TEXAS WATER DEVELOPMENT BOARD

REPORT 134

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE NUECES RIVER BASIN, TEXAS

By

H. L. Kunze

United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

September 1971

TABLE OF CONTENTS

Page

ABSTRACT	1
INTRODUCTION	2
NUECES RIVER DRAINAGE BASIN	2
General Description	2
Population and Economic Development	3
SURFACE WATER	4
Streamflow Records	4
Streamflow Occurrence	4
Springflow	4
Precipitation	4
Runoff	4
Surface-Water Development	6
CHEMICAL QUALITY OF THE WATER	6
Chemical-Quality Records	6
Factors Affecting Chemical Quality of Water	6
Geology and Streamflow	6
Activities of Man	9
Quality of Water in Surface Streams	11
	11
Dissolved Solids	
Hardness	11
Chloride	11
Other Constituents	11
Water Quality in Potential Reservoirs	11
Suitability of the Water for Use	12
Domestic Supply	12

TABLE OF CONTENTS (Cont'd.)

Page

Irrigation	12
Industrial Use	14
SUMMARY AND CONCLUSIONS	14
REFERENCES	16

TABLES

1.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	13
2.	Water-Quality Tolerances for Industrial Applications	15
3.	Index of Surface-Water Records for the Nueces River Basin	20
4.	Summary of Chemical Analyses at Daily Stations on Streams in the Nueces River Basin	22
5.	Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations	25

FIGURES

1.	Index Map of Texas Showing River Basins and Coastal Areas	3
2.	Map and Graphs Showing Precipitation and Runoff in the Nueces River Basin	5
3.	Graph Showing Duration of Flows, Nueces River at Laguna and near Three Rivers, 1949-68	7
4.	Graph Showing Relation of Concentration of Dissolved Solids to Water Discharge	8
5.	Graph Showing Comparison of Dissolved Constituents in Water From the Nueces River at Laguna and Near Three Rivers	9
6.	Map Showing Oil and Gas Fields in the Nueces River Basin	10
7.	Diagram for the Classification of Irrigation Waters	14
8.	Hydrogeologic Map Showing Location of Streamflow and Chemical-Quality Data-Collection Sites	19

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE NUECES RIVER BASIN, TEXAS

ABSTRACT

The kinds and quantities of minerals dissolved in surface waters of the Nueces River basin are related principally to the geology of the area and to rainfall and streamflow characteristics; but industrial influences, particularly the disposal of oil-field brine, have affected the quality in some areas.

The basin lies in two physiographic sections-the Edwards Plateau of the Great Plains province and the West Gulf Coastal Plain of the Coastal Plain province. The Edwards and associated limestones and the Glen Rose Limestone of Cretaceous age are exposed on the Edwards Plateau. Rocks exposed in the West Gulf Coastal Plain range in age from Late Cretaceous to Holocene.

Separate and distinct streamflow patterns exist in the two provinces. In the Edwards Plateau section, where streamflow is partially sustained by seeps and springs, flow in the larger streams is perennial. As these streams cross the Balcones Fault Zone (Balcones Escarpment), substantial channel losses occur. Streamflow in the West Gulf Coastal Plain, which is almost entirely dependent on runoff from local precipitation, is intermittent and highly erratic.

Water in surface streams throughout the Edwards Plateau is generally consistently of good chemical quality, having a dissolved-solids content of less than 250 mg/l (milligrams per liter). The water is very hard, and the principal constituents are calcium and bicarbonate. The chemical quality of water of streams in the West Gulf Coastal Plain section varies from poor to excellent. During low flow the water generally contains high dissolved-solids concentrations, in which sodium and chloride predominate. During the short periods of high flow, dissolved-solids concentrations are low and calcium and bicarbonate are the principal constituents. Chemical quality of water in existing impoundments and of water available for storage in potential reservoirs is generally good. Dissolved-solids concentrations are less than 300 mg/l, with calcium and bicarbonate predominating.

Some streams in the southern part of the basin have been degraded from time to time by oil-field brine and by return flow from irrigation. Municipal and industrial wastes may also affect water quality during low flow. These detrimental effects are minimized in impoundments, however, because there is sufficient runoff for dilution.

Lake Corpus Christi provides water of good quality for municipal supply, irrigation, and industrial use. Potential reservoirs on the larger streams in the Nueces River basin would probably store water of similar quality.

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE NUECES RIVER BASIN, TEXAS

INTRODUCTION

The investigation of the chemical quality of the surface waters of the Nueces River basin was made by the U.S. Geological Survey in cooperation with the Texas Water Development Board as part of a statewide reconnaissance. Reports that have been prepared are listed in the references.

The purpose of this report is to present available chemical-quality data and interpretations that will aid in the proper development, management, and use of the surface-water resources of the Nueces River basin. In the study, the following factors were considered: the nature and concentrations of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine the water quality; and the suitability of the water for domestic supply, industrial use, and irrigation.

A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with federal and local agencies. However, this network has not been adequate to inventory completely the chemical quality of surface waters in the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and Texas Water Development Board was begun in September 1961. During this investigation, samples for chemical analysis were collected periodically at numerous sites throughout Texas so that some water-quality information would be available for locations where waterdevelopment projects are likely to be built. These data aid in the delineation of areas having water-guality problems and in the identification of probable sources of pollution, thus indicating areas in which more detailed investigations are needed.

For this reconnaissance, water-quality data were collected from the principal streams and many tributaries, the major reservoirs, and at a number of potential reservoir sites.

Other agencies that cooperated in the collection of chemical-quality and streamflow data are the Lower Nueces River Water Supply District, the Zavala and Dimmit Counties Water Improvement District No. 1, the Edwards Underground Water District, and the Texas State Department of Health.

NUECES RIVER DRAINAGE BASIN

General Description

The Nueces River basin is in two physiographic sections—the Edwards Plateau of the Great Plains province and the West Gulf Coastal Plain of the Coastal Plain province (Figure 1). The Balcones Escarpment, which separates these two sections, extends westward from San Antonio (about 30 miles east of the report area) across Medina, Uvalde, and Kinney Counties. The basin is bounded on the north and east by the Colorado, Guadalupe, and San Antonio River basins, and the San Antonio-Nueces coastal basin; and on the west and south by the Rio Grande basin and Nueces-Rio Grande coastal basin. The drainage area, which includes all or parts of 21 counties, is about 17,000 square miles.

The Nueces River rises in Edwards County at an elevation of about 2,400 feet and flows 315 miles southeastward to Nueces Bay on the Gulf of Mexico near Corpus Christi. The Frio River, which joins the Nueces River below Three Rivers, is the principal tributary to the Nueces River.

The Edwards Plateau and the Balcones Escarpment are partly protected from erosion by a cap of very resistant limestone. Therefore, in the northernmost part of the Nueces River basin, broad areas of the plateau are relatively undissected by stream erosion. Grass, small trees, and brush cover this part of the plateau. Southward, valleys have been cut in the plateau, and remnants of the resistant limestone caps form cliffs on the crests of the divides. Liveoak, juniper, and sparse stands of native grasses grow on the rocky hills and slopes. Pecan, cypress, sycamore, willow, and native grasses grow on the valley floors.

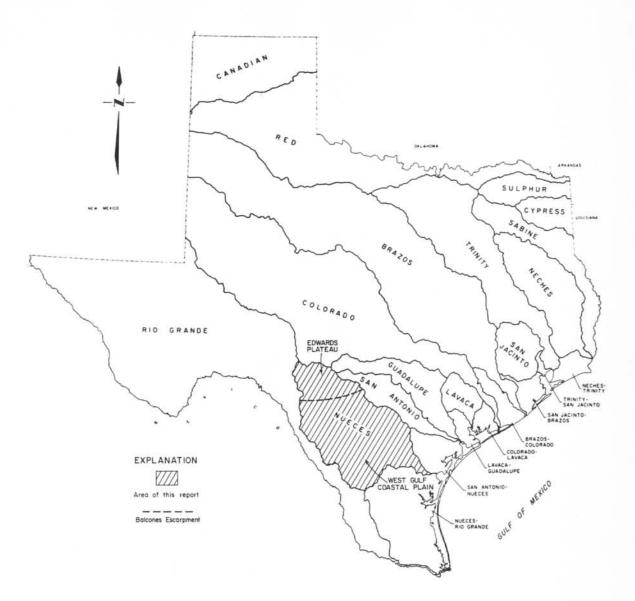


Figure 1.-Index Map of Texas Showing River Basins and Coastal Areas

The West Gulf Coastal Plain extends from the Balcones Escarpment to the Gulf of Mexico. The terrain is rolling to moderately hilly near the Balcones Escarpment; parallel to the coast line low ridges are formed by beds of resistant sandstone. The streams that drain the West Gulf Coastal Plain have flood plains bounded by terraces that may be several miles wide. Mesquite, several varieties of native brushes, and native grasses grow on the low divides and valley floors. Pecan and other large trees grow along the stream channels.

Population and Economic Development

The population of the Nueces River basin in 1970 was more than 130,000. Cities with a population of

more than 5,000 were Uvalde (10,403), Crystal City (8,012), Mathis (5,043), and Carrizo Springs (5,699). A small part of Corpus Christi is in the Nueces River basin; the remaining part of the city is in the Nueces-Rio Grande coastal basin.

The economy of the Nueces River basin is based chiefly on agriculture. Only a small amount of land along the streams in the Edwards Plateau area is suitable for farming; consequently, almost all of the Plateau area is devoted to ranching of goats, sheep, and cattle. Cattle ranching is extensively practiced, in the West Gulf Coastal Plain area, and where ground water is available for irrigation, truck crops, grains, cotton, and livestock feeds are grown. Oil and gas production and oil-field supply are the major nonagrarian sources of income. The greatest concentration of oil and gas fields is in the southern half of the basin (Figure 6). Production of oil and natural gas in the basin began in 1928 with the discovery of Government Wells North Field in Duval County. Since then, oil and gas fields have been developed in many other parts of the West Gulf Coastal Plain section of the basin.

Tourism and recreation aid the economy of the entire area. Hunting is an important revenue source throughout the basin. The outdoor water-oriented recreation afforded by Lake Corpus Christi and Nueces Bay attract many visitors each year.

SURFACE WATER

Streamflow Records

Streamflow records in the Nueces River basin date from 1915, when the U.S. Geological Survey established streamflow stations on the Frio River near Derby and the Nueces River near Three Rivers. Since that time, other streamflow stations have been established on the Nueces, Sabinal, Frio, and Atascosa Rivers, and on Seco, Hondo, San Miguel, and San Casimiro Creeks. In 1968, the Geological Survey was operating 24 streamflow stations. During this reconnaissance, discharge was measured at other sites where water-quality samples were collected for chemical analysis.

The periods of record for all streamflow stations in the Nueces River basin are given in Table 3 and the locations of these stations are shown on Figure 8. Records of discharge and stage of streams in the Nueces River basin from 1915 to 1960 have been published in the annual series of the U.S. Geological Survey Water-Supply Papers (see table at end of list of references). Beginning with the 1961 water year, streamflow records have been released by the Geological Survey in annual reports for each state (U.S. Geological[‡] Survey, 1961-1967). Summaries of discharge records have been published giving monthly and annual totals (U.S. Geological Survey, 1960, 1964a; Texas Board of Water Engineers, 1958).

Streamflow Occurrence

Flow of streams in the Edwards Plateau area of the Nueces River basin is sustained by springs and seeps and local precipitation. As these streams cross the Balcones Escarpment, they lose much of their flow to the subsurface. South of the Balcones Escarpment, tributary streams derive very little, if any, flow from springs, and streamflow is dependent primarily on the quantity and intensity of local precipitation.

Springflow

The Edwards and associated limestones are recharged primarily by precipitation on the outcrops. The water moves rapidly downward from the surface to the water table, thence laterally to areas along stream valleys where it is discharged through seeps and springs at the contacts between the Edwards and associated limestones and the underlying Glen Rose Limestone. This springflow maintains continuous flow in some of the streams in the Edwards Plateau area.

Precipitation

Average precipitation ranges from about 20 inches in the west to about 28 inches in the east. Mean annual precipitation in the basin; average monthly precipitation at Eagle Pass (just west of the report area), Pearsall, and Beeville (just east of the report area); and annual precipitation for the period 1931-67 at Pearsall are shown on Figure 2. Average monthly rainfall is usually at a peak in May and again in September (see average monthly precipitation data for Eagle Pass, Pearsall, and Beeville on Figure 2). Rainfall throughout the basin is relatively low and is subject to much greater variations than indicated by the annual and monthly averages. For example, during the 1931-67 period, precipitation at the three stations in Figure 2 ranged from 0.00 inch during several months to 22.62 inches at Beeville in September 1967. Precipitation that is so unevenly distributed is not conducive to sustaining streamflow; therefore, flow in most tributaries in the basin is intermittent, and long periods of no flow have occurred in the streams in the West Gulf Coast Plain area of the Nueces River basin.

Runoff

Runoff is defined as that part of precipitation appearing in surface streams and is the same as streamflow unaffected by artificial diversions, storage, or other works of man in or on stream channels (Langbein and Iseri, 1960). The natural runoff pattern of streams in the Nueces River basin is altered by many small diversions for irrigation and domestic supply, by the Upper Nueces Reservoir above Crystal City, and by Lake Corpus Christi near Mathis (Figure 8).

The average annual runoff for the period 1924-68 from the Nueces River at Laguna and near Three Rivers was 2.4 and 0.7 inches respectively (Figure 2). Annual runoff expressed as mean discharge in cfs (cubic feet per second) and in inches per year is shown on Figure 2 for the Nueces River at Laguna and near Three Rivers. Total runoff for the basin is less than 1 inch.

Because runoff in the Edwards Plateau area is not entirely dependent on local precipitation, streams cease to flow only after long periods of no rainfall. Streamflow records show that the Nueces River near Laguna A contrasting situation exists in the West Gulf Coast Plain area of the Nueces River basin. Runoff is almost entirely dependent on the low, highly variable, local precipitation. Therefore, runoff in streams in this area of the basin is also highly variable. Discharge of the Nueces River near Three Rivers has ranged from no flow on many occasions to 141,000 cfs on September 23,1967.

The magnitude and frequency of high and low flows can be shown by flow-duration curves. A curve with a steep trend throughout indicates a highly variable stream whose flow is largely from direct runoff, whereas a curve with a flat trend shows surface- or ground-water storage. Flow duration curves for the Nueces River at Laguna and near Three Rivers are shown on Figure 3. The steep slope of the curve for the Nueces River near Three Rivers and the gradually decreasing trend of the curve for the Nueces River at Laguna further illustrates the runoff pattern in the two provincial areas of the Nueces River basin.

Surface-Water Development

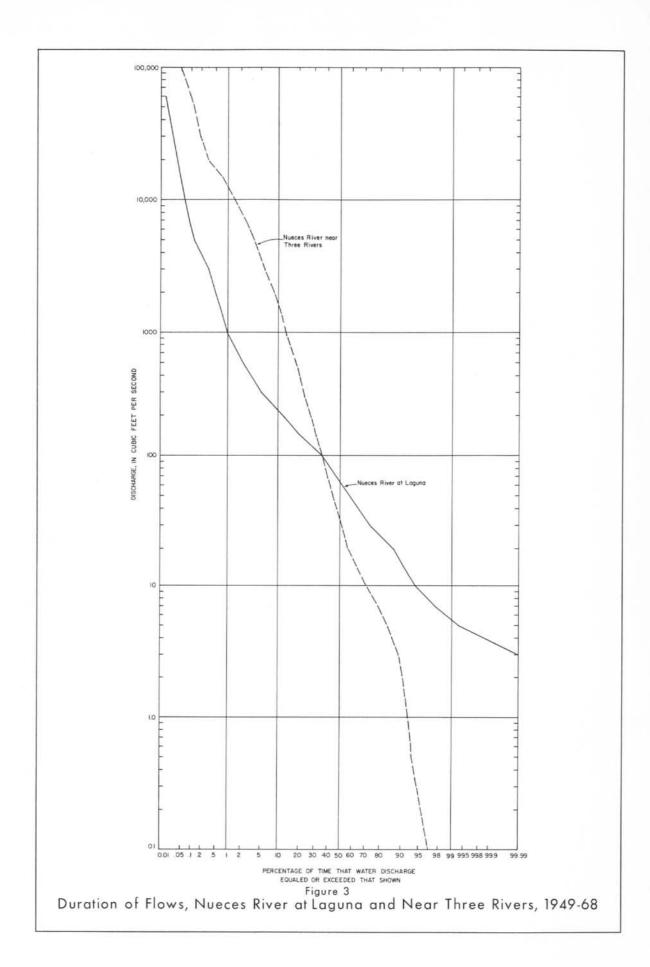
Because precipitation and runoff are variable in most of the Nueces River basin, storage projects are necessary to maintain dependable supplies. At present many small diversions for irrigation and domestic supply are located on streams throughout the Nueces River basin, and there are two reservoirs with capacities of over 5,000 acre-feet on the Nueces River (Figure 8). The Upper Nueces Reservoir (7,590 acre-feet capacity) above Crystal City is owned and operated by the Zavala and Dimmit Counties Water Improvement District No. 1. Water in this reservoir is used for irrigation. Lake Corpus Christi near Mathis is owned and operated by the Lower Nueces River Water Supply District. This reservoir, with a capacity of 297,800 acre-feet, supplies water for municipal supply and industrial use.

The Texas Water Plan (Texas Water Development Board, 1968) includes the provision for construction of either Choke Canyon or R&M (Reagan and McCaughan) Reservoirs, depending on local decisions as to which of the two alternatives is desired, and possible construction of Montell, Concan, and Sabinal Reservoirs in the basin (Figure 8). Choke Canyon Reservoir would be located on the Frio River above Three Rivers. R&M Reservoir, the alternative to Choke Canyon Reservoir, would be located on the Nueces River below Lake Corpus Christi. Montell, Concan, and Sabinal Reservoirs would provide flood control on the upper Nueces, Frio, and Sabinal rivers, and supplemental recharge to the Edwards and associated limestones during periods of high streamflow.

Chemical-Quality Records

Daily chemical-quality sampling in the Nueces River basin began in October 1941, at the station Nueces River near Three Rivers. The sampling station Nueces River at Cotulla was established in January 1942. The Cotulla station was discontinued in December 1942, and the Three Rivers station was discontinued in October 1952. The stations Nueces River near Mathis (established in October 1947) and the Frio River at Calliham (established in October 1967) were the only daily chemical-quality stations operating in the Nueces River basin in 1968. Periodic sampling was begun as early as 1930, but was sporadic until 1962 when a more intense periodic data-collection program was begun. During this reconnaissance, numerous samples were collected for chemical analyses, and discharge measurements were made at miscellaneous sites on streams throughout the basin.

Locations of the data-collection sites are shown on Figure 8, and selected chemical-quality data for the daily stations are given in Table 4. Results of all periodic analyses are given in Table 5. The complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and reports of the Texas Water Development Board (see table at end of list of references).

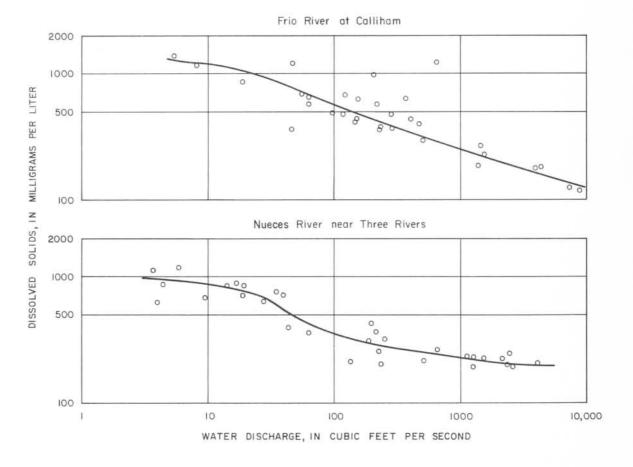

Factors Affecting Chemical Quality of Water

The chemical quality of surface water depends on a number of factors. The more important ones are geology, patterns and characteristics of streamflow, and activities of man.

Geology and Streamflow

The geology of the Nueces River basin has been described by Alexander, Myers, and Dale (1964). Rocks exposed in the basin consist of sediments that range in age from Cretaceous to Quaternary (Figure 8).

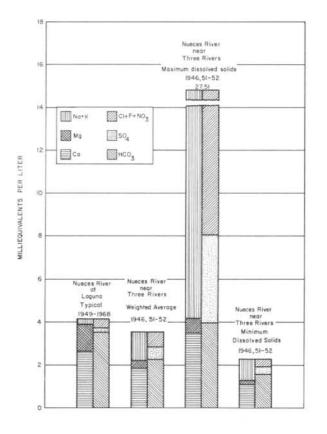
The Edwards Plateau section of the basin is underlain by the Glen Rose Limestone and Edwards and associated limestones of Cretaceous age. The Glen Rose Limestone is in the Trinity Group. The Edwards and associated limestones includes the Georgetown Limestone of the Washita Group and the Kiamichi Formation, Edwards Limestone, Comanche Peak Limestone, and Walnut Clay of the Fredericksburg Group. The rocks consist largely of limestone, dolomitic limestone, marl, and shale.


- 7 -

In the West Gulf Coastal Plain section of the basin, successively younger formations crop out in narrow belts that are roughly parallel to the coast of the Gulf of Mexico. Rocks from the Grayson Shale of Late Cretaceous age to the Midway Group of Paleocene age were considered as a unit by Alexander, Myers, and Dale (1964) and are mapped together on Figure 8. These rocks consist largely of clay, marl, limestone, and sandstone.

Other rocks that crop out in the upper and central parts of the West Gulf Coastal Plain section are the Wilcox, Claiborne, and Jackson Groups of Eocene age; the Frio Clay of Oligocene age; and the Catahoula Tuff and the lower part of the Fleming Formation of Miocene age. These rocks consist largely of sand, sandstone, silt, clay, and gravel.

The formations that crop out in the lower part of the Nueces River basin, in downstream order, are the upper part of the Fleming Formation of Miocene age, the Goliad Sand of Pliocene age, and the Lissie Formation and Beaumont Clay of Pleistocene age. The units are composed of clay, silt, sand, and gravel.


In streams where flow is not regulated by upstream reservoirs, the concentrations of dissolved minerals commonly vary inversely with the flow of the stream. The sustained low flow of a stream is usually predominantly water that has entered the stream as ground-water effluent. This water has been in contact with the rocks and soils for a sufficient time to dissolve part of their soluble minerals. At high flow, the water consists of surface runoff that has been in contact with the exposed rocks and soils for a short time. Therefore, the dissolved-solids concentration of a stream is usally lowest during periods of high flow. This inverse relationship between water discharge and dissolved solids is also true for streams in the Nueces River basin (Figure 4). The curve for the Nueces River near Three Rivers was prepared from the monthly weighted averages of chemical analyses and monthly mean-discharge data. The curve for the Frio River at Calliham is based on analyses of daily composite samples and mean daily discharge for the composite period. The point scatter is typical of western streams, where the intial flows of each runoff event flush out precipitated materials left by evaporation of water that remained in the drainage area after the previous runoff event.

Streams in the Edwards Plateau area generally contain calcium bicarbonate water that is low in dissolved solids, regardless of the amount of streamflow. During periods of high flow, streams in the West Gulf Coastal Plain area contain calcium bicarbonate water that is low in dissolved solids. As streamflow diminishes, the water generally changes to a mixed type, with an increase in dissolved solids. During extreme low flow, the dissolved-solids concentrations are increased and the water generally changes to a sodium chloride type.

Chemical analyses of water from the Nueces River near Three Rivers and one typical analysis of water from the Nueces River at Laguna are shown graphically in Figure 5. The total height of each vertical bar is equivalent to the total concentration of anions (negatively charged constituents) or cations (positively charged constituents) expressed in me/I (milliequivalents per liter). The bars are divided into segments to show the concentration of the individual constituents. The analysis of the water from the Nueces River at Laguna is typical of most of the surface water throughout the Edwards Plateau, and the analyses of the water from the Nueces River near Three Rivers typify the water that is in streams in the West Gulf Coastal Plain during varied streamflow conditions.

Activities of Man

The activities of man often alter the chemical composition of surface streams. Depletion of flow by diversion, return flow of irrigation, disposal of municipal and industrial wastes into streams, and evaporation from water-storage projects usually increase dissolved-solids concentration of water in streams.

Many small diversions are located on streams in the Nueces River basin, but the effect on the chemical quality of total streamflow is probably negligible.

Irrigation practices often affect the water quality of streams. Where surface water is diverted for irrigation, the volume of streamflow is reduced. Where crops are irrigated with ground water, the drainage often differs in quality and type from water in the receiving stream. The return flows from irrigated lands carry minerals leached from the soil. In 1964, 507,425 acre-feet of water was used for irrigation in the Nueces River basin, primarily in the Winter Garden (Zavala and Dimmit Counties) and in Atascosa, Dimmit, and Frio Counties, (Gillett and Janca, 1965). Of this total, about 452,407 acre-feet was from ground-water supplies.

Dissolved-solids concentrations of ground water throughout the Nueces River basin range from less than 300 mg/l (milligrams per liter) to more than 11,000 mg/l (Alexander, Myers, and Dale, 1964). The average dissolved-solids concentration for the wells sampled was about 1,760 mg/l.

Municipal, industrial, and domestic wastes may cause some degradation of streams in the Nueces River basin. This problem is minimized because the basin is sparsely populated and has no large cities. The disposition of municipal and industrial wastes has caused only local changes in the quality of surface water and natural streamflow generally is adequate for dilution.

Oil is produced in the central and southern parts of the basin (Figure 6), and brine, which is produced in nearly all oil fields, may, if improperly handled, eventually reach the streams. According to an inventory by the Texas Railroad Commission in 1961 (Texas Water Commission and Texas Water Pollution Control Board, 1963), about 59 percent of the salt water produced in oil fields of the Nueces River basin was reinjected underground; the remaining brine was placed in unlined surface pits or directly into surface streams at that time. Data indicate that oil-field pollution was degrading low flows in the Frio and Atascosa Rivers, and some pollution occurred along the Nueces River. Available data do not indicate all the possible trouble areas, but the effect of oil-field pollution on the quality of the water impounded in Lake Corpus Christi is considered slight. Railroad Commission regulations no longer permit surface disposal of oil-field brine, but residual effects of past disposal practices may affect water supplies for many years.

The Upper Nueces Reservoir and Lake Corpus Christi are the only two major reservoirs in the Nueces River basin (Figure 8). The chemical character of the Nueces River is probably affected only slightly by storage in the Upper Nueces Reservoir. Because flow in the Nueces River below Lake Corpus Christi is almost entirely regulated by the reservoir, the quality of the water is dependent largely on the quality of the stored water. U.S. Geological Survey studies have shown an increase in salinity of the Nueces River below Lake Corpus Christi and concluded that the increase was due to saline ground-water effluent and oil-field brine pollution.

Quality of Water in Surface Streams

The principal cations in natural water are calcium, magnesium, sodium, potassium, and iron. The principal anions are carbonate, bicarbonate, sulfate, chloride, fluoride, and nitrate. Other constituents and properties are often determined to help define the chemical and physical character of water. In the following discussion, concentrations of the dissolved constituents are based on discharge-weighted averages. The discharge-weighted average approximates the chemical character of the water if all the water passing a point in the stream during a period were impounded in a reservoir and mixed with no adjustments for evaporation, rainfall, or other chemical changes that may occur during storage.

Dissolved Solids

The discharge-weighted average concentration of dissolved solids in streamflow in the Nueces River basin is generally less than 300 mg/l. Periodic data from streams north of the Balcones Fault Zone indicate that base flow in the Edwards Plateau area usually contains less than 250 mg/l dissolved solids. During periods of high flow, this concentration would be expected to be much less than 250 mg/l.

In the West Gulf Coastal Plain area, water is also low in dissolved-solids content. Discharge-weighted average concentrations of dissolved solids in water of the Frio River at Calliham (1968), Nueces River near Three Rivers (1946, 1951-1952), and Nueces River near Mathis (1948-1968) were 258, 229, and 233 mg/l, respectively. Periodic analyses of water from tributary streams indicate that their dissolved-solids concentrations are probably in the same range of magnitude, except where local oil-field pollution has occurred (see Opossum Creek near Callaham in Table 5).

The station Nueces River near Three Rivers measures most of the water flowing into Lake Corpus Christi, and the station near Mathis measures outflow from the reservoir. Weighted averages for the period of concurrent record (1951 and 1952 water years) show about 10 percent increase in dissolved solids between the two stations. The analyses showing the maximum and minimum dissolved-solids concentrations and the annual discharge-weighted averages for the Nueces River near Tilden, Frio River at Calliham, Nueces River near Three Rivers, and Nueces River near Mathis for the periods of record are given in Table 4. Dissolved solids determined for miscellaneous sampling sites are listed in Table 5.

Hardness

Periodic analyses of streams in the Edwards Plateau show that surface water in this section of the report area is generally hard (121-180 mg/l) or very hard (more than 180 mg/l). Streams in the plains area would generally be classed as moderately hard (61-120 mg/l) or hard. The discharge-weighted average hardness for the Frio River at Calliham, Nueces River near Three Rivers, and Nueces River near Mathis for the periods of record were 139, 112, and 122 mg/l, respectively. Data for Three Rivers and Mathis would be representative of water in Lake Corpus Christi.

Chloride

The chloride content of waters throughout the Nueces River basin is generally less than 50 mg/l. Periodic data for the Nueces River at Laguna show the chloride content to be less than 25 mg/l. Discharge-weighted averages of chloride concentrations in the Frio River at Calliham, Nueces River near Three Rivers, and Nueces River near Mathis were 48, 23, and 28 mg/l, respectively. Chloride concentrations in tributary streams and in stored water are probably in the same range as in the major streams, except where local oil-field pollution has occurred.

Other Constituents

Other important constituents in evaluating the chemical quality of water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate. Discharge-weighted averages of these constituents for the Nueces River near Mathis are: silica, 16 mg/l; sodium, 30 mg/l; bicarbonate, 152 mg/l; sulfate, 25 mg/l; and nitrate, 1.7 mg/l. Weighted-average fluoride is not given. However, fluoride concentrations in all streams have consistently been less than 1 mg/l.

Water Quality in Potential Reservoirs

The quality of water may be improved or degraded by impoundment. Beneficial effects include reduction of silica, turbidity, color, and bacteria; stabilization of sharp variations in chemical quality; entrapment of sediment; and reduction in temperature extremes. Detrimental effects may include increased algae growth, reduction of dissolved oxygen, and increases in the concentration of dissolved constituents as a result of evaporation.

Construction of Choke Canyon Reservoir on the Frio River or R&M Reservoir on the Nueces below Lake Corpus Christi is under consideration. The quality of water at the stations Frio River at Calliham and Nueces River near Mathis is representative of the quality of water to be stored in the respective reservoirs. Therefore, the water stored should be of good quality. Any other potential reservoirs on almost all streams in both sections of the basin could be expected to contain good quality water.

Suitability of the Water for Use

Quality-of-water studies usually are concerned with determining the suitability of the water—judged by the chemical, physical, and sanitary characteristics—for its proposed use. Table 1 lists the constituents and properties commonly determined by the U.S. Geological Survey and includes a resume of their sources and significance.

Domestic Supply

The safe limits for the concentrations of mineral constituents found in water are usually based on the U.S. Public Health Service drinking water standards. These standards, originally established in 1914 to control the quality of water used for drinking and culinary purposes on interstate carriers, have been revised several times; the latest revision was in 1962 (U.S. Public Health Service, 1962). These standards have been adopted by the American Water Works Association as minimum standards for all public supplies.

According to the drinking-water standards, the limits in the following table should not be exceeded:

CONSTITUENT	MAXIMUM CONCENTRATION (MG/L)	
Sulfate	CONCENTRATION (MG/L) 250 250 45 25 45	
Chloride	CONCENTRATIO (MG/L) 250 250 45 夢 1.0	
Nitrate	45	
Fluoride	≞⁄ 1.0	
Dissolved solids	500	

Based on annual average of daily maximum air temperatures at Carrizo Springs.

In the Nueces River basin, concentrations of all the foregoing constituents are generally well below the recommended limits.

Irrigation

The chemical composition of a water is an important factor in determining its usefulness for irrigation because the quality of the water should not adversely affect the productivity of the land. The extent to which chemical quality affects the suitability of a water for irrigation depends on many factors, such as: the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of applying it; the kind of crops grown; and the climate of the region, including the amounts and distribution of rainfall. Because these factors are highly variable, all methods of classifying water for irrigation are somewhat arbitrary.

The most important characteristics in determining the quality of irrigation water, according to the U.S. Salinity Laboratory Staff (1954), are: (1) total concentration of soluble salts, (2) relative proportion of sodium to other cations, (3) concentration of boron or other elements that may be toxic to crops, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium.

The U.S. Salinity Laboratory Staff introduced the term "sodium-adsorption ratio" (SAR) to express the relative activity of sodium ions in exchange reactions with the soil. This ratio is defined by the equation:

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

where the concentrations of the ions are expressed in milliequivalents per liter.

A system for classifying irrigation waters in terms of salinity and sodium hazards has been prepared by the U.S. Salinity Laboratory Staff. Empirical equations were used in developing a diagram that uses SAR and specific conductance in classifying irrigation waters. The diagram is reproduced in modified form as Figure 7. This classification, although embodying both research and field observations, should be used for general guidance only, because other factors affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes—low, medium, high, and very high. The ranges of this classification extend from waters that can be used for the irrigation of most crops on most soils to waters that are usually unsuitable for irrigation.

The typical water-analysis data for the Nueces River at Laguna, shown on Figure 7, indicate that the sodium hazard is low and the salinity hazard is medium in the Edwards Plateau section of the Nueces River basin. In the West Gulf Coastal Plain section of the basin, the sodium hazard may range from low to high, and the salinity hazard may range from medium to very high (see Nueces River near Three Rivers in Figure 7),

Table 1.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water

Hydrogen ion concentration (pH) concentration (pH)	Specific conductance ((micromhos at 25°C)	Hardness as CaCO ₃	Dissolved solids	Nitrate (NO3)	Fluoride (F) q fi	Chloride (Cl)	Sulfate (SO4)	Bicarbonate (HCO ₃) o and carbonate (CO ₃) s		Calcium (Ca) and a magnesium (Mg) II CC CC CC CC CC CC CC CC CC CC CC CC C	(ron (Fe)	Silica (SIO ₂)	PROPERTY
Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	Mineral content of the water.	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Action of carbon dioxide in water on carbonate rocks such as lime stone and dolomite.	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum, Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Dissolved from practically all rocks and solis. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	Dissolved from practically all rocks and solis, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	
A pH of 7.0 indicates neutra 7.0 denote increasing alkali increasing acidity. pH is hydrogen ions. Corrosivene decreasing pH. However, e attack metals.	Indicates degree of minera measure of the capacity o current. Varies with concer the constituents.	Consumes sapa before a lat bathrubs. Hard water form pipes. Hardness equivalent called carbonate hardness. called non-carbonate hardne ppm are considered soft, 61 to 180 mg/l, hard, more that	U.S. Public Health Servic recommend that waters con solids not be used if other i Waters containing more th unsuitable for many purpose	Concentration much greate pollution. U.S. Public He standards suggest a limit of content have been reporte binemia (an often fatal dise not be used in infant feet helpful in reducing inter-cr encourages growth of inter- undesirable tastes and odors.	Fluoride in drinking water r when the water is consu calcification. However, it depending on the concentra amount of drinking water individual. (Maier, 1950)	In large amounts in combina drinking water. In large qua water. U.S. Public Health dards recommend that the 250 mg/l.	Sulfate in water containing boilers. In large amounts, su gives bitter taste to water. beneticial in the brewing t (1962) drinking water stan content should not exceed 2	Bicarbonate and carbonate calcium and magnesium de water facilities to form scale gas. In combination with ca ate hardness.	Large amounts, in combinat Moderate quantities have lit for most purposes. Sodium boilers and a high sodium cr irrigation.	Cause most of the hardn water; soap consuming (see magnesium desired in elec textile manufacturing.	On exposure to air, iron ir brown precipitate. More th utensils redish-brown. Obj tile processing, beverages, is processes. U.S. Public He standards state that iron s quantities cause unpleasan bacteria.	Forms hard scale in pipes a high pressure boilers to fo Inhibits deterioration of zeo	

UIFICANCE

hard scale in pipes and boilers. Carried over in steam of ressure boilers to form deposits on blades of turbines, is deterioration of zeolite-type water softeners.

exposure to air, iron in ground water oxidizes to reddishwin precipitate. More than about 0.3 mg/lstains laundry and nsils reddish-brown. Objectionable for food processing, texprocessing, beverages, ice manufacture, brewing, and other cesses. U.S. Public Health Service (1962) drinking-water rolards state that iron should not exceed 0.3 mg/l. Larger rolards state that provide that and favor growth of iron mitties cause unpleasant taste and favor growth of iron

ause most of the hardness and scale-forming properties of atter; soap consuming (see hardness). Waters low in calcium and agnesium desired in electroplating, tanning, dyeing, and in xtile manufacturing.

arge amounts, in combination with chloride, give a salty taste. oderate quantities have little effect on the usefulness of water ir most purposes. Sodium salts may cause foaming in steam silers and a high sodium content may limit the use of water for rigation.

Bicarbonate and carbonate produce alkalinity. Bicarbonates of alcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbontre hardness.

ulfate in water containing calcium forms hard scale in steam oilers. In large amounts, sulfate in combination with other ions lives bitter taste to water. Some calcium sulfate is considered eneficial in the brewing process. U.S. Public Health Service 1962) drinking water standards recommend that the sulfate ontent should not exceed 250 mg/l.

In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water standards recommend that the chloride content should not exceed 250 mg/l.

Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of ename calcification. However, it may cause motiling of the teeth, edgending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)

concentration much greater than the local average may suggest oblution. U.S. Public Health Service (1962) drinking water tandards suggest a limit of 45 mp/l. Waters of high nitrate ontent have been reported to be the cause of methemogloinnemia (an often fatal disease in infants) and therefore should on the used in infant feeding. Nitrate has been shown to be elpful in reducing inter-crystalline cracking of boiler steel. It necurages growth of algee and other organisms which produce ndesirable tastes and odors.

U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsuitable for many purposes.

Consumes soap before a lather will form. Deposits soap curd on authtubs. Hard water forms scale in boilers, water heaters, and sipes. Hardness equivalent to the bicarbonate and carbonate is alled carbonate hardness. Any hardness in excess of this is alled non-carbonate hardness. Waters of hardness as much as 60 and non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft, 61 to 120 mg/l, moderately liard, 121 or 180 mg/l, hard; more than 180 mg/l, very hard.

dicates degree of mineralization. Specific conductance is a easure of the capacity of the water to conduct an electric procession of the concentration and degree of ionization of

A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity, values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also stack metals.

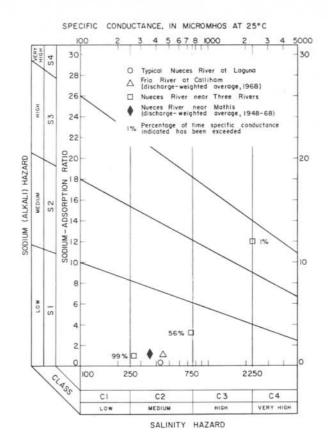


Figure 7.-Classification of Irrigation Waters

depending on streamflow conditions. The weighted averages for the Frio River at Calliham and the Nueces River near Mathis (Figure 7) probably are also representative of the water stored in Lake Corpus Christi and water to be stored in potential reservoirs on streams in the Nueces River basin. Therefore, water stored in reservoirs would have a low sodium hazard and medium salinity hazard. In the Nueces River basin, where the average annual rainfall is about 24 inches, the quality of surface water in reservoirs should be suitable for supplemental irrigation of most types of crops.

Industrial Use

The quality requirements for many industrial applications, as indicated by the water tolerances, are given in Table 2. One requirement of most industries is that the concentrations of the various constituents of the water remain relatively constant. When concentrations of undesirable substances in water vary, constant monitoring is required, and operating expenses are increased.

Hardness is one of the more important properties of water that affect its utility for industrial purposes (Table 1). Water in the Edwards Plateau section of the Nueces River basin is hard to very hard. Water stored in the West Gulf Coastal Plain section of the basin is moderately hard to hard. Therefore, reduction of hardness would be necessary for many industrial uses.

The corrosive property of a water receives considerable attention in industrial water supplies. A high concentration of dissolved solids in a water may be closely associated with corrosive properties, particularly if chloride is present in appreciable quantities. Water that contains a large concentration of magnesium chloride may be highly corrosive because the hydrolysis of this salt yields hydrochloric acid. The magnesium chloride and dissolved-solids concentrations in surface waters of the Edwards Plateau section of the Nueces River basin are low, but vary widely in the streams in the West Gulf Coastal Plain section, depending on streamflow conditions. Reservoirs throughout the basin can be expected to contain low concentrations of magnesium chloride and dissolved solids. Therefore, the corrosive properties of surface waters in the Nueces River basin generally should be low.

SUMMARY AND CONCLUSIONS

This reconnaissance of the chemical quality of surface water has shown that the Nueces River basin was relatively free of major water-quality problems during the study period. Lake Corpus Christi stores water of good quality for municipal supply, irrigation, and industrial uses. Other potential reservoirs built in either the Edwards Plateau or the West Gulf Coastal Plain area of the basin might also provide supplies of good-quality water. Some streams in the southern part of the basin have been degraded from time to time by oil-field brine and by return flow from irrigation.

A continuous study of streams contributing storage to Lake Corpus Christi and potential reservoirs should be maintained. More data are needed from the many tributaries to the Nueces River so that problem areas may be isolated and preventive or corrective measures can be taken. Of special concern should be streams in or near oil fields, municipal areas, and areas of highly irrigated lands. The relationship between drainage from the Nueces River basin and water quality in Nueces and Corpus Christi Bays is being studied under a cooperative program between the U.S. Geological Survey and the Texas Water Development Board. Table 2.–Water-Quality Tolerances for Industrial Applications ${\cal V}$

[Allowable Limits in Milligrams Per Liter Except as Indicated]

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AT VA								
	pH TOTAL Ca SOLIDS	Mn Fe+ Mn	A1203 S102	Cu P	co ₃ HC	нсо ₃ о	0H CaSO4	Na2S04 TO Na2S03 RATIO	GEN-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 : 1 1 1 1	0.5 0.5	::	:: ::			:: ::	11	A, B C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.0+ 3,000	:	5 40	:	200	50 50	:	1 to 1	;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.5+ 2,500	:	•	:				to	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0+ 1,500 100	:	.05 5	i r	05	5 30	:	3 to 1	;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5-7.0 500 100-200 7.0→ 1,000 200-500	r: r:	: : : :		11	11	100-200	11	c, D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 I 1 I 1 I	.2 .2	:: ::	1_ 11	: :	**	::	::	00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	850								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7) 100					• •		: :	.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: : : :	 		: : : :	: :	: 1	v,B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	.2 .2 .2	10	:: ::				: 1	ں ا
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	.02 .02	:	;	:	;	;	;	;
5 5 50 200 1 5 5 50 200 1 5 5 50 200 1 5 5 05 5 10-100 50-135 135 8.0 05 20 10-100 50-135 135 8.0	300	.5 1.0 .1 .2	:: ::	::		11		11	< 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200		: : : :	; ; ; ;	1	: : : :		: :	1 =
	7.8-8.3 8.0	.03 .0 .2 .2	@.0 <25 	&:: :::	111	111			:::
5 20	: : : :	.25	: : : :	: : : :	: :	::		11	11
20 1.0 1 Low 202	- 	1						1	1
can Water Works Association, 1950. corrosiveness; B-Mo slime formation; C-Conformance to Federal drinking water standards necessary; D-Nai s with algae and hydrogen sulfide odors are most unsuitable for air conditioning.	il drinking water standards necessary; D- for air conditioning.	-NaCl, 275 mg/	.1						

We control of corrections in a transmission of access cut may such as such as such as and transmission. 9 ca (HCO); particularly troublescore. Mg(HCO); tends to greenish color. CO₂ assists to prevent cracking. Sulfates and chlorides of Ca, Mg, Na should each be less than 300 mg/l 9 (Hite butts). 19 (Hite butts). 10 (Hite butts). 11 (Hite butts). 11 (Hite butts). 12 (Contour of composition and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is oxidized 12 (Control of composition and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is oxidized 13 (Contant composition; residual lumina 0.5 mg/l. 13 Calcium, magnesium, iron, manganese, suspended matter, and soluble organic matter may be objectionable.

- Alexander, W. H., Jr., Myers, B. N., and Dale, O. C., 1964, Reconnaissance investigation of the groundwater resources of the Guadalupe, San Antonio, and Nueces River basins, Texas: Texas Water Comm. Bull. 6409, 106 p., 19 figs., 14 pls.
- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d. ed., tables 3-4, p. 66-67.
- Blakey, J. F., and Kunze, H. L., 1971, Reconnaissance of the chemical quality of surface waters of the coastal basins of Texas: Texas Water Devel. Board Rept. 130, 49 p., 15 figs.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p., 6 pls.
- Hughes, L. S., and Leifeste, D. K., 1964, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: Texas Water Comm. Bull. 6405, 64 p., 12 figs., 2 pls.
- _____1965, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: Texas Water Devel. Board Rept. 5, 62 p., 11 figs., 2 pls.
- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p., 11 figs., 2 pls.
- Kunze, H. L., 1969, Reconnaissance of the chemical quality of surface waters of the Lavaca River basin, Texas: Texas Water Devel. Board Rept. 92, 23 p., 9 figs.
- Kunze, H. L., and Lee, J. N., 1968, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 86, 29 p., 9 figs.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geol. Survey Water-Supply Paper 1541-A, p. 1-29.
- Leifeste, D. K., 1968, Reconnaissance of the chemical quality of surface waters of the Sulphur River and Cypress Creek basins, Texas: Texas Water Devel. Board Rept. 87, 34 p., 13 figs.

- Leifeste, D. K., Blakey, J. F., and Hughes, L. S., 1971, Reconnaissance of the chemical quality of surface waters of the Red River basin, Texas: Texas Water Devel. Board Rept. 129, 76 p., 13 figs.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p., 12 figs.
- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 82 p., 13 figs.
- Maier, F. J., 1950, Fluoridation of public water supplies, Jour. Am. Water Works Assoc., V. 42, pt. 1, p. 1120-1132.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p., 10 figs.
- _____1968, Reconnaissance of the chemical quality of surface waters of the Guadalupe River basin, Texas: Texas Water Devel. Board Rept. 88, 38 p., 11 figs.
- 1969, Reconnaissance of the chemical quality of surface waters of the San Antonio River basin, Texas: Texas Water Devel. Board Rept. 93, 26 p., 9 figs.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807-A, 503 p., 4 pls.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p.
- Texas Water Development Board, 1968, The Texas water plan: Texas Water Devel. Board pub., 203 p., 37 figs., 4 pls.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 2 figs., 1 pl.
- _____1961, Surface water records of Texas, 1961: U.S. Geol. Survey open-file rept.

_____1962, Surface water records of Texas, 1962: U.S. Geol. Survey open-file rept.

U.S. Geological Survey, 1963, Surface water records of Texas, 1963: U.S. Geol. Survey open-file rept.

_____1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 2 figs., 1 pl.

____1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.

____1965b, Water resources data for Texas, 1965, Part 2, Water quality records: U.S. Geol. Survey open-file rept.

1966a, Water resources data for Texas, 1966, Part 1, Surface water records: U.S. Geol. Survey open-file rept.

- U.S. Geological Survey, 1966b, Water resources data for Texas, 1966, Part 2, Water quality records: U.S. Geol. Survey open-file rept.
 - _____1967, Water resources data for Texas, 1967, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agr. Handbook 60, 160 p.

Quality-of-water records for the Nueces River basin are published in the following Texas Water Development Board reports (including reports formerly published by the Texas Water Commission and Texas Board of Water Engineers) and U.S. Geological Survey Water-Supply Papers:

WATER YEAR	U.S.G.S. WATER-SUPPLY PAPER NO.	T.W.D.B. REPORT NO.	WATER YEAR	U.S.G.S. WATER-SUPPLY PAPER NO.	T.W.D.B. N	REPORT O.
1942-45	÷	*1938-45	1955	1402	* 19	955
1946	1050	* 1946	1956	1452	Bull.	5905
1947	1102	* 1947	1957	1522	Bull.	5915
1948	1133	*1948	1958	1573	Bull.	6104
1949	1163	• 1949	1959	1644	Bull.	6205
1950	1188	*1950	1960	1744	Bull.	6215
1951	1199	• 1951	1961	1884	Bull.	6304
1952	1252	• 1952	1962	1944	Bull.	6501
1953	1292	* 1953	1963	1950	Rept.	7
1954	1352	* 1954	1964	1957	-	
			1965	1964		

* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Nueces River basin, Texas, 1915-1960:

YEAR	WATER-SUPPLY PAPER NO.	YEAR	WATER-SUPPLY PAPER NO.	YEAR	WATER-SUPPLY PAPER NO.
1915	408	1930	703	1945	1038
1916	438	1931	718	1946	1058
1917	458	1932	733	1947	1088
1918	478	1933	748	1948	1118
1919	508	1934	763	1949	1148
1920	508	1935	788	1950	1178
1921	528	1936	808	1951	1212
1922	548	1937	828	1952	1242
1923	568	1938	858	1953	1282
1924	588	1939	878	1954	1342
1925	608	1940	898	1955	1392
1926	628	1941	928	1956	1442
1927	648	1942	958	1957	1512
1928	668	1943	978	1958	1562
1929	688	1944	1008	1959	1632
	, I			1960	1712

Refer-		Destance			Type and period of record	od of record		
ence no.	Stream and location	urainage area (sq. mi.)	Daily chemical quality	Discharge	Periodic chemical quality	Periodic discharge measurements	Reservoir content	Water temperature
-	Nueces River near Camp Wood	I			1952			
24	Nueces River at Laguna	764		1923-68	1949, 1952, 1954, 1966-68			
53	Nueces River above Uvalde	1			1930			
4	West Nueces River near Brackettville	700		1939-50	1952			
ŝ	Nueces River below Uvalde	1947		1927-68	1930, 1962-68			
9	Nueces River near La Pryor	I			1930			
2	Turkey Creek west of La Pryor	ł			1930			
8	Chaparosa Creek west of La Pryor	ł			1930			
6	Turkey Creek near Crystal City	ł			1964-68	1962, 1964-68		
10	Pendencia Creek northwest of Carrizo Springs	;			1930			
Ξ	North Fork Carrizo Creek southwest of Carrizo Springs	l			1930			
12	South Fork Carrizo Creek southwest of Carrizo Springs	I			1930			
13	Carrizo Creek at Carrizo Springs	1			1930	1930		
14	Nueces River east of Carrizo Springs	ł			1930			
15	Nueces River near Asherton	4082		1939-68	1964-68			
16	Nueces River at Cotulla	5260	1942	1923-68	1962-68			1942
17	San Casimiro Creek near Freer	469		1962-68	1965-68			
18	Colmena Creek near Freer	t			1959	1959		
16	Nueces River near Tilden	8192	1950-51	1942-68	1949, 1959, 1967-68			1950-51
20	Plant Creek near Tilden	;				1966-68		
21	Nueces River at Simmons	8561		1965-68	1965-68			
22	Frio River near Leakey	l			1952			
23	Frio River at Concan	405		1923-68	1952, 1964-68			
24	Dry Frio River near Reagan Wells	117		1952-68	1966-68			
25	Dry Frio River near Concan	I			1952			
26	Frio River below Dry Frio River near Uvalde	661		1952-68				
27	Brushy Creek northwest of Vanderpool	1			1947			
28	Sabinal River near Sabinal	206		1942-68	1964-68			
29	Sabinal River at Sabinal	247		1952-68				
30	East Elm Creek near Sabinal	ł				1967-68		
31	Hondo Creek near Tarpley	86		1952-68	1966-68			
32	Hondo Creek at King Waterhole near Hondo	142		1960-68				
33	Bone Creek near Hondo	I				1967		
34	Seco Creek at Miller Ranch near Utopia	43		1961-68	1965-67			
35	Seco Creek at Crook Ranch near D'Hanis	168		1960-68				
36	Frio River near Derby	3493		1915-68	1962-68			
37	Leoncita Creek at Tilden	1			1967	1967		
38	Frio River at Tilden	1			1959			
39	San Miguel Creek near Tilden	793		1964-68	1959, 1965-68			
					10 C C C	1001		

Table 3 .--- Index of Surface-Water Records for the Nueces River Basin

- 20 -

Refer-		Destance			Type and period of record	od of record		
ence no.	Stream and location	area (sq. mi.)	Daily chemical quality	Discharge	Periodic chemical quality	Periodic discharge measurements	Reservoir content	Water temperature
41	Frio River at Callibam	5491	1968	1924-26 1932-68	$\begin{array}{c} 1942 \\ 1952-53 \\ 1959, \ 1962-67 \end{array}$			1968
42	Atascosa River 3 miles southwest of Poteet	ł			1361	1951		
43	Rutledge Hollow Creek at Poteet	ł				1967-68		
44	Atascosa River 1.3 miles south of Poteet	1			1951	1951		
45	Atascosa River 3 miles northwest of Pleasanton	ł			1951	1951		
46	Atascosa River at Pleasanton	1			1951, 1959	1951		
47	Atascosa River at Coughran	I			1951	1951		
48	Atascosa River near McCoy	1			1951	1951		
49	Lucas Creek near Pleasanton	1				1967-68		
50	Atascosa River at Campbellton	1			1942, 1945, 1951, 1959	1951		
51	Matate Creek southwest of Campbellton	I			1951	1951		
52	La Parita Creek southwest of Campbellton	ł			1951	1951		
53	Atascosa River at Whitsett	1111			1942, 1951, 1962, 1964-68	1924-26, 1932-68		
54	Olmos Creek near Whitsett	1			1959			
55	San Christoval Creek near Whitsett	1			1959			
56	Atascosa River near Three Rivers	1			1942, 1949, 1951, 1967	1949, 1951, 1967		
57	Frio River at Three Rivers	1			1942, 1967	1967		
58	Nueces River near Three Rivers	15600	1945-52	1915-68				1945-52
59	Sulphur Creek at Oakville	ł			1951	1951		
60	Nueces River below Sulphur Creek near Oakville	1			1951	1951		
61	Nucces River near George West	ł			1951, 1959	1951		
62	Nueces River near Mikeska	ţ			1951	1951		
63	Ramirena Creek near George West	ł		1968				
64	Lake Corpus Christi near Mathis	16656					1948-68	
65	Nueces River near Mathis	16660	1947-68	1939-68				1947-68
66	Cayamon Creek at Farm Road 666 near Bluntzer	1			1963, 1966	1963, 1966		
67	Nueces River at Calallen Dam above Calallen	16772		1966-67	1962, 1963, 1966	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		

Table 3.---Index of Surface-Water Records for the Nueces River Basin---Continued

- 21 -

Table 4.---Summary of Chemical Analyses at Daily Stations on Streams in the Nuecos River Basin

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only.

2.9 918 8.0 1.2 918 8.0 1.2 318 7.6
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mag- ne- sium 3111 111 468 111
per day 917, 166 2770 2770
0.75 1001 1.86 1.86 1.86
per liter (mg/1) 181 223 223 181 223 1370 1370 258
(NOJ) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.
AR TILDEN 144 20 22 22 22 23 24 460 12 460
212 259 260 260 260 272 272 272 272 272 272 272 272 272 27
() (HCO) UECES RIVE 238 144 144 144 144 122 252 281 281 281
19. NUE 19. NUE 102 26 36 310 41. FRI 36 31 31 31 35 36 31 36 31 36 36 36 36 36 36 36 36 36 36
(Mg) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
79 100 38 330 59 148 24 46 25 25
13 14 21 28 28 11
(CIS) 1876 61 275 275 420
Mater year 1950 Maximum, Jan. 21-31, 1950 Maximum, May 22-31 Weighted average Mater year 1968 Maximum, Sant 20-23 Weighted average.

	μd		8.2	8.0	8.5	7.8	9.7.8	8.0	7.5	8.7.8	8.0	7.1	
Specific con-	duct- ance (micro- mhos at 25°C)		772 383 492	880 311 368	801 335 437	682 484 559							e
	ad- ad- Borp- tion ratio		3.0	4.3	3.4	3.0 2.1	2.4	1.7	000	2.0 .8	1.8	1.9	ē
	Non- car- bon-		000	000	000	000	000	000		400		19	2
Hardness as CaCO ₃	Cal- ctum, Mag- ne- stum		178 115 129	144 116 117	168 108 132	148 122 137	175 100 126	157 92 108	182 90 115	169 136 148	166 144 149	162 112 130	Č.,
olida	Tons per day		203 212 203	760 3760 480	78 391 345	318 309 125	54.2 507 147	1510 4530 1100	93.6 2770 968	129 2160 613	3750 64.7 468	1230 760 608	
Dissolved solids (sum)	Tons per acre- foot		0.65	.72 .28	. 65	.40	.35	. 44 . 24	.25	. 19 . 32	. 30	.45 .27 .36	
Dlat	Milli- grams per liter (mg/l)		b478 b251 308	b530 b207 240	478 211 275	419 297 343	410 254 296	322 177 208	415 186 233	362 237 274	351 224 288	332 200 266	
	NI- trate (NO3)		0.5 3.0	2.0	3.5	4.0 3.1	1.8	3.40.5	3.5	2.0 1.6	22.0	1.2	
	Fluo- ride (P)	ned	0.0 0	4.00	÷. 5	19 CH CT	ကိုက်ဆို	711	121	111	? ;]	111	
	Chloride (Cl)	MATHISContinued	97 30 45	112 10 21	96 18 31	73 42 52	62 34 41	44 15 20	85 24 31	77 24 33	66 14	68 22 41	
	Sulfate (SO4)		57 34 37	58 20 25	50 25 29	46 35 38	36 32 31	31 20 20	68 26 30	42 21 25	38 16 27	40 25 30	
B1-	car- bon- ate (HCO,)	RIVER NEAR	224 142 172	247 148 156	254 143 178	229 176 201	259 137 179	200 117 140	184 107 139	189 168 181	197 186 185	174 135 157	
Do		NUECES RI	93 93 54	7.6 4.2	100 5.1 6.4	8.8 6.5 7.6	1.9	18 6.6 7.2	7.1 5.2 5.9	8.7 6.4 7.4	9.2 7.7	55 26 41	
	Sodtum (Na)		35	120 18 29	. 1 27 38	83 53 63	73 40	18	69 27 31	60 22 29	53		
Mag	me- (Mg)	65	8.9 3.6 4.6	5.9 4.0	5.2 3.1 4.3	4.5 3.0 4.1	3.5 S 3.5 S	$^{6.1}_{10}$	9.7 3.7	9.0 5.7	8.9 5.3 7.1	6.6 4.1 5.3	
i	(Ca)		57 40 44	48 40 40	59 38 46	52 44 48	60 35 44	53 20	57 32 40	53 46 50	52 49 48	54 38 43	
	Silica (SiO ₂)		18 22 25	22 21	32 23 26	23 23	21 17 20	17 14 14 14	15 12 15	16 16 17	23 20 21	12 17 15	
	discharge (cfs)		157 313 244	531 6725 741	60.4 687 465	281 385 135	49.0 740 184	1735 9482 1962	83.5 5519 1538	132 3372 829	3922 107 602	1369 1407 817	
	Date of collection		Mater year 1952 Maximum, April 1-30, 1952 Minimum, Oct. 1-31, 1951 Weighted average	Water year 1953 Maximum, May 1-20, 1953 Minimum, Sept. 1-30 Weighted average	Mater year 1954 Maximum, May 1-31, 1954 Minimum, Nov. 1-30, 1953 Weighted average	Water year 1955 Maximum, May 1-31, 1955 Minimum, Sept. 1-30	Water year 1956 Maximum, April 1-30, 1956 Minimum, Sept. 1-30 Weighted average	Mater year 1957 Maximum, Sept. 1-30, 1957 Minimum, May 1-31	Water year 1958 Maximum, May 1-31, 1958 Minimum, Jan. 11-31	Water year 1959 Maximum, Aug. 1-31, 1959 Minimum, Nov. 1-30, 1958 Weighted average	Water year 1960 Maximum, Oct. 1-18, 1959 Minimum, Dec. 1-31 Weighted average	Water year 1961 Maximum, June 1-30, 1961 Minimum, Dec. 11-20, 1960 Weighted average	See footnotes at end of table.

Table 4.--Summary of Chenical Analyses at Duily Stations on Streams in the Nueces River Basin--Continued

- 23 -

Table 4 .--- Summary of Chemical Analyses at Daily Stations on Streams in the Nueces River Basin---Continued

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only, values of other constituents may not be extreme. Results in milligrams per liter except as indicated. Calculated values for sodium plus potassium are centered between the two columns.)

Н		7.5	7.5	7.7	7.2	7.9	8.1	8.0 7.5
duct- ance micro- nhos at 25°C)		616 540 583	730 599 657	634 596 619	552 354 405	536 403 443	601 185 224	508 285 396
ad- sorp- tion ratio		2.3 1.5	3.6 2.4 2.8	3.6 2.8 2.7	2.4 .8 1.1	1.2	1.7	$\frac{1.3}{1.1}$
Non- car- bon-		12.01	000	000	600	000	000	0 10 17
Cal- cium, Mag- ne- stum		156 179 170	148 146 153	124 136 144	132 135 142	173 128 141	186 75 86	166 108 132
Tons per day		136 93.0 106	148 99.4 113	120 122 100	2610 212 505	112 576 316	149 36060 824	2510 1620 758
Tons per acre- foot		0.51 .45 .48	.58 .47	.52 .46	. 45 . 32	. 43 . 32 . 35	.16 .16	.40 .24
Milli- grams per liter (mg/l)		378 328 355	428 344 382	382 341 358	329 204 238	316 238 259	362 120 141	291 175 228
NI- rrate NOs)		0.8 8. 8.	1.0	1.2 1.0	2.2	3.88.2	ສະດຸດ	0.0.0
Fluo- ride (P)	pei	0.3	លំហំសំ	4 8 9	400	ល៉ប់ស្	ú 4 ú	
Chloride (CI)	Continu	75 50 64	111 76 87	84 69 72	60 15 24	41 27 33	54 6.6 9.7	46 12 32
Sulfate (SO.,)	R MATHIS	40 32 37	46 38 41	33 34 34	30 16	30 24	37 13 14	35 14 30
$\frac{\text{car-bon-bon-}}{\text{ate}}$ (HCO ₃)	VER NKA	185 209 200	196 179 198	208 198 211	- 194 176 188	225 167 181	238 91 108	182 142 149
Po- tas- stum (K)	ES RIV	19 52 14			8 ^{.8}	7.6 6.7 7.3	9,49 9,69 9,69	5.1 7.3 29
Sodium (Na)	1.00	io e in	10	0.0.0	69	43 33 33	53 8.4 12	38 16
Mag- ne- sium (Mg)	9	7.3	8.0 7.6	6.4 7.5	7.2 4.8	4 3 9 8 13 9 8 13 9	5.2 1.6	5.2 2.4
Cal- cfum (Ca)		50 56 56	46 46 49	45 45	41 47 49	60 46 48	66 28 32	58 39 46
Silica (SiQ _s)		19 18 19	19 17 16	23 17 18	21 12 15	17 18 16	19 12 12	14 14 13
discharge (cfs)		133 105 111	128 107 109	116 133 104	3942 384 787	131 896 452	152 111300 2167	3200 3418 1232
Date of collection		ater year 1962 Maximum, July 1-31, 1962 Maximum, Nov. 1-30, 1961 Waishted average	later year 1963 Maximum, June 1-30, 1963 Matahum, Oct. 1-31, 1962 Weighted average.	ater year 1964 Maximum, Sept. 1-30, 1964 Minimum, June 1-30	ater year 1965 Maximum, Oct. 1-7, 1964 Minimum, Nov. 1-30 Weighted average	ater year 1966 Maximum, April 1-30, 1966 Minhaum, June 1-30	1-31, 1967 24-27	Water year 1968 Maximum, Jan. 21, 1968 Minimum, Oct. 1-31, 1967 Weikhted average
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean (cfs) Billea (Slog) Cal- sium (Slog) Mag- sium (Slog) Car- sium (Slog) Soli (Slog) Non- sium (Slog) Car- sium (Slog) Non- sium (Slog) Mag- sium (Slog) Mag- sium (Mg- sium (Mg- sium Mag- sium (Mg- sium Mag- sium Mag- sium	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $\underline{a}/$ Includes the equivalent of any carbonate (CO₃) present. $\underline{b}/$ Residue on evaporation at 180°C. \underline{c}' period of record began November 10, 1957.

- 24 -

	Hq		8.4				4.6		7.6			7.4				8.1		111.9	0.7 7.0 7.0	1.50	7.7	7.7 6.8 7.7 7.0
Specific con-	58"		357		432	391	405	387	390	403	394	357	-					398	3398 375 375	383	340 347 396 356 422	454 376 376 378
÷.	ad- ad- Borp- tion ratio		0.2		0.2	<u>ei</u> -	1010	1	2010	C.8	ei ei	11	ŧ	0.2]	0 0 - 0	ನ ಕಣ್ಣಕ	n	<u> 위</u> 이 이 이 이	0,020
CO3	Non- car- bon-		17		15	18	19	02	24 19 2	18	29	23	24	16				24 25 28 34	37 26 26	32	26 33 33 28 33 28	31 34 28
Hardness as CaCO ₃	Cal- ctum, Mag- ne- stum		173		206	194	210	161	192	198	202	194		186				168 196 247 185	185 185 185	177	153 148 148 176 207	224 172 169 178
lida	Tons per day																					
Dissolved solids (sum)	Tons per acre- foot		0.27		0.32	.31	32	18	32	12.	.29	11	1	0.28		F		0.29	33	50	.27 .28 .32 .32 .34	.26 .28 .30
Dis	Milli- grams per liter (mg/l)		197				229		224		231	11		b203				5201 5221 259 226	5242 5242 201 201	216	195 204 237 214 251	267 206 218 214
	NI- rate NO,)		4.0	1	4.5	4.0	4.3	00 0 04 0	0.00	4.0	5.4	11		1.8	BRACKETTVILLE	5.8		0.5 8.6 2.0	0.00 0.00 0.00 0.00 0.00	1.8	$^{-0}_{23}$	14 4.0 7.6
	Fluo- ride ((F) (CAMP WOOD	0.3	LAGUNA	1	0.0	~	1	197		20	11	UVALDE	Γ	ACKET	0.2	UVALDE	1110		Cţ.		
	Chioride (C1)	NEAR CAM	13	AT	13	13		11	192	EI :	13	292	ABOVE	10	NEAR	9.8	BELOW	11 12 22 23	24 17 18 20	17	17 20 8.4 10 14	14 13 15 13
	Sulfate (SO.	RIVER	7.7	NUECES RIVER		0.0 0.0	14	1	122	1	13	11	NUECES RIVER	10	ES RIVER	5.6	NUECES RIVER	21 22 22 22	2888 2888 2888	26	24 15 15	19 25 34 19
B1-	car- bon- ate (HCO ₃)	NUECES	190		234	215	220	209	211			204	3. NUE	208	ST NUECES		5. NUE	176 208 267 184	181 190 162 162	176	154 147 204 174 219	235 173 165 182
Do.	shun (K)	;	1.1		.8	.3	1.3 22	10	0,000	0.1	1.0	111]	1.4	WEST	8	10	1.7 1.6 .8	1.1	171	220	1.9
	Sodium (Na)		7			3.3	7.6	6.7	6.5		7.0	111		5.0	4	4.		6.3 7.0 3 10	7.8 9.2 12	9.4	11 3.4 4.9 7.2	7.4 7.6 7.7
Mag	stum (Mg)		16		15	15 6.9	15	1 1	440	;;	343	311		15		7.1		11	1222	12	11 5.9 8.8 11	11212
	(Ca)		43		58	85	55 61	18	54	6	0.01	\$		50				46 57 56 56 56	56 56 57	5	43 38 70 56 65	70 48 53
	Silica (SiQ ₂)		13		13	13	11	13	11	1 1	12	111		16		12		119	13 11 12	10	13 11 12 13 13 13 13	13 8.8 11 12
	Discharge (cfs)				131	7550	84.3	4.6	157 74.5	0.00	26.0	114						11.2		3.77	2.3700 1.23 1.860 265	41.9 13.3 49.8
Tete	of of collection		June 17, 1952		May 27, 1949	une 16, 1952	Jan. 5, 1966 Mar. 15	pr. 26	Oct. 12 Jan. 25, 1967	are 14	ug, 23	July 3		May 31, 1930		June 16, 1952		May 20, 1930 May 22. Nov. 26. Jan. 16 1962	Mar. 27 June 5. Aug. 12. Nov. 26	ar. 10, 1964		Nov. 9

Table 5 .-- Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations

	Hq					8 0 4 6									0 9 9 9 9 9 9	8.8	044								L
Specific con-	duct- ance (micro- mhos at 25°C)		381 377 353	414	383	326 307 330 350									340		282								
\$;	sorp- tion ratio]	0.3	ei ei	ei ei	1 1 1 1 1		0.3		0,3		2.0		5.0	- 10 19	10	311		0.3		1.0		0.3		
sess CO ₃	Non- car- bon-		30 25 25	25 26 26	26	288 288 288 288 288 288 288 288 288 288		22		46		0		0 = 0	040	t- 0	944		4		0		6		
Hardness as CaCO ₃	Cal- cium, Mag- ne- sium		179 175 162	202	185	150 144 160		280 276		121		59		107	150	108	137		50		34		22		
lids	Tons per day																								
Dissolved solids (sum)	Tons per acre- foot		28	31	.30	26		0.42		0.28		0.13		0.20	26	23	11		0.09		0.09		0,10		
Dise	Milli- grams per liter (mg/l)		212	234	218 192	188	1	310 294		206		92		145	194	172	:::	NGS	2.9	SPRINGS	b68	SPRINGS	26		
	NI- trate (NOs)	hound	2 2 2				1	9.0	PRYOR	3.5	10E	2.4	h	0.01	100	0.1	11	D SPRINGS	0.3	CARRIZO	0.5	CARRIZO	0.6	108	Ī
	Fluo- ride (F)	-Conti	0.1	n n	e4 –	1197	PRYOR		OF LA		LA PRYOR		AL CITY	0 2 0 1	961	ei e	11	CARRIZO		oF		40		SPRINGS	ľ
	Chloride (Cl)	UVALDEContinued	15 15 16	120	12	14 12 12	NEAR LA	12 10	WEST	8.0	WEST OF	3.0	AR CRYSTAL	10 3.2	- 46 67	11	3.8	40	2.0	SOUTHWEST	2.0	SOUTHWEST	3.0	CARRIZO	
	Sulfate (SO4)	ER BELOW	1 2 2 2	14	19 20	52	RIVER	22 15	RESERVOIR	48	CREEK	12	CREEK NEAR	16 20 5 5	18	26	11	K NORTHWEST	12	CREEK	15	CREEK	15	CREEK AT	
Bi-		ES RIVER	182 181 168			155 140 164 172	NUECES	314 304	CREEK	152	CHAPAROSA	81	TURKEY	116			160	A CREEK	56	CARRIZO	52	CARRIZO	59	CARRIZO	
Do-	(K)	NUECES	0.9	1.0	1.2	11.34	.9	1.4	TURKEY	8.3	8. CE		9. 1	-		8.8	11	PENDENCIA	5.3				5.4	13. CA	-
	Sodium (Na)	2	8.0 9.1	9.9 9	7.7	8.1 1		11 6.	7.			12		16 12				10. Pl		NORTH FORK	13	SOUTH FORK			
Mar.	stum stum (Mg)		1==	11	110	1221		17 16		8.1				80.0 80.0	2.1	50 C	50			11.		12.			
	Cal- ctum (Ca)		52	60	56 46	46.82		84 84		35		23		34	322				18		12		21		
	Silica (SiQ _a)		12			1122								6.3 9.0	0 30 👎	di te									
	Discharge (cfs)		8.6 11.2 7.7	520 65.2	17.9	4.0 156 50.6								29.3 c.6	219	15.1	.65								1.00 0.00
	of of collection		Apr. 21, 1966 May 27	t, 13	Jan. 26, 1967	June 13 Aug. 22 May 27, 1968 July 1		. 30, 1930		. 18, 1930		. 7, 1930		May 12, 1964	12.1	11	Jan. 29, 1968		. 12, 1930		. 12, 1930		. 12, 1930		11 7 1090
			Apr May Jun	Sep	Jan May	June Aug. May 2 July		Nov. Dec.		Oct.		Oct.		Sep	May	Aug	Jan May		Nov.		Nov.		Nov.		

Table 5 .-- Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations-- Continued

	Hq	[5.7.9	6.7 1.13 1.13	8.1	4.4.8		1111	1	1111	1	7.1 6.6 6.5 7.4	0.0004	4.7.6		7.5
Specific con-	duct- ance (micro- mhos at 25°C)				600 1740 232 249	228 300 393	250 616	477 210 207		1190 1280 1410 1780	460	295 388 402 428	481	1110 1070 584 584 273 292 273 292 273	249 214 356 356	1090 265 379 1120 379	300 263 383 413 346	319 552 373
-02:	ad- ad- forp- fion ratio	1	0.3	İ.	2.6	N 0.00	.2	111	1	1111	1	1111	ţ.	1.6	10000	2.2 .6 3.6 .7	1 n 9 + 9	1.32
	Non- car- bon-	1	46	1	98 318 1 0	0 0 0 92	4.6	9 H C	1	1111	ł	1111	ţ.;	1 4 ¹ 1 1	95 0 5 0 94 0 5 0	158 0 50 7	00-90	00.58
Hardness as CaCO ₃	Cal- clum, Mag- ne- stum		169		212 632 95 107	97 135 128 185	229	204 94 92		1 7 0 88 88 86 86	144	132 165 182 202	194	251 251 186 146 111 114 114	1113 93 78 239 297	359 108 132 272 144	1118 1111 147 180 136	146 98 190 146
ids	Tons per day																	
Dissolved solids (sum)	Tons per acre- foot		0.28		0.45 1.48 .18	23	.48	111	Ī	1111	1	1111	1	0.45 27 23 36	21 17 15 15	.87 .21 .28 .92	32001	18
Diss	Milli- grams per liter (mg/l)	1	206		333 1090 132	129 172 183 224	146 353	11		711 773 866 1054	295	193 249 279	288	651 651 107 166 166 157 263	151 122 322 322 462	639 153 209 673 220	 149 235 205	186 129 309
		SPRINGS	9.6		4.8.9	0 0 0 0 0	5°0	111	1	0.3 .4 .0	. 8	52.00	5 ×	40.00000	2.5 2.2 2.2 2.2	0, 8, 9, 0, 6,	10000	4001
	Fluo- NI- ride trate (F) (NO3)		F	NOTH	0.1			111	ILA	1111	1	1111	1	0	00000	000000	- 01 01 01	4000
	Chloride (Cl)	OF CARRIZO	6.0	NEAR ASHERTON	79 290 6.0 4.9			42 4,3 4,3	AT COTULLA	133 139 159 220	33	5.0 15 15	30	125 125 66 17 17 23 24	4.0 3.9 37 38	$158\\8.0\\11\\140\\19$	11 5.8 19 16	6.6 25.8 29
	Sulfate (SO.)	EAST	46	RIVER	61 222 14 9.8	8.0 10 12 18	15	111	ES RIVER	119 129 148 179	32	38 18 18	33	22 22 31 31 31 31 31	11 11 10 39 79	134 14 159 159 26	15 22 23 25	12121
Bi-	car- bon- ate (HCO ₃)	NUECES RIVER	150	NUECES	139 384 115 136	121 166 168 194	200	114 114 118	NUECES	345 382 418 504	189	156 198 201 235	818	289 289 175 158 158 137 137 206	140 111 98 235 235	246 136 150 270 168	145 136 178 202 160	176 119 138
^o d	tas- tas- (K)	NUECI	5	15.		6.4 7.4 2.6	5.4		16.			8			4.5	4.8	6.8 8.0 4.2 2	5.4
	Sodium (Na)	14.	8.		37 149	4.7 6.8 13 8.3	5.6 41	111		227 255 295 379	42	19. 116 116	10	141 165 165 165 165 174 173 173 173 173 173 173 173 173 173 173	4.8	95 14 13 18 18	7 6.7 8 18 4 12 2 16	8.4 5.4 10
Mar	sium (Mg)	Ī	8.3		17 39 3.1	2.5 3.8	2.5	2.3		$ \begin{array}{c} 6.2 \\ 7.5 \\ 6.4 \\ 10 \\ 10 \end{array} $	6.6	4.7 9.6		21 15 15 15 15 15 15 15 15 15 15 15 15 15	3.8 3.2 2.0	26 3.2 4.8 18 4.8	2.7	4.0 2.6 8.0 8.7
	ctum (Ca)		2		57 189 133	50 58 58	41 72	34		30 23 18	47	45 54 61 83	90	56 51 54 58 54 58 58 58 58 58 58 58 58 58 58 58 58 58	32 32 76 91	101 38 45 79 50	46 51 50 60 46	
	Silica (SiQ ₆)				9.1 8.9 7.2			H	1	1111	1	1111		$\frac{5.7}{14}$ $\frac{5.7}{7.7}$ $\frac{1.7}{6.6}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$ \begin{array}{c} 3.4 \\ 8.1 \\ 9.6 \\ 3.2 \\ 11 \\ \end{array} $	8.9 7.9 12	7.8
	Discharge (cfs)				2.47 .06 3660 3650			171 5.5 7020		1111	1	1111	1	0.79 809 21.1 6090 0.18	39700 36900 10200 101 7.26	$2190 \\ 36.7 \\ 36.7 \\ 150 $	2820 4030 342 383	798 2390 380
	Date of collection		12, 1930		23,1964 28,1965 3,1968	May 7	4, 1967	May 6, 1968		1-10, 1942 11-19 21-31 21-31		. 11-16,18-20. 21-28, 30 21-31	11-20 re re	1-20 1-31 26 1962 1964 1964	17	Dec. 28	7 7 6 6 19, 1967	20. 5 19 30, 1968
	0		Nov. 1:		Nov. 2 Dec. 2 May 19 May 3,	May 7. May 7. June 6 Sept.	Sept. Dec. 1	May 6. May 14 May 17		Jan. L Jan. L Jan. 2 Mar. 2 July 2	31	Sept. Sept. Oct. 2 Nov. 1	4 - AON	Dec. 1 Dec. 1 Dec. 2 April May 14 June 1 Aug. 2 Sept.	Sept. Sept. Sept. Oct. 2 Nov. 2	Dec. 2 May 19 Oct. 4 Jan. 1 May 2.	May 5. May 7. June 6 Sept. Apr. 1	Apr. 2 Sept. Jan. 3

Table 5 .- Chemical Analyses of Water From Streams in the Nucces River Basin for Locations Other Than Daily Stations -- Continued

- 27 -

Table 5 .---Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations--Continued

(Results in milligrams per litter except am indicated. Calculated values for modum plus potassium are centered hetween the two columns.)

0	Hd - H	-	- 1	6.8				8.9	9.2	2.4		8.0			0.00	8.1	1.1	9.7	5.0		2.0	6.7	4.4	2.0	1.2	- 8-	1.1	4.4	7.4	1.7 P. 0	10.0
	duct- ance (micro- mhos at 25°C)		- L	346 355	_	_	-	402				1680			169	409	412	317	366		304	308	1080	396	457	342	312	319	1020	762	623
\$	dium ad- sorp- tion ratio			1.5	1.0	1.0	5.3	1.6	1.6	1.5		18			1.8	1.2	1.1	1.0	11		1.1	11	4.6	6.	9.	11	1-1	8	11	1, 1	1
CO.	Non- car- bon-			00	0.0	00	228	233	00	6 4 270		0	ľ		E	80		0	0 Ç		0	00	00	0	10.0		0 0		128	89	10
Hardness as CaCO ₃	Cal- ctum, Mag- ne- stum			96	119	206	376	328	108	156 115 448		82			237	136	124	111	198		98	120	134	143	183	112	100	115	232	180	086
lids	Tons per day																														
Dissolved solids (sum)	Tons per acre- foot			27	12.	-22	1.40	33	.45	.40		1.47	1	-	0.60	192	.32	-27	0.1		0.25	0.00	64.	.32	10 C	38.5	26	.27	11		. 52
Dist	Milli- grams per liter (mg/l)		111	661	661	164	1030	244	333	295 221 1200		1080	1	-	b443	254	236	198	2				581		259	209	189	198	11	1 1	385
	NI- trate (NO ₂)	~	1	6 KG 6	5 1	35	1,2	010	1.20	2.2	1	0.2		1	7.7	010	1.8	2.0	1		1.0	e æ	1.2	ņ	00 00 01	010	1.2	aC	1	1 1	2.6
	Fluo- ride t (F) (FREE	1	C4 7	? ;	¢ļ,	eş.	119.	t ez	999	FREER	3.4	DEN	1	0, 13 0	-	- 19	e, 4	1	SNO	1.4	5 (7)	7 1	-	eş e	-	i ej	eș i	18	1	2
	Chloride (Cl)	CREEK NEAR FREER	Γ						80	56 39 555	NEAR	149	NEAR TILDEN			21	21	14	222	R AT SIMMONS					26	17	14	9.5	217	239	75
	Sulfate (SO4)	CASIMIRO C	10	13	16	12	59	04 0	1.5	20 20 70	ENA CREEK	127	ES RIVER	38	52	28	35	212	. 1	NUECES RIVER	20	121	91	24	38	26 25	25	1	11	;	63
-18	car- bon- ate (HCO ₃)	SAN CA	1 50	144	121	128	116	165	188	184 135 218	COLMENA	683	NUECES	166	196	188	160	136	190	NUE	134	163	197	194	146	150	135	164	128	164	204
	Stum-	17.	F	20.0	1	3.4	8.6	8°.9	6.0	3.6	18.	F	19.	1		8.8	5.6	N 10	1	21.	-	1	1	51 · 52	1.4	0.9 9.4	5.2	1.1	11	ł	
	Sodium (Na)		00	34	1	21	236	41 38	62	42 33 271		381		1	107	3.2	32	7 30 7 10	ž		26		21	25	26	25	24	61			19
Mar-	atum (Mg)		1.0	1.4		_		n n 1 - 1	10	8 1.5 5 5 5		7.8		1	22	4.0	01	5.1	0		2.0	1.2				2.3	-	1.5	9.0 9.0	7.3	10
3	Cal- Clum (Ca)		42	36	1	35	139	99	26	59 44 166	1	20				48 25 25		-			36	43	8	22	46	41 36	37	Ş	84 66		-
	Silica (SiQ _g)		15	12	1	13	12	13	12	19 12 16		60		1	4.6.3	13	13	14	1		15	17	11	13	12	15	E	1		1	0.7
	Discharge (cfs)		-	619		_	_	41.3		382 700 16.2		c1			04	83 634					3770	1.0	1			946			793		8,68
Data	collection		1965	May 2, 1966			1	Apr. 14, 1967	3	8		, 1959		, 1949		, 1967	******		1968		May 21, 1965	1042			. 1967			1968.	********		
	8		Nov. 8.	Nay 2,	May 3	day ?	Sept. 21	Apr. 14 Aug. 29	Sept. 1	Sept. 27 Sept. 28 Oct. 4		Mar. 30		ug. 17	eb. 10 lar. 30	Apr. 20, May 22	May 23.	Sept. 5	ay 7,		ay 21, ay 22.	ay 25.	pr. 21	Apr. 27 Sept. 26	ug. 25	Sept. 6	ept. 7	an. 22,	Jan. 23.	Jan. 25.	VAD. 30

	Hq		8.2		8.0	7.1	9.6	10.00	5.5	4 4 F F F	7.9		7.5	7.6	6.67	7.5		8.1		
Specific con-	duct- ance (micro- mhos at 25°C)		423		372 407	413	430	362 375 375	329	431 431 383	439		433 408 404 340	471	415 412 405	410		407		
	ad- ad- Borp- tion ratio	1	0.2	1	0,0	N 01 01	c, c	9	2	0.00	11		000	1 0	999	1 1	1	0.2	1	
CO.	Non- car- bon-		17		19	233 16	54	94 6 V	616	28	34		21 26 17 23	30	33 33 33	28	1	27		
Hardness as CaCO ₃	Cal- cfum, Mag- ne-		219		183 201	203 208	210	175	191	216 216 187	217		216 208 201 166	242	208 208 198	203		206		
ablu	Tons per day																			
Dissolved solids (sum)	Tons per acre- foot	İ	0.33		0.29	32 22	32	27	.26	120	11	1	0.34	.37	32		1	0.33		
DISI	Milli- grams per liter (mg/l)		b240		b210 228	232	236	200	191	244	11		248 232 231	271	234 236 229	1 1		b240		
	NI- trate NO.)	İ	6.1		3.8	2 2 2	2.8	10 a		6.2 1.8	11	1.SL	÷	5.4	0.5 8.0 8.0	1 1		0.8		
	Fluo-NI- ride trate (F) (NO ₃)	CEY	0.2	IN	<u> </u>	1010		0 e	-	1-1-0	11	AN WEL	1110	0 10	000	1 1	CONCAN	0.3	TOODDATAAN	
	Chloride (Cl)	FRIO RIVER NEAR LEAKEY	12	AT CONCAN	14	122	12	0.00	8.8	13	16	RIVER NEAR REAGAN WELLS	12 14 14	12	13	14	NEAR	16	-	
	Sulfate (SO.)	D RIVER	0.7	FRIO RIVER	12	12	17	12	a	15	11	RIVER N	19 17 14	14	18 16 18	í i	FRIO RIVER	16	AND AND AND AND AND AND AND AND AND AND	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL
B1-	car- bon- ate [HCO ₃]	1.00	246	23. FR	221	220	227	196 232 232	170	230	228	DRY FRIO	238 222 224 174	258	2222	212	DRY P	219	and an	
	stum (K)	22	1	23	6.0	1.0	8.1	3.0	2.5	8.10	11	L .	0.7		1.0	1 1	25.	-		
	Sodium (Na)		5.7		6.4 6.6	7.5	6.3		4.5	0.22		24,	8.3 6.4 6.7	7.1	6.7 7.3 7.1	1	1	1.1	2.0	
Mar	stum stum (Mg)		18		16	16	14	12 4 4 6.4	7.6	1272	1	1	13	14	1111	3	1	15		
1	Cal- ctum (Ca)		58		47 54	55	61	0000	52	0000	64	1	62 59 59 1	74	28 63 69 28 69 69	8	1	58		
	Silica (SiQ _a)		11			122	10	10	10	110	11	1		10	8.4 11 8.0	11	1	10		
	Discharge (cfs)					70.1	52.6	39000		40.0 40.0	215		14.0 7.9 3.1 86.5	32.7	2.27	37.9				
	of collection		1952		June 16, 1952 Dec. 16, 1964	1966	14	Apr. 26 Aug. 13 Aug. 13		Jan. 27, 1967 May 9.	May 28, 1968		Jan. 3, 1966 May 25. June 27. July 8.		Jan. 27, 1967 June 15 Nov. 3			1952		
6	coll		June 17,		une 16, ec. 16,	uly 15.	Mar. 14.	r. 26.	R. 14.	y 9	y 28.		(n. 3, (y 25, (1y 8,	Oct. 14.	n. 27. ne 15. v. 3	Aug. 7		June 16.		

Table 5 .--- Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations---

- 29 -

	Hq			- 8.		7.6	1.8	4.0.4	1.2	8.2		2.5			7.5	1.6		7.4	7.8	2.4	7.6		6.8	8.8	9.9	1.1	6.9	6.9	7.1	1.7
Specific con-	dium duct- ad- ance sorp-(micro- tion mhos at ratio 25°C)			504	495	579	434	448	343	177	263	_	_		396	393		449	410	315	330	1	356	267	213	350	219	350	243 336 276	354
	ad- morp- tion ratio	1		0,010	n in i		¢4 -	- 01 0	1	0,0	1			I	0 0 0 0	Ľ	1	0.2	P. P.		4	1	0.5	17		N 10	77	r,	ų ų ų	17
CO.	Non- car- bon-			549	2 1 2 2	42	36	43.43	22	404	8 S	9 0			53 53	24		49	46	43	47		34	2 10 0				20	010	16
Hardness as CaCO ₃	Cal- cium, Mag- ne-			250	246	202	208	222	176	101	110	223			197 184 185	187		200	180	153	142		146	123	130	126	96 125	149	99 139 117	181
lids	Tons per day																													
Dissolved solids (sum)	Tons per acre- foot				62	.33	£5.	36.	.27	.16	51				0.32	;		0.33	.29	-24	.26		0.27	121	22.	-23	.21	12.	.26	195
DIS	Milli- grams per liter (mg/l)		000	309	286	239	246	262	200	119	1				233 232 229	:		241	231	179	190		199	157	100	168	124	195	137 191 158	187
	NI- trate (NO_)	1		0 64 9 4 4	0.0	1.8	C4 0	7.8	7.7	0.8	1	1	1	Ì	9.75	1	VIdo	6.2	3.8	6.0	61	1	2.3	3.8		10 10	100	4.0	0 8 N	13
	Fluo-NI- ride trate (F) (NO ₂)	INAL	0	0,0,0		N	ci e	100	4	n -	1		AN	:[1	NEAR UTOPIA	0.2	10	1.0	4	M	0.3		4	, in	n e	Ņ	0 [,] 0 [,] 0 [,]	19
	Chloride (C1)	SABINAL RIVER NEAR SABINAL		91 91	14	13	15 8 7	14	6.4	15	3.5	12	HONDO CREEK NEAR TARDIEV		122	01	RANCH	14	14	6.4 16	22	NEAR DERBY	28 17 4 7	4 2	4 4	7.8	4.4	12	8 4 0 9 6 6	4.6
	Sulfate (SO4)	AL RIVER		47 47 38	37	36	32	36	13	31.0	6.4	1	CREEK N		34 61 39		AT MILLER	37	27	18 39	36	FRIO RIVER	22 22	10.0		12	.6 7.4	1	160	1 8.9
B1-		SABIN	040	256	245	196	210	219	188	118	19	220	HONDR		189 145 164	001	CREEK /	184	174	157	116		137 154	144	-		152		161	
Doc		28.	F	1.3	1.3	6	1.0	0,0	3.3	0 C	11	1	31.	Ī	3 1.1	1	SECO C	1.1	1.0	1.8	1.6	36.	5.5	8.2			1.3		11 9,2	14
	Sodtum (Na)		10	7.7 10		6.9	E. 4	7.7	2.9	2.5		1	1		7.4		34. 5	3.8	12	3.4 8.0	10		11 11	000	2 4	12				2.6
Mag-	stum (Mg)		10	114	111	14	13	14	9.5	14	11	1	1		1911			8.0	12	11.4	12		44.0	9.0		6			140	4.6 4
į	(Ca)		7.4	18	77	58	62	566	09	82	11	1	1		192	;		_	-	6 0	_		51 52 52	45	60	4	46.4	200	45 Q Q	57
	Silica (SiQ ₆)		-	1212	12	12	12	13	2.3	11	11	1	1	İ	10			10	12.0	9.2	14		11 12 9.9	9.8		6.6	0.0	0 0	10	1 01
	Discharge (cfs)			20.4				96.0	489	35.9	2800	74.4			2.08					142	.28			30.5			138		131	
Date	collection		10 1984	Dec. 16	29.1966	23	13	24, 1967	19	2	May 11, 1968	5			13, 1966 5, 1967 15, 1968	in the second second		29, 1965	58		17		26, 1962 14, 1963	23	1 1965		Apr. 12		28, 1966	16
			Nov	Dec.	Nov.	May	Aug	Oct.	Apr. 19	Det.	May	Aug.			Apr. Dec.			Nov.	June	Aug.	July		Apr. May 1	Mar.	Anr	Apr.	May.	-	Apr.	Aug.

Table 5 .-- Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations -- Co

- 30 -

Table 5 .--- Chemical Analyses of Water From Streams in the Nucces River Basin for Locations Other Than Daily Stations -- Continued

ŝ

(Results in milligrams per liter except as indicated.

Table 5 .-- Chemical Analyses of Water From Streams in the Nueces River Basin for Locations Other Than Daily Stations -- Continued

•

ί,

Calculated Wasults in milligrams per liter except as indicated.

	Hq		1.7		6.4		1 2 2 2 5		1.8		7.3	1	8.1		8.2	1	6.7		7.6		7.5
Specific con-	duct- ance (micro- mhos at 25°C)		695		294		1650 1480 1910 2340		1540		1640		2210		2550 1860		2420		3680 5210 2910		597 705 526 665 573
-s	dium ad- Borp- tion tion		2.5	1	0.9	1	5.3 6.5	1	5.2	1	6.1		13	1	12 6.4	1	8.4	1	14	1	2.8
688 CO.	Non- car- bon-		64		0	Ī	192		169		0			1	681		01	1	248 500 189	1	39 12 12 12 10
as CaCO ₃	Cal- cfum, Mag- ne- stum		180		100		353 491	1	304 406	1	292		224	1	284 332		340		419 730 381	1	139 168 170 200 160
lids	Tons per day																				
Dissolved solids (sum)	Tons per acre- foot		0+59		0.24		1.34		1.23		1.27		-		1.46		F		2.95		0.47 .54 .54 .51
DIS	Milli- grams per liter (mg/l		436		178		989 1470		b903 1110		932	TLE			1070			ZER	2170 3100 1700	EN	b348 400 301 374 331
	Int- trate (NO3)		1+0	SETT	0.2	RIVERS	2.281	1	4.23	1	0.0	NEAR OAKVILLE	1+0	E	$0.0 \\ 1.8$		0.0	BLUNTZER	0.0 6.5 .8	CALALLEN	0,0,0,0,0
	Fluo- ride t (F) ((LISETT	0.5	NEAR WHITSETT	0.3	SE RIV	1119:0	RIVERS	0.4	OAKVILLE	£ ° 0			JE WEST	0.4	MIKESKA		NEAR	1.2	ABOVE	0 4 19 19 19 14
	Chloride (Cl)	OLMOS CREEK NEAR WHITSETT	56	CREEK NEAL	4.2	NEAR THREE	232 175 295 388	THREE	251 312	AT	285	SULPHUR CREEK	362	NEAR GEORGE	500 342	NEAR	450	ROAD 666	900 1320 680	DAM	96 101 72 67
	Sulfate (SO.,)	3 CREEK	145	CHRISTOVAL C	34	RIVER	220 226 168 356	RIVER AT	139 235	SULPHUR CREEK	97	BELOW SULP	183	RIVER	150 162	NUECES RIVER	139	AT FARM	348 466 248	AT CALALLEN	45 46 36 31
B1-	-		141	V CHRIS	124	ATASCOSA	364 157 510 364	FRIO 1	337 290	SULPI	376		569	NUECES	529 323	NUECI	413	CREEK	208 280 234	RIVER	122 190 220 230 183
²	stum-	54.	78	55. SAN	20	56. A	1 0 10	57.	6 7.7	59.		NUECES RIVER		61.		62,		CAYAMON (638 12 12	NUECES	83 7.9 83 6.4 7.5 8.5
	Sodtum (Na)		1		61		231 333 376		240 216		239		434		465 269		358	66. CA	63 865 459	67. N	62 52 52 49
Mag	sium (Mg)		2.4		1.8		24 35		20 26	İ	14	60.			161			Ĩ	54 70 38		87-10-10 10-10-10
	Cal- ctum (Ca)		68		37		102		89		94				102				79 178 90		42 55 58 58 56
	Silica (SiQ _s)		16		20		53111		20		17				11				46 55 46		15 14 18 18 23
	Discharge (cfs)						35 4.32 24.5		54.6				4.34		5.49		5.29		0.22 c1.0 c1.8		148
	Date of collection		1959		1959		1942 1949 1951		1942 1967		1959		1951		1959		1951		1963		1962 1963 1966
	colle		19,		19,		$^{20}_{25}$, $^{25}_{16}$, $^{21}_{21}$,		20,		19,		25,		25, 19,		25,		30. 23.		31, 15, 15, 18,.
			Apr.		Apr.		Mar. Aug. Jan. Dec.		Mar. Dec.		Apr.		Jan.		Jan. Apr.		Jan.		Aug. Feb. Aug.		Jan. Aug. Feb. Aug.

a/ Includes equivalent of any carbonate (CO_3) present. $\frac{b}{b'}$ Residue on evaporation at $180^{\circ}C.$ C Estimated.

- 34 -