74.56
Apr.	7, 1939	93.02	Feb.	25, 1967	86.82	Feb.	13, 1940	74.86

Table 9.-Water Levels in Wells-Continued

C	DATE	WATER	DAT	ГЕ	WATER LEVEL		DATE	WATER LEVEL
Well	JB-84-38-601-	Continued	Well JB-	84-38-701-C	ontinued	Well J	B-84-38-702-C	ontinued
Feb.	4, 1941	75.60	Feb.	8, 1954	42.41	Feb.	15, 1936	30.22
Feb.	11, 1943	72.84	Feb. 1	0, 1955	42.44	July	17, 1937	35.11
Mar.	7, 1945	72.37	Feb.	8, 1956	43.05	Jan.	26, 1938	38.96
Mar.	13, 1946	73.01	Feb. 1	14, 1957	44.08	Oct.	18, 1938	40.73
Feb.	14, 1947	73.92	Mar.	4, 1958	41.82	Apr.	7, 1939	41.98
Feb.	6, 1948	74.92	July 1	13, 1960	42.56	Oct.	6, 1939	31.50
Feb.	20, 1949	75.62	Mar.	15, 1961	39.35	Feb.	13, 1940	38.25
Feb.	4, 1950	76.32	Mar.	22, 1962	41.40	Feb.	4, 1941	44.14
Feb.	27, 1951	80.63	Feb.	14, 1963	42.94	Feb.	10, 1943	38.39
Feb.	7, 1952	82.10	Mar.	24, 1964	43.26	Dec.	10, 1969	37.2
Feb.	5, 1953	78.90	Feb.	15, 1965	45.50		Well JB-84-38-	801
Feb.	18, 1954	81.05	Feb.	22, 1966	46.58	о	wner: Guadalup	e Silva
Feb.	10, 1955	82.97	Feb.	25, 1967	48.30	Feb.	22, 1933	60.51
Feb.	8, 1956	83.65	Oct.	18, 1967	42.52	Feb.	5, 1934	57.22
Feb.	15, 1957	84.27	Nov.	17, 1967	44.11	Apr.	15, 1935	59.04
Mar.	4, 1958	82.52	Feb.	20, 1968	44.64	Feb.	2, 1936	52.88
July	13, 1960	83.61	Mar.	20, 1969	42.61	Jan.	26, 1938	52.83
	Well JB-84-3	8-701	Mar.	17, 1970	37.03	Apr.	7, 1939	56.73
	Owner: J. Ca	arrillo	1	Nell JB-84-38-	702	Feb.	13, 1940	53.40
May	29, 1931	49.50	Own	er: C. S. Hino	josa, Jr.	Feb.	4, 1941	55.34
Aug.	22, 1933	46.85	Мау	29, 1931	44.30	Feb.	10, 1943	51.91
Feb.	5, 1934	45.59	Jan.	1, 1933	46.05	Mar.	7, 1945	50.31
Apr.	15, 1935	45.85	Feb.	22, 1933	45.63		Well JB-84-38	-902
Feb.	2, 1936	40.92	May	31, 1933	45.54	Ow	ner: Hilario Sae	nz Estate
July	17, 1937	35.68	June	26, 1933	42.16	May	26, 1931	58.40
Jan.	26, 1938	37.53	July	24, 1933	44.90	Dec.	9, 1932	61.10
Apr.	7, 1939	40.10	Aug.	10, 1933	40.09	Aug.	22, 1933	58.79
Feb.	13, 1940	41.10	Aug.	22, 1933	34.96	Feb.	5, 1934	57.84
Feb.	3, 1941	41.99	Sept.	11, 1933	30.12	Apr.	15, 1935	59.14
Feb.	10, 1943	37.22	Sept.	29, 1933	29.10	Feb.	2, 1936	58.06
Feb.	13, 1947	39.53	Oct.	18, 1933	30.20	July	17, 1937	59.84
Feb.	6, 1948	40.18	Oct.	30, 1933	31.30	Jan.	26, 1938	60.49
Feb.	20, 1949	40.70	Nov.	11, 1933	31.41	Apr.	7, 1939	62.10
Feb.	4, 1950	40.89	Feb.	5, 1934	38.27	Feb.	13, 1940	64.64ª/
Feb.	27, 1951	42.62	Dec.	10, 1934	44.28	Feb.	4, 1941	63.39
Feb.	7, 1952	42.28	Apr.	15, 1935	43.85	Nov.	11, 1943	71.27
Feb.	5, 1953	42.49	Feb.	2, 1936	29.70	Mar.	7, 1945	69.28
rep.	3, 1999		1010002	200 0 07098882237		000000	0.4 2001/28/14	

	DATE	WATER LEVEL		DATE	WATER LEVEL	E	DATE	WATER LEVEL
Well	JB-84-38-902	Continued	Well	JB-84-38-903-	Continued	Well	JB-84-44-601-	Continued
Mar.	12, 1946	73.14	Feb.	14, 1947	61.22	Feb.	15, 1949	42.56
Feb.	14, 1947	74.63	Feb.	6, 1948	61.98	Feb.	7, 1950	42.94
Feb.	6, 1948	76.28	Feb.	20, 1949	67.68	Feb.	7, 1952	42.18
Feb.	20, 1949	80.78	Feb.	4, 1950	67.92	Feb.	5, 1953	45.00
Feb.	4, 1950	81.11	Feb.	27, 1951	70.94	Feb.	18, 1954	45.41
Feb.	7, 1952	87.03	Feb.	7, 1952	71.50	Feb.	10, 1955	47.40
Feb.	5, 1953	91.00	Feb.	18, 1954	84.40	Feb.	8, 1956	49.53
Feb.	18, 1954	91.60	Feb.	10, 1955	85.41	Feb.	14, 1957	46.70
Feb.	10, 1955	96.17	Feb.	8, 1956	84.62	Mar.	4, 1958	45.95
Feb.	8, 1956	96.84	Feb.	15, 1957	86.51	July	13, 1960	46.93
Feb.	15, 1957	98.35	Mar.	4, 1958	84.95	Mar.	15, 1961	45.72
Mar.	4, 1958	94.71	Mar.	15, 1961	86.87	Mar.	21, 1962	45.92
July	13, 1960	96.53	Mar.	22, 1962	67.50	Feb.	14, 1963	46.11
Mar.	15, 1961	87.08	Feb.	14, 1963	87.00	Mar.	24, 1964	47.95
Mar.	22, 1962	88.45	Mar.	24, 1964	93.20	Feb.	15, 1965	48.10
Feb.	14, 1963	75.40	Feb.	15, 1965	64.61	Feb.	22, 1966	47.89
Mar.	24, 1964	76.09	Feb.	22, 1966	65.39	Feb.	25, 1967	47.66
Feb.	15, 1965	77.08	Feb.	25, 1967	64.91	Oct.	17, 1967	45.70
Feb.	22, 1966	79.66	Feb.	20, 1968	65.04	Nov.	17, 1967	45.94
Feb.	25, 1967	80.08	Mar.	20, 1969	62.34	Feb.	20, 1968	46.24
Feb.	20, 1968	79.79	Mar.	17, 1970	57.02	Mar.	20, 1969	46.87
Mar.	20, 1969	78.18		Well JB-84-44	-601		Well JB-84-45	-101
Mar.	17, 1970	68.63		Owner: A. C. J	lones		Owner: J. M	ann
	Well JB-34-38	-903	May	30, 1931	36.60	Sept.	28, 1933	75.87
(Owner: Santos (Canales	Aug.	22, 1933	37.43	Dec.	5, 1934	75.47
Jan.	7, 1933	46.55	Feb.	7, 1934	31.95	Apr.	14, 1935	75.50
Feb.	5, 1934	45.75	Apr.	14, 1935	34.50	Feb.	1, 1936	75.42
Apr.	15, 1935	46.88	Feb.	2, 1936	34.36	July	16, 1937	78.34
Feb.	2, 1936	45.94	July	16, 1937	33.62	Jan.	26, 1938	71.11
July	17, 1937	47.92	Jan.	26, 1938	35.30	Apr.	7, 1939	75.52
Jan.	26, 1938	47.51	Oct.	6, 1939	38.90	Feb.	13, 1940	75.75
Apr.	7, 1939	50.10	Feb.	14, 1940	39.18	Feb.	4, 1941	76.03
Feb.	13, 1940	49.25	Feb.	4, 1941	39.19	Feb.	10, 1943	74.84
Feb.	4, 1941	50.69	Nov.	9, 1943	37.25	Mar.	7, 1945	74.69
Nov.	11, 1943	55.60	Mar.	7, 1945	38.45	Feb.	13, 1947	75.00
Mar.	7, 1945	55.35	Feb.	13, 1947	41.07	Feb.	5, 1948	75.38
Mar.	13, 1946	59.74	Feb.	5, 1948	41.26	Feb.	15, 1949	77.29

Table 9.-Water Levels in Wells-Continued

DATE	WATER	D	ATE	WATER LEVEL	D	ATE	WATER LEVEL
Well JB-84-45-101-	Continued	Well	IB-84-45-304–C	ontinued	Well J	B-84-45-305-0	Continued
Feb. 7, 1950	85.52	Feb.	5, 1948	44.21	Feb.	13, 1947	47.92
Feb. 26, 1951	86.76	Feb.	20, 1949	44.87	Nov.	6, 1969	39.70
Feb. 7, 1952	83.90	Feb.	7, 1950	45.64		Well JB-84-45	-307
Feb. 5, 1953	89.01	Feb.	27, 1951	47.67	Ov	vner: Mrs. H. B	Salinas
Feb. 18, 1954	89.86	Feb.	7, 1952	46.68	June	3, 1931	52.00
Feb. 10, 1955	90.08	Feb.	5, 1953	48.58b/	Aug.	22, 1933	52.20
Feb. 8, 1956	90.83	Feb.	18, 1954	45.76	Feb.	17, 1934	51.57
Feb. 14, 1957	91.50	Feb.	10, 1955	46.34	Apr.	16, 1935	51.24
Mar. 4, 1958	89.60	Feb.	8, 1956	46.90	Feb.	15, 1936	50.48
Mar. 15, 1961	90.48	Feb.	14, 1957	45.27	July	17, 1937	49.30
Mar. 21, 1962	90.86	Mar.	4, 1958	43.83	Jan.	26, 1938	49.15
Feb. 14, 1963	92.90	Mar.	15, 1961	26.61	Feb.	13, 1940	49.95
Mar. 24, 1964	93.01	Mar.	21, 1962	28.79	Feb.	4, 1941	50.02
Feb. 15, 1965	95.47	Feb.	14, 1963	28.11	Feb.	10, 1943	49.06
Feb. 21, 1966	94.28	Mar.	24, 1964	28.91	Mar.	7, 1945	49.33
Feb. 25, 1967	85.51	Feb.	15, 1965	30.00	Feb.	13, 1947	49.47
Well JB-84-4	5-102	Feb.	22, 1966	29.13	Feb.	5, 1948	49.39
Owner: San Antonio	Loan & Trust Co.	Feb.	25, 1967	29.10	Feb.	20, 1949	49.41
Sept. 28, 1933	83.84	Oct.	17, 1967	24.80	Feb.	7, 1950	49.72
Feb. 19, 1934	84.57	Nov.	17, 1967	24.48	Feb.	27, 1951	53.36
Apr. 14, 1935	84.55	Feb.	20, 1968	25.83	Feb.	7, 1952	50.55
Feb. 15, 1936	84.78	Mar.	20, 1969	23.82	Feb.	5, 1953	52.72
July 16, 1937	84.20		Well JB-84-45	-305	Feb.	18, 1954	49.90
Well JB-84-4	15-304	c	wner: Gilberto	Ramirez	Feb.	10, 1955	50.09
Owner: Abraha	m Garcia	June	3, 1931	48.30	Feb.	8, 1956	51.17
Aug. 22, 1933	45.69	Aug.	22, 1933	48.70	Feb.	14, 1957	49.34
Feb. 17, 1934	45.50	Feb.	17, 1934	47.08	Mar.	4, 1958	48.85
Apr. 16, 1935	45.40	Apr.	16, 1935	47.44	July	13, 1960	49.23
Feb. 1, 1936	44.48	Feb.	1, 1936	45.60	Nov.	19, 1969	21.80
July 17, 1937	43.06	July	17, 1937	43.19		Well JB-84-4	5-501
Oct. 18, 1938	43.95	Jan.	26, 1938	44.77		Owner: Mills B	ennett ?
Apr. 7, 1939	44.35	Apr.	7, 1939	46.90	May	29, 1931	28.50
Feb. 13, 1940	44.66	Feb.	13, 1940	47.56	Aug.	22, 1933	29.01
Feb. 4, 1941	44.92	Feb.	4, 1941	48.01	Feb.	17, 1934	26.28
Feb. 10, 1943	43.57	Feb.	9, 1943	45.25	Apr.	14, 1935	27.42
Mar. 7, 1945	44.49	Mar.	7, 1945	46.98	Feb.	2, 1936	27.33
Feb. 13, 1947	44.25						

ŗ	DATE	WATER LEVEL	C	DATE	WATER LEVEL		ſ	DATE	WATER
Well	JB-84-45-501-	Continued	Well	JB-84-46-101-	-Continued	e.	Well	JB-84-37-401-	-Continued
July	17, 1937	26.93	Apr.	7, 1939	52.42		July	17, 1937	. 49.18
Jan.	26, 1938	28.26	Feb.	13, 1940	52.67		Jan.	26, 1938	50.18
Apr.	7, 1939	29.99	Feb.	4, 1941	53.74		Apr.	7, 1939	52.65
Feb.	13, 1940	30.80	Feb.	10, 1943	53.81		Feb.	13, 1940	51.77
Feb.	4, 1941	31.65	Mar.	7, 1945	55.74		Feb.	4, 1941	52.37
Feb.	13, 1947	33.06	Feb.	14, 1947	56.99		Feb.	10, 1943	54.94
Feb.	5, 1948	33.13	Feb.	6, 1948	58.10		Mar.	7, 1945	56.93
Feb.	20, 1949	33.93	Feb.	20, 1949	58.19		Feb.	14, 1947	61.89
Feb.	7, 1950	34.63	Feb.	4, 1950	59.00		Feb.	6, 1948	63.67
Feb.	27, 1951	34.21	Feb.	7, 1952	60.40		Feb.	20, 1949	65.95
Feb.	7, 1952	33.70	Feb.	5, 1953	60.25		Feb.	4, 1950	66.80
Feb.	5, 1953	34.93	Feb.	18, 1954	61.42		Feb.	5, 1953	68.90
Feb.	18, 1954	34.72	Feb.	10, 1955	61.03		Feb.	18, 1954	77.60
Feb.	10, 1955	35.05	Feb.	8, 1956	57.44		Feb.	10, 1955	80.62
Feb.	8, 1956	35.24	Feb.	14, 1957	58.79		Feb.	8, 1956	79.49
Feb.	14, 1957	37.52	Mar.	4, 1958	60.60		Feb.	14, 1957	80.70
Mar.	4, 1958	36.90	July	13, 1960	59.72		Mar.	4, 1958	79.22
July	13, 1960	37.80	Mar.	15, 1961	59.15		July	13, 1960	77.45
Mar.	15, 1961	36.74	Mar.	22, 1962	59.30		Mar.	15, 1961	79.42
Mar.	21, 1962	34.29	Feb.	14, 1963	60.50		Feb.	14, 1963	87.20
Feb.	14, 1963	39.02	Mar.	24, 1964	65.42		Mar.	24, 1964	91.04
Mar.	24, 1964	39.50	Feb.	15, 1965	62.33		Feb.	15, 1965	101.20
Feb.	15, 1965	39.29	Feb.	22, 1966	62.89		Feb.	22, 1966	94.53
Feb.	22, 1966	39.88	Feb.	25, 1967	62.45		Feb.	25, 1967	93.35
Feb.	25, 1967	40.44	Oct.	17, 1967	62.44		Nov.	22, 1969	104.80
Feb.	20, 1968	39.77	Nov.	17, 1967	61.96			Well JB-84-46	-402
Mar.	20, 1969	40.32	Feb.	20, 1968	62.13		1000	Owner: Rafael	Garcia
Mar.	19, 1970	31.68	Mar.	21, 1969	60.84		Sept.	29, 1933	30.55
	Well JB-84-46	-101	Nov.	22, 1969	56.00		Feb.	15, 1934	31.11
	Owner: Rafael	Garcia	Mar.	17, 1970	60.27		Apr.	16, 1935	33.48
Мау	28, 1931	62.60		Well JB-84-46	6-401		Feb.	2, 1936	29.42
Sept.	11, 1933	57.10	Ow	ner: Mrs. Virgi	nia Garcia		July	17, 1937	27.18
Dec.	11, 1934	54.83	June	29, 1931	49.60		Jan.	26, 1938	29.22
Apr.	16, 1935	55.03	Mar.	30, 1933	49.00		Apr.	7, 1939	34.40
Feb.	2, 1936	53.55	Feb.	15, 1934	49.14		Feb.	13, 1940	31.01
July	17, 1937	49.40	Apr.	16, 1935	49.22		Feb.	4, 1941	31.44
Jan.	26, 1938	49.92	Feb.	2, 1936	49.85		Feb.	10, 1943	37.24

C	DATE	WATER LEVEL	D	ATE	WATER LEVEL		D	ATE	WATER LEVEL
Well	JB-84-46-402-0	Continued	Well	JB-84-46-602-	Continued		Well	JB-84-46-701—	Continued
Mar.	7, 1945	32.98	Feb.	20, 1949	52.24		Dec.	8, 1934	52.52
Feb.	14, 1947	31.30	Feb.	4, 1950	52.68		Apr.	14, 1935	52.60
Feb.	6, 1948	33.40	Feb.	27, 1951	57.17		Feb.	2, 1936	51.90
Feb.	20, 1949	34.67	Feb.	7, 1952	56.70		July	17, 1937	52.18
Feb.	4, 1950	35.72	Feb.	5, 1953	62.22		Jan.	27, 1938	51.01
Feb.	5, 1953	37.42	Feb.	18, 1954	64.84		Apr.	7, 1939	53.77
Feb.	10, 1955	38.59	Feb.	10, 1955	65.35		Feb.	14, 1940	52.29
Feb.	8, 1956	35.30	Feb.	8, 1956	66.55		Feb.	4, 1941	52.32
Feb.	14, 1957	38.65		Well JB-84-46	6-603		Feb.	11, 1943	53.28
Mar.	4, 1958	40.31	(Owner: Ruben :	Schultz		Mar.	8, 1945	53.36
July	13, 1960	39.08	Dec.	9, 1932	47.60		Feb.	14, 1947	53.36
Mar.	15, 1961	35.58	Feb.	22, 1933	47.79		Feb.	6, 1948	53.63
Mar.	22, 1962	44.08	Feb.	15, 1934	47.72		Feb.	20, 1949	53.89
Feb.	14, 1963	37.77	Apr.	14, 1935	47.53		Feb.	7, 1950	54.13
Mar.	24, 1964	38.33	Feb.	2, 1936	47.90		Feb.	27, 1951	75.40ª/
Feb.	15, 1965	39.62	July	17, 1937	47.07		Feb.	7, 1952	76.22ª/
Feb.	22, 1966	39.53	Jan.	27, 1938	47.31		Feb.	5, 1953	54.47
Feb.	25, 1967	41.06	Apr.	7, 1939	49.27		Feb.	18, 1954	55.18
Oct.	17, 1967	33.60	Feb.	4, 1941	50.70		Feb.	10, 1955	56.80
Nov.	17, 1967	32.04	Feb.	11, 1943	51.74		Feb.	8, 1956	56.98
Mar.	17, 1970	32.45	Mar.	8, 1945	43.31		Feb.	14, 1957	58.40
	Well JB-84-46	6-602	Mar.	12, 1946	44.14		Mar.	4, 1958	57.83
	Owner: Leroy [Denman	Feb.	14, 1947	45.82		July	13, 1960	57.34
May	27, 1931	23.10	Feb.	6, 1948	47.45		Mar.	16, 1961	55.33
Feb.	22, 1933	23.08	Feb.	20, 1949	49.06		Mar.	21, 1962	55.98
Feb.	15, 1934	22.31	Feb.	4, 1950	49.81		Feb.	14, 1963	57.18
Apr.	14, 1935	22.82	Feb.	27, 1951	58.97		Mar.	24, 1964	55.74
Feb.	2, 1936	22.62	Feb.	7, 1952	58.09		Feb.	16, 1965	56.07
July	17, 1937	24.14	Feb.	5, 1953	51.62		Feb.	22, 1966	62.46
Jan.	27, 1938	24.24	Feb.	18, 1954	53.81	163	Feb.	25, 1967	64.24
Apr.	7, 1939	25.55	Feb.	10, 1955	54.27		Feb.	20, 1968	63.46
Feb.	4, 1941	27.50	Feb.	8, 1956	54.90		Mar.	21, 1969	60.61
Mar.	11, 1943	31.82	Feb.	15, 1957	56.13		Mar.	17, 1970	58.42
Mar.	8, 1945	36.18		Well JB-84-4	6-701			Well JB-84-44	6-901
Mar.	12, 1946	41.13	Owne	r: San Antonio	Loan & Trust		0	wner: Rufino G	arcia, Jr.
Feb.	14, 1947	44.38		Company	eter er		Feb.	6, 1948	53.67
Feb.	6, 1948	47.79	Мау	29, 1931	60.50		Feb.	20, 1949	58.41
			Aug.	22, 1933	52.74				

Table 9.-Water Levels in Wells-Continued

	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
We	II JB-84-46-901-	Continued	Well	JB-84-46-901-	Continued	Well	JB-84-47-702-	Continued
Feb.	4, 1950	58.23	Mar.	21, 1969	95.47	Nov.	9, 1943	40.01
Feb.	27, 1951	62.75	Mar.	17, 1970	96.08	Mar.	4, 1944	39.86
Feb.	7, 1952	62.42		Well JB-84-46	-903	Mar.	8, 1945	41.59
Feb.	5, 1953	69.37	0	wner: Santana I	Hinojosa	Mar.	12, 1946	44.20
Feb.	18, 1954	72.01	Feb.	5, 1953	81.33	Feb.	14, 1947	43.02
Feb.	10, 1955	73.86	Feb.	18, 1954	82.10	Feb.	7, 1952	67.07
Feb.	8, 1956	74.43	Feb.	10, 1955	83.35	Feb.	18, 1954	76.19
Feb.	15, 1957	76.39	Feb.	8, 1956	88.10		Well JB-84-47	-703
Mar.	4, 1958	74.21	Feb.	15, 1957	90.05		Owner: Clyde	Crook
July	13, 1960	73.85	Mar.	4, 1958	90.76	Feb.	6, 1948	57.39
Mar.	21, 1962	70.40	Mar.	15, 1961	89.1-	Feb.	20, 1949	62.23
Feb.	14, 1963	65.87	Dec.	15, 1969	121.7	Feb.	27, 1951	67.53
Mar.	24, 1964	87.78		Well JB-84-47	-702	Feb.	7, 1952	67.07
Feb.	16, 1965	99.28	<u>.</u>	Owner: Clyde	Crook	Feb.	18, 1954	76.19
Feb.	25, 1967	100.41	Jan.	6, 1932	36.55	₫/Pu	mping.	
Feb.	20, 1968	99.82		108 1 088707070		⊵⁄ Pu	mped recently.	

Sand

Shale

Sand Shale Sand Shale

THICKNESS DEPTH (FEET) (FEET)

Well JB-78-62-703

Owner: Charles Houlihan Driller: Richardson Water Well Drilling Co.

Surface soil and clay	30	30
Caliche, hard	16	46
Sand, with hard sand streaks	32	78
Caliche and sand	12	90
Clay, red shale, and hard streaks	26	116
Sand, hard, fine	14	130
Clay and hard shale	10	140
Sand, free	9	149
Sand, hard	2	151
Sand, free	8	159
Shale and clay	3	162
Sand	2	164
Shale and clay	6	170
Sand	30	200
Shale	12	212

Well JB-84-04-602

Surface sand

Shale Shale, sandy

Shale Sand, hard Shale Sand Shale Sand, hard Shale

Well JB-84-05-401-Continued 7 158

THICKNESS

(FEET)

DEPTH

(FEET)

415

573

20

	111	684
	16	700
	29	729
	51	780

Well JB-84-06-601

Owner: Ed Canales Driller: Rader Equipment Co.

Topsoil and clay	5	5
Caliche	95	100
Clay	140	240
Clay, sandy	10	250
Clay, hard	210	460
Sand, broken	20	480

Well JB-84-12-701

Owner: Freer W.C.I.D. No. 1, well 6 Driller: H & S Water Well Service

20

Owner: J. F. Welder Estate Driller: Buck Page & Co.	Caliche	
30	30	Shale, red, with streaks of caliche
397	427	Shale, with streaks of sand
22	449	Shale
58	507	Shale, with thin streaks of s
26	533	Shale, with streaks of sand
61	594	Sand, hard
50	644	Sand, soft
213	857	Sand, hard
30	887	Sand, soft
113	1,000	Shale, soft, with hard streaks of sand
Well JB-84-05-401		Sand, with fine gravel
Owner: V H Lehman		Shale

Owner: V. H. Lehman Driller: Buck Page & Co.

Sand	18
Shale	29
Caliche	17
Shale	344

Shale, red, with streaks of caliche	275	295
Streaks of Calicity	270	
Shale, with streaks of sand	45	340
Shale	45	385
Shale, with thin streaks of sand	50	435
Shale, with streaks of sand	55	490
Sand, hard	18	508
Sand, soft	5	513
Sand, hard	4	517
Sand, soft	4	521
Shale, soft, with		
hard streaks of sand	19	540
Sand, with fine gravel	60	600
Shale	16	616
Sand	10	626
Shale, hard, blue	16	642

Clay, brown

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well JB-84-1	12-702		Well JB-84-13-4	402–Continued	
Owner: Freer W.C.I.I			Sand, shaley	12	100
Driller: H & S Wate		01.0	Sand with clay breaks	21	121
Sand	210	210 370	Clay	12	133
New 20 21	160 40			in the second	
Shale, sandy Shale		410		34-13-502	
Sand	27 13	437 450		e A. Canales Water Well Service	
Shale	20		Surface soil	6	6
Sand, and gravel	100	470 570	Caliche, hard	42	48
Sand, and graver	20	590	Caliche, with streaks of sand	19	67
Share	20	590	Caliche	18	85
Well JB-84-1	2-703		Clay and caliche	30	115
Owner: Freer W.C.I.			Shale, streaky	57	172
Driller: H & S Wate		10	Sandstone, hard	2	174
Caliche, with streaks of shale	40	40	Shale	71	245
Shale	140	180	Shale, with small sand streaks	35	280
Shale, red Shale	185 90	365 455		4.4.4.600	
Shale, sticky	85	540	Well JB-8		
Gravel	17	557	Owner: C. N Driller: Buck		
Sand, hard, with streaks of gravel	8	565	Caliche	30	30
Shale	5	570	Sarıd, hard	70	100
Sand, hard, and gravel	15	585	Sand and shale	50	150
Gravel, with thin streaks of shale	30	615	Sand	34	184
Sand, hard	2	617			
Shale, sandy	13	630	Well JB-8		
Shale, limy hard streaks	2	632	Owner: City of Sar Driller: Layn		
Shale, hard	8	640	Soil	5	5
	0		Sand and caliche	60	65
Well JB-84-1	3-402		Clay, red, and caliche	48	113
Owner: Juan I Driller: Dillar			Clay, red	110	223
Topsoil	4	4	Člay, sandy	150	373
Caliche	5	9	Caliche, hard	23	396
Seep	36	45	Sand	18	414
Caliche, hard	3	43	Clay	21	435
Clay, yellow	2	56	Sand	4	439
Clay, white	24	80	Clay	36	475

501

509

26

8

Sand

Sand, tough

88

8

THICKNESS DEPTH (FEET) (FEET)

Well JB-84-20-301

Owner: Michel Shamoun Driller: Dillard Wied

Topsoil	5	5
Caliche and clay	96	101
Clay, red and brown	85	186
Sand, shaley	30	216
Clay, brown	32	248
Sand, shaley, and fine sand	29	277
Clay	61	338
Sand, shaley, and sand and clay	46	384
Clay, red	2	386
Clay, shaley sand, and sand (good)	65	451
Clay, white	7	458
Clay, grey	25	483

Well JB-84-21-501

Owner: P.P.G. Industries, well 13 Driller: Layne Texas Co.

Caliche	22		22
Caliche and sand streaks	24		46
Clay, hard, red, and caliche streaks	167		213
Sand, fine, and caliche stread	ks 54		267
Shale, hard	34		301
Sand and shale layers	43		344
Shale	10		354
Shale, hard, sandy	28		382
Lime, hard, sandy	25		407
Lime layers and streaks	20		427
Sand and lime layers	25		452
Sand and shale streaks	29		481
Shale, hard	12	lan c	493
Sand, hard	23		516
Shale and sand streaks	40	6	556
Sand and sandy shale	10	e.	566
Shale	10	ě.	576
Sand and shale layers	48	ŝ	624
Sand, hard	14	í.	638
Shale and sand streaks	8	1911 - 1	646

	Owner: P. Driller	.P.G. Industrie r: Layne Texas	s, well 4 Co.	
Surface soil			6	6
Sandy shale			4	10
Sand, fine			5	15
Shale, sandy			2	17
Sand, fine			2	19
Caliche			3	22
Sand, fine, ha	rd layers		24	46
Shale			176	222
Sand			11	233
Shale			21	254
Sand			5	259
Shale, sand, fi	ne		11	270
Sand			30	300
Shale			27	327
Sand, hard			10	337
Shale			10	347
Sand, hard			23	370
Shale			21	391
Shale, sandy			21	412
Sand			16	428
Caliche			6	434
Shale			23	457
Sand			5	462
Shále			4	466
Shale, sandy			8	474

Well JB-84-21-604

THICKNESS

(FEET)

DEPTH

(FEET)

Well JB-84-22-401

7

481

Owner: P.P.G. Industries, well 14 Driller: Layne Texas Co.

Caliche	35	35
Caliche and clay	89	124
Shale	181	305
Shale, sandy, and shale	75	380
Shale	277	657
Shale, hard, and celenite	277	934

Shale

		THICKNESS (FEET)	DEPTH (FEET)	1697 - 2590 - 1 1119	THICKNESS (FEET)	DEPTH (FEET)
	Well JB-84-22-401-0	ontinued		Well JB-84-29-30	2-Continued	
Rock, hard		3	937	Clay	39	185
Shale, hard		83	1,020	Clay, sandy	25	210
Shale and sandy	/ shale	78	1,098	Sand, fine-grained	35	245
Sand, and thin s	shale breaks	69	1,167	Clay, sandy	15	260
Shale		5	1,172	Sand, clay, sandy	66	326
Sand		31	1,203	Sand, broken	29	355
Shale, sandy		10	1,213	СІау	14	369
Sand		45	1,258	Sand	4	373
Shale		6	1,264	Clay, sand breaks	44	417
	W-11 15 04 00 /			Clay	13	430
	Well JB-84-28-9			Clay, sandy	20	450
	Owner: Joe Ga Driller: Dillard V			Sand, broken	12	462
Topsoil		3	3	Clay	21	483
Caliche		9	12	Sand	12	495
Gravel, with cla	y breaks	59	71	Clay, sandy	3	498
Clay		59	130	Sand	19	517
Sand, shaley		10	140	Clay, tough	28	545
Clay and shaley	sand	4	144	Clay, sandy	26	571
Sand		1	145	Clay, tough	44	615
Clay, with sand	breaks	3	148			
Sand and dirt		2	150	Well JB-84-	-30-102	
Sand		5	155	Owner: Anselm Driller: Buck F		
Sand, with clay	breaks	7	162	Caliche	81	81
Clay		5	167	Shale	30	11'1
Sand		2	169	Sand	34	145
Clay		17	186	Sand, and sandy shale	116	261
		a		Shale	39	300
100	Well JB-84-29-3			Sand, and sandy shale	90	390
0	wner: City of Benavide Driller: Layne Tex			Shale	30	420
Soil		3	3	Sand, hard, and shale	142	562
Sand, hard, and	caliche	17	20	Shale, sand, streaked,		
Caliche and sand	1	23	43	and sand rock	58	620
Caliche, hard		17	60	Shale and sandy shale	80	700
Clay and caliche		24	84	Sand, hard, and shale and lime	130	830
Sand		5	89	Shale, sandy	55	885
Caliche, hard		14	103	Shale	115	1,000
Clay, sandy		43	146	Sand, with shale streaks	105	1,105
				Shale	50	1,155

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well JB-84-	30-901		Well JB-84-35-	503-Continued	
	Owner: Mrs. Lu	ther Reese		Clay	6	606
	Driller: Disbro Wat			Sand, green, shaley	4	610
Surface soil		8	8	Sand, hard, shaley	22	632
Caliche and re	ock	152	160	Clay, brown	46	678
Shale, hard, r	ed	88	248	Clay, soft	5	683
Shale, soft, re	d	64	312	Clay, hard, brown	21	704
Sand		26	338	Clay, grey	31	735
Shale		2	340	Sand, shaley	5	740
	Well JB-84	35-503		Clay	4	744
				Sand, shaley	2	746
	Owner: Heberte Driller: Dilla			Clay, grey	2	748
Topsoil		2	2	Clay	3	751
Clay		6	8	Sand, shaley	10	761
Caliche		24	32	Clay (drilled like sand)	45	806
Clay, brown		19	51		54	860
Sand		8	59	Clay	4	864
Gravel, dry		18	77	Sand, shaley	16	880
Cement rock		19	96	Clay	2	882
Clay, yellow		10	106	Sand, shaley		879
Clay, brown		26	132	Clay	-3	
	drav.	6	138	Sand, shaley	4	883
Sand, shaley,		9	147	Clay	49	932
Shale, sandy	, grev	22	169	Clay, hard	4	936
Clay, grey		8	177	Clay, brown	67	1,003
Sand, shaley	, brown	9	186	Sand, shaley	6	1,009
Clay				Clay	22	1,031
Sand, shaley		1	187	Clay, hard	4	1,035
Clay		11	198	Sand, shaley	5	1,040
Sand, shaley		12	210	Clay	16	1,056
Clay (drilled	like sand)	39	249	Sand, shaley	20	1,076
Clay		3	252	Clay, brown and green	22	1,098
Clay (drilled	like sand)	39	291	Sand, shaley	25	1,123
Clay, hard, h	rown	159	450	Clay	52	1,175
Clay, light b		12	462	Sand, shaley	1	1,176
Clay, brown	, with soft streaks	17	479	Clay	24	1,200
Sand, shaley		4	483			
Clay, hard, b	orown	106	589			
Clay, white	and brown	11	600			

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well JB-84-36-401		Well JB-84-36-4	03–Continued	
	Owner: Oscar Wyatt		Sand, shaley, and clay	2	219
-	Driller: Dillard Wied		Sand, shaley	5	224
Topsoil	2	2	Clay, red	з	227
Caliche	84	86	Sand	4	231
Clay, brown	43	129	Sand, shaley	6	237
Gravel	15	144	Sand, with dirt	4	241
Clay, red	6	150	Clay, red	3	244
Gravel	4	154	Sand, shaley	2	246
Clay	20	174			
Gravel and clay	17	191	Clay, brown	48	294
Gravel and sand	8	199	Clay	23	317
Clay	2	201	Sand, shaley	8	325
Sand	3	204	Clay, brown	14	339
Clay	6	210	Sand, shaley	2	341
Gravel	6	216	Clay, grey	20	361
	2	218	Sand, shaley	4	365
Clay			Sand, with clay breaks	2	367
Gravel	3	221	Clay, grey	3	370
Clay	34	255	Sand, shaley	8	378
	Well JB-84-36-403		Clay, grey	3	381
	Owner: Oscar Wyatt		Sand, shaley	5	386
	Driller: Dillard Wied		Clay, grey	2	388
Topsoil	4	4	Sand, shaley	2	390
Caliche	62	66	Clay	6	396
Clay, brown	14	80		2	
Sandstone	4	84	Sand, shaley		398
Gravel and sand	56	140	Clay	3	401
Clay	2	142	Sand, shaley	1	402
Sand, shaley	2	144	Clay	8	410
Sand	4	148	Clay, porous	52	462
			Clay, grey	36	498
Gravel	1	149	Clay, blue	7	505
Sandstone	7	156	Sand, shaley	4	509
Sandstone, hard	4	160	Sand	9	518
Clay, white	2	162	Clay	5	523
Sand, shaley	2	164	Sand	17	540
Clay, white	23	187			
Sand, shaley	9	196			
Clay, grey	21	217			

Gravel

THICKNESS DEPTH (FEET) (FEET)

Well JB-84-36-905

	Owner: Douglas Risinger Driller: Dillard Wied	
Topsoil	2	2
Caliche	54	56
Caliche, and clay	12	68
Clay, brown	114	182
Sand, shaley	4	186
Clay	5	191
Sand, shaley	2	193
Clay	2	195
Sand	14	209
Gravel and sand	18	227

Well JB-84-38-901

Owner: Mrs. Brigeda Moreno Driller: Disbro Water Well Service

Surface soil	10	10
Gravel and rock	100	110
Caliche	27	137
Shale, hard, red	66	203
Shale, streaky, red	37	240
Sand and gravel	24	264

Well JB-84-38-906

Owner: Ern Driller: Disbro Wa		
Surface soil	6	6
Caliche	54	60
Sand, salt	6	66
Caliche and limestone	72	138
Shale, hard, red	22	160
Shale, sandy	22	182
Shale, hard, red	56	238
Sand	35	273
Rock	1	274
Well JB-84	1-38-909	
Owner: Thom Driller: Buck		

Caliche

31

Well JB-84-38-909-Cont	tinued	
state the	17	
	94	

Caliche	94	142
Shale	99	241
Sand	40	281

THICKNESS

(FEET)

DEPTH

(FEET)

48

Well JB-84-43-101

	Owner: Adalberto T Driller: Valor (
Surface roo	ck and gravel, loose	110	110
Rock and	water sand	105	215
Shale, red		275	490
Shale, blue	e, with hard streaks	197	687
Caprock a	nd water sand	20	707
Shale to sa	indy shale	886	1,593
Shale, hard	1, broken	954	2,547
Sand, brok	en, and salt water	22	2,569

Well JB-84-45-106

Owner: Hofstetter Bros. Driller: Dillard Wied

Sand	4	4
Caliche	102	106
Clay, and caliche	14	120
Clay, brown	97	217
Sand, shaley	3	220
Sand	7	227
Sand, shaley	3	230
Sand	16	246
Gravel	1	247
Sand	3	250

Well JB-84-45-306

Owner: Trinity Gas Corp. Driller: Richardson Water Well Drilling Co.

Di mer : menardson mater men erning er		
Surface soil	5	5
Clay	15	20
Sand	7	27
Caliche, hard	38	65
Flintrock	8	73
Caliche, hard	37	110

31

THICKNESS	DEPTH
(FEET)	(FEET

н

7)

Well JB-84-45-306-Continued

Clay, and red shale	68	178
Sand, fine	32	210
Shale, red	2	212
Sand	6	218
Shale, red	3	221
Sand	4	225
Shale, red	5	230
Sand	15	245
Shale	1	246
Sand and gravel	22	268
Shale	6	274
Sand	34	308
Clay	12	320
Sand	27	347
Shale	7	354
Sand, with gravel streaks	18	372
Shale, sandy	16	388
Sand	9	397
Shale, sandy	4	401
Sand	21	422
Shale	ĩ	423
Sand	2	425

Well JB-84-45-401

Owner: Gilberto Villa Driller: H & S Water Well Service

Surface soil	2	2
Shale	4	6
Caliche	6	12
Sandstone, red	22	34
Sandrock	11	45
Shale, sandy	25	70
Caliche	20	90
Caliche, with sand streaks	18	108
Clay, red	32	140
Clay, hard streaks	3	143
Clay, red, with hard streaks	102	245
Sand	15	260

Well JB-84-45-4	01-Continued	
Shale, with clay streaks	10	270
Sand	20	290
Clay	6	296
Sand and gravel	36	332
Sand	7	339
Shale	6	345
Sand and gravel	25	370
Sand	37	407
Clay	2	409
Well JB-8	4.45.503	
Owner: W. H Driller: H & S Wa		

THICKNESS

(FEET)

DEPTH

(FEET)

Surface sand	8	8
Clay and caliche	17	25
Sand	2	27
Caliche and sandstone	75	102
Sand with hard caliche streaks	26	128
Shale and sandy shale	112	240
Sand and gravel	72	312
Clay	4	316
Sand with clay streaks	23	339
Clay	3	342
Sand with hard streaks	28	370
Hard streaks with clay	4	374

Well JB-84-46-302

Owner: Ben Sc Driller: H & S Water V	0.007.500	
Surface soil and clay	8	8
Caliche	25	33
Clay, with caliche streaks	37	70
Clay, with sandy clay	15	85
Caliche, hard streaks, and sandstone streaks	40	125
Clay, sandy, with caliche streaks	6	131
Clay, with sand, and sandstone streaks	15	146
Clay	6	152
Clay, sandy	13	165

Surface soil

Clay

Caliche

Sand, hard

Shale, red

Sand

Gravel

THICKNESS	DEPTH
(FEET)	(FEET)

Well JB-84-46-302-Continued

Shale	54	219
Shale, with caliche and sand streaks	19	238
Shale	30	268
Sand and gravel	21	289
Shale	3	292
Sand and gravel	9	301
Shale	2	303
Sand and gravel	15	318
Shale	2	320
Sand and gravel	14	334
Hard streaks	3	337
Shale, with sand streaks	7	344
Sand and gravel	19	363
Shale, with sand streaks	36	399
Sand and gravel	47	446
Shale	2	448

Well JB-84-46-802

Owner: Walter Blumer Driller: Richardson Water Well Service

1-46-802

5

5

47

60

123

60

15

THICKNESS

(FEET)

DEPTH

(FEET)

5

10

57

117

240

300

315

Well JB-84-46-803

	Antonio Recio Water Well Service	
Surface soil	20	20
Caliche	70	90
Sand, salt	6	96
Shale, hard, red	191	287
Sand	30	317

Well JB-84-46-502

Owner: Marvin Dismukes Driller: Richardson Water Well Drilling Co.

Surface soil	3	3
СІау	6	9
Clay and caliche	33	42
Caliche, heavy, and clay	31	73
Flint rock	44	117
Caliche	0003800000-997-3	120
Sand, with hard streaks	17	137
Caliche	11	148
Shale, red	101	249
Sand	35	284
Sand and gravel	40	324
Shale	5	329
Sand and gravel	39	368
Shale, red	16	384
Sand	16	400
Shale	5	405

Owner: Walter	Storm
Driller: H & S Water	Well Service

Well JB-84-47-404

Surface soil	4	4
Сіау	12	16
Caliche	14	30
Clay, hard, gray	39	69
Shale, sandy	23	92
Caliche	4	96
Shale, sandy	18	114
Caliche, with clay streaks	20	134
Sand streaks, and caliche	10	144
Caliche, hard	24	168
Clay, and caliche streaks	10	178
Rock with sand streaks	4	182
Clay, with hard streaks	21	203
Sand, salty	20	223
Shale, with hard streaks	85	308
Sand	38	346

KNESS EET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
ued		Well JB-84-47	404-Continued	
6	352	Shale	4	537
29	381	3M-8.15	84-47-710	
5	386	Well JB-	-84-47-710	
26	412		yde Burdette Porter & Son	
1	413	Surface soil	12	12
8	421	Caliche rock	16	28
11	432	Sand, fine, slightly salty	4	32
15	447	Caliche rock	32	64
4	451	Rock and shale	207	271
4	455	Shale, red	109	380
37	492	Sand	32	412

THICK (FE

Well JB-84-47-404-Continu

Hard streaks	6	352
Sand and gravel	29	381
Shale	5	386
Sand and gravel	26	412
Hard streaks	1	413
Clay, with hard streaks	8	421
Sand	11	432
Shale	15	447
Sand	4	451
Shale	4	455
Sand and gravel	37	492
Shale, sandy	18	510
Sand and gravel	23	533

Table 11. -- Chemical Analyses of Water From Wells

è

(Analyses given in milligrams per liter, except percent sodium. sodium-adsorption ratio, residual sodium carbonate, specific conductance, and pH).

When no potassium (K) is reported, sodium and potassium are calculated and reported as sodium (Na). Bicarbonate (HCO3) includes any carbonate (CO3) present.

Water-bearing unit: Tg, Goliad Sand; To, Oakville Sandstone; Tct, Catahoula Tuff; Tj, Jackson Group.

									716	1	1017		1	174	4	1984			81		11										
R	년 0	1	k	ł	ţ	ų.	1	ţ	;	ł	ł	ĺ	ł	1	ł	1	1	1	ł	1	1	3	t	1	F	T	T	}	1	81	-
WATER TEMPERATURE	°,	£	ł	Ĩ	1	1	1	3	ł	E	;	t	ł	1	1		ł	1	1	t H	1	a.	4	ł.	I	ł	ł	Ì	1	27	
H		7.2	7.7	7.2	8.4	7.9	7.2	6.9	7.2	7.0	7.3	8.1	8.2	7.9	7.2	8.2	7.3	7.8	7.3	9.9	7.8	7.5	6.9	7.4	1.7	7.8	7.6	7.1	8.7	7.6	_
CONDUC- TANCE (MICROM-	25° C)	6,750	6,240	12,300	3, 390	3,140	6,100	7,060	3,470	9,380	12,100	3, 790	2,590	1,880	5,410	3,020	7,930	5, 390	5,130	6,820	7,380	962	4,140	4,180	2,270	2,010	2,830	6,350	1,680	2,150	
DUAL SODIUM CAR-	(RSC)	00.00	.47	00.	5.19	5.28	8.	8.	00*	00'	.00	00.	5.73	4.76	00.	5.50	.00	4.04	00	1	00.	. 62	00.	00. 5	00.	00.	00.	1 .00	1.97	1	
SODIUM ADSORP- TION	(SAR)	37	;	1	;	20	3	15	R	44	f	ł	24	3	3	31	;	53	I	1	:	2.0	Ē	4.5	ł	Ŧ	13	9.1	27	3	
PER- CENT SO-	MULU	27	1	85	3	88	1	68	Ę	92	Ę	ł	66	1	1	95	1	67	ł	1	3	35	I	39	1	ł	79	55	55	1	_
HARD- NESS AS	caco ₃	2,640	201	116	232	198	2,150	1,400	340	350	1,070	358	96	96	451	62	810	86	443	1	420	333	1,150	1,290	625	479	282	1,340	9	254	
DIS-	SOLIDS	4,270	ţ	7,060	3	2,000	3	5,560	ŀ	5,300	1	r	1,560	1	3	1,810	:	3,130	1	4	3	584	F	2,410	1	ł	1,620	3,490	1,080	1,350	
BORON (B)		ł	1	ł	8	3	3	E	ï	1	1	1	1	;	1	d_{ijk}	ł	ł	3	1	1	1	I	I	1	ŧ	4	1	1	a.	
NI- TRATE	(EON)	133	ï	ł	8	4.1	1	1.6	F	0.	Ē	ł	1.5	3	3	1	ł	24	1	۶F	1	8.9	ł	37	ł	ł	13	82	1.1	24	
FLUO- RIDE	E	1.2	Ï	ë.	1	9.	:	I.3	F	8.	ł	1	6.	1	3	9.	;	1	ł	1	;	4.	ľ	5	ł	ţ	1.8	1.	6.	1.0	
CHLO- RIDE	(C1)	1,900	1,180	3,980	580	575	1,650	690	810	3,000	3,650	840	542	265	1,430	608	2,200	1,330	1,300	3	2,010	89	640	1,220	492	410	655	1,980	108	437	
SUL- FATE	(\$0 ⁴)	656	1,250	228	424	328	486	2,800	280	110	808	360	122	ł	1	224	538	366	370	1,900	428	15	1,140	190	128	150	153	14	280	158	
BICAR- BONATE	(HCO ₃)	166	274	268	598	564	292	386	356	204	204	432	466	408	340	432	280	352	368	306	348	444	368	188	360	362	334	170	534	350	
MUI	K	1	3	3	3	1	E	ţ	£	ţ	ţ	3	;	3	4	1	ł	1	1	1	1	i.	ŀ	ł	Ē	ł	3	÷	3	:	
SODIUM AND POTASSIUM	Na	643	ĩ	2,370	3	654	Ē	1,300	B	1,900	1	1	543	3	3	633	3	1,140	3	3	ţ.	83	I	374	ł	ł	201	768	389	378	
MAG- NE- SIUM	(Mg)	16	18	102	23	19	214	25	33	25	104	36	6.8	6.4	38	4.6	80	5.8	41	3	22	24	48	117	94	37	26	93	3.6	ĝ	
CAL-	(Ca)	910	51	197	55	87	508	200	82	100	257	84	27	28	118	24	193	25	110	1	92	94	382	325	145	131	70	385	10	52	
IRON (Fe)		0.04 L	a	1	1	1	1	1	1	;	;	1	4.3 J	;	ł,	.16 4	1	3)	1	I.	.00	Ē	.02 3	00.	;	กี เบ	ñ 61.	.86 1	f	
SILICA (SiO ₂)		52	3	52	£	92	1	53	1	19	1	3	82	1	6	96	1	62	1	1	1	52	1	55	:	ł	32	84	26	98	
WATER BEAR- ING	-	Tct	do.	do.	do.	do.	T00	Tct	do.	- op	do.	do.	do.	do.	do.	do.	do.	Tct	ů	do.	do.	do.	Tg	do.	do.	do.	-op	Tet	do.	do.	
DATE OF COLLECTION		Sept. 10, 1970	Sept. 30, 1970	Aug. 25, 1970	Sept. 10, 1970	do.	July 14, 1970	Nov. 18, 1970	Nov. 17, 1970	Nov. 20, 1970	Aug. 25, 1970	do.	do.	do.	do.	do,	July 7, 1970	July 9. 1970	Oct. 1, 1970	July 9, 1970	do.	do.	July 8, 1970	Sept. 15, 1970	Sept. 14, 1970	Sept. 15, 1970	July 29, 1970	Aug. 5, 1970	Aug. 25, 1970	May 12, 1969	
OR DING		102	170	360	200±	240	39	65	210	350±	365	410	729	+007	420	553 665	410	835	300	450	450	65	83	142	120	105	301	150	255	330	503
DEPTH OR PRODUCING INTERVAL	(FT)							-94								531- 615-											255-	127-		300-	473-
TIAM		JB-78-60-701	704	801	106	903	62-901	84-03-201	106	04-102	201	301	105	502	601	602	01-20	103	402	201	502	602	902	06-101	301	302	602	105-11	12-102	301	
		JB-																												ίų.	

URE V	3	3	;	;	ŝ l	:	:		1	3	1	1	82	}	81	• 1	18	1	3	ł	1	:	;	;	ì	1	;	;	;	:	;	
WATER TEMPERATURE °C °F	1	ä	1			i.	1	()	1	;	;	:	28	I	27	ĩ	27	1	:	;	- E	l.	1	;	;	;	;	a.	1	1		
H	8.0	7.9	7.5	7.8	-	- r		2.5	9.6	3	7.2	1.1	7.8	7.4	7.8	7.2	7.6	7.3	7.1	7.7	7.8	8.6	7.7	8.1	8.2	7.2	7.4	7.4	6.2	7.6	7.7	
SFECIFIC CONDUC- TANCE (MICROM- HOS AT 25° C)	2,380	2,480	2.010	2.240	07E 7	007	1, 430	6.320	2.910	. 1	3,690	3,610	1.930	1,710	1,310	1.150	1,200	1.350	5,400	8,730	3,620	3,870	4.080	-	668	1.140	3, 340	3,020	6,770		1.520	
SODIUM CAR- (BONATE BONATE (RSC)	1	3	3	3	6 53		00	8 8	2.51	;	.61	3	00.	00.	:	:	3	3.55	00.	00.	1.30	11.3	15.4	4.35	3.35	8.	00.	1.80	00.	4	1.62	And and a second
SODIUM ADSORP- TION RATIO (SAR)	;	;	15		47	F.	8		17	:	16	1	7.8	3.3	6	6.7	3	n	3	35	1	3	ß	21	4.6	ī	;	17	4.1	3	9.6	- Aller - Aller
PER- CENT SO- DIUM	Ì	Ĭ	85	:	96		1	;	85	ţ	81	;	70	43	1	72	Ţ	84	;	89	3	B,	;	88	69	;	;	85	30	1	80	
HARD- NESS AS CaCO ₃	82	116	126	162	82	14	852	476	228	159	354	1.170	279	492	122	151	120	110	1.340	486	225	18	34	206	110	410	520	230	2,320	558	150	
DIS- SOLVED SOLIDS	1,390	1,480	1,290	1,280	2.710		;	1	1.810	505	2,290	Î	1,100	968	754	670	730	872	ł	5.210	ij	a	ì	2,150	413	Ĩ	:	1,820	3,670	ä	898	2
BORON (B)	Ē	ĩ	2.1	3	;		;	ł	ſ	Ĩ	ŝ	1	1.3	3	1	.93	3	i	Ţ	Ĩ	1	;	1	1	.71	ł	i	1	:	;	;	
NI- TRATE (N03)	24	9.0	52	36	70		1	1	5.9	8.3	8.7	Ţ	15	15	5	23	16	0.	1	;	ł	ł	3	28	3.5	1	t	54	ł	;	27	and a second
FLUO- RIDE (F)	1.2	1.1	1.3	1.6	1.9	3	з	;	1.4	t	1.9	;	6.	1.6	1.	6.	1.1	1.0	į.	.2	;	3	1	1.0	1.0	.5	£	1.7	9.	;	1.6	
CHLO- RIDE (C1)	360	321	350	344	1,000	1.080	1,290	1.560	570	114	780	1,020	420	325	158	150	156	061	1,500	2,410	740	960	850	069	25	120	930	638	2,180	1,250	280	
SUL- FATE (SO4)	208	265	224	186	296	077	3	:	310	32	390	86	88	111	54	72	54	120	266	632	ï	12	Ĩ	302	30	21	60	230	152	152	85	
BICAR- BONATE (HCO ₃)	343	905	292	293	498	326	208	420	432	320	470	242	284	330	364	312	354	346	304	344	354	708	982	516	334	474	260	390	88	240	282	
			18		;	1	1	;			6			ï	8.0	0.6	6			E	1		ĩ	1		2			,			
SODIUM AND POTASSIUM Na K	423	877	399	364	696	;	1	đ	580	071	712	8	300	169	231	189	223	260	1	1.770	E	E	t.	703	110	2 3	3	587 -	454 -	т. В	270 -	
MAG- NE- SIUM (Mg)	ع	19	13	22	4.6	39	82	67	21	3	31	111	26	65	12	16	12	3.9	126	37 1.	19	1.6	1.7	22	1.5	26	15	17	205	53	ц	
CUIN (Ca)	23	14	29	29	25	125	206	110	57	48	16	286	69	90	29	34	28	36	330	134	59	4.8	11	46	4.0	120	140	64	592	136	42	
(Fe) C	02	.02	.06	. 02					.23	ä	-06		;		60.	.31						1			.12 J	-	_		-FI	.68] 1	_	
SILICA IF (S102) (F	< 0.02	V		v			-			2		-	1250	* 	-	3	1	1	1	3	1		l)	ţ.		;	1	3	2.4	•	10	
	Tet	:	56	-	. 96	1	1		. 51	1	44	1	. 35	. 29	. 25	. 22	. 24	16	1	t 53	1	1	ł.	t 100	. 74	:	:	36	. 42	1	42	_
WATER BEAR- ING UNIT		do.	2 do.	9 do.	.op 0.	0 To	0 do.	0 do.	do.	I Ig	0 do.	0 do.	9 do.	0 do.	5 do.	1 do.	9 do.	:	0 Tg	0 Tct	op qo.	op qo.	:	D Tct	0 do.	do.	op do.	op o	op .	Tg	:	F
DATE OF COLLECTION	26, 1969	.op	11, 1962	26, 1969	19, 1970	4, 1970	5, 1970	4, 1970	do.	12, 1931	6, 1970	30, 1970	11. 1969	14, 1970	6, 1945	27, 1961	23, 1969	7, 1970	16, 1970	26, 1970	18, 1970		26. 1970	6, 1970	28, 1970	do.	10, 1970	9, 1970	6, 1970	9, 1970	6, 1970	0101 0
DAT	June		Apr.	June	Aug.	May	May	May		June	May	July	Oet.	July	Mar.	Mar.	May	Oct.	July	Aug. 2		Oct.	Aug. 2	Aug.	0ct. 2	1	Nov. 1	Sept.	Aug.	Sept.	Oct.	
DEFTH OR PRODUCING INTERVAL (FT)	608	573	629	629	298	267	00E	115	280	20	200±	180	200	160	_	370	510	2	300±	448		187			2427	74	1 268	300±	285±	320 5		000
PROD INTE (F	518-	473-	534-	- 765									200-			210-390-	460-	K					1								3	
ттал	JB-84-12-701	702	703	703	106	13-101	201	105	502	802	101-41	201	502	15-402	702	704	704	18-603	903	101-61	202	105	502	902	20-101	102	202	302	403	21-101	202	107

Table 11. ---Chemical Analyses of Water From Wells--Continued

Table 11. --Chemical Analyses of Water From Wells--Continued

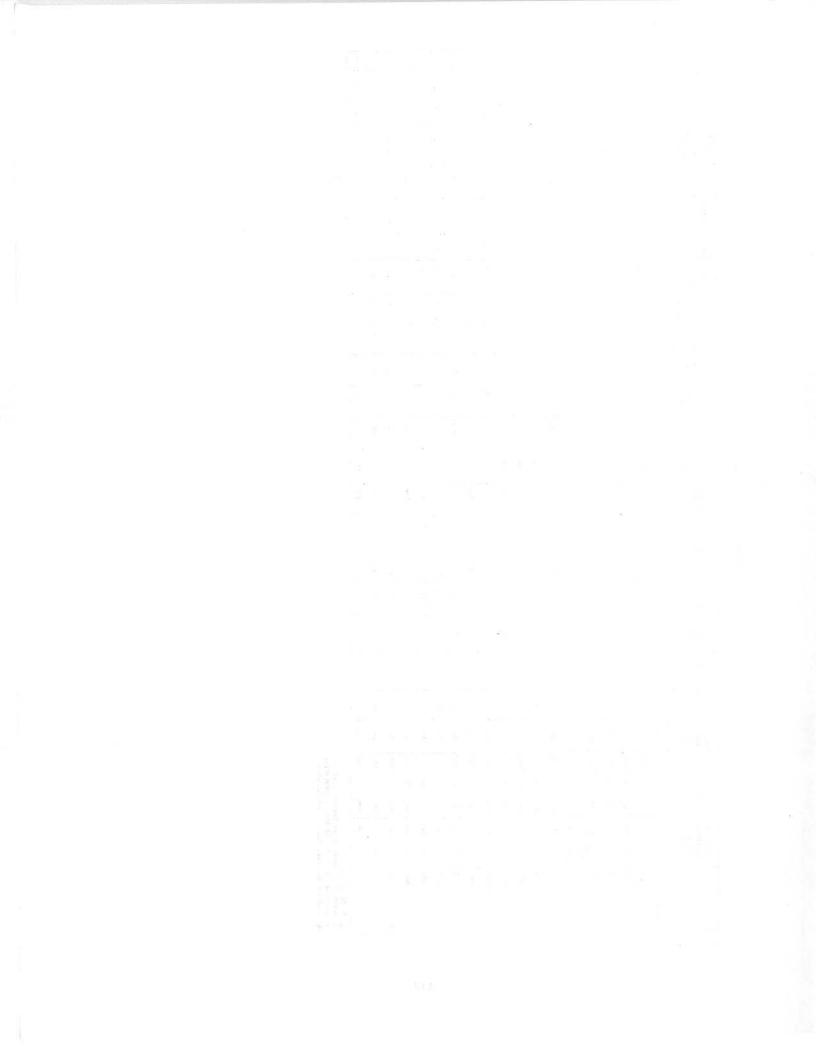
TIAN	DEFTH OR FRODUCING INTERVAL (FT)		DATE OF COLLECTION	WATER BEAR- ING UNIT	SILICA (SiO ₂)	IRON (Fe)	CAL- CIUM (Ca)	MAG- NE- SIUM (Mg)	SODIUM AND POTASSIUM	MU D MUIS	BICAR- BONATE (HCO ₃)	SUL- FATE (SO4)	CHLO- RIDE (C1)	FLUO- RIDE (F)	NI- I TRATE (NO ₃)	BORON (B) S	DIS- NE SOLVED A SOLIDS Ca	HARD- P NESS C AS S Caco ₃ D	PER- SC CENT AD SO- T SO- T DIUM RA	SODIUM D ADSORP- SO TION RATIO BO	XIM	CONDUC- TANCE (MICROM- HOS AT	Hd	WATER TEMPERATURE
									Na	×	,				,		-	,	(S	1	(RSC) 2	() ()	t	ç
JB-84-21-402	225	Nov.	10, 1970	18	I	ł	300	60	ķ	1	180	;	820	;	3	1	-	1,000	1	:	000	2,860	7.0	;
707	280		do.	do.	83	0.27	80	16	130	E	336	28	150	0.4	32	3	684	270	3	1	;	1,080	7.7	1
502	258- 296 303- 367 396- 486 495- 543 605- 625	œt.	14, 1969	do.	35	1	65	20	193	1	266	22	250	1.0	19	:	786	244	63	5.4	00	1,360	7.7	27
109	256- 276 288- 349		do.	Tg	40	1	109	30	147	1	266	42	310	ŝ	18	Ę	828	396	45	3.2	8.	1,490	7.7	27
22-104	330	Nov.	. 11. 1970) do.	1	ł	140	63	I	I.	280	73	470	ł	;	1	1	610		1	.00	1,990	7.3	ł
105	1,106-1,202	Oct.	. 14, 1969	To	19	Ĭ	10	1.7	543	;	234	536	325	1.3	۲,	1	1,550	32	97 4	42 3	3.20	2,490	8.2	36
402	180?	Oct.	27, 1970	Tg	07	ť,	74	21	190	3	268	44	280	۲.	16	ł	798	270	60	5.0	00.	1,400	7.3	ł
105	350	Apr.	. 30, 1970	op 0	30	Ĕ	56	18	149	;	288	15	162	6,	22	1	631	214	60	4.4	.45	1,080	7.6	;
108	+06	May	28, 1969	9 do.	80	ł	178	60	965	E	315	208	076	1.1	13	1	2,130	690	;	;	3	3,410	7.4	26
804	7007	Apr.	. 30, 1970	0 do.	ł	.02	130	64	Ē	t	278	87	475	E	1	1	1	502	1	3	00.	2,080	7.2	1
805	40	Apr.	. 29, 1970	0 do.	1	;	45	38	÷	8	077	Į.	51	1	ł,	1	:	269	1	1	1.83	894	7.5	i.
902	80	June	e 13, 1931	1 do.	1	1.6	80	ļ	328	I.	314	177	676	;	9.6	1	1,600	690	£.	1	;	4	1	1
902	80	Apr.	. 29, 1970	0 do.	:	1	174	102	:	I	298	ţ	290	ł	ł	ł	;	854	1	:	.00	3,060	7.1	27
26-602	+00+	Feb.	. 10, 1970	0 Tet	30	ł	24	12	412	ł	394	202	332	6.	2.4	1	1,210	110	89	17	4.27	2.010	7.3	Ê
903	400 t	Apr.	. 10, 1970	0 do.)	3	9.8	3.5	1	ł	380	3	173	1	î	;	;	39	1	1	5.45	1,310	7.7	i
27-101	400+	July	y 15, 1970	0 do.	74	.00	84	28	369	3	246	57	588	1.8	41	;	1,360	324	11	8.9	00.	2.380	7.3	i
201	350±	ylul :	y 14, 1970	0 do.	ł	1	43	12	1		346	187	342	3	ł	1	:	157	;	;	2.53	2,000	7.7	ł
105	100	Mar.	. 23, 1970	0 do.	I	ľ	192	19	ł	1	396	ł	840	1	:	;	1	730	1	1	00.	3,590	7.4	ī
403	1001	July	y 16, 1970	0 do.	ł	ľ	52	14	ł		360	222	540	1	à	3	;	187	1	;	2.16	2.710	7.6	3
504	1,317	Oct.	. 19, 1960	0 Tct	ł	.00	2	1.	615	ł	610	185	465	1	1	:	1,500	Ś	1	3	3	3	8.6	ij.
701	300+	Feb.	. 9, 1970	0 do.	ł	ł	124	23	E	ţ.	266	11	415	ŝ	:	Ę	٩č	707	1	;	00.	1,830	7.0	3
801	160	Mar.	. 19, 1970	0 18	;	ł	45	9.9	;	8	250	34	146	ł	T.	ß		153	E	8	1.04	958	7.4	1
106	;		do.	1	ł	1	5.2	5.	ł	1	480	248	365	Ī	Ē	;	i.	15	E	Ę	7.57	2,330	8.2	1
28-201	156	Mar.	. 24, 1970	0 Tg	1	;	165	17	1	1	364	ì	205	ł	ł	ł	i,	482	1	1	.00	1.260	6.9	ŧ
501	140- 186		do.	do.	16	1	103	18	255	;	238	50	452	ej.	0.	ł	1,010	331	63	6.1	.00	1.840	7.2	E
101	1,850	Mar.	. 13, 1970	0 Tct	1	1	5.5	4.	9	;	608	216	650	ł	;	ţ.	;	15	1	;	9.61	3,260	8.1	Ę
803	2,115-2,125		do.	do.	16	60.	30	1.5	2,730	:	448	28	3,980	3	ł	1	7,010	81	66	1	5.72	12,500	7.7	;
29-101	110	Sept.	st. 16, 1970	70 Tg	81	3	252	86	382	9	204	176	1,000	sô.	62	1	2,140	982	46	5.3	8.	3.570	7.6	;
201	328	Маг.	c. 7, 1945	5 do.	22	.02	42	11	392	12	330	253	345	1.0	25	1	1,270	175	;	ï	4	2,190	7.8	27
302	615	_	40	40	00	60	41	17	364	61	LUC	100	02.0	0	00		1 200	64.1	;	12	1	0 060	7 8	27

- 114 -

Table 11. ---Chemical Analyses of Water From Wells---Continued

													43	2	Į		100															
JRE °P	1	3	81	3	1	26	;	77	82	1	3	;	95	ì	ľ	- 66	T	1	1	ŀ	3	1	1	4	79	77	81	79	56	79	1	80
WATER TEMPERATURE °C °P	;	1	27	1	;	80	i	25	28	1	1	;	35	1	'n.	-37	1	1	i	4	1	1	1	ß	26	25	27	26	26	26	;	27
Hd	7.9	7.8	7.7	7.8	7.2	7.2	7.9	7.0	7.8	7.2	7.2	8.1	8.0	8.5	7.3	I	8.0	7.1	7.4	7.6	7.0	7.0	;	7.6	7.0	Ł	7.5	7.5	7.7	7.5	8.1	7.9
SFECIFIC CONDUC- TANCE (MICROM- HOS AT 25° C)	1,875	2,415	1,460	2,830	3,070	3,300	1,610	2,350	2,810	1,610	2,680	1,860	2,760	1,430	2,770	:	1,220	2;270	2,230	3,480	1,710	1,640	2,540	2,240	2,660	1	2,380	3,460	1.730	2,160	1,330	5.970
RESI- DUAL SODIUM CAR- BONATE (RSC)	R	ł	0.00	2.79	00.	£	2.33	:	60.	00.	.00	4.85	7.12	4.61	00:	1	14.9	.00	00.	.27	00.	00.		1	Ę	I.	E	Ĩ	ł	1	4.33	00.
SODIUM ADSORP- TION RATIO (SAR)	E	ł	4.6	34	3	1	i.	F	7.2	ł	8.0	12	1	3.9	8.1	8	;	1	8.4	;	3	3	3	;	ł.	E	;	:	1	1	32	24
PER- CENT SO- DIUM	t	Î	57	96	1	:	1	i.	60	ł	65	82	1	398	79	É	1	1	69	ł	ł	3	3	1	Ē	f	ł	1	;	ł	98	\$
HARD- NESS AS CacO ₃	174	170	298	64	596	630	148	646	552	169	480	168	38	12	534	h	11	614	360	392	390	384	ą	540	798	668	540	940	276	653	16	544
DIS- DIS- DIS- DIS-	1,250	1,390	832	1,820	1	2,040	£	ŀ	1,620	Ĩ	1,640	1,160	1	824	1,820	676	E	ł	1,550	ł	;	3	3	1.240	ł	1,590	1,410	ł	ł	1	798	4,490
BORON (B)	:	I.	0.73	:	1	1	ſ	ł	2.0	1	;	1	:	1	1	ŧ	I	Ĩ	1	ĺ	ł	;	i.	ġ.	1	Ŕ	ł	Ē	1	ł	ł	1
NI- IRATE (NO ₃)	17	18	15	0.	3	36	ł.	ł	12	1	31	13	1	23	22	1	4	I	40	1	}	1	1	Ħ	1	45	33	j.	1	99	.2	.1
FLUO- RIDE T (F) (1.1	11	ŝ	1.4	;	1.2	I.	ţ.	1.6	;	1.1	2.0	1	۲.	.7	1	t.	1	۲.	1	ł	1	;	٤.	;	7.	1.0	ł	ţ	:	9.	3.5
CHLO- RIDE (C1)	298	339	302	395	830	880	285	502	670	392	600	282	455	272	492	125	III	498	235	820	345	342	;	447	700	650	560	970	220	502	175	448
SUL- FATE (SO4)	155	263	74	636	3	199	111	75	152	20	167	122	310	47	977	56	÷	128	536	ł	96	06	;	16	90	161	143	110	336	77	162	2,420
BICAR- BONATE (HCO ₃)	:	315	220	248	210	265	322	444	340	204	372	200	480	296	356	242	412	344	290	464	306	256	;	300	224	312	270	212	272	264	284	180 2
	1	Ê	3	1	;	8		E	1	Ē	1	1	4	1	9	1	1	;	1	1	1	1	;	3	nine M	;	1	;	;	Ŧ	1	1
SODIUM AND POTASSIUM Na K	288	393	184	626	1	495	1	E.	388	ŧ	402	360	4	314	430	207	ŀ	1	368	t	:	1	;	198	1	326	308	I	I	ī	162	1,270
MAG- NE- SIUM (Mg)	22 2	18	25	2.1 6	27	24 1	14	52	60	18	53 4	20	1.2	1.0	7 07	2.5	9.	48	16	43	27	21	ĩ	40	58	1	52	11	27	97	.2	4.2 1,
CAL- CAL- (Ca.) (1)	34	38	78	22	150	166	36	173	122	38	105	34	13	3.5	148	5.5	5.8	167	118	86	112	119	4	151	224	3	130	260	66	186	6.0	211
			3	-P)	-	-		-	-	,	1 1 10.	1	;	а	.87 1	1.7	.03 1/	-	-	+	;	:	1	.02		1		1			;	-
A IRON) (Fe)	0.2			1.2				10			34.		<i>.</i>	-		-i	*						57 	v			26				4	
SILICA (SiO ₂)	ľ	ľ.	45	19	ł	74	1	l	46	Ĩ	66	86	ł	17	70	23	I.	ł	94	1	Ì	ł	1	:	1	4	46	Ē	ï	ł	23	40
WATER BEAR- ING UNIT	Tg	do.	do.	To	Tg	ЦВ	do.	do.	do.	Tct	Tg	do.	Tct	-op	do.	do.	do.	T8	do.	Tct	ł	Tg	To	цц.	. op	do.	do.	do.	do.	do.	То	Tct
DATE OF COLLECTION	. 1960	. 12, 1969	. 6, 1969	t. 29, 1970	t. 17, 1970	28, 1969	t. 24, 19703	. 1, 1969	t. 21, 1969	. 9, 1970	. 10, 1970	. 19, 1970	. 20, 1970	. 25, 1970	do.	. 18, 1950	. 7, 1970	do.	. 19, 1970	do.	. 14, 1970	do.	. 16, 1969	y 30, 1970	. 5, 1969	. 5, 1934	28, 1969	. 30, 1969	do.	do.	do.	do.
) Jan.	2 Aug.	0± 0et.	5 Sept.	Sept.	0 May	0 Sept.	I Nov.	0 Sept.	D± Apr.	l Apr.	5 Mar.	0± Mar.	6 Mar.		0± Feb.	O± Apr.		5± Mar.	0	Apr.	÷0	0+ Dec.	0 July	S Nov.	0 Dec.	0 May	6 Oct.	÷C	5	0±	
DEPTH OR PRODUCING INTERVAL (FT)	520	322- 422 442- 507 532- 596	500±	1,000-1,115	100	06	360	121	340	300±	101	185	1,300±	946	403	÷096	÷096	260	225±	460	ł	3001	+068	210	145	70	70	156	400÷	112	1,600±	2,300
ТТЭМ	JB-84-29-303	310	902	30-102 1	202	201	602	702	106	34-302	35-103	201	302	105	502	505	505	507	602	106	36-104	301	201	109	603	106	106	37-101	103	201	202	203
	<u>3</u> JE	ઓ			_	έŊ	_				_					31		-		-				75			Ξŋ					

- 115 -


Table 11. -- Chemical Analyses of Water from Wells-- Continued

MELL	DEPTH OR PRODUCING INTERVAL (FT)		DATE OF COLLECTION	WATER BEAR- ING UNIT	SILICA (SiO ₂)	IRON (Fe)	CAL- CTUM (Ca)	MAG- NE- SIUM (Mg.)	SODIUM AND POTASSIUM		BICAR- BONATE (HCO ₂)	SUL- FATE (SO ₄)	CILO- RIDE (CI)	FLUO- RIDE (F)	NI- IRATE (N01)	BORON (B) S	DIS- SOLVED /	HARD- PER NESS CEN AS SO- CaCO ₁ DIU	16 2	SODIUM DI ADSORP- SOI TION DI RATIO BOI	1 X I M	SFECIFIC CONDUC- TANCE (MICROM- HOS AT	Hq	WATER TEMPERATURE	RE
									Na	Х		,		_	2			2	(S			5* C)	+	ç	H.
JB-84-37-30I	282+	Feb.	13, 1947	7 Tg	F	£	55	18	234	Ð	298	133	218	;	5.8	1	874	186	-		3	1,370	1	1	1
105	150:	Nov.	4, 1969	9 do.	I	1	92	36	£	Ľ	396	160	530	I)	134	1	1	378	<u> </u>	a l	a	2,690	7.5	1	1
402	2,300±		do.	Tet	ł	8	19	ł	Ē	t	112	2,400	425	Ë	ß	:	Ę	ķ			18	6,050	8.0	27	81
601	120	Oct.	30, 1969	9 Tg	52	f	181	27	217	Ę	336	342	242	0.3	75	1	1,300	562	46 4	4.0 0	0.00	1,930	7.9	Ē	1
701	190- 300	Oct.	6, 1969	9 do.	58	3	158	48	242	;	244	124	535	۲.	40	0.95	1,330	592	47 4	4.3	00.	2,300	7.9	25	11
704	130	June	12, 1931	1 do.	3	3	97	1	200	;	324	70	266	1	23	Ĩ	826	297	1	;	;	r	1	26	79
704	130	Nov.	6, 1969	9 do.	3	3	79	25	1	3	308	82	270	1	78	1	;	262		;	1	1,590	7.9	ì	1
705	120		do.	do.	3	3	16	39	ä	1	352	67	290	:	3	;	;	388			4	1,560	7.6	26	79
106	66	May	28, 1961	1 do.	80	Ł	98	45	373	ł	351	234	500	1.4	4.5	1	1,510	432	<u></u>		đ	2,370	7.5	26	79
38-103	155	Nov.	. 1, 1969	9 do.	l	E.	104	31	ſ	I.	304	70	385	1	;	3	3	387	-		1	1,800	7.2	25	11
106	300	Dec.	. 12, 1969	9 do.	I	ł	:	Ĩ	Ē	E	ß	75	222	Ĕ	Ē	E	(†	1	1	1	1	1,300	1	9	;
302	100	Dec.	. 13, 1969	9 do.	1	ł	1	I	ł	8	1	1	I	Ē	79	I.	Ţ	i	8. E	Ĕ	1	2,380	1	25	79.
402	150	Nov.	. 1, 1969	9 do.	1	1	116	29	1	1	254	85	375	Ē	ł	;	1	409	1	1	1	1,730	7.7	26	29
602	105?	Aug.	20, 1968	8 do.	77	1	157	105	590	1	423	329	1.050	1.4	4. >	ľ	2,480	820	1	1	ï	4,000	7.3	E	;
702	156	June	e 13, 1931	1 do.	3	1	56	ł	27	ķ	223	12	8.7	;	22	ł	247	166	1	;	1	Ŗ	1	t	-
702	156	Dec.	. 10, 1934	4 do.	3	3	1	1	16	ł	244	13	9.0	с.	9.4	ł	250	199		:	ł	ļ	1	ł	:
702	156	Dec.	. 11, 1969	.op 6	49	3	95	9.8	11	1	348	6.8	10	.2	8.6	1	367	278	12	4.	.15	575	7.7	:	1
703	350	July	y 30, 1970	0 do.	1	< 0.02	160	3	196	3	216	80	7 64	9.	21	1	1,170	510	1	N	1	2,192	7.7	1	;
802	350+	Nov.	. 24, 1969	9 do.	1	1	105	30	1	1	236	87	368	ä	3	3	;	386	1	1	00.	1,740	7.8	27	81
902	310	June	e 13, 1931	11 do.	1	ß	80	I.	200	1	278	103	229	1	20	1	171	240		1	;	;	1	3	1
205	257	- SuA	. 20, 1968	88 do.	. 42	E	69	19	183	Ũ	266	88	247	۲.	12	ł,	790	250	1	;	;	1,350	7.5	3	
908	197		do.	do.	. 62	8	434	353	1,570	ī	383	1,020	3,220	1.8	4. >	ŧ	6,800 2	2,530	1	i.	Ē	9,650	6.9	1	1
44-101	1,600	Mar.	. 22, 1913	3 Tct	1	ë.	13	3	400	ť	278	190	345	1	ł	;	1,170	45	E	Ē	Ē	L	ł	35	95
102	260-588	Dec.	. 17, 1969	oT 69	25	1	67	15	208	ł	258	80	228	4.	23	ţ.	755	184	71	6.7	·53	1,300	8.2	t,	Ľ.
104	1,730-1,772		do.	Tct	t 24	ł.	3.6	.2	621	£	516	318	420	5.2	0.	Ę	1,650	ł	99 8	85	8.27	2,690	8.5	42	108
301	240	Oct.	. 6, 1969	59 Tg	67	;	230	60	228	Ē	196	130	705	4.	32	.77	1,530	821	38	3.5	00.	2,710	7.8	27	81
45-101	90	Dec.	. 5, 1934	34 do.	1	ł	ł	E	167	ŧ	250	216	510	.5	29	t	1,370	810	:		Ľ	F	Ð	ŧ	1
102	100		do.	do.	:	;	ł	1	47	ī	264	26	14	.2	5.6	ł	287	165	1	ĩ	Ĩ	١	ł	;	;
103	3 200- 370	Oct.	. 12, 1969	.op 69	+ 50	1	188	53	217	1	212	126	590	.4	28	.74	1,360	687	41	3.6	00.	2,390	7.8	27	81
104	t 150±	Nov.	. 6, 1969	.op 69	1	1	132	67	ŧ	ä	256	36	472	ł	226	ł	;	509	ł	1	;	2,350	7.3	t	ł.
202	2 120	Nov.	. 20, 1969	69 do.	1	;	232	26	;	a	240	315	1,120	;	;	1	1	978	:	1	00.	4,170	7.4	ł	1
301	1,340-1,400	May	28, 1969	69 To	43	3	106	32	181	3	224	59	377	۲.	14	1	920	396	1	;	;	1,620	7.6	28	82
301	1,340-1,400	Oct.	. 29, 1969	.op 69	. 22	. 72	4.0	с. Г	376	1	272	146	320	8.	1.	1	1,000	11	66	49	4.24	1.720	8.4	39	102

- 116 -

panu
8Contl
Well
From
Water
0ŧ
2
Anal
emical
Ch
Ξ
Table

R TURE	84 o	1	1	81	ł	82	ł	3	1	I	104	1	81	75	81	79	81	62	73
WATER TEMPERATURE	°	1	ł	27	đ	28	ł	1	1	1	40	ł	27	24	27	26	27	26	23
Hd		7.0	ł	7.8	7.7	7.4	1	7.9	1	7.5	8.4	ł	7.5	8.3	7.7	7.9	7.2	7.7	;
CONDUC- TANCE (MICROM- HOS AT	25° C)	7,450	Į	1,610	2,500	2,750	1	2,820	ł	6,720	1,870	i	1,770	3,710	1,240	1,390	4,050	2,010	2,400
DUAL SODIUM CAR- BONATE	(RSC)	ŧ	I	0.00	8	00,	:	8	1	8	4.39	1	00	3.17	.78	8	I	8	ł
SODIUM ADSORP- TION RATIO	(SAR)	F	ŧ	4.4	6.5	5.3	:	:		1	56	1	4.8	17	1	4.9	Ē	5.2	1
PER- CENT SO- DIUM		ł	t	53	59	15	;	;	1	1	66	ł	55	81	3	60	ß	56	ł
HARD- NESS AS CaCO,	n	Ē	1,000	362	524	652	1,010	590	690	1,460	10	162	377	362	220	273	980	418	ī
DIS- SOLVED SOLIDS		122	3,350	116	1,540	1,560	2,240	3	1,580	1	1,120	1,220	966	2,350	3	817	2,490	1,120	1
BORON (B)	10 A	L	I	;	1	1.3	ł	3	3	;	1.6	ł	1	1	;	. 63	ß	1.0	ŧ
NI- TRATE (NO.)	'n	T	41	16	80	30	38	1	26	1	.0	29	34	п	8	31	10	46	1
FLUO- RIDE (F)		ł	1.2	9.	1.5	.4	е.	1	1	1	.8	ł	ŝ	1	ſ	9.	1.1	۲.	I
CHLO- RIDE (CL)		2,200	1,540	360	500	715	960	655	169	1,850	288	560	400	720	230	249	1,200	067	ł
SUL- FATE (SO _A)		1	330	65	166	153	277	191	154	496	254	A	63	378	26	80	228	60	480
BICAR- BONATE (HCO ₃)	,	328	422	226	386	160	312	328	269	328	280	243	226	636	316	266	260	192	130
SODIUM AND POTASSIUM	K	ł	I.	I	I	Ĩ	ł	ł	ł	1	t	t	•	1	1	:	1	ſ	Ē.
NUIDOS AND POTASSI	Na	:	874	190	340	309	192	1	316	3	410	358	214	725	3	187	530	245	1
MAG- NE- SIUM (Mg)		258	E	29	54	29	E	62	3	168	Ċ.	E	34	56	22	24	105	41	1
CAL- CIUM (Ca)		318	E	76	121	164	ł	134	120	307	3.9	120	95	53	52	20	218	100	1
IRON (Fe)		1	£	0.29	1	1	;	;	3	3	;	P	1	;	1	3	3	E	L
SILICA (S102)		1	r.	42	92	20	ł	1	3	1	23	E.	46	98	1	\$	67	\$	1
WATER BEAR- ING UNIT		Ig	do.	do.	do.	do.	do.	do.	Τg	do.	đ	Tg	do.	do.	do.	do.	do.	do.	do.
11 1 10		6, 1969	8, 1934	29, 1969	19, 1969	7, 1969	8, 1934	18, 1969	13, 1931	21, 1969	24, 1969	13, 1931	22, 1969	ć	do.	10, 1969	27, 1969	9, 1969	21, 1969
DATE OF COLLECTION		Nov. 6	Dec. 8	Oct. 29	Nov. 19	0ct. 7	Dec. 8	Nov. 18	June 13	Nov. 21	Nov. 24	June 13	Nov. 22	do.	đć	Oct. 10	May 27	Oct. 9	Nov. 21
R NG		80± No	170 De	425 Oc	150 No	260 0c 290 3339 407	67 De	123 Nc	J17 Ju	125 No		280 Ju	280 No	42	300	314 00	150 Ma	280 06	34 Nc
DEPTH OR PRODUCING INTERVAL (FT)		1997	μ,	274- 42	1	245- 26 270- 29 296- 33 345- 40	100	н	1	ц	1,200	200- 28	200- 28	107	290- 30	264- 31	L.	140- 28	(23)
TIM		JB-84-45-304	305	306	308	105	105	504	101	905	46-201	401	105	405	406	109	101	702	703

