WATER RESOURCES OF THE LUBBOCK DISTRICT, TEXAS

By
J. W. Lang

With a section on Surface Punoff
By
Trigg Twichell

Prepared in cooperation between the Geological Survey, U. S. Department of the Interior, and the Texas State Board of Water Engineers

July 1945
Page
Introduction 1-a
Occurrence of ground water 3-a
Test drilling 4-a
Preliminary investigation prior to test drilling Objectives of test drilling 4-a
Equipment and methods used 6-a
Lithology of formations penetrated 7-a
Electrical logging of test holes 8-a
General statement 8-a
Lubbock tests 11-a
Summary of results of test drilling 12-a
Test hole l 12-a
Test hole 2 13-a
Test holes 3 and 4 14-a
Test hole 5 15-a
Test hole 6 16-a
Test hole 7 16-a
Test hole 8 17-a
Test hole 9 18-a
Test hole 10 19-a
Quality of ground water as indicated by electrical logs 21-a
Effects of pumping 22-a
Specific capacity of wells 22-a
Coefficients of transmissibility and storage and computations of effect of pumping 22-a
Surface runoff at Lubbock, Texas 25-a
Summary and conclusions 27-a
Appendix
Records of wells and springs in Lubbock County, Texas
Logs of test holes drilled by the City of Lubbock Table of drillers' logs of wells in Lubbock County Water levels, Lubbock County
Partial analyses of water from wells and springs in Lubbock County

ILLUSTRATIONS

Plate 1. Map of Lubbock County, Texas, showing water wells and springs. 2. Map of Lubbock County, Texas, showing location of city test holes and quality of ground water.
Figure 1. Geologic section, Lubbock County, Texas.
2. Theoretical drawdown in an ideal aquifer computed by Theis nonequilibrium formula.
3. Theoretical drawdown at the end of one year caused by pumping 14 wells at the rate of 500 gallons per minute each - wells spaced at intervals of one-half mile.
4. Theoretical drawdown at end of 20 years caused by pumping 14 wells at the rate of 500 gallons per minute each - wells spaced at intervals of one-half mile.
5. Electrical and geologic log of test wells 1 and 2.
6. Electrical and geologic log of test wells 4 and 5.
7. Electrical and geologic log of test wells 6 and 7.
8. Electrical and geologic log of test wells 8 and 9.
9. Electrical and geologic log of test well 10.

以及matas
万人，

$$
\begin{aligned}
& \text { 女母 }
\end{aligned}
$$

 4x atamem
O

By

J. W. Lang

INTRODUCTION

An investigation of the supply of ground water available in the High Plains in Texas, including Lubbock County, was started in 1937, as part of a survey of the ground water in Texas, by the Geological Survey, United States Department of the Interior in cooperation with the Texas State Board of Water Engineers. These cooperative studies have been made possible through appropriations by the State Legislature and allocations of Federal funds to match them on an equal or nearly equal basis. Data obtained from the investigation have been summarized in seven mimeographed reports that have been released to the public, the first in 1938 and the last in 1945. Two mimeographed publications have been issued, giving a description of water wells in the county, one in October 1937 and the other in April 1945. The 1945 publication, included as an Appendix to this report, contains records of 891 wells and springs and chemical analyses of water from 292 wells and springs. The map, plate 1 (from the 1945 well publication), shows the location of all wells and springs in Lubbock County for which data are available.

All water for public, industrial and domestic uses in Lubbock County, and most of the stock water, is obtained from wells. The heaviest draft on the underground reservoir, however, is for irrigation, and this is rapidly increasing. In 1934 Lubbock County had only about 15 irrigation wells of large capacity. At the end of 1940 the number had increased to 230 , and at the end of 1944 it had reached 535.

2-a

The population of the City of Lubbock was 31,853 in 1940, and according to an unofficial count it had increased to more than 45,000 in 1945. The municipal water supply has always been obtained fran wells. In 1920 one well supplied the city; which then had a population of 4,051 ; by 1930 four additional wells had been installed; by 1940 the number had grown to 13; and now in the summer of 1945 , 19 wells are required to serve the city, which still is growing rapidly. During 1943 the city used an average of about 4,500,000 gallons of vater a day, the maximum daily consumption being 10 million gallons on August 6. In 1944, which was not as dry as 1943, an average of a little more than 4,000,000 gallons a day was used. The volume of water praped for irrigation in Lubbock County in 19144 probably was between 160 and 175 million gallans a day.

The City officials anticipate a large increase in water requirements for both mumicipal and industrial uses, which may reach an average of about 20 million gallons a day within a few years. As the present city wells are taxed almost to capacity in order to meet the present maximum demand, and as the irrigation uses in the surrounding rural areas are rapidly increasing, the practicability of developing a city supply of at least 20 million gallons a day either from the Double Mountain Fork of Brazos River below Lubbock or fran wells in auch a manner as to cause the least interference with the irrigation supplies is a matter of vital concern to the residents of Lubbock and to the irrigators of Lubbock and the adjacent counties. Accordingly the investigation described herein was undertaken in 1944 With the support of interested citizens.

This investigation was conducted between September 1944 and March 1945, under the general direction of W. N. White, principal engineer of the Federal Geological Survey, who is in charge of the ground-water work in Texas. The writer is indebted to B. A. Barnes, engineer of the Texas Board of Water Fingineers, for assistance in interpreting the electrical logs and pumping-test data, and who made many helpful
suggestions concerning the writing of that section of the repart; and to Penn Livingston, W. L. Broadhurst, and others of the Geological Survey for critical review of the report.

OCCURRENCE OF GROUND WATER

Most of the usable ground water in Lubbock County is found in the Ogallala formation, of Tertiary age, which lies at or near the surface throughout most of the county and ranges in thickness from more than 100 to almost 300 feet. The formation consists of sandy clay, silt, and fine sand with some coarse sand and gravel and porous caliche. The coarser sediments, which are usually very permeable, are in places present throughout the section, but are most prominent in the middle and lower parts of the formation. These sediments were deposited for the most part by streams but in part by the wind. The Ogallala rests on an uneven floor of older rocks that was eroded into valleys and ridges before the Ogailala was deposited. In same places this basement consists of Cretaceous limestones, shales, and sandstones, but in other places the Cretaceous rocks have been removed by erosion and the Ogallala rests on Triassic redbeds (see geologic section, fig. 1). In a few places in the county, particularly in the western, southwestern, and southern parts, irrigation wells draw both from the Ogallala formation and fram the underlying Cretaceous rocks. Where tested in Lubbock County and indeed in most parts of the High Plains, the Triassic redbeds consist mainly of red and greenish-blue shales and siltstones that yield meager supplies of highly mineralized water to wells. In a few localities, however, they include sandstones and conglomerates that yleld moderate supplies of water of good quality.

The water in the Ogallala formation is derived from the rain and snow that fall on the surface of the Plains and percolates downard into the ground-water reservoir. The water enters the formation (recharge) principally through depressions or sinks in the land surface occupied by intermittent ponds, sandy stream beds and adjacent sandy areas, and sand dune areas and areas of very sandy soils and subsoils. Conditions in the Lubbock district are favorable for ground-water recharge, especially in the shallow-water belts between Lubbock and Idalou and west and northwest of Lubbock.

TEST DRILLING

Preliminary investigation prior to test drilling

The writer made a preliminary investigation of ground-water conditions throughout Lubbock County during September, October, and November 1944, with a view to selecting the most promising areas for test drilling. Among other things, this investigation included a complete inventory of irrigation wells, the collection of water samples for chemical analyses where they were needed, and a few pumping tests. Two factors were given special consideration, (1) the quality of the water, and (2) the thickness and permeability of the water-bearing sands in areas outside the city limits. From these stuaies and from former investigations it was concluded that within a reasonable distance from Lubbock the ground water in the areas east and northeast of the city is softer and contains less total dissolved minerals than in other parts of the district; that the ground water west and southwest of Lubbock ranks second in these respects, and that the water in the belt along Yellowhouse Draw in which the present city wells are situated ranks third (see map, pl. 2). It was found that the fluoride is comparatively high in the water in the area west and northwest of Lubbock.

As to the permeability of the water-bearing beds, it was tentatively concluded from the limited information that was available that the sands along Yellowhouse Draw are the most permeable, that those east and northeast of Lubbock are second in that respect, and that in the area west of the city the sands are comparatively thin and of low permeability. It was thought, however, that in the last-named area the underlying basal sands of the Cretaceous rocks might be sufficiently thick and contain water of sufficiently low mineralization to warrant development, or that the Cretaceous limestones might include porous zones that would yield usable water. Southwest, south, and southeast of the city the sands of the Ogallala formation are thin. The irrigation wells in those localities usually have lower yields than those along Yellowhouse Draw and in the northeast quarter of the county.

In order to test the formation productivity and quality of the water of these various areas the City Commission carried on exploratory drilling in areas northeast of Lubbock and Liso west of the City, south of Yellowhouse Draw. No wells were drilled in the belt adjacent to Yellowhouse Draw because the water found there already was known to be undesirably hard.

Objectives of test drilling

Northeast of Lubbock, the main objectives of the drilling program were as follows: (1) to determine the thickness and character of the Ogallala sands and (2) to determine whether the upper part of the Triassic beds locally contains any sandstone that might yield usable water. Some of the test holes were cased for use as observation wells to record future water-level fluctuations produced by the combined withdrawals for irrigation and municipal use in the event that the area should be developed by the City. In the area west of Lubbock, between U. S. Highway 84 and State Highway 290, the main objectives were (1) to determine
the thickness and character of the Ogallala sands, and (2), to determine whether or not the underlying Cretaceous rocks contain important aquifers.

The City of Lubbock carried out the program of exploratory drilling in February and March 1945. Altogether 10 test wells were completed, nine of which were drilled into the Triassic redbeds. One test well, number 3 , was discontinued at a depth of 73 feet. Test wells 1 to 7 , inclusive, were drilled northeast of Lubbock, and test wells 8, 9, and 10 were drilled west of the City (see maps, pla. 1 and 2).

Equipment and methods used

All the drilling was done with a truck-mounted rotary drilling rig, the essential parts of which were a drill bit, drill stem, rotary table, circulating mani pump, power-driven hoisting drum, and a 25-foot hydraulically-controlled folding mast. The rotary table, hoisting drum, and mad pump were driven by the truck motor. A $5 \frac{1}{2}$-inch fishtail bit with two jet openings was used for cutting through the sands and clays, and a roller rock bit was used for hard formations such as caliche rock and limestone. The drill stem was 2-3/8 inches in outside diameter, and in 10 foot lengths.

The drilling mad was made from the natural clay obtained from the test hole as drilling progressed. No commercial muds were needed because there is sufficient clay in the section to keep the drilling mad sufficiently heary to prevent caving. Nine of the holes were logged electrically. This logging mas done after all the holes had been completed in order to avoid the extra cost of transporting the electric logging outfit from the nearest logging headquarters at Midland, 120 miles distant as each hole was campleted. The interval between completion of drilling and the electrical logging ranged from few hours, in test holes 2 and 10, to several weeks in test holes $1,2,4,5,6,7$, and 8 . Test hole 1,4 , and 7 required some reconditioning before logging could be accomplished, as they had nontion noved in

Samples of cuttings from eight of the wells were collected from the sluice ditch after each 10 feet of drilling or after each sharply-defined change in formation. Most of these samples were examined microscopically and correlated with the drillers logs and the electrical logs.

The test drilling was done by the Layne-Texas Company, Ltd., under a contract with the City of Lubbock. According to the terms of the contract the decision as to the maximum depth to which the holes should be drilled was left to the writer as the representative of the Federal Geological Survey and Texas State Board of Water Engineers.

Lithology of formations penetrated

Approximately 220 samples of drill cuttings were collected during the testdrilling operations. Most of these were examined under a hand lens but those from well 3 were examined under a binocular microscope. Because the samples were washed to the surface by the drilling mad they cannot be regarded as truly representative of the materials as they occur in place. An effort was made to use mud.as light as possible, but even the light mud may have washed out and removed some of the finer particles that occur in the formation. However, the general lithologic character of the beds is probably represented by the cuttings. The results of the examination of the cuttings are incorporated in the table on page 20-a, are plotted graphically on the reproductions of the electrical logs, figures 5 to 9, inclusive.

Most of the sands in the Ogallala formation encountered in test holes 2 to 7, inclusive, northeast of Lubbock, are subangular to well-rounded, fairly well-sarted, quartz grains. In general the sands are fine to medium-grained. The coarsest sands, with some fine gravel, occur near the base of the formation. Most of the wells penetrated alternating hard and soft beds in the upper part of the formation. The hard layers were calcareous sandstone or sandy caliche ("mortar beds") and the soft layers were sand and sandy clay or sandy silt. In some of the holes caliche beds were encountered at intervals throughout the Ogeilala section. In the test holes west of Lubbock the Ogallala sands consist of poorly-sorted grains of limestone and quartz, apparently derived mostly from reworked Cretaceous rocks. The sands are silty or clayey. The Cretaceous rocks underlying the Ogallala in test holes $1,8,9$, and 10 consist of limestone with porous zones in places, some beds of shale, and a limy and fairly well-cemented basal sand.

Electrical logging of test holes

General statement. - Electrical logging of wells was pioneered by the Schlumberger Well Surveying Corporation, which in 1928 began to develop a series of procedures for studying in place the resistance of the beds penetrated by drill holes before the casing is installed, and for interpreting the results in terms of the character of the beds and the nature of the contained liquids or gasses. The procedures have been perfected to such an extent that, at present, electrical logs are obtained for most oil tests drilled in Texas and in many water-well tests. Electrical measurements are recorded automatically as an electrode carrier is lowered into or withdrawn from the well by means of a multiple-conductor cable operated by a winch mounted on a truck. The measurements are calibrated to show the units of resistivity of the different beds and are expressed in ohms per
square meter per meter (ohms $m^{2} m$). The recording apparatus, which is too complicated to describe here, is briefly discussed in Water-Supply Paper 889-D of the Geological Survey $1 /$.

A detailed and continuous record of the formations penetrated by the drill is given by electrical logs which are, therefore, one of the most useful tools available to the geologist for subsurface studies. The two main uses of electrical logs are for the correlation of formations and the determination of the character of the fluid content of permeable beds.

The spacing of the electrodes lowered into the well governs the distance that electric currents penetrate beyond the bore of the well, and by adding more electrodes more curves can be obtained. The spacing should be large enough to allow the current to penetrate beyond the part of the beds invaded by the drilling mud, thus determining more nearly the true resistivity of the formation. In logging the Lubbock test holes two resistivity curves were obtained with each log, with electrode spacing of 18 inches and 13 feet, respectively.

In addition to the readings of the resistivity, the logging apparatus records changes in values of the earth current or natural "self potential" that occur spontaneously in the drilled hole. This record aids in distinguishing between permeable and less permeable beds and in determining the type of solutions they contain.

[^0]The following brief explanation of the use of electrical logging in differentiating rock types is based largely on a book by Heiland a/ and a paper by Mathieu and others $3 /$.

Electrical logging, in general sense, is the examination of the electrical properties, electrical reaction, and geanetric disposition of subsurface formations by electrical measurements in wells. The resistance of a formation to the passage of an electric current is used to differentiate the geologic beds, because this property differs widely fram one type of rock to another. The differences are dependent largely upon the physical characteristics of the rocks and the solutions they contain, and partly upon mineralogic make-up. The resistivity curves may be classified in four general groups, as follows:

1. High resistivity in permeable formations that contain in their interstices fluids, such as fresh water or 011 and gas, that have a rather high resistance to the passage of electric currents.
2. Low resistivity in permeable rocks that contain in their interstices saline water, which is electrically conductive.
3. High resistivity in non-permeable rocks, generally dense, compact limestones, anhydrite, rock salt, and the like, which contain only small amounts of water and are, therefore, poor electrical conductors.
4. Low resistivity in non-permeable rocks, such as shales and clays, which usually contain in their mimute prore spaces considerable amounts of water that is mineralized and is, therefore, a good electrical conductor.

2] Heiland, C. A., Geophyical exploration, Prentice-Hall, 1940.
3/ Mathieu, J. L., and others, Houston Geological Seciety Stwiy Group, Electrical well logging: Am. Assoc. Petroleum Geologists Bull., vol. 23, No. 9, pp. 1297-1298, 1939.

Lubbock tests. - The electrical logs of the test holes drilled at Lubbock consist of three graphs generally called curves. The first or self-potential curve on the left aids in distinguishing between permeable and less permeable beds and in determining the type of solutions contained in them. The curve shown by a solid line on the right is known as the second or normal resistivity curve and records the apparent resistance to an induced electric current that penetrates laterally to a distance approximately equal to the electrode spacing (in these logs about 18 inches) from the wall of the bore hole. Some geologists believe that a small amount of current penetration is inadequate and may lead to misinterpretation of the graph, because in permeable beds the resistivity may be affected by the invasion of drilling mud. Therefore, a third curve was made which parallels the second approximately, it is shown by a broken line. In these logs it is supposed to record the resistivity to a maximum lateral distance of about 13 feet, which is probably a greater distance than the drilling mad penetrated in the sands even though several weeks elapsed between the drilling and logging of most of the test holes. It is possible, however, that in honeycombed caliche the mud invasion may have extended 13 feet or more, thereby partly vitiating the record at some depths. All the curves are subject to limitations in accuracy and significance and need to be interpretated with care.

A comparison of the electrical logs with logs compiled from the drillers' records and study of the drill cuttings show that, on the whole, they agree remarkably well in fixing the upper and lower limits of the thicker beds (see figs. 5-9). The second curve of the electrical log seems to give more detail than the driller's log, in that it indicates the position of numerous caliche layers or "mortar beds" within the larger sand sections, and it also shows sandy layers within the clay zones. In general, these were recorded in the driller's log as alternating beds of sand and caliche and sand and clay.

Summary of results of test drilling

A sumary of the data obtained for each test hole and the conclusions dram therefram are given below. The writer's classification of the test holes according to the thickness of the sands and proportion of different sizes of grains is given in the table on page 20ma. The drillers' logs are given in the appendix, and the electrical logs are shown in figures 5-9. For location of the test holes see the maps, plates 1 and 2.

Test hole 1.- Drilled 3克 miles northeast of Lubbock on north side of P. \& S. F. Railway, near northrest corner sec. 6, blk. A; depth 244 feet; water level 53.2 feet below land surface on February 13, 1945, 8 days after drilling was completed; surface altitude 3,213 feet.

The base of the Ogallala formation as revealed by the drill at this site is about 131 feet below the surface, with the best developed sands at 77 to 104 and 112 to 131 feet. The saturated portion of the formation has a thickness of about 78 feet, including 50 feet of sand and gravel and about 20 feet of caliche with minor sand members. The sand and gravel should yield water freely to wells and the caliche also may yleld considerable water. The remaining 8 feet of the saturated portion is sandy clay which would yield comparatively little ground water.

Deposits of Cretaceous age were penetrated from the base of the Ogallala to a depth of 215 feet. These rocks consist of thin layers of shale and clay; dense limestone; and the well-known basal Cretaceous sands at the bottom of the section from about 192 to 214 feet.

From 215 feet to the bottom of the hole at 244 feet, the drill penetrated tough dark red and greenish-blue shale with thin beds of greenish-blue siltstone. These rocks belong to the Dockum group of Triassic age commonly referred to as the Triassic redbeds.

In this test hole only 53 feet of good water-bearing sand was penetrated, which is the least that was encountered in any of the test holes drilled. The - water in the Cretaceous and Triassic deposits is likely to be meager and of poor quality, and,therefore, of little or no importance as a municipal supply.

Test hole 2.- Drilled $5 \frac{3}{4}$ miles northeast of Lubbock along the P. \& S. F. Railway, in the NW $\frac{1}{4} N W \frac{1}{4}$ sec. 47 , blk. A; depth 234 feet; water level 27.7 feet below the land surface on February 13, 1945, 6 days after drilling completed; surface altitude 3,184 feet.

In this test boring the Ogallala deposits, with base at 194 feet, consist of alternating beds of sand, gravel, clay, sandy clay, and honeycombed caliche. Tubular stems of calcium carbonate resembling fossil roots of plants occur in places in the sands. The overall saturated thickness is 166 feet; the major water-bearing beds have a total thickness of about 120 feet and consist of beds of sand and gravel interbedded with porous caliche. The remainder of the saturated section is mostly clay, sandy clay, and hard and soft caliche. No rocks of Cretaceous age were penetrated in this test hole.

From the base of the Ogallala, at 194 feet, to the bottam of the hole at 234 feet the drill penetrated tough, dark red clay interbedded with thin layers of greenish-blue clay and siltstone, obviously of Triassic age.

As revealed by the drill, ground-water conditions in this locality are excellent for the development of production wells.

Test holes 3 and 4.- Test hole 3 was drilled $7 \frac{1}{2}$ miles northeast of Labbock In nortimest corner of the $\operatorname{sic} \frac{1}{4}$ sec. 55 , blk. A; depth 73 feet; water level 35 feet below the land surface on February 10, 1945.

Drilling was discontinued at 73 feet because a highly permeable zone was encountered--perhaps cavernous caliche--in which the drilling mad was lost. Owing to the fact that the test hole was only 30 feet from an irrigation well, and to the danger of damaging the irrigation well if attempts were made to regain circulation by sealing up the walls of the test hole, it was decided to abandon the test. The entire section drilled was sandy, consisting of alternating beds of sandy clay, caliche and sand in hard and soft layers, and loose red sand.

Test hole 4 was drilled 8 miles northeast of Lubbock at the intersection of the P. \& S. F. and Fort Worth and Denver City Railway lines in the SElt sec. 66, blk. A; depth 264 feet; water level about 35 feet below the land aurface on February 10, 1945; surface altitude, 3,181 feet.

The Ogallala formation occupies the section from the surface or from near the surface to a depth of 230 feet in bore hole 4. The formation here consists of alternating beds of sand, gravel, clay, sandy clay, and hard to soft caliche that is occasionally porous or sandy or both. The saturated section is 195 feet thick, of which about 140 feet is composed chiefly of sands and gravels with minor beds of porous caliche. This section appears to be very permeable, as indicated both by the loss of a large amount of drilling and during the drilling operation and by the slope of the resistivity curves of the electrical log. The remaining 50 feet of the saturated portion is composed of less permeable or essentially
impermeable sandy, slightly porous caliche, sandy clays, and rather dense clays or shales. No rocks of Cretaceous age were penetrated.

From 230 feet to the bottom of the test hole at 264 feet the drill penetrated Triassic strata consisting of hard red and blue clay and thin beds of red shale and siltstone. These rocks are likely to yield little or no potable water.

Ground-water conditions in this locality are excellent for the development of large production wells in Ogallala sands for public water supplies or for irrigation.

Test hole 5.- Drilled 7 miles northeast of Lubbock in the northwest corner of the NW $\frac{1}{4}$ sec. 49 , blk. A; depth 305 feet; water level about 42 feet below the land surface in February 1945; surface altitude 3,217 feet.

The base of the Ogallala lies 192 feet below the surface at this site. The saturated thickness of the formation is about 150 feet, of which about 90 feet of sand and porous caliche is believed to be fairly permeable. The remainder of the saturated portion, consisting mostly of sandy clay, clay, and a few hard caliche members, is believed to be relatively impermeable. No rocks of Cretaceous age were penetrated in this test hole.

From the base of the Ogallala formation to the bottom of the hole at 305 feet the sediments consist of nonwater-bearing Triassic hard maroon and greenishblue shale and shaly siltstone.

Although the Ogallala sands encountered in test hole 5 were not as thick nor as permeable as in test holes 2 and 4, conditions are favorable for development of large-capacity wells in the locality of test hole 5.

Test hole 6.- Drilled $8 \frac{3}{4}$ miles northeast of Lubbock in NE $\frac{1}{4} N E_{\frac{1}{4}}$ sec. 52 , blk. A, on property of Liberty Public School; depth 274 feet; water level 67 feet below the land surface in February 1945; surface altitude 3,241 feet.

The base of the Ogallala formation in this test hole is tentatively placed about 181 feet below the surface. The thickness of saturation in the formation is estimated at 114 feet, of which about 75 feet is composed of sands and porous sandy caliche. Relatively impermeable clays, sandy clays, and dense caliche make up the remainder of the saturated section.

Although the available information is not conclusive, it appears probable that the sediments between 181 and 216 feet below the surface, consisting of varicolored clays; dense, hard limestone; dark red clay; and caliche; with 10 feet of sand at the base, are of Cretaceous age. From 216 feet to the bottom of the hole at 274 feet the rocks consist of dark red shale and thin beds of bluishgreen silty shale, of Triassic age.

The ground-water conditions in this locality are favorable for the development of large-capacity production wells in the Ogallala formation for irrigation or public supplies. The thin section of basal Cretaceous sands probably will yield only a meager volume of rather highly mineralized water.

Test hole 7.- Drilled in the northeast corner of the South Plains Army air base, 6 miles north of Lubbock in northeast corner of sec. 2, blk. D-3; depth 314 feet; water level about 63 feet below land surface in February 1945; surface altitude 3,262 feet.

The base of the Ogallala deposits in this test hole lies at 253 feet below the surface. The deposits include an overall thickness of 191 feet of saturated material, of which it is estimated that about 130 feet is composed of relatively permeable sands and associated porous caliche that should yield water freely to wells. The remainder of the Ogallala material below the water table is comparatively impermeable. Sediments of Cretaceous age were not penetrated in this test hole.

From 253 feet to the bottom of the hole at 314 feet the drill cuttings consisted of sandy red shale, siltstone, and red and greenish-blue shale of the Triassic redbeds, which are practically nonwater-bearing.

The thick section of saturated permeable sandy material revealed by this boring, together with data collected from local irrigation wells indicate that the ground-water reservoir in this locality is quite large and productive. Unconsolidated sands may be encountered locally that will give some concern in large-volume well construction.

Test hole 8.- Drilled $7 \frac{1}{2}$ miles west of Lubbock in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 3, blk. JS; depth 295 feet; water level about 68 feet below land surface in March 1945; surface altitude 3,303 feet.

The base of the Ogallala formation is about 208 feet below the surface in this test hole. The saturated thickness of the formation is about 140 feet, of which 115 feet consists mostly of fine to medium-grained sand with about 10 feet of porous caliche just below the water table, and which is believed to be moderatel. permeable. Available data indicate that the remainder of the saturated section is relatively impermeable.

Rocks of Cretaceous age occupy the section from about 208 to 276 feet in this hole. They consist of hard and soft layers of limestone from 208 to 235 feet, alternating beds of 11 mestone and dark blue shale from 235 to 260 feet, and interbedded sands and shales and medium-grained limy gray sand from 260 to 276 feet. The limestones appear to be somewhat porous, according to the electrical log, and probably contain water; but according to the driller's log the sands are shaly and limy and would yield little water.

From 276 feet to the bottom of the test hole at 295 feet the material penetrated by the drill consisted of red and greenish-blue shale of Triassic age which is barren of water.

The ground-water conditions in this locality are favorable for development of large-capacity wells in the Ogallala deposits. In chemical quality, however, the water is considerably harder and contains more dissolved minerals than the ground water in the area northeast of Lubbock. This is an inportant consideration in a problic supply. Accoraing to the electrical log the water in most of the Ogallala sands in this test hole was less mineralized than the drilling mud, which was made with water from the Lubbock mains; but that in the basal 20 feet was more highly mineralized than the mud. The Cretaceous rocks at this site offer little promise as a source of water of good quality.

Test hole 9.- Drilled $7 \frac{1}{2}$ miles northwest of Lubbock in NWh $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 8, blk. JS; depth 294 feet; water level about 40 feet below the surface in March 1945; surface altitude 3,296 feet.

The Ogailala here extends to a depth of about 180 feet below the surface, and the saturated thickness of the formation is estimated as about 140 feet. $O f$ the saturated section about 65 feet consists of the following: 20 feet of medium to coarse-grained sand, 30 feet of fine to medium-grained sand, 15 feet of
fine-grained sand, and a little porous caliche that should yield water rather freely to wells. The remainder of the section consists of relatively impermeable clay, sandy clay, and hard caliche, which can be disregarded as a source of water.

Rocks from the base of the Ogallala at 180 feet to a depth of 253 feet consist of typical Cretaceous clays, dense to honeycombed limestone, and the basal sand, which here is about 10 to 12 feet thick. The Triassic section from 253 to 294 feet consists of hard red shale and silt interbedded with thin lenses of blue and yellow shale, which are essentially non-water-bearing.

According to the test drilling, conditions in this locality are favorable for the development of large-capacity wells for irrigation or municipal supply. The character of the electrical-log curves, together with other field data, indicate that the water in the Cretaceous rocks probably is too highly mineralized for satisfactory domestic use.

Test hole 10.- Drilled 6 miles northwest of Lubbock in $N E \frac{1}{4} N E \frac{1}{4}$ sec. 7, blk. JS; depth 254 feet; water level 29 feet below land surface in March 1945; surface altitude 3,256 feet.

The base of the Ogallala in this test hole is 162 feet below the surface. Of the total thickness 133 feet lies below the water table, and of this saturated section an estimated 114 feet is composed of relatively permeable sands and clayey sands with some porous sandy caliche. Less permeable or relatively impermeable clays, sandy clays, and hard caliche make up the remainder of the saturated portion.

Cretaceous rocks occupy the section between 162 and 235 feet below the surface. They consist of shales and clays; limestone, possibly porous in the middle section; and sands, which occur between 219 and 235 feet below the surface.

Triassic rocks, consisting of hard maroon and greenish-blue shales and silts, were penetrated from 235 to 254 feet, which are essentially nonwaterbearing.

The conclusions reached concerning the ground-water conditions in this locality are similar to those found in test hole 9.

Proportion of fine-grained, fine to medium-grained, and medium to coarsegrained sand, and the total thickness of sand in each test hole
(Based on examination of drill cuttings by the writer)

Quality of ground water as indicated by electrical logs

No water samples were obtained from the test holes, as the City authorities felt that earlier quality of water studies covering the entire county, previously mentioned in this report, (p .1) were adequate (see map, pl. 2). The studies indicated that water in different horizons in the Ogallala does not differ greatly in chemical character within these areas.

Electrical logs, by the character of their curves, give a relative indication of the changes in chemical quality of the water in the different formations. These changes are registered on the basis of a comparison between the chemical character of the mud used for drilling (which is determined by the water used for mixing the mud and the material penetrated by the drilling), and the character of the water in the formation. In all the test holes the water used for drilling was obtained from the water mains of the City of Lubbock.

The electrical logs indicate that the water in the Ogallala formation in the test holes northeast of Lubbock is generally of lower mineral content than the water in the drilling mud. In test holes 2 and 4 , however, there are some indications that the water in the basal 10 to 15 feet of sand has a higher mineral content than the mud used for drilling. This is also true of the shallow sands in well 2. In the test holes drilled west of Lubbock the Ogallala water in wells 8 and 9 appears to be less highly mineralized than the drilling mud, except for that in the basal 20 feet in well 8, which apparently is more highly mineralized than the mud. In well 10 the water in the Ogallala appears to be of about the same chemical character as the drilling mud. According to the electrical logs, the water in the Cretaceous rocks in all the test holes that penetrated these rocks contains more dissolved solids than the mud used for drilling, and would not be desirable for a city supply.

EFFFECIS OF PUMPING
 Specific capacity of wella

The specific capacity of a well is defined as the yield per unit of drawdown. It is generally expressed as the number of gallons per minute that a well will yield for each foot of drawdown. In eight wells in the area north and northeast of Lubbock (nos. C-15, 26, 64, 81, 416, 599, 604, and 666 in pl. 1) the range in specific capacity in tests ranging in length from a few hours to about 72 hours ranged from 21 to 65 gallons per minute per foot of drawdown and the average was 36 gallons per minute per foot.

For purposes of computations in this report a specific capacity of 35 gallons per minute per foot was used in making calculations of the theoretical drawdown to be expected in each well due to its own pumping in a well field assumed to be in the area northeast of Lubbock. (See fig. 2.)

Coefficients of transmissibility and storage and computations of effect of pumping

The amount and rate of decline of water levels produced by pumping from wells depends on the transmissibility and storage capacity of the water-bearing formation. The transmissibility of an aquifer is defined as the volume of water flowing in unit time through a vertical strip of the aquifer of unit width under unit hydraulic gradient. It may be expressed in terms of the number of gallons of water that will flow in 1 day through a vertical strip of the aquifer 1 foot wide under unit hydraulic gradient 4/. The coefficient of storage may be defined as the volume of water released from storage in a vertical prism of the aquifer of unit cross-section by a unit decline of head. For water-table conditions, which exist in the Lubbock district, the ultimate coefficient of storage

4 Theis, C. V., The relation between the lowering of the Plezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union, Trans. pp. 519-524, 1935.
is essentially equal to the specific yield of the material unwatered 5/. Meinzer 6/, defines the specific yield of a rock or soil as the ratio of (1) the volume of water which, after being saturated, it will yield by gravity, to (2) its own volume.

Data obtained from four recovery tests in the Lubbock area were analyzed by the Theis method to determine values of transmissibility.

The formula on which the recovery method depends is based on the following assumptions: (1) the water-bearing formation is homogeneous and of uniform thickness, (2) the formation has an infinite areal extent, (3) the discharge well penetrates the entire thickness of the formation, (4) the discharge well has an infinitesimal diameter, and (5) water is released from starage instantaneously with the drop in head. These assumptions, of course, are not fully realized in the Lubbock area, but in view of the areal extent and relative uniformity of the Ogallala formation they involve no great error. In the five pumping tests mentioned above values of tranmissibility were obtained ranging from about 27,000 to 80,000 gallons per day per foot and averaging about 50,000 gallons per day per foot.

From studies in two large areas of heavy ground-water withdrawal in the High Plains region, in which the declines in water levels were correlated with the pumpage, storage coefficients of approximately 0.15 were obtained 7/.

[^1] ground̄-water bodies: Econ. Geol., vol. 33, pp. 889-902, 1938.

6/ Meinzer, O. E., Outline of ground-water hydrology: U. S. Geol. Survey Water-Supply Paper 494, p. 28, 1923.

7/ Progress report on ground water in the High Plains in Texas: Texas State Board of Water Engineers in cooperation with U. S. Geol. Survey, pp. 15 to 17, April 1943.

24-a

The curves in figure 2, computed by means of the Theis formula, show the decline in water levels that theoretically would be produced in an ideal aquifer having a transmissibility of 50,000 gallons per day per foot and a storage coefficient of 0.15 , at the end of $1,2,5,10$, and 20 years, as a result of promping a well continumasly at the rate of 1,000 gallons per minute.

From the curves in figure 2 the theoretical drawdowns resulting from the continuous prmping of 14 wells spaced on a line at half-mile intervals, at the rate of 500 gallons per minute each (a total of about 10 million gallons per day) were computed for periods of 1 year and 20 years, and are show in figures 3 and 4. In these camputations a specific capacity of 35 gallons per minute per foot was assumed for estimating the decline in the water level in each well due to its own pumping.

In computing the declines in water levels shown in Pigures 3 and 4, the effect of additional recharge was not considered. Recharge, that portion of the rainfall and snowfall that penetrates to the water table, will temporarily reduce the amount and rate of decline shown in the illustrations. On the other hand, the possibility was not taken into account that the current trend in water levels may be slightly downard as the result of pumping for irrigation. The effect of increased purming by irrigation wells is another factor that has not been taken into consideration.

SURFACE RUNOFF AT LUBBOCK, TEXAS

By

Trigg Twichell

Little is known of the surface runoff of the headwater tributaries of the Brazos River that originate on the High Plains of the Texas Panhandle, or of these streams for a considerable distance downstream from the Plains escarpment ("Cap Rock"). The table below summarizes the discharge records collected at two stream-flow stations on the High Plains and at one station in the Brazos River downstream from the "Cap Rock".

Station	Period of record	Contributing drainage (Sq.mi.)	Average discharge mgd	Max. yearly discharge mgd	Min. yearly discharge mgd
Double Mountain Fork Brazos River at Lubbock, Texas	$\begin{aligned} & \text { Sept. } 1939 \\ & \text { to } \\ & \text { Sept. } 1944 \end{aligned}$	Not known	1.61	5.54	0
Double Mountain Fork Brazos River near Aspermont, Texas	Dec. 1923 Sept. 1934 June 1939 Sept. 1944	to to $1,509$	122.0	340.0	27.0
White River at Plainview, Texas	June 1939 Sept. 1944	to Not known	5.72	23.0	0.013

Records collected at Lubbock and Plainview extend through a 5-year period. During this time the yearly rainfall ranged from 11.86 inches for the water year 1940 (ended September 30, 1940), to 37.39 inches for the water year ended September 30, 1941. Rainfall was above the average during the water years 1941, 1942, and 1944. It is believed, therefore, that the average daily flow of $1,610,000$ gallons per day recorded at the station on the Double Mountain Fork Brazos River at Lubbock, for the 5 year period, is above the average flow that might be expected through a longer period of time.

The maximum recorded 12 -month flow in the stream at Lubbock was from May 1, 1941 to April 30, 1942. The average flow for that period was $6,000,000$ gallons per day, the major portion of which occurred during the 3 month period May 1 to July 31, 1941. There was no flow during the 18-month period September 1939 to February 1941, inclusive.

The Double Mountain Fork of the Brazos River at and below Buffalo Spring, about $10 \frac{1}{2}$ miles southeast of Lubbock, is reported to be a perennially-flowing stream. Continuous stream-flow records have not been collected at this station. A discharge measurement was made at a section 2,000 feet below Buffalo Spring on January 17, 1937. At that time the discharge was found to be $1,293,000$ gallons per day. In all probability the spring flow fluctuates to some extent but the range of fluctuation is not know.

Runoff records collected to date on streams originating in the High Plains show the surface-water yield to be very low. A large portion of the flow is lost by infiltration into underlying formations. The low runoff measured during periods of heavy rainfall, such as occurred in 1941 and 1942. The extended periods of no flow, and high evaporation losses during drought periods, indicate that streams in the vicinity of Lubbock will not meet water requirements for large users.

SUMMARY AND CONCLUSIONS

The available supply of ground water of good quality in the Texas Eigh Plains, of which the Lubbock district is a part, occurs in sands and gravels of the Ogallala formation. The formation rests on an uneven floor of Cretaceous rocks or Triassic redbeds. Although the water in the Ogallala is rather hard in some localities it is suitable for irrigation and municipal use, whereas the water in the underlying rocks is in general meager and quite highly mineralized.

The following information has been disclosed by test drilling: Northeast of Lubbock the average thickness of the saturated portion of the sands of the Ogallala formation in the six test holes that penetrated the full thickness of the formation is about 165 feet, of which about 100 feet is mainly sand and gravel. The poorest showing is in test hole 1, which penetrated 77 feet of saturated material with only 50 feet of sand. The best sands occur in the middle and lower parts of the formation. The base of the formation was reached at depths ranging from about 190 to 250 feet below the land surface, whereas most of the irrigation wells in the area are less than 150 feet in depth. The ground water in this area, is, in general, softer and lower in total dissolved minerals than in other parts of the county.

West of Lubbock the average thickness of saturated material in the Ogallala in the three test holes is about 135 feet, of which an average of about 80 feet is sand and gravel. The sands in this area do not appear to be as permeable as the sands northeast of Lubbock because of their clayey texture. Cretaceous rocks underlie the Ogallala formation in this area and consist of limestones, shales, and limy sands. The electrical logs indicate that, in general, the Cretaceous waters contain more dissolved minerals than the Ogallala waters.

If additional large supplies of ground water are to be developed for the dity of Lubbock they should be obtained outside the present heavily-pumped areas, which are within and closely adjacent to the city itself, and the withdrawals should be spread over as wide an area as practicable in order to prevent a serious local decline of the water levels both in the new wells themselves and in the irrigation wells in the adjacent territory.

It is concluded from the test drilling and information previously available that the northeastern quarter of Lubbock County is the most promising area for development of large supplemental water supplies.

As a basis for computations for this report the wells to furnish such a large supply are assumed to be arranged in a straight line. Other axrangements, of course, may be equally feasible, provided that the pumpage is well distributed. The actual arrangement is a matter for the city engineer and the consulting engineer to decide. The theoretical drawdows resulting from pumping 14 wells continuously at the rate of 500 gallons a minute each (about 10 million gallons a day), the wells being in a line spaced at half-mile intervals, were computed for periods of 1 year and 20 years. The results are shown in figures 3 and 4. If the pumpage should be at the rate of 1,000 gallons per minute per well (totaling 20 million gallons per day), the drawdown indicated in the figures would be approximately doubled.

The estimates of drawdown of water levels given in this report are the best that can be made with present data. They relate only to drawdowns that should be expected in a well field laid out as described above. No account is taken of the effect of future pumping from irrigation wells, which is practically sure to increase.

Some water doubtless can be developed in the area west of Lubbock. However, it should be pointed out that the fluoride content of the water in that area is rather high.

Runoff records collected to date by the Surface Water Division of the Geological Survey show that the average flow of Double Mountain Fork of Brazos River at Lubbock is very small and is incapable of meeting the water requirements of large users. Ground water is, therefore, the only practicable source of large water supplies in the county.

$$
\begin{aligned}
& \square \text { 和 } \\
& \Rightarrow 200416
\end{aligned}
$$

rnBbock conиіл 1 x甘2

$$
\begin{aligned}
& \text { EOR CIC } 2 E 110 \% \\
& \text { EOE }
\end{aligned}
$$

- APPENDIX
$\underbrace{8}_{6}$

Records of wolls and springs in Lubbock County, Texas
Measuring pcint at city wells is top of concrete foundetion of pump

WellDistance frem post office at Lubbock	Owner	Driller	Date com-pleted	Depth of well (ft.)	Diameter of well (in.)	Height of imeasuring pcint above grcund (ft.)
$\mathrm{C-1}$ $\frac{3}{4}$ mile 	```City of Lubbock Well 1```	Gant Baker	1925	198	24	2.3
C-2:音mile northwest	City ©f Lubbock Well 2	T. P. Wright	1917	! 300!	24	1.2
$\overline{C-3}$ \vdots \vdots \vdots	City of Lubbock Wgll 3	D. L. Mcyonald	1925	210	24	1.5
$\mathrm{C}-4$ $2 \frac{1}{4}$ miles northwest 	$\begin{aligned} & \text { City of Lubbock } \\ & \text { Well } 4 \end{aligned}$	B. B. Baron	1928	156	24	1.5
$\mathbf{C - 5}$ lat miles northwest 	```City of Lubbock #ell 5```	Coy Rodgers	1929	150	24	0,4
C-6 $\frac{1}{8}$ mile northeast \vdots 	```City of Lubbock Well 6```	D. L. McDonald	1931	142	18	1.2
C-7 l mile southeast \vdots 	City of Lubbock Well 7	du.	1931	158	18	0.5
C-8 $\frac{1}{2}$ mile southeast \vdots \vdots 	```City of Lubbock Well }```	do.	$19 E 1$	157	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	0.4

Chemical analyses of water from these wells are shown in the table of analysas All wells are drilled

Well	WiTT? Below measurin point (ft.)	LEVEL Date of Method Use measurement of of lift water $a /$ $b /$	$\begin{gathered} \text { Altituie } \\ \text { of } \\ \text { measuring } \\ \text { point } \\ \text { (ft.) } \\ \hline \end{gathered}$	Remarks
C-1	$\begin{aligned} & 19.2 \\ & 23.0 \\ & 24.6 \\ & 28.4 \end{aligned}$	Oct. ,-- 1931 I', E, P Dec. 8, 1936 KO Jan. 1939 Sept. 25, 1944	3151.7	Sanc and sravel at $27-37,41-49$, and 68-98 feet. Fump: 15-inch, 5 -stage; set at 75 feet with end of suction pipe at 90 feet. Reported drawiown 50 feet after nunping li hours at 600 gallons
C-2		IJan. 27, 1932 T, E, F iLec. $6, ~ 1936 ~$ 25 Sept. $26, ~ 1944$ 	3198.1	Orixinal No. a minute in 1925. 1 well. Deepened in 1924 by D. L. McDonald from lz2.to 300 feet; red and blue clay from 180 to bottom, no water sand encountered. Reported drawdown 57 feet after pumping 10 hours at 617 gellons a minute in 1932.
C-3	$\begin{aligned} & 59.5 \\ & 66.9 \\ & 72.3 \end{aligned}$	Nay 6, 1932 T, E, P Dec. 4, 1936 15 Sept. 25, 1944	3217.0	Depth to water 44 feet when drilled. Sands at 51-70 and 116-160 feet, and red clay at 175-210 feet. Pump: 12-inch, 4-staze, set at 120 feet with end of suction pipo at 128 feet.
C- 4	$\begin{aligned} & 65.8 \\ & 75.7 \\ & 67.4 \end{aligned}$	Apr. 3,1929 T, F, P Dec. 6,1936 30 Oct. 2,1944	3218.8	Depth to water 46 feet when drilled. Pump: 12-inch, 8-stage set at 105 feet with end of suction dipe at lla fcet. See log.
\%-5	$\begin{aligned} & 51.1 \\ & 56.6 \\ & 67.5 \\ & 72.2 \end{aligned}$	$\left\{\begin{array}{lrr\|c:c}\text { Oct. } & 1, & 1929 & \text { T, } \mathrm{E}, & \mathrm{P} \\ \text { Mar. } & 1, & 1932 & 20 & \\ \text { Dec. } & 6, & 1936 & & \\ \text { Sept. } 26, & 1944 & & \end{array}\right.$	3206.7	Grevel-wnilad to lغo feet. Fump: 10-inch, 9-stage set at 110 foet with ind of suction pipe at 127 feet. Drawdown 49 feet after pumping, 8 hours at 440 gallons a minute in 1929. See log.
7-6	$\begin{aligned} & 65.7 \\ & 73.0 \\ & 80.0 \end{aligned}$	Jan. 8, 1932 T, E, Dec. 8, 1936 P Sept. 5, 1944 	3193.9	Dapth to water 60 .feet when drilled. Pump: 12-inch, 7-stn-e set at 130 feet with 10 feet of suction pipe. Drawdewn 6 foct after pumping 14 hours at 430 pallons a minuts in 1932.
-7	$\begin{aligned} & 55.0 \\ & 59.1 \\ & 63.1 \end{aligned}$	May 1, 1931 T, E, P Dec. 4, 1936 40 Sept. 28, 1944 \vdots 	3186.7	Casing: 150 feet of l3-inch 0.D. wlded steal pipe with screensat 60-80, 115-130 and 140-147 feet. Pump: le-inch, 7-stage, set et 130 foet. Drawdown 56 feet after pumping 72 hours at 780 gallons a
C., 3	$\begin{aligned} & 70.0 \\ & 69.6 \\ & 76.4 \end{aligned}$	July 11, 1036 T, E, F Dec. 4, 1936 15 Sert.28, 1944 	3194.0	Casing: 40 minute. See log. feet of 22 -inch cementod in caliche rock and 140 feet of 18 inch lapped into 22-inch; screen from 60 to 140 feet. Pump: 10inch, 8 -stage, set at 125 feet with end of suction pipe at 141 feet. Depth to water 60 feet when drillod.

b/ P, public supply; S, stock.

Records of wells and springs in Lubbock County--Continued $^{\text {a }}$

Well Distance from post office at Lubbock	Owner	Driller	Date com-pleted	Depth of well (ft.)	Diameter of well (in.)	Height of ;measuring point above ground (ft.)
 C- 9 $1 \frac{1}{2}$ miles southeast 	$\begin{aligned} & \text { City of Lubbock } \\ & \text { Well } 9 \end{aligned}$	B. B. Baron	1937	151	$\begin{aligned} & 22 \\ & 18 \end{aligned}$	1.0
C-10 la miles northwest \vdots \vdots	$\begin{aligned} & \text { City of Lubbock } \\ & \text { Well } 19 \end{aligned}$	W. P. Crawficrd and George Anderson	1938	$\overline{151}$	$\begin{aligned} & 24, \\ & 18 \end{aligned}$	1.0
C-11 $2 \frac{1}{4}$ miles \vdots northwest \vdots	$\begin{aligned} & \hline \text { City of Lubbock } \\ & \text { Well } 11 \end{aligned}$	do.	11938	145	$\begin{aligned} & 24, \\ & 18 \end{aligned}$	1.0
C-12 2 miles \vdots northwest \vdots \vdots \vdots	$\begin{aligned} & \hline \text { City of Lubbuck } \\ & \text { Well } 12 \end{aligned}$	(1) do.	1938	145	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	1.0
$\begin{array}{l:l}\mathrm{C}-13 & 1 \frac{1}{2} \text { miles } \\ : & \text { northwest }\end{array}$	```City of Lubbock Well 13```	do.	1939	150	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	1.0
$\mathrm{C}-14$ 1 mile north \vdots 	City of Lubbock Woll 14	do.	1910	135	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	1.5

Records of wells and springs in Lubbock County--Continued

Hell Distance Irom post office at Lubbock	Own3r	Driller	Date ccm- ;ple- itod	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (f t .) \end{gathered}$:Diameter of :well (in.)	Height of imeasuring point abuve ground (ft.)
Cl 15 I_{8} miles northeast	City of Lubbcck Well 15	W. P. Crawford and George Anderson	1940	135	22, 18	1.0
C-16 3 miles northwest \vdots	City of Lubbock Well 16	L. A. Peeples	1941	135	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	1.5
C-17: $3 \frac{1}{2}$ miles northwest	City of Lubbeck Vell 17	dc.	1941	$\overline{125}$	$\begin{aligned} & 22, \\ & 18 \end{aligned}$	1.5
C-18 3ímiles nurthwest	City of Lubbock Well 18	George Anderscn	1943	110	22, \vdots	1.5
C-19 4 miles \vdots northwest \vdots	City of Lubbock Yell 19 J'ell 19	L. A. Peeples	1945	145	$\begin{aligned} & 22,1 \\ & 18 \end{aligned}$	1.5
c-20 3 miles 	City of Lubbcock	--	${ }^{--}$	Spring		- $\quad-$

"ell	WATER Below measuring point (ft.)	$\begin{gathered} \text { LFVEL } \\ \text { Date of } \\ \text { measurement } \end{gathered}$	Method of lift a/	Use of water b/	$\begin{gathered} \text { Altitude } \\ \text { of } \\ \text { pmeasuring } \\ \text { point } \\ \text { (ft.) } \\ \hline \end{gathered}$	Remarks
C-15:	52.0 60.2	Apr. 12,1940 Sopt. 25,1944	$\begin{gathered} \mathrm{T}, \mathrm{E}, \\ 40 \end{gathered}$	P	3186.9	Casing: 35 feet of $22-$ inch cemented at surface; 135 fset of 18-inch lapped into 22 -inch; screen from 60 to 135 feet. Fump: 15 -inch, 3 -stage, set at 121 feet with end of suction pipe at 133 feet. Drawdown 41 feet after pumping 71 hours at ebout 860 to 890 gallons a minute in 1940. Test well drilled 160 feet deop. See log.
C-16	$\begin{aligned} & 39.0 \\ & 54.6 \end{aligned}$	Juno 1, 1941 Sept.28, 1944	$\begin{gathered} \mathrm{T}, \mathrm{E}, \\ 25 \end{gathered}$	F	3219.5	Cusing: 36 feet of $22-$ inch cemented at surface; 135 feet of 18-inch lapped into 22-inch; screen from 40 to 120 feet. Pump: 12-inch, 5-stage, set at 120 feet. Drawdown 78 feet after pumping 54 hours at 640 gallons a minute in Jung 1941. Tost well drilled 153 feet deep.
$\overline{C-17}$	38.0 42.3	$\begin{array}{ll} \hline \text { June 17, } 1941 \\ \text { Sept.39, } 1944 \end{array}$	$\begin{array}{r} \mathrm{T}, \mathrm{E}, \\ 40 \end{array}$	P	3221.9	Casing: 35 feet of See log. 22 -inch cemented at surface; 126 feet of 18-inch lapped into 22-inch; screen from 38 to 113 feet. Fump: 12-inch, 5-stags, set at 110 feet with 10 feet of suction pipe. Drawdown 45 feet after pumping 72 hours et about 750 to 82.5 gallons a minuts in June 1943. Test well drilled to depth of 156 feet; no water sand
C-18	$\begin{aligned} & 24.5 \\ & 30.6 \end{aligned}$	May 11, 1943 Sept. 30,1944	$\begin{gathered} \bar{T}, \mathrm{E}, \\ 25 \end{gathered}$	P	3212.6	Casing: 26 below 120 feet. feet of 22 -inch cementisd nt surface; 110 feet of 18 -inch lapped into $22-$ inch; screen from 30 to 100 feet. Fump: 12-inch, 5 -stage, set at 90 feet with 5 feet of suction pipe. Drawdown 65 foet after pumping 72 hours at 700 gallons a minute in May 1943.
C-19;	26.5	Jan. 29, 194	--	P	3225.3	Cesing: 32 feet of 22 -inch cemented at surface; 125 feet of 18-inch lapped intc 22-inch; screen from 30 to 123 feet. Drowdown 23 feet after pumping 52 hours at 1,650 to 1,575 gallons a minute (orifice measurement). Test well drilled to depth of 154 feet by B.B.Baron in 1937. See
(-20)		--	Flows	S	- \quad--	Springs discharge into leg. small lake which has been excavatad below the water table. S:mple for analysis taken at point 600 feet west of Xell C-18.

Records of wells and springs in Lubbock Ccunty, Texas
All wells are drilled

Chemical analyses of water frcm most of these wells and springs are in the table of analyses

Well	BATER Below moint (ft.)	$\frac{\text { Livel }}{$ Date of measurement }	$\begin{gathered} \text { Method } \\ \text { •f } \\ \text { lift } \\ b / \end{gathered}$	Use of water c)	Remarks
1	89.8	'Apr. 26, 1937	C, W	D, S	Irrigated small graden in 1937.
2	121.5	d/	C,W	D, S	No casing.
3	43.1	Apr: 15, 1937	C, W	D,S	Steel casing.
3 a	29.5	Apr. 11, 1938	C,W	D,S	Lcated near small draw.
4	121.8	Apr. 15, 1937	C, ${ }^{\text {W }}$	D	Steel casing.
5	92.4	dc.	C,W	D,	
6	122.7	Apr. 26, 1937	C,W	D,S	No casing.
7	106.7	dc.	C, W	D	Steel casing.
8	103.8	Apr. 15, 1937	C, W	D, S	
9	138.7	Apr. 26; 1937	T, G	Irr	Estimated yiold, 400 gallons a minute. Irrigated 100 acres cutton in 1937. Test well drilled $\frac{1}{8}$ mile nirth, was failure as
10	113.4	Apr. 30, 1937	CW	P	Irrigation well. See lig.
11	49.1	Apr. 27, 1937	C, W	D,S	Irrigated small garden in 2937. Estimated yield, 4 gallons a minute.
14	88	Apr. 26, 1937	C,W		Casing: 40 feet ar 6-inch. Irrigated small garden in 1937. Reported yield, 5
15	104	d/	T, G	Irr	Casing: 180 faet of \quad Lgallons a minute. 16-inch. Irrigated 160 acres of wheat and
16	99.3	May 4, 1937	C, W	D, S	Casing: 5-inch. Irrigated a small cotton in 1937.
17	--	--	T, G	Irr	
19	91.1	Apr. 27, 1937	C, W	D, S	
22	163.2	May 6, 1937	C, W	S	
23	100	dc.	C, W	D, S	Casing: 115 foet of 5 -inch, Irrigated small garden in 1937.
24	84.3	May 3, 1937!	$\overline{C, W}$	P	Supplies public schocl.
25	--	--	T, G	Irr	Steel casing.
26	99.4	Apr. 27, 1937	T, G	Irr	Concrete curb.
27	74.7	May 3, 1937	C. ${ }^{\text {W }}$	D, S	Irrigated small garden in 1937.
27 a	79.9	Aug. 11, 1937	T, G	Irr	Estimated yield, 800 gallins a minute.

c/ Irr, irrigaticn; Ind, industrial; P, public supply; D, dumestic; S, stcek; N, nct used.
d/ "ater level reported.

Records of wells and springs in Lubbock County－－Continued

Well	```Distance from post office &t Lubbock```	Owner	Driller	Date com－ ple－ ted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Diam－ ｜eter of well \qquad	Height of measuring point above ground （ft．）al
28	17 miles northeast	J．W．Kerley	－－	1937	94	－－	0.8
29	do．	Geo．K．Bean	－－	1934	115	－－	0.6
30	20 miles northeast	O．c．Powell	－－	－－	62	－－	1.2
31	21 miles northeast	B．F，Datis			85	－－	0.4
32	$21 \frac{1}{2}$ miles northeast	C．S．Williams	－－！	O1d	100	－－	0.7
33	20혈 mikes northeast	E．P．Hildreth	－－	－－	87	－－	0.6
34	$\begin{aligned} & 19 \text { miles } \\ & \text { northenst } \end{aligned}$	A．M．Decton	L．A．Feeples	｜1926	100	－－	1.5
35	$\begin{aligned} & 1 \mathrm{~d} \text { miles } \\ & \text { northeast } \end{aligned}$	do．	W．T．Tarkington！	1936	255	$15 \frac{1}{2}$	0.3
36	17 $\frac{1}{2}$ miles northeast	Bledsoe School	－－	｜1925	100	－－	1
37	17 miles northeast	S．E．Blalr	W．T．Tarkington	1935	240	16	1
38	16 miles northeast	Frank Bledso？	－－	－－	C1	－－	0
59！	17⿳亠口冋2 miles northeast	lirs．R．B．Catching	－－	1917	100	－－	0.6
40	$\begin{aligned} & 20 \text { miles } \\ & \text { northeast } \end{aligned}$	Estacado School	－－	－－	100	－－	0.2
$\begin{array}{r}41 \\ \\ \\ \\ \hline\end{array}$	$18 \frac{1}{2}$ miles ncrtheast	R．Q．Mabry	George Handley	1937	230	$\begin{aligned} & 15 \frac{1}{9}, \\ & 13 \frac{1}{2} \end{aligned}$	0
42	$\begin{aligned} & \hline 17 \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	W．M．Joiner	－－	－－	100	－－	0.5
43	$\begin{aligned} & 18 \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	A．J．Bryant	－－	－－	72	6	0.3
44	$\begin{aligned} & 17 \mathrm{milas} \\ & \text { northeast } \end{aligned}$	S．A．Tharp	－－	－－	115	－－	0.3
45	$\begin{aligned} & 15 \text { miles } \\ & \text { northeast } \end{aligned}$	A．J．Sanders	－－	－－	95	－－	0.7
46	14 miles northeast	George Benson	L．A．Peeples	｜1937	252	$15 \frac{1}{4}$	1.3
47	$\begin{aligned} & 13 \text { miles } \\ & \text { northeast } \end{aligned}$	George Young	－－	－－	77	－－	0.5
43	11 miles northeast	P，\＆S．F．Ry．	－－	－－	84	－－	－－
49	11 $\frac{1}{2}$ miles northeast	J．L．Lee	G．A．Anderson	11937	250	15	－－
50	12 miles northeast	F．H．Cannon	L．A．Peeples	1937	137	15	0

Reccrds of wells and springs in Lubbock County--Continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Well \\
Distance \\
from \\
post office \\
at \\
Lubbock
\end{tabular} \& Owner \& Driller \& \begin{tabular}{l}
' Date com- \\
ple- \\
ted
\end{tabular} \& Depth of well (ft.) \& |Diameter of well (in.) \& Height of
measuring
point
above
ground
(ft.) \(]^{\prime}\) \\
\hline 51 13 \& W. A. Armstrong \& -- \& 1923 \& 90 \& -- \& 0.5 \\
\hline \begin{tabular}{l:l}
52 \& \(12 \frac{1}{c}\) miles \\
\& northeast
\end{tabular} \& O. B. Hankins \& Ralph Henderson \& 1937 \& 186 \& \(15^{\frac{3}{4}}\) \& 0.5 \\
\hline 53 do. \& W. O. Fortenberry \& C. A. Mullins \& 1937 \& 200 \& 17 \& 1.4 \\
\hline \(54:\)\begin{tabular}{l:l}
54 milas \\
\& northeast
\end{tabular} \& L. L. Watson \& Goorge Manning \& 1937 \& 264 \& 17 \& 1 \\
\hline \begin{tabular}{l:l}
55 \& 10 diles \\
\& northeast
\end{tabular} \& R. D. Holmes \& \({ }^{--}\) \& -- \& 94 \& -- \& 0.6 \\
\hline \[
\begin{array}{l|l}
\hline 58 \& 9 \text { miles } \\
\& \text { northeast } \\
\hline
\end{array}
\] \& William Yoxthiemer: \& L. A. Peeples \& :1935 \& 225 \& 15 \({ }^{\frac{1}{4}}\) \& 0.3 \\
\hline 59 do. \& L. E. Howard \& -- \& -- \& -- \& -- \& -- \\
\hline \begin{tabular}{c:c}
60 \& \(8 \frac{1}{1}\) miles \\
northeast
\end{tabular} \& Liberty School \& -- \& 1923 \& 100 \& -- \& 1 \\
\hline \[
\begin{array}{c:c}
\hline 61 \text { miles } \\
\& \text { northeast }
\end{array}
\] \& G. R. Bean \& Jim Hart \& -- \& 67 \& 6 \& 0.5 \\
\hline \begin{tabular}{l:l}
62 \& \(6 \underset{z}{1}\) miles \\
\& northeast
\end{tabular} \& H. T. Atkins \& -- \& 1926 \& 89 \& -- \& 0.4 \\
\hline \[
\begin{array}{c:c}
\hline 63 \text { miles } \\
\text { inortheast } \\
\hline
\end{array}
\] \& Gayle Wallace \& --- \& -- \& 85 \& 6 \& 0.9 \\
\hline \begin{tabular}{l:l}
64 \& 10 milas \\
\& north
\end{tabular} \& W. Y. Barrott \& -- Tatum \& -- \& 211 \& 1517 \& 2 \\
\hline \[
\begin{aligned}
\& \text { 64a: } 10 \frac{1}{2} \text { miles } \\
\& \text { inorth }
\end{aligned}
\] \& W. O. Fortenberry \& C. A. Mullins \& | 1934 \& 240 \& 16 \& 1 \\
\hline 66 ; do. \& New Deal School \& . -- \& 1936 \& 125 \& -- \& -- \\
\hline \[
\begin{array}{c:c}
\hline 72 \text { miles } \\
\& \text { north } \\
\hline
\end{array}
\] \& J. I. Exum \& B. Baron \& 1937 \& 156 \& \(15 \frac{3}{4}\) \& 0 \\
\hline \[
\begin{gathered}
749 \mathrm{~m} .1 \mathrm{en} \\
\text { inorth } \\
\hline
\end{gathered}
\] \& J. 5 george \& -- \& -- \& 52 \& 5 \& 1.0 \\
\hline \[
\begin{array}{c:c}
\hline 7 . \mathrm{bb} \& 3 \text { miles } \\
\\
\\
\text { north } \\
\hline
\end{array}
\] \& do. \& -- \& -- \& 52 \& 5 \& 1.0 \\
\hline \[
\begin{array}{l|l}
\hline 75 \& 7 \frac{1}{2} \text { miles } \\
\& \text { north }
\end{array}
\] \& B. R. Shaw \& -- \& 1937 \& 71 \& 4츌 \& 0.5 \\
\hline 76 do. \& Tom J. Fostar \& -- \& 1937 \& 150 \& 16 \& -- \\
\hline \[
\begin{array}{c|c}
77 \& 7 \text { miles } \\
\& \text { north } \\
\hline
\end{array}
\] \& A. 区. Griffis \& J. C. Cook \& \(1{ }^{10}\) \& 216 \& 16 \& 1 \\
\hline \[
\begin{array}{c|c}
\hline 77 \mathrm{f} \frac{1}{2} \text { miles } \\
\text { inorth } \\
\hline
\end{array}
\] \& J. H. Felton \& L. A. Peeplos \& 1937 \& 137 \& 15 \& 6.8 \\
\hline \[
\begin{array}{l:l}
\hline 81 \& 5 \text { miles } \\
\& \text { north } \\
\hline
\end{array}
\] \& J. E. Vickers \& -- Smiley \& 1936 \& 160 \& -- \& 2 \\
\hline 82 \begin{tabular}{l}
\(4 \frac{3}{2}\) miles \\
inorth
\end{tabular} \& G. H. Arissom \& -- \& -- \& 51 \& 5 \& 0.3 \\
\hline 83 \begin{tabular}{c}
\(5 \frac{1}{2}\) miles \\
\\
\\
north
\end{tabular} \& W. P. Perser \& McClain and Eean \& 1935 \& 115 \& 16 \& 7 \\
\hline Q.

northwest
not miles \& J. B. McCauley \& -- \& ${ }^{--}$ \& 116 \& 17 \& --

\hline
\end{tabular}

Well	WATGR Below measuring point (ft.)	$\begin{gathered} \text { LEVEL } \\ \text { Date of } \\ \text { measurement } \end{gathered}$	Method of lift b/	Use of water c/	Remarks
51	70.3	May 3, 1937	C, W	D, S	Measured drawdown 3.2 feet after pumping 4 igalions a minute for 24 hours.
52	76.3	Apr. 28, 1937	T, G	Irr	Weak supply.
53	83.2	Apr. 27, 1937	T, ${ }^{\text {G }}$	Irr	Steel casing.
54	96.7	$\text { May } \quad 6,1937$	T, ${ }^{\text {G }}$		Casing: 130 foet of 17 -inch. Irrigated 75 acres of cotton in 19:7.
55	74.9	Apr. 27, 1937	C, 7	D,S	
58	53.4	Mar. 9, 1937	T, G	Irr	Irrigated 30 acres cotton, 62 acres grain sorghum in 1937 .
59	--	--	T,G		Estimated yield, 750 gallons a minute.
60	70	Mar. 15, 1937	C, W		Formerly sumplied school which is now discontinued.
61	42.5	Jan. 28, 1937	C, Tr	D.S	Tenant reports caving sand in well.
62	80.3	do.	C, W	D,S	Pumping when measured. Estimated yield, 2 gallons a minute.
63	68.5	Mar. 15,	C, VI	D,S	DO.
64	85	$\text { Apr. } 27,1937$	T, G		Casing: 130 feet of $15 \frac{1}{4}$-inch. Mcesured drawdown 4 foet after pumping 700 gallons
$64 a 1$	87.2	Dec. 21, 1937	T, G	Irr	Casing: None in $\frac{\text { a minute for } \frac{1}{2} \text { hcur. }}{\text { top, ild feet of } 16-1 \text { inch from } 86 \text { to } 109}$
66	--		C, E,	P, Irr	feet. Fump set at 140 feet.
72	75	d/	T,G		\qquad
749!	$\begin{aligned} & 33.1 \\ & 32.2 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { June } 30, & 1938 \\ \text { Feb. } 9, & 1944 \\ \hline \end{array}$	C, WT	S	Located on bank of large draw. For additional depth to water see table of water-
74 b	$\begin{aligned} & 37.4 \\ & 34.0 \end{aligned}$	$\begin{aligned} & \text { June 22, } 1929 \\ & \text { Feb. 9, } 1944 \end{aligned}$	None	N	Do. Level meacurements.
75	55 ,	Apr. 12, 1937!	C, W	D, S	Irrigated small garden in 1937.
76	--	\cdots		Irr	Irrigated 35 acres cotton, 40 ecres whent, and 15 acres of grain sorghum in 1937.
7 ?	66	${ }^{\text {d }}$	T, G	Irr	Casing! 180 feet of 16 -inch. Measured drawdown 30 feet after 4 hours pumping at
7%	70.9	$\text { Apr. } 12,1928$	$\overline{T, G}$	Irr	Pump: l2-inch, 330 gallons a minute.
81	44.5	Dec. 6, 1936!	T, G	Irr	Measured drawdown 23.7 feet after pumping ostimated rate of 800 gallons a minute for
S2	40.7	Apr. 12, 1937	C, ${ }^{\text {V/ }}$	D,S	Measured drawdown 1.59 feet $1 \frac{1}{\frac{1}{2}}$ hours. after pumping 4 gallons a minute for 4 hours
83	48	d/	T, G	Irr	Casing: 16 -inch. Estimated yield, 700 galluns a minute.
94	45	d/	T,G	Irr	Casing: 116 feet of 17 -inch. Owner reports 15 feet cf drawdown after pumping 800 gallons a minute for 2 weeks. Soe log.

Well	\qquad	Owner	Driller	Date com-pletod	Depth of iwell (ft.)	Diameter of well (in.)	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (ft.) } \\ \hline \end{gathered}$
85	$5 \frac{1}{2} \text { miles }$ northwest	J. B. McCauley	--	1937	115	17	--
86	$\begin{aligned} & 7 \mathrm{mil} \text { es } \\ & \text { northwest } \end{aligned}$	0. D. Hargis	L. A. Peeples	1935	118	12	--
87	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	W. O. Arnold	--	--	44	5	1.2
88	8 miles northwest	J. A. McClatchy	0. S. Brock	1925	74	6	1
89	$8 \frac{1}{2}$ miles northwest	Grevesville School	--	--	82	6	1
90	$\begin{aligned} & \text { 9혈 miles } \\ & \text { northwest } \end{aligned}$	W. W. McIlroy	C. C. White	1937	149	17	1
91	do.	Lubbcck National Bank	--	1937	200	16	1
92	10 miles northwest	J. W. Watkins	H. H. Virdell	1937	169	151 ${ }^{\frac{1}{2}}$	0.6
93	9支 miles northwest	T. H. Sears	--	; 1934	108	6	0.5
94	$10 \frac{1}{2}$ miles northwest	Dr. J. T. Kruger	C. A. Mullins	1937	385	--	0
95	11 miles northwest	Meyers Estate	--	; 1927	100	5눌	0.8
96	12 miles narthwest	K. D. Kidd	--	--	100	--	--
97	do.	G. R. Johnson	V. C. Jay	1934	105	6	2
	$14 \frac{1}{2} \text { miles }$ northwest	Lon A. Mullican	--	--	73	6	0.8
99	15 $\frac{1}{2}$ miles nörthwest	R. B. Gray	C. C. White	1937	108	19	0
100	do.	O. F. Bowser	M. G. Hughett	1937	165	157	2
101	15 miles northwest	do.	-- Watson	1937	175	151 $\frac{1}{2}$	--
102	13t miles northwest	J. L. Lindsey	--	--	95	6	1
103	13 milos northwest	H. T. Forgesen	--	1917	59	6	0.8
106	11 $\frac{1}{2}$ miles northwest	Mrs. S. F. Field	0sborne and Mullins	1926	58	--	0.4
107	$\begin{aligned} & 11 \text { milos } \\ & \text { northwost } \\ & \hline \end{aligned}$	B. G. Lokoy	--	Old	75	6	0.7
108	do.	F. \& S. F. Ry.Co.	--	--	70	6	-
109	$10 \frac{1}{2}$ miles northwest	C. C. Vance	--	--	99	--	0.4
110	8 milos northwest	0. G. Hargis	--	--	50	6	0.4
111	11 miles northw:st	W. D. Duncan	--	--	92	6	0.5

Well	NATER Below point (ft.)	$\frac{\text { LEVEL }}{\text { Date of }}$	Method of lift $b /$	Use of water c/	Remarks
85	40	d/	T, G	Irr	Casing: 115 feet 17 -inch. Owner reports 15 feet of drawd own after pumping 800 gal-
86	30	d/	T,G	Irr	Casing: 118 lons a minute for 72 hours. feet of 12-inch.
87	34	Apr. 12, 1937	C, W	D, S	
88	67.9	do.	C, W	D,S	
89	74.1	dc.	C,W		Formerly supplied school which is now discontinued.
90	85.3	June 22, 1937!	T, G	Irr	Casing: 126 feet of 17 -inch. Reported drawdown 18 feet aftar pumping $1,00 n$ gallons
91	87.2	Apr. 21, 1937	T',G	Irr	Steel casing. a minute for 24 hcurs.
92	87.5	June 22, 1937	' T, G	Irr	Casing: 25 fet of 15 ? 1 inch, 60 feet of 13:-inch. Tstimater yisld, 1,000 gallons a
93	86.6	'Apr. 15, 1937	C,W	D,S	Steel casing.
94	85.5	May 4, 1937	None	N	Owner reports supply insufficiont for irrigation. Water in Red Beds reported sal ty.
95	82.7	'Apr. 16, 1937	C, ${ }^{\text {IT }}$	D, S	
96	--	--	C, W	D, S	No casing.
97	81.8	'Apr. 22, 1937	C,W	D, S	Casing: 60 feet of 6-inchn
98	63.9	Apr. 15, 1937	C, N	D, S	Cast iron casing.
99	34.2	June 22, 1957	T, G	Irr	Casing: 108 foet of 19-inch. Irrigatad 230 acres of grain sorghum one time in 1937
100	56.5	do.	T, G	Irr	Casing: 34 feet ot $15 \frac{1}{2}$-inch; 136 fe $3 t$ oi 132-inch. Soe log.
101	64.5	do.	T, G	Irr	Casing: 135 f e et of $13 \frac{1}{2}$-inch.
102	75	Apr. 15, 1937	C, W	D,S	
$\overline{103}$	40.7	do.	C, W	D, S	
105	41	,Apr. 9, 1937	C,W	D,S	Irrigated small garden in 1037
19%	51.3	do.	D, Ind	--	
108	-- ;	; --	C,W	S	Casing: 63 foet of $4 \frac{1}{2}-$ fnch.
109	69.1	Apr. 9, 1937	C,W	D, S	
110	20.6	Apr. 12, 1937	C, W	D, S	
L11	62.6	Apr. 14, 1937	C, ${ }^{\text {P }}$	D,S	

Records of wells and springs in Lubbock County--Continued

Well	```Distance from post office at Lubbuck```	Owner	Driller	Date com-pleted	Depth of well (ft.)	Diameter of well (in.)	$\begin{aligned} & \text { Feight of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (fit.) a/ } \end{aligned}$
112	$13 \frac{1}{2} \text { miles }$	J. M. Ayres	Winfield Scott	1936	209	--	0.8
113	$\begin{aligned} & 9 \text { miles } \\ & \text { northwest } \end{aligned}$	E. G. Hutchings	-- Emerson	1937	156	16	1.2
114	$8 \frac{1}{2} \text { miles }$ northwest	G. W. McCieary	L. A. Feeples	--	143	15	0.6
115	do.	J. R. Jameson	--	1937	153	14	1.4
116	9 miles northwest	T. B. Edwards	L. A. Peeples	11936	160	15^{3}	--
117	10 miles northwest	J. H. Able	A. D. Farish	1937	170	14	0
118	$\begin{aligned} & 9 \text { miles } \\ & \text { west } \end{aligned}$	T. C. James	--	--	100	18	0.5
119	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	J. T. Jones	--	--	--	--	0.7
	$\begin{aligned} & 7 \mathrm{miles} \\ & \text { west } \end{aligned}$	J. W. Bush	--	--	--	6	0.5
121	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	Claude Campbeil	-- Leach	1937	208	14	--
122	$\begin{aligned} & 7 \text { miles } \\ & \text { west } \end{aligned}$	Mrs.W.M.Fevehouse	O. C. Reynolds	1937	153	16	--
123	$\begin{aligned} & 6 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	Travis Tubbs	C. A. Mullins	1935	185	16	1.4
124	30.	Isham Tubbs	Osborne and Mullins	1927	195	18	2
125	$\begin{aligned} & 5 \text { miles } \\ & \text { west } \end{aligned}$	Mrs. Vr. T. Bond	Lee Tubbs	--	--	--	0.3
127	$\begin{aligned} & \text { 3毫miles } \\ & \text { west } \\ & \hline \end{aligned}$	Mrs. Sam O'Noal	L. A. Peeples	1937	159	14 $\frac{1}{4}$	--
128	do.	Rufus Rush	do.	--	160	14	0.8
-130	$\begin{aligned} & 4 \frac{1}{4} \text { miles } \\ & \text { wost } \end{aligned}$	C. C. Lane	--	1936	159	--	--
132	$\begin{aligned} & \hline \frac{3}{4} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	J. W. Ross	L. A. Feeples	1937	202	18	--
134	$\begin{aligned} & 6 \text { miles } \\ & \text { northwest } \end{aligned}$	0. C. Ballard	--	--	65	6	0.4
	$4 \frac{1}{2}$ miles northwest	John King	--	1937	162	18	--
136	$\begin{aligned} & 4 \frac{1}{4} \text { milos } \\ & \text { wost } \end{aligned}$	do.	L. A. Peeples	1937	162	$15 \frac{1}{1}$	2
	$\begin{aligned} & \hline 7 \text { miles } \\ & \text { northwest } \end{aligned}$	Edith Collia	do.	1936	120	16	2
139	do.	O. C. Ballard	--	1934	120	18	1
140	$\begin{aligned} & \hline \frac{1}{6} \text { miles } \\ & \text { northwest } \end{aligned}$	J. C. James	L. A. Peeples	1937	87	17	1.8
141	$\begin{aligned} & 6 \text { miles } \\ & \text { northwest } \end{aligned}$	S. C. Arnett	--	1937	127	17	1

Reccrds or wells and springs in Lubbock Ccunty--Continued

Records of wells and springs in Lubbock County－－Continued

Well	Distance from post office at Lubbock	Owner	Driller	Date com－ ple－ ted	```Depth of well (ft.)```	Diam－ eter of well （1n．）	$\begin{gathered} \text { Height oi } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (ft.) a/ } \end{gathered}$
209	$\begin{aligned} & 6 \text { miles } \\ & \text { northeast } \end{aligned}$	Franz Hettler	B．B．Baron	1937	120	$15 \frac{3}{4}$	－－
	$\begin{aligned} & 10 \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	J．T．Mattingly	L．A．Peeples	1936	78	－－	0.3
217	$\begin{aligned} & \text { 8⿱⿱亠䒑口阝 miles } \\ & \text { northeast } \end{aligned}$	Sam Hampton	तิ०．	1936	180	16	1.2
218	$\begin{aligned} & 8 \text { miles } \\ & \text { northeast } \end{aligned}$	T．B．Harrison	do．	1936	110	16	0.8
219	9⿳亠口冋 northeast	Ed Harrison	do．	1935	193	16	1.4
220	12 miles northeast	Clint Debusk	－－	－－	64	－－	0
221	12 $\frac{1}{2}$ miles northeast	Bil． 1 Turner	－－－	－－	59	－－	－－
222	$\begin{aligned} & 12 \text { miles } \\ & \text { northeast } \end{aligned}$	R．T．Groves	I．A．Peeples	1937	250	12	1.2
223	do．	W．C．Grimes	－－	1924	64	－－	0.4
224	$\begin{aligned} & 11 \text { miles } \\ & \text { gast } \\ & \hline \end{aligned}$	San Angustino Ranch	－－	－－	${ }^{--}$	－－	1.5
225	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { oast } \end{aligned}$	Acuff School	－－	1021	100	－－	3.5
226	do．	T．U．Hunt	－－	－－	35	－－	1
227	$\begin{aligned} & 14 \text { miles } \\ & \text { northeast } \end{aligned}$	I．S．Evitt	－－	－－	76	－－	1
228	$\begin{aligned} & 16 \text { miles } \\ & \text { northeast } \end{aligned}$	G．H．Hutchings	－－	－－	8.3	6	2.5
229	do．	Roy Naney	－－	－－	85	－－	1
230	$\begin{aligned} & 15 \text { miles } \\ & \text { east } \end{aligned}$	Guss Collett	L．A．Peeples	1.933	100	6	1
231	$\begin{aligned} & 16 \text { miles } \\ & \text { east } \end{aligned}$	E．N．Cummings	－－	01d	107	－－	0.8
232！	$\begin{aligned} & 14 \text { miles } \\ & \text { oast } \end{aligned}$	Mrs．Annie F．Parks	－－	－－	100	－－	0.5
233	$\begin{aligned} & 13 \text { milos } \\ & \text { east } \end{aligned}$	Nirs．U．P．Pace	－－	－－	200	6	0.4
234	$\begin{aligned} & 11 \text { miles } \\ & \text { east } \end{aligned}$	San Augustine Ranch	－－	－－	100	－－	1
235	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { east } \end{aligned}$	W．F．Klattenhoff	－－	－－	76	－－	0.3
236	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	T．N．Ferris	Ben Cavitt	－－	100	－－	1

- โ\%

Well	HATER Below measuring point (ft.)	LETEL measurement		Use of water c/	Remarks
	34	d/	T, G	Irr	'Keported yisld, 1,000 gallons a minute. Irrigated 100 acris of cotton, 53 acres of wheat and 40 acres of grain sorghum in 1937.
216	52.6	Feb. 3, 1937	C, W	D,S	Estimatod yicld, 4 gallons a minute.
217	45.5	$\text { Fob. 4, } 1937$	T, G	Irr	Casing: 120 feet of 16 -inch steel. Reported yield, 900 gallons a minute. Irrigated 50 acres what, 60 acres cotton, and 30 acres of grain sorghum in 1937.
218	45.2	$\text { Feb. 5, } 1937$	T, ${ }^{\text {F }}$	Irr	Estimated yield, 900 gallons a minute. Irrigated 100 acres of cotton, 30 acres of corn, and 25 acres of feed in 1937.
$\overline{219}$	44.4 36.8	Fob. 5, 1937 Fub. 22, 1944		Irr	Casing: 60 feet of 16 -inch, 48 feet of $14-$ inch steel. Reported yield, 750 gallens a minute. Irrigated 90 acres of cotton, 46 acres of grain scrghum and 10 acres of
220	55.7	June 23, 1937!	None	N	\square Lalfalfa in 1937.
221	55.2	dc.	C, W	N	
222	1 54.9	Feb. 5, 1937	Norie	N	
223	1.47.2	Feb. 4, 1.937	C, WT	D,S	Water reported of good quality.
224	56.5	Feb. 3, 1937:	T,G	Irr	
22.5	1 53.9	do.	C, W	P	Roported yiela. 3 gallons a minute. Supplier schcol premises to 1936. Now unused.
226	\| 73.5	dc.	C, ${ }^{\text {TN }}$	N	
327	59.5	Feb. 4, 1937	C, W	D,	
228	70.9	Feb. 3, 1937!	C, H	N	
229	69.3	do.	C, Tr	D,	
250	75.1	do.	C, WT	D, S	Estimated yield, 6 gallons a minute. Pumping when masured.
231	73.3	Jan. 14, 1937	C,W	D, S	Estimated yield, 5 gailons a minute.
232	191.5	Jan. 20, 1937	C, W	D,S	
233	163.5	do.	None	$\overline{\mathrm{N}}$	Casing: 200 feet of 6-inch steel.
234	$57 \cdot 1$	do.	C,W	D,S	
235	73.6	do.	C,W	D,S	
236	88.1	do.	C, W	D,S	

Well	```Distance from post office at Lubbock```	Owrer	Driller	$\begin{array}{\|l} \text { Date } \\ \text { com- } \\ \text { ple- } \\ \text { ted } \end{array}$	$\begin{array}{\|l} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft.) } \end{array}$	Diam;eter of well (in.)	iHeight of measuring point abcve ground (ft.) a'
237	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	C. L. Bassinger	L. A. Peepleg	1935	245	15	---
238	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	Mrs.Annie F.Parks	--	--	100	--	0.5
239	16 miles east	W. A. Ferguson	--	--	85	--	0.3
240	$\begin{aligned} & 1630 \\ & \text { 16 milles } \\ & \text { southeast } \\ & \hline \end{aligned}$	W. M. Meyer	--	--	185	5	1.2
241	18 miles southeast	O. W. Carr	Ben Cavitt	[1936	136	5	0.4
242	16妾 miles southerst	$\begin{gathered} \text { F. \& S. F. Ry. Co. } \\ \text { well } 4 \end{gathered}$	--	1925	130	10	--
243	30.	P. \& S. F. Ry. Co. well 5	--	1921	130	10	--
244	do.	$\begin{aligned} & \text { F. \& S. F. Ry. Co. } \\ & \text { woll } 12 \end{aligned}$	--	1925	155	10	--
245	du.	$\begin{gathered} \text { F. \& S. F. Ry. Co. } \\ \text { well } 8 \\ \hline \end{gathered}$	G. W. Guinn	1919	236	10	--
246	10.	$\begin{aligned} & \text { F. \& S. F. Ry. Co. } \\ & \text { well } 9 \end{aligned}$	D. L. McEionsld	1924	137	26	--
247	do.	$\begin{gathered} \hline \text { P. \& S. F. Ry. Co. } \\ \text { well } 13 \end{gathered}$	--	--	602	$\begin{gathered} 18 \\ 6 \\ \hline \end{gathered}$	--
250	$\begin{aligned} & 16 \text { miles } \\ & \text { southeast } \end{aligned}$	$\begin{aligned} & \text { P. \& S. F. Ry. Co. } \\ & \text { well } 2 \\ & \hline \end{aligned}$	--	--	157	10	--
251	$13 \frac{1}{2}$ miles	V. M. Schuette	--	--	--	--	0.3
	$\begin{aligned} & 14 \text { miles } \\ & \text { southeast } \end{aligned}$	$\begin{gathered} \text { P. \& S. F. Ry. Co. } \\ \text { well } 10 \\ \hline \end{gathered}$	${ }^{--}$	--	--	--	-
253	14t $\frac{1}{2}$ miles southeest do.	City of Slaten $\text { well } 1$	W. M. Edwards	1925	135 206	18 18	2.5 2.3
		well 3			206	18	2.3
255	do.	$\begin{gathered} \hline \text { City of Slaton } \\ \text { well? } \\ \hline \end{gathered}$	D. L. McDunald	--	125	18	--
	$\begin{aligned} & 14 \text { miles } \\ & \text { scuthoast } \end{aligned}$	F. \& S. F. Ry. Co.	--	1924	--	--	--
\%57	do.	W. M. J.hnson	Dallas Capps	1915	165	6	--
259	$\begin{aligned} & 12 \text { miles } \\ & \text { southeast } \end{aligned}$	J. T. Lokey	--	--	107	\cdots	0.8
265	$\begin{aligned} & 10 \frac{1}{0} \text { miles } \\ & \text { southoest } \end{aligned}$	P. \& S. F. Ry. Co.	--	--	250	--	--
? 61	$\begin{aligned} & 10 \text { miliss } \\ & \text { southeast } \\ & \hline \end{aligned}$	$\begin{gathered} \text { F. \& S. F. Ry. Co. } \\ \text { well } \end{gathered}$	${ }^{--}$	--	250	--	--
$26 ?$	do.	P. \& S. F. Ry. Co.	G. \%. Guinn	1920	123	$5 \frac{1}{2}$	--

Well	\qquad istance from	Owner	Driller	Date com-pleted	Depth of well (ft.)	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { of } \\ & \text { well } \\ & \text { (in.) } \\ & \hline \end{aligned}$	Height cf measuring point above ground (ft.) al
263	$\begin{aligned} & \text { 9 miles } \\ & \text { scutheast } \end{aligned}$	W. H. Rogers	--	--	Sprins	--	- $=$
264	do.	do.	--	--	Spring	--	--
265	$\begin{aligned} & 9 \text { miles } \\ & \text { southeast } \end{aligned}$	do.	--	--	Spring	--	--
$\overline{2} 66$	do.	do.	--		Spring	--	--
267	$\begin{aligned} & 7 \text { miles } \\ & \text { scutheast } \end{aligned}$	A. H. Baer		--	100	--	0
	$\begin{aligned} & 7 \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	E. H. Foerster	A. Mullins	1936	116	16	--
269	do.	H. C. Atwood	. S. Brock	1987	130	14	--
270	$\begin{aligned} & 5 \text { miles } \\ & \text { southeast } \end{aligned}$	Goo. M. Boles	do.	1936	100	5	1.2
275	$\begin{aligned} & \frac{T}{\text { a mile }} \\ & \text { south } \end{aligned}$	City of Lubbock	F. Brazil	1931	154	--	--
277	$\begin{aligned} & l_{2}^{1} \text { miles } \\ & \text { south } \end{aligned}$	L. Kershner	-- Elliot	1933	120	\%	0.2
278	$\begin{aligned} & \text { lis miles } \\ & \text { south } \end{aligned}$	Ed Futty	--	--	100	--	0.8
279	14 miles southeast	C. B. Berry	A. Mullins	1936	122	14	2
280	do.	F. K. Mitchell	do.	1935	120	--	0.8
281	do.	A. Judd	L. McDonald	$19 \% 7$	125	14	0.6
$28!$	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	L. E. Guilot	--	--	74	--	0.3
283	3 miles south	J. A. McClatchey	--	--	100	--	0.6
285	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { siutheast } \end{aligned}$	W. M. Cheaney	J. Nordycke	1934	102	6	--
287	$\begin{aligned} & 6 \text { miles } \\ & \text { southesst } \end{aligned}$	Edna G. Stoele		1960	64	5	1
288	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { scutheast } \\ & \hline \end{aligned}$	Geo. W. Boles	--	--	4,105	$8 \frac{1}{4}$	--
291	do.	H. F. Guetersloh	--	--	$8{ }^{\circ}$	--	0.7
	10 miles scutheast	Tames L.Benton, Sr.	Roy Jones	192.0	79	--	1
294	11意 miles southeast	J. V. liaines	--	--	75	6	0.7
295	$\begin{aligned} & 10 \text { miles } \\ & \text { southeast } \end{aligned}$	0. Walbrueck	--	--	100	--	0.5
297	$\begin{aligned} & 9 \text { miles } \\ & \text { southeast } \end{aligned}$	Leon Melcher	--	--	100	--	0.8
298	$\begin{aligned} & 6 \text { miles } \\ & \text { southeast } \end{aligned}$	Jerome I. Case	--	--	66	--	0.9

Well	FATM:R Beluw measuring point (ft.)	$\frac{\text { LEVL }}{\substack{\text { Date cf } \\ \text { measurement }}}$	Method of lift b/	Use of water: c/	Remarks
263	Flows	May 11, 1937:	None	D	Estimated ficw, 5 galions a minute frim ene opening in white sand.
$\overline{264}$	Flows	dc.	Nine		Estimated flow, 2 gallons a minute from ine opening in canyon wall.
265	Flows	do.	Nene		Flows frem ${ }^{2}$ cpenings in lime reck. Supplies swimming pocl and bath hcuse. Ro-
$\overline{266}$	Flows	do.	None		Flcws frim cne Lpcrted temperature $55^{\circ} \mathrm{F}$. opening in side f hill.
267	72.3	Dec. 21, 1936:	C,W	D,S	Estimated yield, 5 gallons a minute. Pumping when measured.
268	50	d/	T, G	Irr	Casing: 116 feet steel. Irrigates 160 acres of land.
269	62	d/	T,G	Irr	$\begin{array}{lll}\text { Casing: } 130 \text { feet of } 14 \text {-inch steel. } & \text { Ro- } \\ \text { pcrted yield, } 800 \text { gallins a minute. }\end{array}$
270	83.1	Dec. 21, 1936	C, w	D,S	Casing: gated 110 zcres of cottin in 1937. 100 feet cf 5 -inch steel. Estimatod yield,
2.75	56	1931	None		Drilled as test well 5 galluns e minute. 7. Repcrted insufficient water-bearins
277	65.1	Jan. 15, 1937;	C, W	Irr	Casing: formation to supoly dity woll. 6.9 feet after pumping abcut 45 gellins a
$\overline{278}$	78.3	Mar. 8, 1937	C, W	$\overline{\mathrm{N}}$	Iminute for $\frac{1}{8}$ hour.
279	65.5	Jsn. 15, 1937	T, G	Irr	Casing: 48 feet if 14 -inch steel in buttom. Reported yield, 450 gallcns a
280	59.9	Mar. 8, 1937	$\begin{gathered} \mathrm{T}, \mathrm{E}, \\ 10 \\ \hline \end{gathered}$	Irr	Reported yield, 400 gallons a minute. Irrigeted 7 acres cotton and 9
281	$5 ¢$	\Jan. 15, 1937	T,G	$\overline{\operatorname{Irr}}$	Reported yield, hacres truck in 1937. to0 pallcns a minute.
$\overline{282}$	55	Dec. 18, 1936	C, W	D,S	Estimated yiold, 2 gallens a minute.
283	87	Dec. 22, 1936	C, प!	D, S	Estimated yield, 3 gallons a minute.
285	49	d	$\begin{gathered} \hline \mathrm{G}, \mathrm{G} \\ 3 \end{gathered}$		Estimated yield, 30 galluns a minute. Owner reports water is in white sand at 50-100
287	49.9	Jan. 6, 1937	C,W	D,S	Estimated yield, 2 gilluns a feet. iminute.
288	- --	--	Nine		Oil test.
291	69.6	TJan. 20, 1937	C, W	D, S	Eistimated yisld, 4 gallens a minute.
293	74.8	Jan. 26, 1937	C, W	D, S	Estimated yiold, 2 gallons a minute.
294	68.5	Jan. 20, 1937	C, W	D,S	Casing: 84 feet $6 f$-inch steel with lower 20 feet perforated. Pumping when measured.
295	85.4	dc.	C, W	D,S	Estimated yiold, 2 gallons © minute.
2.97	74.5	dc.	C, WT	D,S	
298	53.4	n. 6, 1937	C, W	D,S	

Records of wells and springs in Lubbock County－－Continued

Well	Distance from post office at Lubbock	Owner	Driller	Date ícom－ iple－ ：ted	Depth of woll （ft．）	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { of } \\ & \text { well } \\ & (\ln .) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (ft.) al } \end{aligned}$
	$6 \text { miles }$ southeast	－－Nunally	－－	${ }^{-\cdots}$	100	－－	0.3
301	$\begin{aligned} & 8 \text { miles } \\ & \text { scutheast } \end{aligned}$	S．D．Stewart	－－	－－	70	－－	0.8
302 ；	$8 \text { miles }$ south	Fred E．Minssen	${ }^{--}$		100	－－	0.4
303	$8_{\frac{1}{2} \text { miles }}$ south	R．L．Stewart	A．J．Nordycke	1937	165	16	0
	$7 \frac{1}{2} \text { miles }$ scuth	H．B．Davis		；－－	97	6	0.4
307	$\begin{aligned} & 6 \text { miles } \\ & \text { south } \end{aligned}$	Dr．J．T．Krueger	L．A．Feeples	1934	161	18	1.3
309	$5 \frac{1}{2} \text { miles }$ south	J．J．McGaw	－－	－－	98	－－	0.5
312	$2 m 1 l e s$ southwest	M．C．Kinser	－－	11916	90	－－	0
313	$\begin{array}{\|l\|} \hline 2 \frac{1}{2} \text { miles } \\ \text { west } \\ \hline \end{array}$	City of Lubbock	Sam Cunningham	1931	142	－－	－－
	4 miles southwest	T．B．Zelmar	J．R．Watson	${ }^{--}$	150	－－	1.5
315	$4 \frac{3}{4}$ miles scuthwest	Dr．M．C．Overton	J．C．Cook	1934	92	12	0.3
316	$4 \frac{3}{4} \text { miles }$ southwest	E．A．Hankins	－－Kolly	11936	123	$13 \frac{1}{4}$	1.5
317	$5 \frac{1}{2}$ miles routhwest	Charlie Adams，Jr．	－－	－－	150	－－	0.8
318	4늘 miles southwest	－－Baker	－－	－－	－－	6	0.4
319	4 $\frac{1}{3}$ miles southwest	W．W．Snedgrass	－－	－－	100	－－	0.8
321	6 $\frac{1}{2}$ miles southwest	J．Curtis Heald	－－－	${ }^{\text {－}}$	100	6	0.3
324	7h miles southwest	E．C．Hatton	O．S．Brock	11933	100	－－	0.3
326	9⿳亠口冋冖2 miles southwest	F．P．Clark	－－－	－－	105	6	1
328	$\begin{aligned} & \hline 10 \text { miles } \\ & \text { southwest } \end{aligned}$	W．C．Ratliff	H．Towe	11925	100	－－	0.2
329	$\begin{aligned} & 11 \text { miles } \\ & \text { scuthwest } \end{aligned}$	E．L．HeCrummen	$\rightarrow-$	－－	88	6	0.3
330	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Dr．W．C．Holdon	－－	1937	170	16	1
331	$\begin{aligned} & 13 \text { miles } \\ & \text { scuthwest } \end{aligned}$	J．M．Locklar	W．C．Jay	！－－	89	－－	0.3
332	$\begin{aligned} & 1 l_{\frac{1}{2} \text { miles }} \\ & \text { southwョst } \end{aligned}$	A．L．Walkər	－－	${ }^{--}$	－－	－－	0.3
333	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { suuthwast } \end{aligned}$	Wipmer McCrummen	－－	1936	－－	5	1
334	11 miles southwest	M．E．Casey	D．L．Handley	1936	208	16	1.4

Well	ATER Below measuring point (ft.)	LVEL Date of Method measurement of lift $b /$	Use of water c/	Remarks
299	71.1	Jan. 4, 1937 ${ }^{\text {C,W }}$	D, S	
301	58.5	\Jan. 6, 1937 ${ }^{\text {\% C,W }}$	D, S	Estimated yiold, 3 gallons a minute. Supplied school premises to 1938.
302	58.7	Jan. 4, 1937: C , W	D, S	Pumping when measured. Estimated yield, 2 gallons a minuto.
303	81.9	do. \quad T, G	$\overline{I_{r r}}$	Casing: 137 feet of $16-$ inch steel.
305	8 C .8	Dec. 22, 1936: C,W	D, S	Estimated yield, $\overline{3}$ gallons a minute.
307	92.6	Dec. 18, 1936: T, G	Irr	Casing: 160 feet steel. Reported yield, 700 gallons a minute.
309	87.9	¢Dec. 22, 1936 C,W	D, S	Esiimated yield, 2 gallons a minute,
312	77.6	Doc. 18, 1936: C , W	D, S	
313	55	d/ ${ }^{\text {done }}$		Drilled as test woll. Reported insufficient water-boaring formation to supply a
314	$\begin{aligned} & 52.5 \\ & 49.5 \end{aligned}$	May 27, 1937: T,G June 21, 1927:	Irr	Casing: 101 feet of 16 -inch city well. steel. 60 foet perforatod. Reported alti-
315	73	Dec. 9, 1936: T,G	Irr	Reported yield, 300 tude, $3,245.9$ feet. gallons a minute. Reported altitude,
316	$\begin{array}{l:l} \hline 64.9 & \mathbb{N} \\ 64.4 & J \end{array}$	May 27, 1957 June 21, 1937	Irr	Cacing: 123 feet steel. $3,260.6$ fest. Irrigated 30 acres of cotton and truck in 1937. Ferorted altitude, $3,269.5$ feet.
317	66.8	Doc. 9, 1936. T,G		Reported altitude of cencrote curb 3,275.4 feet.
318	73.9	do. ${ }^{\text {do.W }}$	D, S	
319	85.3	Dec. 23, 1936: C, ${ }^{\text {a }}$	D,S	
321	77.8	Dec. 14, 1936: C,W	D, S	Estimated yield, 4 gallons a minute.
324	81.7	Dec. 23, 1936: C, W	D, S	
32.6	97.5	do.	D, S	Casing: 6-inch steel.
323	95.5	Dэc. 15, 1936: C,W	D,S	
329	74.7	तo. \quad C,W	D,	Casing: 6-inch steel. Estimated yield, 4 gallons a minute.
330	82.1	May 13, 1937: T, ${ }^{\text {a }}$	Irr	Casing: 170 feet of 16 -inch steel. Estimated yield, 800 gallons a minuto. Water
331	74.6	Dec. 15, 1936: C,W	D,S	Estimated yield, reported in white sand. 3 gallons a minute. Pumping when measured.
332	95.9	Dec. 14, 1936: C, TM	D,S	Estimated yield, 2 gallons a minute.
333	81.9	dc. $\quad \mathrm{C}, \mathrm{W}$	S	
334	73.8	May 14, 1937: T,G	Irr	Casing: 208 feet of 16 -inch. Roported drawdown 37 feet after pumping 800 gallons a minute for 45 hours. Reported altitude, 3,321.2 feat, See log.

Records of wells and springs in Limbbock County--Continued

Well	MATGR Below point (ft.)	$\frac{\text { LFVEL }}{\text { Date of }}$	$\begin{gathered} \text { Method } \\ \text { of } \\ \text { lift } \\ b \end{gathered}$	Use of water c/	Remarks
335	93.1	May 14, 1937!	T, G	Irr	Feportod drawdown 18 fect after pumping 800 gallons a minute for 72 hours. Reported
336	82.2	Dec. 14, 1936!	C, W	D,S	Laltitude, 3,322.4 feet.
336 a	79.2	Apr. 27, 1938	None	N	Used in 1938 tc irrigate about 40 acres of cotton. Rencrted yield, 500 gallons a
$\overline{337}$	60.9	Dec. 14, 1936;	C, W	D, S	Estimated yield, 3 gallons a minute. iminute.
338	--		T, G	Irr	Irrigated 150 acres of cotton in 1937.
339	62.7	May 18, 1937	T,G	rr	Casing: 15 feet of 15 -inch steel. Irrigated 60 acres of land in 1938.
340	62.4	Dec. 9, 1936	C, W	D, S	Estimated yisld, 3 gallens a minute.
341	59.9	May 18, 1937	T,G	Irr	Casing: 173 fret of strel.
342	65.4	dc.	T, G	Irr	
343	73.8	Dec. 9, 1936:	C,W	D, S	Estimated yield, 2 gallons a minute. Pumping when measured.
344	75.1	do.	C, W	D, S	Estimated yield, 3 gallons a minute.
345	81.3	do.	T,G	Irr	Casing: 197 feet of $15 \frac{1}{2}$-inch perforated from 60 to 195 feet. Reported drawdown 28 feet after pumping 800 gallons a minute
346	74.6	Dec. 2, 1936	C, W	D,S	Casing: 20 feet at bottom. for 40 minutes. See log, Estimated yield, 3 gallons
347	80.3	May 20, 1937	T,G	Irr	Casing: 170 feet of steel. Reported yield, 750 galions a minute.
348	79.3	Dec. 9, 1936	C, W	D,S	
349	81.2	Dec. 2, 1936	C, W	D, S	Estimated yield, 2 gallons a minute.
350	79.3	May 20, 1937!	T, G	Irr	Casing: 187 fast of $15^{\frac{1}{2}}$ to 13 -inch ateel. Reported yield. 800 gallons a minute.
351	84.7	Dec. 14, 1926	C, W	S	
352	81.8	May 12, 1937	T,G	$\overline{\mathrm{Irr}}$	Casing: 155 feet of 15 -inch steel. Irrigated 50 acres of cotton and 5 acres of
353	78.7	May 14, 1937	T,G	Irr	Casing: 170 feet of $16-$ corn in 1937. inch steel lowar 100 fert is parfirgted. Irrigated 100 acres of cotton, 10 acres of gre in sorghum and 6 acres of alfalfa in
354	80.9	Dec. 2, 1937!	C, W	D, S	1937.
355	84.6	May 14, 1937!	T, G		Reported drawdown 39 feet after pumping 800 gallcns a minute for 72 hours. Reported
$35 ¢$	92.7	Dec. 14, 1936	C, W	D, S	Casing: 6 -inch steel.
357	94.7	Dec. 2, 1936	C, W	D, S	Reported yield, 9 galions a minute.
358	66.4	D9C. 15, 1936	C, W	$\overline{D, S}$	Estimated yield, 4 gallons a minute.

Well	```Distance from post office at Lubbock```	Owner	Drillar	Date com-pleted	Depth of well (ft.)	Diameter of well (in.)	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { abore } \\ & \text { grcund } \\ & \text { (ft.) al } \end{aligned}$
359	$\begin{aligned} & \text { l4 } \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Foster School	W. C. Jay	--	77	--	0
360	$\begin{aligned} & 16 \text { miles } \\ & \text { southwest } \end{aligned}$	J. C. Stanford	--	--	85	--	0.3
361	$\begin{aligned} & 14 \text { miles } \\ & \text { southwest } \end{aligned}$	H. C. Young	--	--	--	5	0.3
362	$\begin{aligned} & \text { l2 } \frac{1}{2} \text { miles } \\ & \text { southwقst } \end{aligned}$	J. M. Burch	-- Cohens	1926	109	6	0.4
363	$\begin{aligned} & 15 \text { miles } \\ & \text { southwest } \end{aligned}$	Otis A. Rogors	--	--	100	--	0.4
364	12, $\frac{1}{2}$ miles southwest	W. A. Frost	-- Osborne	1930	106	--	0.7
365	$\begin{aligned} & 11 \text { milos } \\ & \text { southwest } \end{aligned}$	First Nationel Bank	--	--	100	--	1
366	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	J. T. Krueger	A. J. Nordycke	11937	190	16	0.8
367	$13 \mathrm{milos}$ southwest	Jacob Schieber	--	--	116	6	0
368	$\begin{aligned} & 10 \frac{1}{2} \text { milos } \\ & \text { south } \end{aligned}$	John B. Lewis	--	--	$100!$	6	0.4
369	$\begin{aligned} & 9 \frac{1}{\mathrm{a}} \text { miles } \\ & \text { south } \end{aligned}$	A. D. Thomas	--	--	98	--	0.6
370	$10 \mathrm{miles}$ south	E. F. Wollbruack	--	--	90	--	0
371	$\begin{aligned} & \text { lle miles } \\ & \text { south } \end{aligned}$	R. O. Grsgory	--	--	--	--	0.4
372	$\begin{aligned} & 13 \text { miles } \\ & \text { south } \end{aligned}$	7. F. Martin	--	1937	135	16	2
373	do.	do.	--	1936	122	16	1.5
374	do.	do.	--	1936	130	16	4
375	$\begin{aligned} & 12 \text { miles } \\ & \text { southeast } \end{aligned}$	C. L. Griffin	C. C. White	1937	128	15	2
376	$\begin{aligned} & 12 \frac{1}{\varepsilon} \text { milos } \\ & \text { scutheast } \end{aligned}$	Union School	--	--	98	--	1
377	$\begin{aligned} & 13 \text { miles } \\ & \text { southeast } \end{aligned}$	M. D. Gamble	--	--	87	--	1.2
378	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	${ }^{--}$	--	--	--	--	0.2
379	$\begin{aligned} & 16 \frac{1}{2} \text { miles } \\ & \text { southeast } \\ & \hline \end{aligned}$	E. E. Wilson	--	--	81	--	0.8
380	$\begin{aligned} & 18 \text { miles } \\ & \text { southeast } \end{aligned}$	Mirs. S. H. Adems	--	--	--	5	1
381	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	J. R. Childres	-- Childres	--	130	--	--
382	$\begin{aligned} & 19 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	J. F. Railsback	George Guin	-	120	--	0.3

Rocords of wells and springs in Lubbock County--Continued

Well	Distance from post office at Lubbock	Owner	Driller	$\begin{aligned} & \text { Date } \\ & \text { com- } \\ & \text { inle- } \\ & \text { ted } \end{aligned}$	Depth of well (ft.)	Diameter of well (in.)	Helght of measuring point shove round (it.) a
383	$14 \frac{1}{3}$ miles southwest	H. B. Hcbgood	---	--	87	6	0.2
384	14 miles southwest	L. McClelland	--	1928	96	$\mathfrak{6}$	7.7
385	9흘 miles southwest	Ralph K. Landreth	George Anderson	1942	154	$12 \frac{1}{2}$; --
386	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	L. Nelson	--	1937	72	6	0.3
387	3 miles southwest	Vi. J. Garrett	--	1921	51	6	0.8
388	$\begin{aligned} & 3^{\frac{1}{2} \text { miles }} \\ & \text { west } \\ & \hline \end{aligned}$	G. D. Taylor	---	1930	57	ε	0.4
389	do.	E. S. Jones	- --	1917	55	6	0.4
390	$\begin{aligned} & 4 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	Rufus Rush	--	${ }^{\text {- }}$ -	45	6	0.5
391	$\begin{aligned} & 10 \text { miles } \\ & \text { west } \end{aligned}$	C. R. Moore	- --	-	85	6	0.7
302	$\begin{aligned} & 13 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	Mrs. Betty Lindsey	! --	--	95	6	0.8
393	$\begin{aligned} & 2 \text { miles } \\ & \text { southeast } \end{aligned}$	--	--	-	73	6	0.4
394	$\begin{aligned} & \text { 1. } \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	City of Lubbock	---	TOld	62	6	0.4
395	$\begin{aligned} & 2 \frac{1}{2 m i l e s} \\ & \text { north } \end{aligned}$	H. W. Stanton	- -	11937	125	15	1.0
396	$2 \frac{3}{4}$ miles north	do.	- --	1937	--	--	1.2
397	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	C. L. Dean	--	--	25	10	1.6
398	9 miles northwest	E. E Ireland	---	1935	56	$\begin{aligned} & 40, \\ & 10 \end{aligned}$	1.4
	$\begin{array}{\|l\|} \hline 10 \text { miles } \\ \text { north } \\ \hline \end{array}$	D. R. Couch	--	Old	56	6	0.6
	8 miles north	Virginia Bacon	- -	1017	79	6	0.1
402	$\begin{aligned} & 8 \text { miles } \\ & \text { northeast } \end{aligned}$	F. W. \& D Ry. Co.	--	--	57	6	0.2
403	71 $\frac{1}{2}$ miles north ast	J. E. Smiley	\cdots	- --	--	15	1.0
104	$\begin{aligned} & 9 \text { miles } \\ & \text { northeest } \end{aligned}$	T. L. Ward	--		120	15	--
405	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	--	${ }^{--}$	1945	--	--	--
406	10 miles northeast	Bailey Guess	--	19.45	200	13	--
407	12, miles northeast	J. D. Ferkins	,	1945	---	--	--

Records of wells and springs in Lubbock County--Continued

Well !	\qquad	Owner	Driller	Date com-plョted	Depth of well $(f t$.	Diameter of well (in.)	Height of measurin point above ground (ft.) a/
	14 $\frac{1}{2}$ miles northeast	E. T. Daniels	L. A. Peeples	1944	274	16	--
409	12 miles northeast	R. E. Bryant	--	1945	--	--	--
410	$15 \text { milos }$ northeast	W. F. Foreman	L. A. Peeples	1944	260	$\begin{aligned} & 1 f, \\ & 14 \end{aligned}$	--
411	14 miles northeast	G. C. McKinney	do.	1944	253	16	--
412	14 $\frac{1}{2}$ miles northeast	R. F. Collier	do.	194.4	236	$\begin{aligned} & 16, \\ & 14 \end{aligned}$	--
413	$\begin{aligned} & 16 \text { miles } \\ & \text { northeast } \end{aligned}$	T. U. Hunt	do.	1944	267	16	--
414	$\begin{aligned} & 13 \text { miles } \\ & \text { northeast } \end{aligned}$	H. E. Singley	do.	1945	256	16	--
415	11 $\frac{1}{2}$ miles north	Teal Brothers	Cecil Thurlkill	1945	250	16	--
$416!$	11咅 miles northeast	T. R. West Well 4	L. A. Peeples	1945	250	16	--
417	$\begin{aligned} & 12 \text { miles } \\ & \text { northeast } \end{aligned}$	J. B. Hankins	--	1945	--	--	--
	$\begin{aligned} & 8 \text { milas } \\ & \text { northeast } \end{aligned}$	E. L. Sowder	--	1945	140	13	--
419	$\begin{aligned} & 7 \text { miles } \\ & \text { north } \end{aligned}$	Teal Brothers	Oecil Thurlkill	1945	174	13	--
	$\begin{aligned} & 9 \text { miles } \\ & \text { northwest } \end{aligned}$	R C. Mowery	-- Altman	19.5	120	$12{ }^{1 \frac{1}{2}}$	1.3
421	8훌 miles northwest	E. E. Elliott	--	1945	--	--	--
422	$14 \frac{1}{2}$ miles northwest	Jim Ashburn	-- Schwartz	1945	177	14	--
	$\begin{aligned} & 12 \text { miles } \\ & \text { northwest } \end{aligned}$	W. M. Edwards	--	1945	240	15	2.3
424	do.	S. W. Williams	Cecil Thurlkill	1945	--	16	--
425	$\begin{aligned} & 20 \text { miles } \\ & \text { northwest } \end{aligned}$	-- Jones	--	1940	250	15	--
426	तo.	Paul Harral	0. S. Brock	$19 ¢ 0$	233	$\begin{aligned} & \hline 16, \\ & 13 \end{aligned}$	--
427	$\begin{aligned} & 19^{1} \text { miles } \\ & \text { northwest } \end{aligned}$	do.	W. 0. Tye	1941	235	16	--
428	$\begin{aligned} & \text { l7 } \frac{1}{\varepsilon} \text { miles } \\ & \text { northrest } \end{aligned}$	Swann Pettit	Van Pate	1941	240	14	--
$\begin{array}{r}429 \\ \\ \\ \hline\end{array}$	$16 \text { miles }$ northwest	M. B. Timmons	--	1941	275	--	--

Reccrds of wells and springs in Lubbock County－－Continued

Well	Distance frcm post office at Lubbock	Owner	Driller	Date com－ ple－ ted	｜Depth of well （ft．）	Diam－ eter of well (in.) \qquad	Height of measuring point above ground （ft．） a
430	16交 miles northwest	T＇om Adams	－－－	：1944	200	16	－－
431	$\begin{aligned} & 15 \text { miles } \\ & \text { northwest } \end{aligned}$	Jack Mullins	L．A．Peeples	1942	180	14⿺𠃊⿳亠丷厂彡	－－
	$\begin{aligned} & 14 \text { miles } \\ & \text { northwest } \end{aligned}$	C．Tatum	D．L．Handley	1938	235	15	－－
433	11妾 miles north	L．G．Coney	－－－	1938	220	－－	－－
434	$\begin{aligned} & \text { l2 miles } \\ & \text { north } \end{aligned}$	Emily Magee	－－－	1944	200	15	1.5
435	$\begin{aligned} & \text { ll } \begin{array}{l} \frac{1}{2} \text { miles } \\ \text { north } \end{array} \\ & \hline \end{aligned}$	Ross Edwards	B．B．Baron	［1941	189	15	－－
436	do．	B．C．Clutter	－－！	1944	－－	－－	－－
437	$\begin{aligned} & 12 \frac{1}{z} \text { miles } \\ & \text { north } \end{aligned}$	M．F．Landuer	0．S．Brock	1941	175	14	－－
438	$\begin{aligned} & 13 \text { miles } \\ & \text { north } \end{aligned}$	J．F．Nix	Green Machinery：	1944	－－	－－	－－
439	do．	W．E．Cravens	Rowan Drilling Co．	1944	－－	－－	－－
440	do．	Maple Wilson	I．A．Peeples	1943	250	－－	－－
441	15 miles north	M．T．Townsend	Bradford Sunply	1937	210	$\begin{aligned} & 15, \\ & 11 \end{aligned}$	1.5
442	$\begin{aligned} & 16 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	Sam Gentry	－－	1943	－－	－－	－－
443	$\begin{aligned} & 16 \mathrm{mil} \theta \mathrm{~s} \\ & \text { ncrth } \end{aligned}$	C．O．Anderson	Green Machinery Co．	1943	200	－－	－－
444	do．	Fritz Fuchs，Jr．	B．B．Baron	1940	206	15	－－
445	15 miles northeast	H．C．Von Struve	－－	1944	240	－－	－－
446	$\begin{aligned} & \text { 141 } \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	J．L．Snider	Green Machinery Co．	1937	250	15	－－
447	$\begin{aligned} & \text { I2 } \frac{1}{2} \text { miles } \\ & \text { narth } \end{aligned}$	Jubo Cooley		；1944	210	16	－－
448	$\begin{aligned} & \text { lil } \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	Sam Gentry	－－	1943	200	－－	－－
	$\begin{aligned} & 12 \text { miles } \\ & \text { northeast } \end{aligned}$	－－Miller	－－	1942	－－	－－	－－
450	111 I miles northeast	Teal Brothers	B．B．Baron	1941	220	$\begin{aligned} & 14, \\ & 12, \end{aligned}$	－－

Records of wells and springs in Lubbock County--Continued

					895
	${ }_{\text {xII }}$	0＇L	${ }_{\text {T }}$ ¢ 6	$94 \sqrt{\text { P }}$	
	xaI	$0 \times$	－－	－	
					${ }_{96}$
	${ }^{1 \times 1}$	00^{4}			
	${ }_{1}$		\％6t	18／8	
	xxI	0 ¢	－－	－－	
			$076 T$	$98 /{ }^{\text {P }}$	
	${ }_{\text {axI }}$		－－	－－	
	${ }_{\text {xxI }}$	${ }^{0}$	－－	－－	
 чоит－zt ：dund－spuss дәżм ITB ә7tsoddo 	xil	${ }_{0}$			97
	x_{1}	$0 \cdot$	－－	－－	
－					
					697
	xII	$0 \times$	－－	－－	${ }_{\text {89 }}$
	III	0	－	－	
	${ }_{31}$	$0{ }^{\text {d }}$	－－	－－	
q日大よ 0こT $767 \theta 5{ }^{\circ} 2887 s-\varepsilon$ पขuT－ZT ：dund		0 O	－－	－－	Sqz
	${ }_{\text {xax }}$	04	－－	－－	T
	xII	0 OL	－－	－－	${ }_{\text {97 }}$
	${ }_{21}$	0 OL	－－	－	2
	x ${ }^{1}$	0	－rer	98	
	${ }_{\text {xII }}$	0×1	－－	－－	${ }_{\text {gi }}$
รหォㄹu®ํ					
	хә78	7 IT			
	${ }_{\text {Of，}}^{\text {Jo }}$				
			TESLT	प［5］V：A	

Records of wells and springs in Lubbock County--Continued

Well	Distance from post office at Lubbcck	Unner	Driller	Date iccm-pleted	Depth of well (ft.)	Diameter of well (in.)	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { fit.) al } \end{aligned}$
469	20 miles northeast		W.T.Tarkington	1936	223	$\begin{gathered} 15,13,1 \\ 11 \end{gathered}$	--
470	19를 miles northeast	O. C. Powell	do.	1934	275	--	--
471	$\begin{aligned} & 19 \text { miles } \\ & \text { northeast } \end{aligned}$	B. B. Foreman	--	1937	2.05	$\begin{aligned} & 13, \\ & 10 \end{aligned}$	--
472	$\begin{aligned} & 18 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	M. L. Morris	--	1944	--	--	--
473	$\begin{aligned} & 19 \text { miles } \\ & \text { northeast } \end{aligned}$	Floyd Cannon	L. A, Peeples	1944	300	16	--
474	$\begin{aligned} & 20 \text { miles } \\ & \text { northeast } \end{aligned}$	L. M. Golden	Bud Gibbons	11944	248	14	1.5
475	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Lioyd Croslin	W. 0. Tye	T041	241	15	--
476	do.	E. R. Shel.ly	John Bell	1940	210	$16,13$	--
477	$\begin{aligned} & 21 \frac{1}{2} \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	F. J. Stanton	---	1938	200	\cdots	--
478	do.	R. C. Elder	Bud Gibbons	\|1944	? 50	14	--
479	do,	C S. Williams	do.	1944	240	15	--
480	$\begin{array}{\|l} 22 \text { miles } \\ \text { northeast } \end{array}$	Mrs. A. C. Scott	J.S.Tarkington	1941	207	$15,13$	--
481	$\begin{aligned} & 22 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Dr. A. C. Scott	L. Buchanan	1940	305	15	--
48 ?	$\begin{aligned} & 21 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	J. C. Erwin	--	1941	--	--	--
483	$\begin{aligned} & 22 \text { miles } \\ & \text { northeast } \end{aligned}$	H. C. Leon	--	\|1944	312	16	--
481	$\begin{aligned} & 21 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	E. P. Hildreth	--	1944	300	15	1.5
485	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { ncrtheast } \end{aligned}$	A. J. Goode	--	1944	--	--	--
486	$\begin{aligned} & 20 \text { miles } \\ & \text { northeast } \end{aligned}$	Henry Jinn	--	1944		--	--

Records of wslls and springs in Lubbock County--Continuod

Well	Distance from post office at Lubbock	Owner	Driller	Date com- ple- ted	Depth of woll (ft.)	Diameter of iwell $(\ln .)$	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (ft.) al } \end{aligned}$
487	$\begin{aligned} & 19 \text { miles } \\ & \text { northeast } \end{aligned}$	Adamson and Crews	--	1943	--	--	--
488	$\begin{aligned} & 18 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	--	1943	--	--	--
499	18줄 miles northeast	E. J. King	Bud Gibbons	1944	$\varepsilon .50$	--	--
400	18 miles ncrtheast	Goo. D. Whiting	L. A. Peepl:s	1941	253	14	--
491	do.	E. O. King	Bud Gibbons	1944	250	14	1.2
$491 \dot{4}$	17 miles northeast	John Joinsr	--	1944	--	--	--
492	do.	Donald Bledsoe	W. 0. Tye	1940	257	15	--
93	$\begin{aligned} & 15 \frac{1}{2} \text { milos } \\ & \text { northeast } \end{aligned}$	Robbins Eros.	L. A. Fecples	; 1944	2.94	16	1.3
'90'	14 miles northeast	Mrs. W. A. Hill	- --	1940	--	--	--
495	15 miles northeast	G. C. McKinney	L. A. Feeples	1943	2.44	$12 \frac{1}{2}$	--
496	do.	E. H. Truett			232	$\begin{aligned} & 14, \\ & 12 \end{aligned}$	--
497	$\begin{aligned} & \text { 15t miles } \\ & \text { northeast } \end{aligned}$	E. R. Steene	---	1938	---	--	--
498	do.	Ed Snodgrass	I. A. Feeples	! 1941	$2 ¢ 2$	15	1.0
	$14 \text { miles }$ northeast	N. G. Kelley	Bud Girbons	1944	255	16	--
500	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Forbes McInroe	do.	+1944	250	16	1.0
	15 miles northeast	J. R. Killebrew	L. A. Peeplus	1940	250	15	--
	\qquad northeast	R. E. Caldwell	--	1947	216	16	--
503 :	lc.	F. L. Feoples	--	1944	--	--	--
50%	do.	Gulf Ins. Co.	--	1944	--	--	--
505	$16 \frac{1}{2} \text { miles }$ nurthoast	J. K. Killebrew	--	194	--	--	--
606	$\begin{aligned} & 16 \text { miles } \\ & \text { northeast } \end{aligned}$	C. C. Mull	L. A. Peeples	1940	250	16	--

Well	WATYR Belcw point (ft.)	LVEL Date of Method measurement of lift $b /$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \\ \text { c/ } \end{gathered}$	Remarks
487	--	T,G	Irr	
488	--	T,G	Irr	
489	--	T,G	Irr	Pump: 12-inch, 3 -stage set at 130 fect, 10 feet of suction pips.
490	--	T,G	Irr	Casing: 250 feet of 14 -inch, all perforeted belcw the first water. Pump: 12-inch, 2-stage, set at 130 feat, 10 fe t of 8 -inch
491	78.4	Oct. 13, 1944, T,G	Irr	\qquad at 160 feet.
4913	--	T, G	Irr	
492	d/78	Nov. 20, 1940 T,	Irr	Casing: 257 feet of 15-inch. Pump: 12inch, 3 -stage set at 120 feet, 10 fest af 8 -inch suction pipe. See lcg.
193	78.5	Oct. 10, 1944: T,	Irr	Casing: 290 feet of 16 -inch. Driller's log shcws watir sand at 86-94 feet, 180218 feet, 224-270 feet and 275-289 feet.
494	--	T, G	Irr	
495	--	T,G	Irr	Cosing: 244 feet cf $12 \frac{1}{2}$-inch. Pump: 10inch, 4-stage set at 120 feet, 10 feet of 8 -inch suction pipe, See log.
¢96	d/75	Oct. 1944: T,G	Irr	Casing: 150 foet of 14 -inch and 90 feet $\cap f$ 12 -inch. Pump: 12-inch, 4-stage set at 120 feet. Discharge measured (parshall flume) 550 gall.ns a minute in shert test by Scil Conservation Service engineers in
497	--	T, G	Irr	Octcber 1944.
498	88.2	Jan. 25, 1941! T,G	Irr	Casing: 257 feet (f 15-inch, parfarated from 85 tc 250 feet. Pump: 12-inch, 3stage, set at 120 fest, 10 feet cf 8 -inch
499	--	T, G	Irr	Casing: 255 feet of $16-$ Lsuction pipe. inch. Fump: 12 -inch set at 120 feet.
500	79.8	Fab. 3, 1944, T, G		Casing: 250 f :et of 15 .inch. Pump: 12inch, 3-stage, set at 120 feet. Driller reperts this is a very goid well.
501	\cdots	T, G	Irr	Casing: 250 feet of 16 -inch. Pump: 12inch, 3 -stape set at 120 feet, 20 feet of
502	a/83	May 1944: T,G	Irr	Casing: 216 feet of 8 -inch suction pips. l6-inch. Pump: 12 -inch, 3 -stage, set at
503	--	T, G	Irr	120 feet.
504	--	T, G	Irr	
505	--	T, G	Irr	
506	-- 	T, G	Irr	Casing: 237 foet if 16 -inch, perfcratod from 80 tc 235 feet. Pump: l2-inch, 3stage, set at 100 feet with 20 feet of $8-$ inch suction pina.

Records of wells and springs in Lubbock County--Continued.

Well	Distance from post office at Lubbock	Owner	Driller	Date com-ple-• ted	Depth of well (ft.)	Diamieter of well i(in.)	;Heicht of measuring point above ground (ft.) a!
507	$\begin{aligned} & 18 \text { miles } \\ & \text { northeast } \end{aligned}$	Mary C. Brown	--	1938	323	$13,$	- --
507 a	$17 \frac{1}{2} \text { miles }$	-- Mabry	L. A. Peeples	1945	335	14	--
503	$\begin{aligned} & 18 \frac{1}{2} \text { milas } \\ & \text { nortileast } \end{aligned}$	A. J. Bryant	--	1944	361	16	1.?
509	$\begin{aligned} & 16_{2}^{5} \text { miles } \\ & \text { northeast } \end{aligned}$	Alex Kittrell	L. A. Peoples	1941	247	15	--
1310	$\begin{aligned} & 16 \text { miles } \\ & \text { northeast } \end{aligned}$	W. S. Wendeborn	--	1944	--	--	--
011	$\begin{aligned} & 15^{1} \text { miles } \\ & \text { northeast } \end{aligned}$	G. B. Forrest	L. A. Feeples	1944	221	16	--
512		S. N. Sanders	0. S. Brock	1937	253	13	--
513	do.	R. J. Fisher	L. A. Peeples	1944	278	14	-
514	17 miles northeast	S. A. Tharp	--	1944	2.45	--	--
515	$\begin{aligned} & 17 \frac{1}{2} \text { mil? } \\ & \text { northeast } \end{aligned}$	do.	L. A. Ferples	1941	244	15	--
5.16	$\begin{aligned} & 17 \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	O. C. Medlock	do.	1.942	291	14	1.5
517	do.	Gro. Fi. Benson	--	1938	--	--	--
518	$\begin{aligned} & 15 \frac{1}{2} \text { nilos } \\ & \text { northeast } \end{aligned}$	L. A. and W. W. Bradshaw	L. A. Pooples	1940	275	15	--
51.9	15 mil ss northeast	R. E. Bryant	--	1945	--	--	--
520	do.	E. T. Daniels	--	1944	240	--	--
581	$\overline{\mathrm{do}}$	B. F. and R. Yatkins	--	1940	250	16	--
52.	do.	B. F. Watkins	L. A. Feeples	1941	242	15	--
-5,3	16咅 miles northeast	T. T. Easter	--	1943	--	--	--
594	do.	E. R, Sifert	--	1943	--	--	--

Well	WATER Beluw masuring pcint (ft.)	$\frac{\text { Li'VEL }}{\text { Date Cf }}$measurement	$\begin{gathered} \text { Method } \\ \text { of } \\ \text { lift } \\ \text { b/ } \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { wf } \\ \text { water } \\ \text { c } \end{gathered}$		Remarks
507	d/92	June 1938	T,G	Irr		Casing: 207 feet of 13 -inch, lewer 107 foet perficrated; 80 feet of 11 -inch perOrated. Pump: 12-inch, 3 -stage, set at $6 n$ feet, 50 feet of suction pipe. See leg
507 B	: -l	,	T, G	Irr		Casing: 335 feet of 14 -inch. Driller totes send fermations are herd; estimates ell will yield 600 rellons a minute.
508	77.3	Oct. 12, 1944	T, G	Irr		Gasing: 342 feet of 16 -inch, 180 feet prrfereted. Pump: 12-inch, 3-stege, set at 160 feet. During develicpment well wes pumped at 700 gallins a minute (mëasursd by parshall flume) for 33 heurs. Drawd cwn nct
509	d/89	Mar. 7, 1941	T,G	Irr		Casing: 247 foet if 15 -inch, moasured. cwer 140 feet perfirated. Pump: 12-inch, 3 -stage, set at 140 feet, 10 feet of 8 -inch
57.0	--	--	T, G	Irr		Suction pipe.
511	--	--	T, G	Irr		Casing: 220 foet of 16 -inch. Fump: 12 .
512	--	--	T, G	Irr		asing: 250 feet of 13 to 11 -inch with 126 feet perforated. Pump: 12-inch, 2-stage, set ot 120 feet. 60 feet of suction pipe.
513	--	--	T,G	Irr		Casing: 278 f 'set of 14 -inch. Pump: $10-$ inch, 4-stage, set at 150 fe et, 10 feet of suction pipe. Driller reports chief aquife s sand and gravel at 233-276 feet.
514	\cdots	--	--	Irr		ot used in 1914.
515	d/85	Mar. 1941	T,G	Irr		Casing: 244 feet of 15 -inch. Pump: 12nch, 3 -stage, set at 140 feet. Irrigated 130 acres of cotton, 100 acres of grain orghum end 8 acres of alfalfa in 1944.
516	88.6	Oct. 12, 1944	T, G	Irr		Casing: 280 feet of 14-inch. Fump: 12nch, 3 -stage, set at 140 feet, 10 feet of
517	--	--	T, G	Irr		\underline{L} suction pipe.
518	d/73	Dec. 5, 1940	T, G	Irr		asing: 263 feet of 15 inch. Fump: 12nch, 2 -stage, set at 120 feet.
519	--	--	--	Irr		
520	--	--	T,G	Irr		ump: 12-inch, 4-stage, set at 140 feet, 0 feet of 8 -inch suction pipe.
521	${ }^{--}$	${ }^{-\infty}$	T, G	Irr		asing: 160 feet of 16 -inch; open hcla rom 160 to 250 feet. Fump: l2-inch, 3tage, set at 140 feet, 20 feet of suction
522	d/78	Jan. 20, 1941	T, G	Irr		asing: 230 feet of 15 -inch. 1 pipe. ump: 12-inch, 2-stage, set at 140 feet, 0 feet of 8 -inch suction pipe.
523	--	--	T, G	Irr		
524	--	--	T, G	Irr		

Records of wells and springs in Lubbock Ccunty--Continued

Wel.l	```Distance from pcst office at Lubbock```	Owner	Driller	Date com- ple- ted	$\begin{aligned} & \text { D.onth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Diameter of iwell (in.)	; Hei.ght of imeasuring point above ground (ft.) ${ }^{-}$
525	17 miles incrtheast	Fred Robb	--	1944	--	--	--
52.6	15 miles northeast	Joe Jenkins	--	1944	210	14	--
527	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	do.	---	1945	--	--	--
528	14 mi.les northeast	T. U. Hunt	- --	1941	250	--	1.3
529	$\begin{aligned} & 15 \text { miles } \\ & \text { east } \end{aligned}$	V. E. Railsback	L. A. Feeples	1941	205	15	--
530	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { eeast } \end{aligned}$	Lucien Nioore	--	1944	260	$\begin{aligned} & 16, \\ & 12 \end{aligned}$	--
531	$\begin{aligned} & 13 \text { mil } \theta \mathrm{s} \\ & \text { east } \end{aligned}$		--	1341	130	15	--
532	14 miles northeast		D. L. Handley	1941	289	16	--
533	$\begin{aligned} & 13_{x}^{1} \text { miles } \\ & \text { northeast } \end{aligned}$	Glenn Eubank	L. A. Fenples	184:1	262	15	--
534	13 miles northeast	J. H. Spence	--	194.4	--	--	--
535	$\begin{aligned} & 18 \frac{1}{z} \text { miles } \\ & \text { northeast } \end{aligned}$	W. T. Dawdy	--	1941	295	15	--
536	$\begin{aligned} & 15 \frac{1}{2} \text { miliss } \\ & \text { northeast } \\ & \hline \end{aligned}$	-- Johnson	--	1944	--	--	--
537	$\begin{aligned} & 13 \text { miles } \\ & \text { northeast } \end{aligned}$	Monroe DeBuske	--	1944	--	--	--
538	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { ncrtheast } \\ & \hline \end{aligned}$	H. Young	${ }^{--}$	1937	--	--	--
539	14 miles northeast	Wayne S. Butler	L. A. Peeples	19:4	255	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	---
	$\begin{aligned} & 15 \text { miles } \\ & \text { northeast } \end{aligned}$	Grice Herrington	--	194\%	249	14	--
	$\begin{aligned} & 14 \frac{1}{2} \text { milos } \\ & \text { northeast } \\ & \hline \end{aligned}$	H. A. Black	--	1943	--	--	--
542	' $15 \frac{1}{2}$ miles northeast	Mrs. L. Stobaugh	--	19:44	--	$\begin{aligned} & 15 \\ & 13 \\ & \hline \end{aligned}$: --

Records of wells and springs in Lubbock County--Continued

Well	```Distance from post cffice at Lubbock```	Owner	Driller	Date com- ple- ted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { woll } \\ & \text { (ft.) } \end{aligned}$	Diameter ef well (in.)	Height of measuring point above ground $\text { (ft.) }{ }^{2}$
543	$\begin{aligned} & 14 \text { miles } \\ & \text { northeast } \end{aligned}$	T. K. and W. F. Pruitt	L. A. Peeples	; 1341	264	$15 \frac{1}{2}$; --
	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Mrs. C. H. DeBuske	do.	1942	267	14	--
545	do.	K. Costs	do.	1940	213	$\begin{aligned} & \overline{16}, \\ & 12 \end{aligned}$	--
546	$\begin{aligned} & 13 \text { miles } \\ & \text { northeast } \end{aligned}$	D. J. Ledbetter	--	1.942	--	--	--
547	$\begin{aligned} & 12 \text { miles } \\ & \text { northeast } \end{aligned}$	C. D. Bradford	L. A. Peeples	1937	--	--	--
543	do.	M. A. Evitt	--	1941	--	--	--
549	$\begin{aligned} & \text { 11 } \frac{1}{2} \text { milos } \\ & \text { northeast } \end{aligned}$	J. A. Peel	L. A. Peeples	1.94 .1	198	15	--
550	$\begin{aligned} & \text { Il milias } \\ & \text { northeast } \end{aligned}$	R. L. Adamson	do.	1941	297	15	--
551	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	J. F. Toler	do.	1. 2941	300	$\begin{aligned} & 16, \\ & 12 \end{aligned}$	--
	$\begin{aligned} & 12 \text { milos } \\ & \text { northeast } \end{aligned}$	Mrs.Lillian Steely	---	1944	$20 n$	--	--
553	do.	R. E. Bryant	L. A. Peeples	: 1941	293	15	--
554	$\begin{aligned} & \text { ID miles } \\ & \text { northenst } \end{aligned}$	E. C. DeBuske	- -	1944	250	--	--
555	$\begin{aligned} & 12 \text { miles } \\ & \text { northeast } \end{aligned}$	Mrs.Nettie DeBuske	L. A. Feeples	1941	289	$\begin{aligned} & 14, \\ & 12 \end{aligned}$	--
556	do.	Will Knowles	do.	1.941	299	15	--
	$\begin{aligned} & \text { ll } \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	M. Knowles	do.	1944	300	15	--
558	$\begin{aligned} & \text { Il miles } \\ & \text { northeast } \end{aligned}$	City of Idalou	do.	1025	125	15	--
559	$10 \frac{1}{2}$ miles northeast	J. O. Barnhart	Bud Gibbons	1944	260	14	--
560	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	Gec. L. Manning	- --	1941	--	--	--
501	Ao.	C. J. Hallmark	--	1943	--	--	--
562	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Claude Fields	L. A. Peeples	1940	200	$15 \frac{1}{2}$	--

Well	NATER Below measuring point (ft.)	$\begin{gathered} \text { DVESE } \\ \text { measurement } \end{gathered}$	Method of lift b/	Use of water c/	Remarks
543	--	--	T, G	Irr	Casing: 264 feet of $15 \frac{1}{2}-$ inch. Pump: 12inch, 3-stage, sot at 130 fent. Pump column is $8-5 / 8$-inchss in diameter.
544	--	--	T, G	Irr	Casing: 267 feest of 14 -inch. Pump: 12inch, 2-stage, set at 120 feet, 10 feet of suction pipe. Pump column and suction pipe
545	--		T, G		Cased to 213 is 8 inches in diameter. feet. Pump: 12 -inch, 2-stage, set at 90 feet, 10 feet of suction pipe. Pump column
546	--		T, G	Irr	is 8 inches in diameter.
547	--	--	T, G	Irr	Pump: 1 -inch, 2-stage, set at 100 feet, 10 feet of suction pipe.
548	--		T, G	Irr	
549	d/70	Jan. 15, 1941	T,G		Casing: 198 feet of 15 -inch, all perforated below the water table. Fump: l2-inch, 2stage, set at 120 feet, 10 feet of 8 -inch
550	d/62	Apr. 18, 1941			Casing: 297 feet of $15-$ suction pipe. inch. Pump: 12-inch, 2-stage, set at 120 feet, 10 feet of 8 -inch suction pipe.
551	d/60	Feb. 21, 1941	T, G	Irr	Casing: 250 feet of 16-inch; 50 feet of $12-$ inch. Pump: 12-inch, 2-stage, set at 120 feet. Irrigated 140 acres of cotton and grain sorghum two times and 10 acres of ialfalfa fifteen times in 1944.
552	--		T, G	Irr	Pump: 12-inch, 3 -stage, set at 120 feet, 10 feet of 8 -inch suction pipe.
553	d/57				Driller reports cadacity of well was about 309 gallons a minute which was not sufficient for irrigation. Abandoned and filled.
554	--	-- \|	T, G	Irr	Pump: 12 -inch, 3-stage, set at See log.
555	d/53	June 24, 1941	T, G	Irr	Casing: 289 feet of 14 to 12 -inch, all perforated below the water table. Pump: 12-inch, 2-stage set at 120 feet, 10 feet
556	--	--	T,G	Irr	Casing: 299 feet of 15 -inch. Fump: 12 -inch, 2 -stare, set at 120 feet, 10 feet of 9 -inch suction
557	--	--	T, G		Casing: 200 feet of 15 -inch. Driller reports well will yield about 600
558	d/50	1944	T,E	P, S	One well served 105 gallons a minute. meters in 1944 .
559	--	--	T, G	Irr	Casing: 260 feet of l4-inch, Pump: 12- inch, 3 -stage, set at 130 feet, no suction
560	--	--	T, G	Irr	Lpipe.
561	--		T,G	Irr	
562	d/55	Mar. 1940	T, G	Irr	Casing: 200 feet of $15 \frac{1}{2}-1 n c h ; ~ s c r e s n ~ f r o m ~$ 60 to 200 feet. Fump: l2-inch, 2-stage, set. at 100 feet, 10 feet of 8 -inch suction pipe.

Records of wells and springs in Eubbock County--Continued

Well	Distance from post office at Lubbock	Owner	Driller	;Date iccm-pleted	Depth of well (ft.)	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { of } \\ & \text { well } \\ & \text { (in.) } \\ & \hline \end{aligned}$	Height of measuring point above grcund (ft.) al
563	$\begin{aligned} & 10 \frac{1}{2} \text { milos } \\ & \text { northeast } \end{aligned}$	L. P. Soape	L. A. Peeples	11944	240	16	--
564	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	C. A. Lawronce	do.	;1941	242	$\begin{aligned} & 15, \\ & 13 \end{aligned}$	--
565	do.	J. W. Turner	--	1944	--	--	--
566	$\begin{array}{\|l} \hline 9 \text { miles } \\ \text { northeast } \end{array}$	W. W. Lewis	Bud Gibbons	1942	134	15?	--
567	$8 \frac{1}{2}$ miles northeast	J. A. Wood	B. B. Baron	1941	107	15	--
568	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \\ & \hline \end{aligned}$	E. W. Reddell	--	1944	--	14	--
569	$\begin{aligned} & 11 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Ed Foreman	L. A. Peeples	1944	304	16	--
570	do.	W. O. Grimes	do.	1940	160	15 16	1.5
571	10 miles northeast	H. W. Lasater	W.T.Tarkington	${ }^{1944}$	170	16	1.5
572	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$		L. A. Peeplos	;1944	129	12	--
573	$\begin{aligned} & 9 \text { miles } \\ & \text { northeast } \end{aligned}$	Ed Herrison	do.	1937	115	16	--
574	do.	J. B. Sherrod	B. B. Baron	1941	125	15	--
575	8 咅 miles northeast	J. C. Sherrod	--	1940	134	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	--
576	do.	J. M. Sherrod	B. B. Baron	1941	106	15	\cdots
$\because 7$	8 miles northeast	J. F. Sherrod	do.	1941	117	15	--
578	do.	W. T. Adqms	George Anderson	1942	120	$\text { 12 } \frac{1}{2}$	--

Well	Welow measuring point (ft.)	LivVEL Date of measurement	$\begin{gathered} \text { Method } \\ \text { of } \\ \text { lift } \\ b / \end{gathered}$	Use water c/	Remarks
563	--	--	T,G	Irr	Casing: 240 feet of 16 -inch. Pump: ${ }^{10-}$ inch, 4-stage, set at 110 feet, 10 feet of
564	d/52		T, ${ }^{\text {G }}$	Irr	Casing: 242 feet of 15 to suction pipe. 13-inch, all perforated beiow the water table. Pump: 12-inch, 2-stage, set at 140
565			T, G	Irr	feet. See log.
566	d/44		T,G	Irr	Casing: 127 feet of $15 \frac{1}{2}-1$ inch, all perforated below the water table. Pump: 12inch, 2 -stage, set at 90 feet, 20 feet of
567	--		T,G	Irr	Cased to $107 \quad 8-5 / 8$-inch suction pipe. feet with screen from 40 to 107 feet. Pump: 12-inch, 2-stage, sst at 80 feet. Driller's log shows water sand at 48-55 feet, 60-80 feet, and 85-103 feet.
568	43.7	Oct. 12, 1944	T, G	Irr	During development a large pile of fine to medium-grained buff sand was pumped from
569			T, G	Irr	Casing 300 feet of 16 -inch. this well. Pump: 10 -inch, 4 -stage, set at 150 feet, 10 feet of suction pipe. Driller estimates well will yield 600 gallons a minute. See
570	d/52	Dec. 28, 1940	T, ${ }^{\text {G }}$	Irr	Casing: 156 feet of 15 -inch, all log. perforated below the water table. Pump: 12 -inch, 2 -stage, set at 120 feet. See log.
571	40.2	'Nov. 21, 1944	T, G	Irr	Casing: 170 feet of 16 -inch. Pump: 10inch set at 100 feet. Drawd own 13 feet after pumping 830 gallons a minute (measured by parshall flume) for eight hours.
572	d/35	'May 1944	T, G	Irr	Casing: 129 feet of 12 -inch; perforated from 40 to 125 feet. Pump: 10-inch, 4istage, set at 60 feet, 10 feet of suction ipipe. Driller reports that well yielded 1,200 gallons a minute without exhaustion
573	--	--	T, G	Irr	Driller reports this on short test. well will yield mare than 1,000 gallons a
574	--	--	T,G	Irr	Casing: 106 foet of $15-$ inch, minute. all perforated below the water table. Pump: 12 -inch, 2 -staze, set at 90 feet, 10 ifset of 8 -inch suction nipe.
575	d/58	'Dec. 17, 1940	T, G	Irr	Cased to 134 feet, all of pipe perforated below 60 feet. Pump: 12-inch, 2 -stage, set lat 10 feet, 20 fset of 9 -inch suction pipe.
576	d/42	Feb. 13, 1941	T, G	Irr	Casing: 106 feet of 15 -inch, all See log. perforated below the water table. Pump: 12-inch, 2-stage, set at 80 feet, 15 feet of
577	${ }^{--}$	--	T, G	Irr	$\begin{aligned} & \text { Casing: } 117 \text { feet of } 8 \text {-inch suction pipe. } \\ & 15-1 \text { nch. Fump: } 12 \text { inch, } 2 \text {-stage, set } \overline{\text { at }} \\ & 95 \text { ffet with } 10 \text { feet of suction pipe. } \\ & \text { Driller rsports water sands at } 51-75 \text { feet } \end{aligned}$
578	d/45	;Sept. 5, 1942:	T, G	Irr	

Records of wells and springs in Lubbock County－－Continued

Well	```Distance from post ofrice at Lubbock```	Owner	Driller	Date com－ iple－ ited	Depth of well （ft．）	Diam－ eter of well （in．）	```Height of measurir.g point abore ground (ft.) a/```
E79	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	Alex Weaver	IL．A．Feeples	$\frac{1}{1944}$	142	18	\cdots
580	do．	B．M．Hicks	－－	1944	140	－－	－－
581	$\begin{aligned} & 10 \frac{1}{2} \text { mililes } \\ & \text { east } \end{aligned}$	V．C．Snodgrass	L．A．Feeples	1941	133	15	－－
582	$\begin{aligned} & \text { ll⿳亠口冋⿱⿱亠䒑日心 miles } \\ & \text { east } \end{aligned}$	W．J．Grimes	do．	1942	185	14	－－
583	$\begin{aligned} & \text { ll miles } \\ & \text { east } \end{aligned}$		do．	1942	130	14	－－
584	$\begin{aligned} & \text { lot miles } \\ & \text { east } \end{aligned}$	C．C．Range	do．	1940	1.60	15	－－
585	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { east } \end{aligned}$	Milton Davis	do．	1942	115	14	－－
586	$\begin{aligned} & 8 \text { miles } \\ & \text { eest } \end{aligned}$	W．A．Sides	do．	1339	150	13	－－
587	$\begin{aligned} & 7 \text { miles } \\ & \text { east } \end{aligned}$	G．F．and Marvin Moore	Q．S．Brock	1938	152	13	－－
588	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	F．O．Miller No． 3	L．A．Feeplos	1942	129	13	－－
589	$\begin{aligned} & 6 \text { miles } \\ & \text { east } \end{aligned}$	W．C．and W．L． Thalker	Bud Gibbons	$\frac{1}{1941}$	130	15	－－
590	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	A．E．Griffis	L．A．Peeples	1043	133	$12 \frac{1}{2}$	－－
591	$\begin{aligned} & 5 \text { miles } \\ & \text { east } \end{aligned}$	J．F．Goodnight	W．P．Crawford	1941	132	15	－－
593	$\begin{aligned} & 5 \frac{1}{2} \text { milos } \\ & \text { east } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J. F. Goodnight } \\ & \text { No. } 2 \end{aligned}$	L．A．Peeplos	$1{ }^{194 /}$	140	15	－－
593	6 miles nertheast	F．O．Miller No． 4	do．	1944	130	19	－－
59c	6 $\frac{1}{8}$ miles northenst	Lula M．Koger	－－	1942	－－	－－	－－

Records of wells and springs in Lubbock Ccunty--Continued

Well	Distance from post office at Lubbock	Owner	Driller	Date com-ple; ted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Diameter of iwell (in.)	Figight of moasuring point above ground (ft.) a/
	$\begin{array}{\|l\|} \hline 7 \text { miles } \\ \text { ncrtheast } \\ \hline \end{array}$	C. C. Forbies	--	[1941	--	- --	--
596	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { ncrtheast } \\ & \hline \end{aligned}$	T. B. Harrison	-- McFarland	1941	--	--	--
597	do.	E. N. Harrison	L. A. Peeples	! 1944	125	14	-- --
598	$\begin{aligned} & \hline 8 \text { miles } \\ & \text { northeast } \end{aligned}$	G. W. Butler		;1941!	115	--	--
599	do.	F. L. Hamilton	L. A, Peeples	1938	114		--
600	$\begin{aligned} & 5 \text { miles } \\ & \text { northeast } \end{aligned}$	Nairn Estate	L. C. Harrison	1941	5,002		--
601	$\begin{aligned} & \text { 4를 miles } \\ & \text { northest } \end{aligned}$	R. S. Collins	L. A. Peeples	! 1942	132	14	--
602	$\begin{aligned} & 5 \text { miles } \\ & \text { northesst } \end{aligned}$	J. D. Nairn	George Anderson	1942	100	12	--
603	$\begin{aligned} & 5 \stackrel{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	C. Faulkn ${ }^{\text {r }}$	---	Old	63	5	0.5
604	do.	do.	-- Spraules	1944	117	15	1.5
605	$4 \frac{3}{4}$ miles northeast	Nancy E. Brown	George Anderscn	1.942	120	14	--
606	5 miles northeast	W. W. Lsach	--	1940	- -	--	--
607	$\begin{aligned} & 6 \text { miles } \\ & \text { northeast } \end{aligned}$	G. R. Bean	--	1941	115	--	--
608	do.	Perrin Bean	--	01d	97		0.7
009	do.	R. W. Matthews	--	1937	--	--	--
610	6 $\frac{1}{2}$ miles northeast	G. R. Bean	-	1941	161	15	--

Records of wells and sorings in Lubbock County--Continued

Well	Distance from post office at Lubbock	Owner	Driller	Date com-pleted	Depth of wall (ft.)	Diameter of well	Height of moasuring point above ground (ft.) ${ }^{\text {a/ }}$
61:.	$\begin{aligned} & \text { nies } \\ & \text { ncrtheast } \end{aligned}$	H. V. Edsall	--	O1d	45	6	--
612	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	II. II. Murray	B. B. Baron	19.41	108	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	--
613	$\begin{aligned} & 3 \text { miles } \\ & \text { northeast } \end{aligned}$	J. IV. Smiley	--	1939	--	--	--
614	$3 \frac{1}{2}$ miles northeast	R. A. Gragory	L. A. Feeples	1944	196	15	--
615	$\begin{aligned} & 9 \text { miles } \\ & \text { ncrthenst } \end{aligned}$	Claude Martin	do.	1944	174	15	--
616	1c.	Konneth Williams	do.	16.4	255	$\begin{aligned} & 15, \\ & 1: 3 \end{aligned}$	--
617	8 miles northeast	Howard and MeWhorter	do.	1940	130	14 ${ }^{\text {P }}$	--
619	$\begin{aligned} & 8 \frac{1}{2} \text { mil.3s } \\ & \text { northoast } \end{aligned}$	M. C. Carroll	--	1940	--	--	--
619	8 miles northeast	J. W. Hairston	L. A. Peeples	1941	177	15	--
620	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { ncrthenst } \end{aligned}$	J. N. Smiloy	--	1940	135	--	--
621	30	A. L. Cone	L. A. Peedoles	1941	$147!$		--
622	8 gin miles p.crtheast	J. A. Crewford	Harris and Wagoner	1.937	170	$\begin{aligned} & 15 \frac{1}{4} \\ & 13 \end{aligned}$	--
623	$\begin{aligned} & 9 \text { miles } \\ & \text { northeest } \end{aligned}$	$\begin{aligned} & \text { J. C. Nowton } \\ & \text { Vi } \quad 111 \end{aligned}$	Bual Gibbons	1942	250	15	--
63.	$9 \frac{1}{3} \text { niles }$ nerthenst	$\begin{aligned} & \text { J. C. Nowton } \\ & 20112 \\ & \hline \end{aligned}$	do.	1 Cm	262	16	--
625	$\begin{aligned} & 10 \text { miles } \\ & \text { northenst } \end{aligned}$	C. H. Gurney	--	--	--	--	--
026	ic.	Baxtor Orr	I. A. Peeples	1.641	?91	15	--
627	do.	J. N. Marks	do.	1940	230	$\begin{aligned} & 15, \\ & 12 \frac{1}{2} \end{aligned}$	--
629	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northerst } \end{aligned}$	T. J. Bovell	--	1941:	$200:$	--	--
62\%	do.	Arthur Fisttler	-- Spraulos	194!	225	16.	--

Well	WATER Below measuring point (ft.)	$\frac{\text { LDEL }}{\text { Date of }}$	Method of lift b/	Use of water c)	Remarks
611	d/30	--	C,W	D, S	Tenant reports that depth to water was 17 feet in a seismograph test hole 0.3 mile from this well near a large playa lake.
612	--	--	T, G	Irr	Cased to 108 feet. Pump: 12 -inch, 2 -stage set at 80 feet. Driller's log shows water sand at 45-65 feet, 70-85 feet and 90-107
613	--	--	T, G	Irr	feet.
$\overline{614}$	--	--	T,G	Irr	Casing: 195 feet of 15 -inch. Driller's log shows water sand at 58-74 feet, 98-107 foet and water sand and conglomerate at
615	--	--	T, G	Irr	Casing: 174 foet of $15-153-165$ feet. inch. Pump: 10 -inch, 4 -stage, set at 100 feet, is feet of suction pipe. Pump column
616	d/53	Feb. 8, 1941	T, G	Irr	Cased to 255 feet . is 8 inches in diameter. Pump: 12-inch, 2-stage, set at 120 feet, 10 feet of 8 -inch suction pipc. See log.
617	d/42	1940	T, G	Irr	Casing: 130 feet of $14 \frac{1}{2}$-inch, all perforated below 50 feet. Pump: l2-inch, 2-stage, set at 90 feet, 10 feet of 8 -inch suction
618		--	T, G	Irr	pipe.
619	d/60	Apr: 10, 1941	T, G	Irr	Casing: 177 feet of $15-$ inch, all perforated below 60 feet. Pump: 12-inch, 2-stage, set at 110 feet, 10 feet of suction pipe. Pump column is 8 inches in diameter.
620			T, G	Irr	
621	--	--	T, G	Irr	Pump set at 110 feet. Estimated yield 750 gallons a minute. Not operated in 1941; pumped about 2 werks in 1942; irrigated 215 acres and operated about 1,100 hours in
622	--	${ }^{--}$	T, G	Irr	Cased to 1701943 and 1,000 hours in 1944. f et. Fump: 12 -inch, 2-stage, set at 100 feet, 33 feet of suction pips.
623	d/89	May 1942	T, G	Irr	Casing: 250 feet of $15 \frac{1}{2}$-inch, perforated from 80 to 250 feet. Pump: 12-inch, 2stage, set at 120 foot, 20 feet of sucticn
624	--	--	T, G	Irr	Casing: 260 feet of 16 -inch. Pump: pipe.
625	--	--	T,G	Irr	Lof 8-5/8-inch suction pipe.
626	--	--	T, G	Irr	Casing: 291 feet of 15 -inch. Pump: 12inch, 2-stage set at 120 feet. 10 feet of
627	${ }^{--}$	${ }^{--}$	T,G	Irr	Cased to 230 feet with 130 feet of screen. Pump: $12-i n c h, ~ 2-$ stage set at 90 feet, 10 feet of 8 -inch suction
628	d/55	1944	T, G	Irr	Estimated yield by the writer 750 gallons a minute on September 22 , $1!14$.
629	d/58	Oct. 1944	T, G	Irr	Casing: 225 feet of $16-$ inch. Pump: 12-inch, 3 -stage, set at 130 feet, 10 feet of suction pipe. Owner reports pumped 1,100 gallcns a minute for 36 hours without exhausting well during development test in November 1944.

Records f wells and springs in Lubbock Ocunty--Continued

Well	\qquad	Owner	Driller	Date ccm -pleted	Depth of well (ft.)	Diam- eter of well (in.)	Height of measuring point above ground (ft.) a/
630	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	Cocil Brashear	L. A. Peeples	1941	243	15	--
	$\begin{aligned} & 11 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	J. W. Isom	--	1938	1.90	--	--
632	12 miliss northeast	H. V. Segzern	--	${ }_{1} 1944$	--	--	--
633	$\begin{aligned} & \text { 11 } \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	J. W. Lawson	L. A. Peeples	1941	300	15	--
634	do.	H. G. Lawson	do.	1942	310	14 $\frac{1}{2}$	--
635	$\begin{aligned} & \hline 11 \text { miles } \\ & \text { northeast } \end{aligned}$	A. L. Cone	do.	1945	250	14	--
636	$\begin{aligned} & 10 \text { iniles } \\ & \text { northeast } \end{aligned}$	Lee Minyard	--	1930	96	6	0.7
637	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	John O. Ford	George Anderson	;1941	166	14	--
	$\begin{aligned} & 9 \text { miles } \\ & \text { northeast } \end{aligned}$	Sue Evans	--	1944	--	--	--
639	$8 \frac{1}{2}$ miles northeast	F. R. Friend	--	1941	--	--	--
640	8 miles north	Bruce Gentry	L. A. Peeples	1944	162	15 $\frac{1}{2}$	1.3
641	$\begin{aligned} & \text { lo miles } \\ & \text { north } \end{aligned}$	Gecrgs P.Livermors	- --	1942	148	--	--
642	$\begin{aligned} & 9 \text { milss } \\ & \text { north } \end{aligned}$	-- Litton	L. A. Poeples	1944	152	16	--
643	$8 \mathrm{miles}$ north	--	do.	1943	--	--	--
$64:$	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	S. E. and Arthur Cone	do.	1944	145	15	1.3
6.45	$\begin{aligned} & 6 \text { miles } \\ & \text { ncrth } \end{aligned}$	L. A. Feeples	do.	1938	146	15	1.0
646	$\begin{aligned} & 7 \text { miles } \\ & \text { north } \end{aligned}$	$\begin{aligned} & \text { Teal Brothers } \\ & \text { Well } 3 \end{aligned}$	--	1943	--	12	--
6 ± 7	dc.	Teal Brothers Well 2	--	190.3	--	12	--
64:8	do.	Teal Brothers Well 1	- --	1946		12	--

Weil	WATEK Below measuring point (ft.)	$\frac{\text { L.VEL }}{\text { Date of }}$	Method' of lift b/	Use of water c/	Remar's
630	--	--	T, G	Irr	Casing: 2.43 feet of 15 -inch. Pump: 12inch, 2 -stage, set at 120 feet. Driller's log shows water sand at 76-90, 141-153, 170-181 and 209-242 feet.
631	--	--	T, G	Irr	
632	--	--	T,G	Irr	
$\overline{633}$	--		T, G	Irr	Casing: 300 feet of 15-inch. Fump: 12inch, 2-stage, set at 140 feet, 10 feet of isuction pipe. Fump column and suction pipe
$\overline{634}$	d/70	Sopt. 1942	T, G	Irr	Casing: 300 feet is 8 inches in diameter. 140 feet, 10 feet of 9 -inch suction pine.
635	--	--	T,G	Irr	Casing: 250 feet of 14 -inch, lower 170 ifeet perfcrated. Sea log.
$\overline{636}$	83.2	Nov. 14, 1944	C, \%	D, S	Pumping abcut 2 gallons a minute when water ilevel was measured.
$\overline{637}$	d/78	May 1941	T, G	Irr	Casing: 164 feet of 14 -inch, screened from 80 to 160 feet. Pump: 12 -inch, $2-$ istage, set at 130 feet, 10 feet of 8 -inch
638	--	--	T,G	Irr	Fump: l2-inch, suction pipe. See log. 3-stage set at 130 foet, 10 feet of suction
639	--		T,G	Irr	pipe.
640	63.7	Sopt.22, 1944	T, G	Irr	Casing: 157 feet of $15 \frac{1}{2}$-irch, screened from 65 to 155 feet. Driller estimates canacity of well at 400 gallons a minute. Log shows chief aquifer is sand at 81-117
641	\| --	\cdots			Pump: 10 -inch, 4 -stege, set at 120 feet. fect, 10 feet of suction nipe. Pump cclumn and sucticn pipe is 8 inchos in diameter.
642	--	--	T, G	Irr	Casing: 150 feet of 16 -inch, lower 80 faet perforated. Driller estimates yield as 704 igallons a minuto. See log.
643	--	--	Non9		Driller reports that insufficient water sand tc sumply an irrigation plant was pene-
644	43.2	Oct. 4, 1944	T, G	Irr	Casing: 145 feet of l5-inch, screted; abandened well. foet. Pump: No. 12,2 -stage, set at 145 foet. Driller's log shows chief aquif is is sand and gravel at $127-145$ feet.
645	50.1	Doc. 4, 1944	T,G	Irr	Casing: 145 feat of 15 -inch. Pump: 12inch, 2-stage, set at 90 feet. Owner reports 35 feet of drawdown after pumping 1,000 gallens a minuta for several days.
646	--	--	T, G	Irr	Pump: 10-inch, 4-stage, set at 110 feet, 10 feot of 8 -inch suction pipe.
647	--	--	T,G		Same as well 646 excopt setting is 120 fe .
643	--	--	T, G	Irr	Same as well 646 except setting is len leet.

Reccrds of wolls and springs in Lubbcok County--Continued

Well	WATTR Below measuring point (ft.)	LFiVEL Date of measurement	'Method: of lift b/	$\begin{aligned} & \text { Use } \\ & \text { of } \\ & \text { water } \\ & c / \end{aligned}$	Remarks
649	--	--	C, G	Irr	Irrigates a few acres of truck.
650	--	--	T,G	Irr	Cased to 180 feet. Pump: 10-inch, 4stage, set at 140 foet, 10 feet of suction
651	--	--	None	N	Driller reperts very pipe. See log. little water send was ponetrated and well
$\overline{652}$		--	Nans	N	Lcceted ebcut 0.3 mile was abandened. south of well 651. Test indicated well would yield about 125 gallons a minute,
$\overline{653}$		--	T, E	P,S	Licated absut $\frac{1}{2}$ mile scuth of well acocrding to driller. 52 . Driller estimates well will yield 700 gallons a minute.
654		--	T, E	F,S	Lccated about 0.3 mile east of well 653. Estimated yield, 400 gallons a minute
655		--	T, G	Irr	gccording to driller.
656	--	--	C,W	D,S	No casing in tcp; 40 feet of perforated pipe in bcttcm.
657	--	--	T, G	Irr	
$\overline{65}$	77.4	ept.25, 1944!	T,G	Irr	Casing: 150 feet of 12 -inch, lewer 70 fect perforated. Fump: 10-inch, 2-stage, set at 110 feet, 10 feet of 8 -inch suction pipe Had to "mud hce" well to clier up locse
659	--	--	T, G	Irr	Pump: 12 -inch, 3 -stage, water sand. set at 110 feet, 10 feet of suction pipe.
660	--	--	$\begin{gathered} \bar{T}, \mathrm{E}, \\ 25 \end{gathered}$		Casing: 117 feet $2 f$ l2-inch. Pump: 10inch, 3 -stage, set at 80 feet, 10 feet of
661	--	--	T, E	F, 3	Surplies municipal B-inch suction pipe. airpert. Driller reperts that "percus sandrcck" at 85 to 95 feet supplies most of
662	--	--	T, 号	Irr	Casing: 141 feet of 15 -inch, the water. lower 80 feet perfcrated. Pump: 10-inch, 3-stage, set at 110 fret. See lcg.
663	--	--	T, G	Irr	Pump: 10-inch, 3-stage, set at 80 feet, IN feet of suction pipe. Fump column and suction pipe is of 6 -inch dismeter.
664	--	--	T, E	Irr	
665	--	--	T, G	Irr	Irrigates several acres of truck.
$\overline{666}$	59.2	Sept.10, 1940	T, G	Irr	Casing: 140 feet of 16 -inch, lower 75 feet perforated. Pump: 12-inch, 2-stage, set at 90 feet, 30 foet of suction pipe. Drawdewn 24 feet after vumping 1,100 gallcns a minute (weir measurement) for 141 hours on test in
667	--	--	C,W	D, S	September 1940
668	--	--			Pump: 12 -inch set at 100 feet, 10 feet suction pipe. Tenant reports coarse grarel from 157 to 177 foot.

Records of wells and springs in Lubbock County--Continued

Well	Distance from post office at Lubbock	Owner	Driller	Date ccm-pleted	Depth of well (ft.)	Diameter of well (in.)	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (ft.) }{ }^{\prime} \text { ' } \end{gathered}$
	$\begin{aligned} & 3 \text { miles } \\ & \text { northeast } \end{aligned}$	E. L. Steck	I. C. Harrison et al.	!1941	5,510	--	--
	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	Harvey Allen	L. A. Peeples	1941	147	16	1.5
671	$\begin{aligned} & 2 \frac{1}{4} \text { miles } \\ & \text { northeast } \end{aligned}$	Mollio D.Abernathy	B. B. Baron	!1941	190	15	1.0
672	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	C. R. Styles	+		80	6	--
673	$3 \frac{3}{4}$ miles northeast		- --	[1943	126	14	--
674	3 $\frac{1}{2}$ miles northeast	Bedford Shearer	Bud Gibbons	1943	118	15	--
675	$\begin{aligned} & 3 \text { miles } \\ & \text { northeast } \end{aligned}$	J. A. Hodges	- --	1944	150	$12 \frac{1}{2}$	--
676	do.	Kenneth Bozeman	R. F. Davis	1941		$12 \frac{1}{2}$	--
677	$\begin{aligned} & 2 \frac{3}{4} \text { miles } \\ & \text { northeast } \end{aligned}$	--	- --	,1944	--	--	--
	$2 \frac{1}{4}$ miles ncrtheast	K. H. Hester	--	1938	--	--	--
670	$\begin{aligned} & 2 \text { miles } \\ & \text { east } \end{aligned}$	--	$1{ }^{1}$		- --	--	--
680	$\begin{aligned} & 2 \text { miles } \\ & \text { west } \end{aligned}$	Texas Technological College	L. A. Feeples	$\begin{array}{\|l\|} \hline 1944 \\ \hline \end{array}$	154	14	1.2
631	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	20.	---	1930	--	--	--
682	do.	do	- --	1930	--	--	--
683	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { wost } \end{aligned}$	do.	$1{ }^{--}$	1930		5	0.8
684	$\begin{aligned} & \hline 4 \text { miles } \\ & \text { northwest } \end{aligned}$	do.	L. A. Feeples	1942	168	14	--
685	$3 \frac{1}{4}$ miles northwest	L. H. Redwine	--	1938	100	--	--
686	$2 \frac{1}{2}$ miles northwest	H. W. Stanton	--	1938	130	--	--
687	$2 \frac{1}{4}$ miles northwest	do.			--	--	--

Records of wells and springs in Lubbock County--Continued

Roccrds of wolls anc springs in Lubbock County--Continued

Whll	Distance from post office at Lubbock	Owner	Driller	Date com- ple- $t \stackrel{d}{ }$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Diameter of well (in.)	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { gbove } \\ & \text { ground } \\ & \text { (ft.) a/ } \end{aligned}$
712	$\begin{aligned} & 6 \text { miles } \\ & \text { ncrthwest } \end{aligned}$	Reba B. Groen Well 1	D. Nordyke	11941	105	151 $\frac{1}{2}$	2.0
713	(dc .	Reba B. Green Well 2	dc.	1941	105	15 $\frac{1}{2}$	1.0
714	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { ncruthwest } \end{aligned}$	J. A. Hodgos	- --	1944	140	--	2.0
715	6 miles n: rthwest	H. V. Frazel	- --	;01d	49	6	0.0
716	4 miles northwest	Will Stacy	--		40	6	--
717	$\begin{aligned} & 6 \text { miles } \\ & \text { ncrthwest } \end{aligned}$	C. W. Meyers	F. R. Kolly	;1941	166	$\begin{aligned} & 15, \\ & 13 \end{aligned}$	--
718	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { northwrst } \end{aligned}$	R. L. Oldham	L. A. Peeples	;1937	210	14	--
719	6 miles west	W. B. Gregery	dc.	1937	179	14	--
720	$5 \frac{1}{2} \text { miles }$;west	J. C. Davis	Georee Andersin	1943	179	14	--
721	$\begin{aligned} & 4 \frac{1}{z} \text { miles } \\ & \text { inest } \\ & \hline \end{aligned}$	John King		1939	170	--	--
722	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	B. B. Kent	Gecrge Anderscn	1943	177	121	--
723	$\begin{aligned} & 6 \text { miles } \\ & \text { west } \end{aligned}$	J. H. Whiteside	--	;1941	--	--	--
724	$\begin{aligned} & 7 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	M. S. Gacdpasture	L. A. Peeples	1935	140	14	0.7
725	dc.	J. W. Gcodpasture	F. R. nelly	1940	143	16	--
723	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { incrthwest } \\ & \hline \end{aligned}$	W. F. White	--	--	--	--	--
727	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	J. H. Abol	--	--	--	--	--
72.8	$\begin{aligned} & 9 \text { miles } \\ & \text { incrthwost } \\ & \hline \end{aligned}$	J. R. Jameson	--	1940	160	15	--
729	10 miles northwest	J. B. and Aubrey Edwards	L. A. Peeples	1940	150	15	--
730	dc.	C. L. Bryan	do.	1342	162	14	\cdots
731	9 miles ncrthwest	M. T. Stanton	- --	1937	170	16	1.8

Roccrds if wells and springs in Lubbcck County--Continued

Well		Owner	Driller	Date com- iple- itgd	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Diameter cf well (in.)	Height of measuring peint above ground (ft.) a/
732	$\begin{aligned} & 8 \text { miles } \\ & \text { ncrthwest } \end{aligned}$	C. A. Gibson	--	;1937	161	15	1.5
733	do.	G. W. Williams	0. S. Brcek	;1941	160	$15 \frac{1}{2}$	--
734	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	R. D. Fielmes	---	1938	--	--	--
735	$\begin{aligned} & 10 \text { miles } \\ & \text { ncrthwest } \\ & \hline \end{aligned}$	R. L. Polk	L. A. Feoples	1943	139	121	--
736	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Glenn Blackman	do.	1944	126	15	--
737	dc.	do.	do.	1944	130	--	--
738	11 miles northwest	C. C. Vance	George Andersen	1943	120	$12 \frac{1}{2}$	1.5
739	$13 \frac{1}{2}$ miles northwest	E. A. Preston	L. A. Peeples	1943	192	121 $\frac{1}{2}$	--
740	$\begin{aligned} & 16 \frac{1}{2} \text { miles } \\ & \text { ncrthwest } \end{aligned}$	$\begin{gathered} \text { Presbyterian } \\ \text { Church } \\ \hline \end{gathered}$	--	$1{ }^{1} 43$	--	--	--
741	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { nerthwost } \end{aligned}$	Jce Sccter	--	11941	--	--	--
742	$\begin{aligned} & 14 \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	T. M. Lawson	--	1942	--	--	--
743	$\begin{aligned} & 15 \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	J. T. Treadwell	J. N. Smiley	1938	146	--	--
744	$\overline{d c} .$	dc.	do.	1938	160	127	--
745	do.	do.	dc.	1938	165	--	--
746	do	Jim Ashburn	D. C. Howell	1.942	159	121 $\frac{1}{2}$	--
747	do.	O. A. Wocdy Well 1	L. A. Feeples	1140	184	$\begin{aligned} & 15 \\ & 12 \frac{1}{2} \end{aligned}$	--
748	do.	O. A. Woedy Well 2	B. B. Baron	1940	186	14	--

Well	WATER Below measuring point (ft.)	$\frac{\text { LEVEL }}{\text { Date of }}$	Methodof lift $b /$	Use of water c/	Remarks
732	41.8	Dec. 18, 1937	T, G	Irr	Casing: 134 feet of 15 -inch. Irrigated 158 acres of cotton and grain sorghum in 1938. Tenant reports capacity of well is
733	--		T,G		Casing: about 450 gallons a minute. in 50 feet of $15 \frac{1}{2}-$ inch, lower 120 fee's perforatod. Pump: 12-inch, 2-stage, set at 80 ifeet, 20 feet of suction pipe. See log.
734			T,G	Irr	
735	--	--	T, G	Irr	Casing: 134 feet of $12 \frac{1}{2}-$ inch: Pump: $10-$ inch. 4-stage, set at 70 feet, 13 feet of
736	--	--	T,G	Irr	Casing: 126 feet $[8$-inch suction pipe. iof i5-inch. Pump: 12-inch, 2-stage, set lat 100 feet, 10 feet of suction pipe. See
737	${ }^{--}$	--	None		Diriller reports very little water samplog. ;was penetratied; estimates capacity of well iwas about 300 gallons a minute. Cretaceous lays were roted in the slush dump ly the
738	40.1	Oct. 9,.1944!	T,G	Irr	Casing: 120 fiset of $12 \frac{1}{2}$-inch. fwriter. Pump: 10-inch, 3-stage, set at 80 feet, 10 feet of 8 -inch suction pipe. Irrigated 100 acres in 1944. Driller's log shows water sand at 45-67 feet, 87-95 feet, and 110-120
739	--	--	T, G	Irr	Casing: 192 feet of $12 \frac{1}{2}$-inch. feet. Pump: 10 -inch, 4 -stage, set at 120 feet, 10 feet of 8 -inch suction pipe. See log.
740	--	--	T, G	Irr	Cretaceous shales were noted in the slush dump ty the writer.
741	--	--	T, G		Pump: 12-inch, 2-stage, set at 80 feet, il feet of 9 -inch suction pipe.
742	--	--	None		Owner reports that yield was insufficient ifor irrigation; abandoned and filled.
743	--	--	None	N	Do.
$\overline{744}$	--	--	T,G	Irr	Pump: 12-1nch, 2-stage, set at llo feet, 8-inch column pipe. Chief aquifer, coarse yellow sand and gravel at 98 to 146 feet. Yellow and blue clay from 146 to lfC feet.
745	--	--	T, G	Irr	Driiler reports yield of well as about 45C gallons a minute.
$\overline{746}$	d/68	May 1942	T, G	Irr	Casing: 157 feet of $12 \frac{1}{2}-i n c h$. Pump: $10-$ inch, 4-stage, set at 120 feet. Chief aquifer, yellow sand and gravel at 118-130 feet. Alternating beds of yellow clay and
747	d/06	--	T, G	Irr	Casing: 148 sand from 130 to 159 feet. feet of $15-1 n c h ; 41$ feet of $12 \frac{1}{2}-$ Inch. Pump: 12-inch, 2-stage, set at 140 feet, 10 feet of suction pipe. Driller reports water sand at 196-149 feet and 166-184 feet.
748	d/105	July 1940	T,G	Irr	Casing: $14 \in$ feet of 14 -inch. Pump: 12inch, 2-stage, set at 140 feet.

Records of wells and springs in Lubbock Ccunty--Continued

Well	```Distance frcm pust office at Lubbcck```	Owner	Driller	Date com- ple- ited	Depth of well (ft.)	Diamieter of iwell (in.)	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { abcve } \\ \text { grcund } \\ \text { (ft.) a/ } \\ \hline \end{gathered}$
	14 $\frac{1}{2}$ miles northwest	J. J. Callaway	H. V. Frice	1942	212	14	--
750	$\begin{aligned} & 14 \text { miles } \\ & \text { northwest } \end{aligned}$	Bellows and Greer Well 1	L. A. Peeples	1941	167	15	--
751	dc.	$\begin{gathered} \text { Bellcws and Greer } \\ \text { Well } 6 \end{gathered}$	do.	1942	146	15	--
752	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Bellcws and Greer Well 7	do.	L942	160	15	--
753	$\begin{aligned} & \hline 14 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { Bellcws and Greer } \\ & \text { Well } 4 \end{aligned}$	do.	1941	144	15	--
754	$\begin{aligned} & \text { 13 } \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Bellows and Grger Well 5	dc.	$!1942$	114	$\overline{15}$	--
755	$\begin{aligned} & 13 \text { miles } \\ & \text { northwest } \end{aligned}$	Bellows and Greer Well 3	do.	[1941	124	--	--
756	do.	Bellcws and Greer	dc.	1941	140	$\overline{15}$	--
757	14 miles ncrthwest	L. L. Lindsey	;George Anderscn	1943	192	$12 \frac{1}{2}$	--
758	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { nurthwost } \end{aligned}$	Burl Griffith	L. A. Feaples	1942	152	$\overline{14}$	--
759	$\begin{aligned} & 11 \text { miles } \\ & \text { northwost } \\ & \hline \end{aligned}$	Gourge Baumgart	-	i1938	- -	--	--
760	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	S. H. Rcbinson	E. S. Emerscn	1941	161	16	--
761	de.	Lubbcek Army Air Fcrces Base	Nurdyke Lumber Co.	1941	157	12	--
762	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	dc.	1941	155	12	--
703		d ${ }^{\text {d }}$	$\vdots \quad \mathrm{dc}$	$\begin{array}{\|c\|} \hline 1941 \\ \\ \hline \end{array}$	152	$\begin{aligned} & 121 \\ & 10 \frac{1}{2} \end{aligned}$	--

Records of wells and springs in Lubbock County－－Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Well \& Distance from post office at Lubbock \& Owner \& Driller \& Date icom－ ple－ ted \& Depth of well （ft．） \& \[
\begin{aligned}
\& \text { Diam- } \\
\& \text { eter } \\
\& \text { of } \\
\& \text { well } \\
\& \text { (in.) } \\
\& \hline
\end{aligned}
\] \& Heicht of
measuring
point
above
ground
（ft．）a／ \\
\hline 764 \& \[
\begin{aligned}
\& \text { 101 } \frac{1}{2} \text { miles } \\
\& \text { west }
\end{aligned}
\] \& Lubbock Army Air Forces Base \& Nordyke Lumber Co． \& 1941 \& 161 \& \[
\begin{aligned}
\& 12, \frac{1}{2} \\
\& 10 \frac{1}{2}
\end{aligned}
\] \& －－－ \\
\hline 765 \& \[
\begin{aligned}
\& 10 \frac{1}{4} \text { miles } \\
\& \text { west }
\end{aligned}
\] \& A．L．King \& O．S．Brock \& 1941 \& 160 \& 15 \& － \\
\hline 766 \& \[
10 \text { miles }
\]
west \& W．C．Huffaker \& R．F．Davis \& \& 167 \& 15 \& －－ \\
\hline 767 \& do． \& C．R．Moore \& Ceorge Anderson \& ＇1944！ \& 190 \& \(12 \frac{1}{2}\) \& \(\cdots\) \\
\hline 768 \& do． \& Aubrey Lane \& －－ \& 1944 \& －－ \& －－ \& －－ \\
\hline 769 \& \[
\begin{aligned}
\& \text { l0⿳⺈⿴囗十一}{ }^{2} \text { miles } \\
\& \text { west }
\end{aligned}
\] \& C．B．Self \& B．B．Baron \& 1940 \& 183 \& \[
\begin{aligned}
\& 14 \frac{1}{2}, \\
\& 12 \frac{1}{2}
\end{aligned}
\] \& －－ \\
\hline 770 \& \[
\begin{aligned}
\& 11 \frac{1}{2} \text { miles } \\
\& \text { west } \\
\& \hline
\end{aligned}
\] \& S．H．Bradford \& －－ \& ＇1942 \& 170 \& 14 \& －－ \\
\hline 771 \& \begin{tabular}{l}
\[
12 \text { miles }
\] \\
west
\end{tabular} \& J．S．Sharp \& F．R．Kelly \& ；1941］ \& 164 \& 15 \& －－ \\
\hline 772 \& do. \& J．R．Cates \& W．F．Crawford \& \[
1941
\] \& 188 \& 15 \& －－ \\
\hline \[
770
\] \& \[
\begin{aligned}
\& 13 \text { niles } \\
\& \text { west }
\end{aligned}
\] \& L．V．Preston \& Van Fate \& ＇1941！ \& 170 \& －－ \& －－ \\
\hline 774 \& \[
\begin{aligned}
\& 12 \frac{1}{6} \text { miles } \\
\& \text { west }
\end{aligned}
\] \& Clowe and Cowan \& －－ \& \[
1935
\] \& 175 \& －－ \& －－ \\
\hline 775 \& \[
\begin{aligned}
\& 11 \text { miles } \\
\& \text { southwest }
\end{aligned}
\] \& W．O．Moore \& －－ \& 1943 \& 170 \& －－ \& －－ \\
\hline 776 \& 10 \(\frac{1}{2}\) miles southwest \& T．M．Nelson \& E．S．Emerson \& i1941 \& 172 \& 151 \(\frac{1}{2}\) \& －－ \\
\hline \& \[
\begin{aligned}
\& 13 \text { miles } \\
\& \text { southwest }
\end{aligned}
\] \& －－Manning \& George Anderson \& ＇1．944 \& 166 \& 14 \& －－ \\
\hline 778 \& \[
\begin{aligned}
\& 14 \text { miles } \\
\& \text { southwest }
\end{aligned}
\] \& L．E．Tucker \& －－ \& \(\square^{1938}\) \& －－ \& －－ \& －－ \\
\hline 779 \& \[
13 \frac{1}{2} \mathrm{miles}
\]
southwest \& Ernest Marquis \& Bud Gibbons \& ＇1941！ \& 165 \& \(15 \frac{1}{2}\) \& －－• \\
\hline 780
781 \& do．
13 miles \& W．B．Atkins \& George Andersor \& ：1943 \& 174

170 \& 12 \& －－－－－－－

\hline \& southwest \& \& \& \& \& \&

\hline
\end{tabular}

Well	WATAR Below measuring point (ft.)	$\begin{aligned} & \text { LEVEL } \\ & \text { Date of } \\ & \text { measurement } \end{aligned}$	Method of lift b/	$\begin{aligned} & \text { Use } \\ & \text { of } \\ & \text { water } \\ & \text { c/ } \end{aligned}$	Remarks
764		--	T, G	F,S :	Test well 4; used as standiby. Casing: 135 feet of 12 -inch; 31 feet of $10 \frac{1}{2}$-inch. After test pumping for 44 hours yield of well increased from 400 to about 700 gallons a
765	d/80	1941	T, ${ }^{\text {a }}$	Irr	Cased tc 160 feet, lower 80 feet minute. perforated. Pump: 12-inch, 2-stage, set lat 110 feet, 10 feet of suction oipe. See
$\overline{766}$	--	--	T, G	Irr	Casing: 167 feet of 15 -inch. log. Fump: 12-inch, 3 -stage, set at 150 feet. Driller reports water sand and gravel at 185-120 feet, 134-144 feet, and 145-167 feet
767	--	--	T, ${ }^{\text {a }}$	Irr	Casing: 186 f et of 12 -inch. Fump: $10-$ inch, 4 -stage, set at 140 feet, 10 feet of
768	--		T, G	Irr	suction rine. See log.
769	d/79	Feb. 21, 1940	T, G		Cased to 183 feet. Pump: l2-inch, $2-$ stage, set at 130 fest, 10 feet of suction pipe. Driller reports water sand at 103133 feet, 139-156 feet, and 162-180 feet.
770	a/76	1942	T, ${ }^{\text {a }}$	Irr	Casing: l70 feet of 14 -inch. Fump: 12inch, 2-stage, set at 130 feet, 10 feet of
771		\cdots	T, ${ }^{\text {G }}$	Irr 10	Casing: 164 feet of 15 - suction pine. inch, lower 100 fect perforated. Fump: 12 -inch, 2-stage, set at 130 feet, 10 feet
772	d/80	Nay 1941	T, ${ }^{\text {a }}$		Casing: 188 feet of of suction pine. 15-inch, lower 100 fest perforated. Pump: 12 -inch, 2-stage, set at 130 feet. Driller's log shows water sand and gravel at 90-105 feet, 107-120 feet, 127-150 feet, and 160-
773	--	--	T, G	$\begin{array}{ll} \hline \text { Irr } \\ \hline \end{array}$	Cascd to 137 feet. Pump: 172 feet.
774	--	-- \|	T, G	$\overline{\text { Irr }}$	Pump: 12-inch, 3-stage of suction nipe. Owner reports yield as absut 700 gallons a
775	--	--	T, G	Irr	Pump: 12-inch, 2-stage, set at 120 feet, 10 foet of 8 -inch suction pipe.
776	-- 	--	T, ${ }^{\text {G }}$		Casing: 172 feet of $15 \frac{1}{2}$-inch. Fump: 12inch, 2-stage, set at 130 foet, 10 feet of 8 -inch suction pipo. Loz shows water sand and gravel at 130-160 feet, and 164-169
777	d/84	Feb. 10, 1944	T, ${ }_{\text {a }}$		Casing: 166 feet of 14 -inch. Owner reports chief water sand is from 115
778	--	--	T, ${ }^{\text {a }}$	Irr	L to 166 fest.
779	--	--	T, G		Casing: 148 fret of $15 \frac{1}{2}$-inch. Pump: 12inch, 2-stage, set at 140 feet, 10 feet of
780	--	--	None	N	Owner raports yield was about 350 sucticn pipe. adcaute far a minute which was not
781	--	--	T,G	Irr	Yield reparted abandoned well. See log. about 600 gallons a minute.

Records of wells and springs in Lubbock County--Continued

Well Distance from post office at Lubbock	Owner	Driller	Date ic.m-iploted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { woll } \\ & \text { (ft.) } \end{aligned}$	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { of } \\ & \text { well } \\ & \text { (in.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (ft.) al } \end{aligned}$
782 12 miles southwest	Len MeCloilan	W. P. Crawford	;1941	168	15	--
783 $14 \frac{1}{2}$ miles snuthwest	S. J. Oliver	--	1943	--	--	--
784 14 miles southwest	J. T. Leach	--	;1938	--	--	--
785 $12 \frac{1}{2}$ miles southwest	Fred A. Groves	--	1941	198	$\begin{aligned} & 15, \\ & 12 \end{aligned}$	--
786 12 miles scuthwest	A. L. Walkər	--	1939	165	18	--
787 15 miles southwest	R. S. Hobgood	B. B. Baron	1940	193	$\begin{aligned} & 15 \frac{1}{2}, \\ & 12 \frac{1}{2} \\ & \hline \end{aligned}$	--
788 18 miles southwest	$\begin{aligned} & \text { W. and F. E. } \\ & \text { McNabb } \end{aligned}$	--	!1940	--	--	--
789 $18 \frac{1}{2}$ miles southwest	do.	--	;1943	--	--	--
790 do.	do.	--	1940	--	--	--
 791 $14 \frac{1}{2}$ miles southwest	J. C. Stanford	W. P. Crawford	¢1941	165	14	--
792 $11 \frac{1}{2}$ miles southwest	B. A. Morrow	--	1944	160	--	--
793 13 miles southwest	J. T. Hutchinson	--	1943	-	--	--
$\begin{aligned} & 7 \text { lid miles } \\ & \end{aligned}$	J. B. McCauley	Green Machinery Co.	1940	200	16	--
$\begin{aligned} & 75: 10 \text { In les } \\ & \text { southwest } \end{aligned}$	do.	--	1940	--	--	--
	E. L. NicCrummen:	--	'1938	--	--	--
$79 \mathrm{do}$	Jenkins Brother3	--	'1941	--	--	--
758 $6 \stackrel{y y}{2}$ miles southwest	Clovis Vaughn	--		--	--	--
8 miles southwest	J. C. Clark	--	1945	--	$1{ }^{1}$	--
797:$9 \frac{1}{2}$ miles southwest	A. J. Nordycke	A. J. Nordycke	1943	; --	--	---
300 9 miles west	J. Douglas	--	1944	--	--	--
801: do.	John H. Burroughs	Green Machinery Co.	1942	210	151	--
802 $8 \frac{1}{2}$ miles west	Clowe and Cowan	--	1343	-	--	--
$\begin{array}{c:c} 003 \text { miles } \\ & \text { w与st } \\ \hline \end{array}$	do.	A. J. Nordycks	${ }^{1940}$	---	--	--

Records of wells and springs in Lubbock County--Continusd

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Well \begin{tabular}{c:c}
\hline \& Distance \\
\& from \\
\& post office \\
\& at \\
\& Lubbock \\
\hline
\end{tabular} \& Owner \& Driller \& Date © \(\mathrm{com}-\) pleted \& Depth of well (ft.) \& Diameter of well (in.) \& \[
\begin{aligned}
\& \hline \text { Height of } \\
\& \text { measuring } \\
\& \text { point } \\
\& \text { abcve } \\
\& \text { ground } \\
\& \text { (ft.) }{ }^{\text {a/ }} \\
\& \hline
\end{aligned}
\] \\
\hline 820a \(13 \frac{1}{2}\) miles \& C. L. Griffin \& -- \& 1945 \& -- \& 14 \& 4.0 \\
\hline \(8200 \mathrm{l}: 13 \mathrm{miles}\) \& W. B. Wevels \& -- \& 1944 \& -- \& -- \& -- \\
\hline 821 do. \& A. E. Hlavaty \& P. Crawford \& !1340 \& 161 \& \[
\begin{aligned}
\& \hline 18, \\
\& 15
\end{aligned}
\] \& -- \\
\hline 822 \begin{tabular}{l}
12 miles \\
\\
\\
\\
iscuth
\end{tabular} \& W. M. Martin \& do. \& 1941 \& 165 \& 15 \& -- \\
\hline \[
\begin{array}{c:l}
\hline 823 \& \begin{array}{l}
11 \frac{1}{2} \text { miles } \\
\text { isouth }
\end{array} \\
\hline
\end{array}
\] \& J. W. Bounds \& -- \& !1945 \& -- \& -- \& -- \\
\hline \(824: \begin{array}{l:l}1 l \text { miles } \\ \text { south }\end{array}\) \& John Ehler \& P. Crawford \& 1941 \& 183 \& 15 \& -- \\
\hline \begin{tabular}{l:l}
825 \& 12 miles \\
isouth
\end{tabular} \& F. V. Brown \& -- \& 1943 \& -- \& -- \& -- \\
\hline \[
826 \begin{array}{ll}
11 \frac{1}{2} \text { miles } \\
\& \text { south }
\end{array}
\] \& G. C. Beard \& -- \& 1944 \& -- \& -- \& -- \\
\hline \[
\begin{array}{c|l}
\hline 827 \& 10 \frac{1}{2} \text { miles } \\
\& \text { south }
\end{array}
\] \& J. R. Whatley \& -- \& 1940 \& 160 \& \[
\begin{aligned}
\& 16, \\
\& 14 \\
\& \hline
\end{aligned}
\] \& -- \\
\hline \(828:\)\begin{tabular}{l}
9 miles \\
isouth
\end{tabular} \& W. E. Kittrell \& -- \& 1944 \& -- \& -- \& -- \\
\hline \begin{tabular}{l:l}
829 \& \(8 \frac{1}{2}\) miles \\
\& south
\end{tabular} \& J. M. Macry \& P. Crawford \& 1941 \& 150 \& 15 \& -- \\
\hline 930

9 south \& Alvin B. Allen \& do. \& 1941 \& 147 \& 15 \& --

\hline 831 | 9.1 | |
| :--- | :--- |
| 9 miles | |
| | south |
| | |. \& H. Fehliason

Well 2 \& A. Peeples \& 1340 \& 162 \& $$
\begin{aligned}
& 15,1 \\
& 12 \frac{1}{2}
\end{aligned}
$$ \& --

\hline $832:$| 9 milgs |
| :---: |
| |
| south | \& H. G. Fehlioson V:ell 1 \& -- \& 1937 \& -- \& -- \& --

\hline $833:$	$8 \frac{1}{2}$ miles
scuth	\& F. E. Minssen \& . B. Baron \& 1939 \& 164 \& \[

$$
\begin{aligned}
& 15 \frac{1}{2}, \\
& 14
\end{aligned}
$$
\] \& --

\hline $834: 8$ miles \& R. L. Stewart \& A. Feeples \& 1940 \& 178 \& 14 \& --

\hline | 835 | $8 \frac{1}{2}$ miles |
| :--- | :--- |
| | soutr |
| | | \& A. T. Yancey \& rge Anderscn \& 1942 \& 157 \& $12 \frac{1}{2}$ \& --

\hline | 836 | 10. |
| :--- | :--- |
| | | \& Alvin B. Allon \& do. \& 1942 \& 160 \& 14 \& --

\hline 837 | 8 miles |
| :--- |
| |
| |
| |
| | \& J. C. Kerr \& P. Crawford \& 1941 \& 160 \& 15 \& --

\hline
\end{tabular}

Nell	EATMR measuring pcint (ft.)	LTVEL Date $C f$ Methed measurement of lift $\mathrm{b} /$	Use of water c/		Remarks
820	92.6	Mar. 5, 10cs: T, G			F Februar
$\overline{\mathrm{BROb}}$	--	T,G	Irr		
Cl		T, G			$\begin{aligned} & 161 \text { feet } \\ & 0 \text { feet, } \end{aligned}$
882	d/87	May 31, 1941: T,G	Irr		$\begin{aligned} & 165 \text { feet } \\ & \text { tare, set } \end{aligned}$
323		T, G	Irr		8 -inch
क्व 1	d/86	Apr. 18, 1941; T,G	$\overline{\text { Irr }}$	$\begin{aligned} & \mathrm{Ca} \\ & \text { pe } \\ & \mathrm{at} \\ & \mathrm{fe} \end{aligned}$	167 feet P. Pump t. Lcg -1.35 feet
36		T, G	Irr		
82.6	-	T, G	Irr		
827		T, G	Irr	$\begin{gathered} \mathrm{Ca} \\ \text { an } \end{gathered}$	$\begin{aligned} & 160 \text { feet } \\ & \text { feet. } \end{aligned}$
888		T, ${ }^{\text {a }}$	Irr		
829!		T,G		$\begin{aligned} & \text { Co } \\ & \text { pe } \\ & \text { at } \end{aligned}$	$\begin{aligned} & 144 \mathrm{f} \in e \mathrm{t} \\ & \text { 1. Fump: } \\ & \text { et, } 10 \mathrm{f} \end{aligned}$
830	d/92	$\text { Apr. } 4,194 \mathrm{~L}, \mathrm{~T}, \mathrm{G}$			47 feet tage, se
851	1/82	Feb. 1940, T,	Irr		$\begin{aligned} & 8 \text {-inch } \\ & \text { of } 15-\text { in } \\ & \text { on feet } \\ & \text {-inch, } 2 \end{aligned}$
832	--	T, G	Irr		
833	2/70	$\text { Aug. 1939: T, } \mathrm{F}$	Irr	$\begin{aligned} & \mathrm{Ca} \\ & \text { se } \\ & \text { ye } \end{aligned}$	$\begin{aligned} & 16 \mathrm{~s}_{\mathrm{f}} \mathrm{fet} \\ & \mathrm{feet} . \\ & \text { rl wher } \end{aligned}$
834	--	T, G	Irr	$\begin{aligned} & \mathrm{CE} \\ & \mathrm{Pl} \\ & 20 \\ & 15 \\ & 18 \end{aligned}$	175 feet inch. 2suction deep but
835	--	T,G	Irr	$\begin{aligned} & \text { Pu } \\ & \text { se } \\ & 90 \\ & \mathrm{fe} \\ & \hline \end{aligned}$	inch, 4-s feet. t, send $1 \div 0-155$
836		T, G	Irr	$\begin{aligned} & \mathrm{Ca} \\ & \text { in } \\ & \mathrm{fe} \\ & \mathrm{Dr} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { j8 fect } \\ & \text { mp: li } \\ & \text { foet cif } \\ & \text { eperts we } \end{aligned}$
837	d/30	Apr. 10, 19A1.: T, ${ }^{\text {a }}$	Irr	$\begin{aligned} & C g \\ & 16 \\ & r \\ & \mathrm{fe} \\ & \mathrm{fe} \end{aligned}$	$\begin{aligned} & 124-130 \\ & \text { of } 15-\text { inc } \\ & \text { imp: } 12-j \\ & 11 \Leftrightarrow r \text { repd } \\ & 119-158 \end{aligned}$

Records of wells and springs in Lubbock County--Continusd

Well	Distance from post office at Lubbock	Owner	Driller	Date com-ipleited	Depth of well (ft.)	Diameter of wel 1 (in.)	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { gbove } \\ & \text { ground } \\ & \text { (ft.) a } \\ & \hline \end{aligned}$
838	8 miles south	$\begin{aligned} & \text { R. D. Holmes } \\ & \text { Well } 3 \end{aligned}$	--	1941	200	15	--
839	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { scuth } \end{aligned}$	W. J. Baker Well 1	B. B. Baron	1939	150	15	1.4
839a	$\begin{aligned} & 8 \text { miles } \\ & \text { south } \end{aligned}$	$\begin{aligned} & \text { W. J. Baker } \\ & \text { Woll } 2 \end{aligned}$	--	1945	156	12	1.3
840	do.	R. L. Stewart	--	1941	--	--	--
841	$\begin{aligned} & 7 \text { miles } \\ & \text { south } \end{aligned}$	H. B. Davis	F. E. Mauldin	1940	166	16	--
842	do.	R. L. Stewart	George Anderson	1942	150	14 $\frac{1}{2}$	--
843	$\begin{aligned} & 7 \frac{1}{\frac{1}{2} \text { miles }} \\ & \text { south } \end{aligned}$	Joe Bowman	--	1943	--	--	--
844	$\begin{aligned} & 6 \text { miles } \\ & \text { south } \end{aligned}$	do.	--	1943	165	--	--
845	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	Dr. J. T. Hutchinson	--	1943	--	--	--
846	do.	Dr. M. C. Overton	--	1940	--	--	--
847	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { south } \\ & \hline \end{aligned}$	Texas Highway Department	--	1936	120	--	1.5
848	$\begin{aligned} & 1 \frac{3}{4} \text { miles } \\ & \text { south } \end{aligned}$	Joe W. Bowman	--	!1935	--	--	--
849	$\begin{aligned} & 2 \text { miles } \\ & \text { southeast } \end{aligned}$	R. D. Brown	George Anderson	1943	125	15	--
850	$\begin{aligned} & 2 \frac{1}{4} \text { miles } \\ & \text { southeast } \end{aligned}$	Lubbock Memorial Park	--	1941	120	--	--
851	$\begin{aligned} & 3 \text { miles } \\ & \text { southeast } \end{aligned}$	City of Lubbock	B. B. Baron	1940	105	--	--
852	$\begin{aligned} & 4 \text { miles } \\ & \text { scutheast } \end{aligned}$	L. W. Bakor	--	--	--	--	--
853	$4 \frac{3}{4}$ miles scutheast	J. L. Birdwoll	--	1937	200	--	--
854	2 $\frac{1}{2}$ miles southeast	K. Wolf	--	1940	--	--	--
855	$\begin{aligned} & 2 \frac{3}{4} \text { miles } \\ & \text { southeast } \end{aligned}$	--	--			! --	--
856	do.	T. J. James	--	!1936	120	--	--
857	$3 \frac{1}{4}$ miles southeast	Clint Breediove	L. A. Peeples	$\begin{array}{\|c\|} \hline 1942 \\ \\ \hline \end{array}$	121	\cdots	--

Reccrds of wells and springs in Lubbock County--Continued

Reccrds of wolls and sprinss in Lubbcck County--Continued

Logs of test holes drilled by City of Lubbock, Texas $\sqrt{1 /}$
(Drilled in February and March, 1945 by the Layne-Texas Co., Ltd., Houston)

Teat hole 1; 108 feet south and 69 feet east of the NW corner sec. 6, blk. A; $3 \frac{1}{2}$ miles northeast of post office at Lubbock. Surface altitude, 3,212.9 feet.

	Thickness (feet)	Depth (feet)
Quaternary and Tertiary (mostly Ogallala formation)		
Soil, sandy, brown	3	3
Clay, sandy, red and thin beds of sandy caliche, tar	10	13
Sand, fine to medium-grained, red	2	15
Clay, candy, and thin beds of caliche, pink-buff	9	24
Sand, silty, clayey, red	2	2.6
Caliche rock, buff-gray	2	28
Clay, sandy, red and callche, sandy, gray in alternating beds	S 17	45
Caliche, hard and soft layors, sandy, tan	6	51
Clay, sandy, red and caliche rock, light gray	12	63
Water level, 53.2 feet below land surface (measured 8 days after drilling)		
Sand, fine, red, and caliche, interbedded	4	67
Caliche, sandy, hard, light-gray	7	74
Sand, very calcareous, buff-gray	3	77
Sand, fine to medium-grained, buff-rod with thin layers of hard and soft caliche	30	107
Clay, sandy, red	5	112
Sand, medium to coarse-grained, buff-red	12	124
Sand and small gravel, brown	7	131
Clay, sandy, white	3	134
Cretaceoins		
Limestone, quartz and flint gravels in upper port, hard, yellow and gray	31	165
Limestone, dense, gray, hard and soft beds	16	181
Limestons and. shale, intorbedded, gray and dark 'blue	4	185
Sand, fine, very limy, gray	3	188
Shale, hard, blue-black and thin bedo of sand, gray	11	199
Sand, fine to medium-grained, gray and a few thin beds of shale, blue	16	215
Triassie, Dockum group		
Shale, greenish-blue and dark red	9	224
Shale, tough, dark red with thin beds of greenisn-blue, silty layers	20	244

[^2] (Continued on next page)

-: 0
 Logs of test holes drilled by the City of Lubbock--Continued

Test hole 2--Continued

	Thickness (feet)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
Quaternary and Tertiary (mestly Ogallala formation)		
Sand, reddish-buff and thin beds of porous (honeycomb) caliche and calcarocus sandstone	27	81
Caliche and clay, sandy, soft, reddish-buff	9	90
Sand and gravel, clean, cosrse, brewn	29	119
Clay, sandy, brcwn	2	121
Sand and gravel, clean, coarse, brown	5	126
Clay and sand in thin alternating beds, reddish-brown	10	136
Clay, sondy, red and brown	10	116
Sand, fine, red and clay, sandy, buff-red	14	160
Sand, fine to medium-grained, red	5	165
Caliche, perous (honeycomb), reddish-brown and thin beds of clay, silty, buff-red	7	172
Clay and caliche, sandy, brown and buff-red	10	182
Caliche rock, honeycomb, sandy, buffired	6	188
Sand and clay, red	6	194
Triassic, Dcckum grcup		
Shale, tough, dark red	10	204
Shale and siltstone, dark red	30	234

Test hole 3; 2,630 feet west and 15 feet scuth of the $N \mathbb{E}$ corner gec. 55 blk. A; $7 \frac{1}{3}$ miles northeast of post office at Lubbcck.
Soil, sandy, reddish-brown 4

Silt and fine sand, clayy, red , 6
Clay, sandy, red and caliche, light gray 13
Caliche, sandy, buff-ysllow, hard and soft layers 98
Caliche, hard and thin bads of sand, red 86
Caliche, sandy, buff-yellow and sand, fine red 1248
Sand, fine to medium-grained, calcareous, red 2068
Caliche rock, sandy, reddish-brown 20
Sand, locse, red $3^{+} \quad 73$
Lost circulation of drilling mud in porous zons or cevern and abandoned tost hole.

Test hole 4; 1,300 feet scuth and 73 feet east of the NW corner sec. 66 blk. A; 8 miles northeast of post office at Lubbock. Surface altitude, $3,181.3$ feet. Quaternary and Tertiary (mostly Ogallala formation)

Suil, sandy, brcwn 3
Silt. clay and caliche, sandy, reddish-brown 1215
Caliche, sandy, hard and soft layers, tan 15150
$\begin{array}{ll}\text { Caliche rock, herd, reddish-brown } & 77\end{array}$
Water level, about 34 feet below land surface
Sand, calcareous, tan 4
Sand, fine, red and thin layers of celiche 25
Caliche rock, hard, porous, red-buff 28
Caliche, porous, sendy and clay, red-burf 15
Sand, fine, red, clayey in lower part 1295
(Continued on next page)

Logs of t st holes drillod by the City of Lubbock--Continued

Test hole 4--Continued

	$\begin{aligned} & \text { Thickness } \\ & \text { (feet) } \end{aligned}$	Deoth (feet)
Quaternary and Tertiary (mostly Ogallala formation)		
Sand and gravel, reddish-brown	12	107
Clay end sand in thin beds, roddish-brown	6	113
Sand, fine to medium-grainad, brown	4	117
Sand, silty and fine-grainsd, reddish-brown	21	138
Sand, reddish-brown and honeycomb, dalcareous, friable sandstone	17	155
Sand, medium to coerse-grained, 1coso, red-buff	11	166
Sand and clay, reddish-buff	4	170
Clay, 'silty, reddish-brown	16	186
Caliche rock, hard	1	187
Clay, sendy, brown	5	192
Sand with tubular, calcaresus stoms, honeycomb, rod	12	2.04
Sand, cleyey, and gravel, brown	8	212
Clay, sandy and send, fine, reddish-brown	9	221
Conglomerate, sand, araval, shale balls, poorly sorted, reddish-brown	9	230
Triassic, Dockum group		
Shale, blue and red	10	240
Shole, hard, red	24	264

Test hole 5; 32 foet seuth and 50 feet eest of the NW corner sec. 49, blk. A; 7 miles northeast of post office at Lubbock. Surface altitade, 3,217.4 foet.

Quaternary and Tertiary (mostly Ogallala formation)
Soil, sandy, red 3
3
Silt and clry, ecilcaroous, sendy, reddisk-yellew 15
Caliche, buff-yellow, comented in lover part 725
Caliche, rock, sendy, porous, hard and soft layers,
buff-yellow
Water level, ebcut 42 feet below land surface
Sand and sendy calicho, red and buff-red
Caliche rock, ssndy, roddish-brown $10 \quad 56$
Sand, soft, limy, gray 46
Caliche rock, herd. sandy, buff-grey 56
Silt, clay and caliche, soft, buff-gray 10
Clay, sandy, red and sray 14
Sand, fins to medium-grained, rod 4
Sand, clesn, medium-grained, red 12105
Clay and caliche, sendy, red and arey 22.2
Sand, fine to medium-groined, red 5132
$\begin{array}{lll}\text { Clay and caliche, sendy, rod and light gray } & 80\end{array}$
$\begin{array}{ll}\text { Silt, brcwnish-red } & 6\end{array}$
$\begin{array}{lll}\text { Sand, clayey in lower part, red } & 10 & 156\end{array}$
Clay, sandy, reddish-brown $\quad 2 \quad 158$
Sand, porous (may be honsycomb), red 3 161
$\begin{array}{lll}\text { Caliche rock, hard dense buff-gray } & 162\end{array}$
Clay, sendy, brown and caliche rock, ten $81 ? 0$
Clay, silty, vari-cclored 177
Clay, sandy, red
4181
(Continued on next pege)

Logs of tost heles drilled by the City of Lubbock--Continued

Test hole 5--Continued
Thickness Depth
(feat) (feet)
Quaternary and Tertiary (mostly Ogallala formaticn) Sand, medium to coarse-rrained, brown and buff 11 192
Triassic, Dockum arcup Shale, lisht-green, blue and rad 197
Shale, hard, marcon-rcd mith thin seems of yellow and blue- green silt and shalo 108 305
Test hole 6; 415 feet south and 549 feet west of the northeast cerner sec.52, blk. A; $8 \frac{3}{4}$ miles northeast of post office at Lubbock. Surface altitude, 3,241.3 feet.
Quaternary and Tertisry (mostly Ogallala formetion)
Soil, sandy, red 33
Sand, silt and calıche, reddish yellow 15 18
Sand and sandy clay, hard, red 13 31
Caliche, light-gray and cley, sandy, red, in thin alternating beds 14 45
Clay, sandy, reddish-buff and sand, red 52
Clay, sandy, red and caliche ruck, light-gray, in thir.alternating beds1163
Caliche, sandy, gray-buff and sand, red, in thin alternsting beds 68
Fater level, 67 feet below land surface (measured in unused well200 feet frcm test hclo)
Clay, sandy, red, caliche rock, sandy, light-grey and sand,red, in thin alternating beds 25$8^{\prime 3}$
Clay, sandy, red and cnliche rock, sandy, light-gray 95
Sand and silt, red 104
Sand, clay€y, red and thin beds ef caliche, sandy, light-gray. 127
Clay, red and sand. cleyey, red 141
Sand, clayey, reć and clay, sandy, red 151
Sand, fine ti medium-grained, red 160
Clay, derk-rod and blua-gray 170
Sand, clean, medium ta coarso-grained, reddish-buff 180
Clay, derk-red and thin beds of caliche, light-groy 193
Lim:stone, hard, gray and buff-culcred 196
Limestcne and cley in thin alternating beds 199
Clay, sandy, vari-cclored 2.04
Sand, fins to medi:m-greined, red and clay, sandy, red 210
Sand, clean, buff-gray 216
Triassic, Dockum grcup
Shale, dark-red end greenish-blue22.4
Shale, hard, dark-red rith thin layers of greenish-blue shale, silly 274

Lees of test heles drilled by the City of Lubbcck--Continued

Test hole 7; 51 feet south and 57 feet west of the northeast corner sac. 2, blk. D-3; 6 miles nerth ef post office at Lubbcck. Surface altitude, 3,261. 8 fret.

	$\begin{aligned} & \text { Thickness } \\ & \text { (feet) } \end{aligned}$	Depth (feet)
Qusternary and Tertiary (mistly Dgallala formation)		
Scil, sandy, red	4	4
Sand, silt, clay and caliche, red and light grey	22.	26
Caliche, sandy, reddish-buff, in hard and sift layers	24	50
Caliche recis, hard, reddish-brown	5	55
Caiche, sandy end thin beds of send, red	18	73
Septh to water abcuc 60 frot below land surface		
Sand, calcarecus, fine, red	29	102
Clay, sandy, red and send, fine, red	10	112.
Clay, sticky, dark-red and thin beds of sandy cley	14	126
Sand and clay, readish-brown	6	132
Clay, sandy, reddish-brcwn	8	140
Sand and thir beds if silt and clay, red-buff	32	172
Sand, red and leyers of caliche, hard, opalized, reddish-brown 10	rown 10	182
Flint rock, very hard, roddish-brawn	3	185
Sand, sandy shale and porcus caliche recks; in alternating bods, redaish-briwn	63	248
Caliche reck, hencycmb in hard and soft leyers	5	253
Triassic, Deckum group		
Shale and siltstcne, red and greenish-blue	61	314

Test hole 8; 63 feet north and 50 feet onst of the suthwest corner sec. 3, blk. JS; $7 \frac{1}{2}$ miles west of post office at Lubbeck. Surface altitude, 3,303.2 f \mathfrak{f}.

Quaternary end Tertirry (mostly Ogallala formation)		
Scil, sandy, red	3	3
Silt, clay and caliche, redilish-br.wn snd light-grey	7	10
Sand, sandy clay and nodules of caliche, red-gray	14	24
Caliche rock, sendy, buff-tan	10	34
Clay, sandy, red	ε	40
Sand, red	4	44
Sand, red end caliche ruck, buff-ten, in thin alterncting beds	24	68
Water level, abcut 68 feet below land surface		
Coliche rcck, honeyccmb, very porcus, reddish-brawn, in alternating hard and sift beds	10	78
Caliche rock, hard	11	89
Sand, hard, calcerecus, buff-red	14	103
Sand, suft, medium-grained, reddish-buff	8	111
Sand, medium to cerrse-grained, grayish-kuff	36	147
Sand and clay, gray to buff-celored	8	155
Sand and gravel, clean, lcose, medium te conrse-areined, grayish-buff	16	171
Sand, medium to ccarse-grained, gray-buff, and thin beds of clay, sandy, yellcw	37	238
Cretaceous		
Limestone, hard and soft layers, gray	27	235
Limestine and shale, interbedded, gray and dark-blue	19	254
Limestcre, hard, gray	2	256

Test hole 8--Centinued

Thickness Depth(feet)(feet)Cretacecus
Shale, dark blue 260
Sand and shale, interbedded, gray and dark blue 264
Shale, light blue 269
Sand, medium-grnined, gray 276
Trisssic, Deckum groupShale, hard, contains a few thin beds of silty, greenish-blue shale19295
Test hole 9; 5 feet scuth and 430 feet east of the northwest corner sec. 8,
blk. JS; $7 \frac{1}{2}$ miles ncrthwest of pest office at Lubbuck. Surface altitude, 3,296.4
feet.
Quaternary and Tertiary (mistly Ogallala formaticn) Scil, sandy, red 3 3
Clay, sand and caliche, reddish-briwn 23 26
Caliche, tan 6Caliche and sand, $r \in d$ and tan1732
49Water level, abcut 40 feet below land surface.
Sand, red and a few layers of caliche 8 57
Caliche and sand, interbodded, in hard and scft layers, reddish-brown and light tan 106
Clay and caliche, sandy, interbodded 129
Caliche rcck, hard 130
Clay, sand and caliche rock, interbedded, in hard and scft layers 29 159
Sand and grevel 164
Clay, herd, yellcw and blue 172
Send and gravel, and layers of lime 180
Cretacecus
Clay, yelluw 190
Limestone, hard, dense 194
Limestine, percus, ho neycumb leyers 216
Limestane, hard 22.8
Shale and limestcne, gray end dark bluc 236
Shale and limestine, sandy, interbedded, blue 244
Send and shale, hard, rray and blue 253
Triassic, Dockum group
Shale, hard, sandy, red 256
Shale, hard, dark reddish-brown with thin layers af blue and yellcw shale 38 294

Logs of test holes drilled by the City of Lubbock--Continued

Test hole 10; 221 feet south and 72 feet west of the northeast corner sec. 7, blk. JS; 6 miles northwest of post office at Lubbcck. Surface altitide, 3,256.4 fee.t.

Quaternary and Tertiary (mostly Ogallala formation) Soil, sandy, red 3
Sand, silt, clay and caliche, interbedded, rendish$\begin{array}{lll}\text { brown and tan } & 46 & 49\end{array}$
Water level, 29 feet below land surface (measured in nearby farm well) Caliche, sandy, buff-tan 2776
Clay, sandy, red

10 86
Sand and clay, red 25 111
Clay and sand, interbedded, reddish-buff 145
Sand, clavey, reddish-buff 153
Sand and gravel 162
Cretaceous
Shale, yellow 166
Limestcne, hard with soft lavers from 170 to 183 feet, gray 31 197
Shale and limestone, interbedded, gray and blue 205
Shale, hard, limy, dark blue 209
Limestone and shale, intorbedded 212
Shale, sandy, dark blue 2.24
Sand and small gravel 235
Triassic, Dockum group
Shale, light blue 239
Shale, hard, marcon 15 254

Table cf drillers' logs of wells in Lubbock County, Tex:s
$\left.\begin{array}{ll}\hline & \begin{array}{r}\text { Thickness } \\ \text { (fuet) }\end{array}\end{array} \begin{array}{r}\text { Depth } \\ \text { (feet) }\end{array}\right]$

Well C-5

City of Lubbock Viell 5; li miles northwest of post office in Lubbock. Altitude, top of coricrete pump foundation, 3206.7 feet.

Tops ail and clay	3	3
Soft white rock	12	15
Hard caliche rock	2	17
Soft caliche rock	6	23
Sort red sand	12	35
Red packsand	15	50
Hard and 3oft layers of		
red sand, scme water	19	68
Hard gypsum and sand	12	80
Soft red and gray clay	22	102
Facksand	5	107
Soft sand, water	10	117
Hard rock	12	129
Clay	3	132
Gravel and sand	15	147
Rock	3	159

Well C-7

City of Lubbock Well 7; l mile southeast of vost office in Lubbock. Altitude, top of concrete pump foundation 3186.7 feet.

Thickness (feet)		Depth (feet)
Well C-7--Continu	nued	
Sandy topsoil and sandy red clay		4
Chalky white clay and a few loose lime pebbles	21	25
Hard celiche rock	5	30
Light red clay and a $f: w$ rocks	25	55
$\begin{aligned} & \text { Hard rock (water at } \\ & 60 \text { feet) } \end{aligned}$	5	60
Sandy light red clay and a few lime rccks	24	84
Yellow and gray clay	26	110
Red sand, a few gravels and small amount of clay		122
Yellow sand and gravel	3	125
Dark muddy sand and gravel	4	129
Gray sand and clay	11	140
Gray sand and aravel	7	147
Yellcw clay	11	158

Well C-15

City of Lubbock Well 15; 1亲 miles nertheast of nost office in Lubbock. Altitude, floor of pump house, 3186.9 feet.

Caliche	20	20
Sandy red rock and red		
\quad cley	32	52
Hard sand rock	3	55
Red water sand	8	63
Red sand rock	5	68
Water sand	17	85
Red clay	21	106
Water send	22	128
Red clay	2	130
Gray clay	20	150
Caliche rock	10	160

Viell C-16

City of Lubbock "ell 16; 3 miles ncrthwest of post office in Lubbock. Altitude, top of concrete pump foundation, 3219.5 feet.

Topsoil
Caliche clay and sandy caliche

31
Calichs rcck (wator at 39 feet)

Table of drillers' logs, Lubbock County--Continued

Thickness (feet)	Depth (feet)

Well C-16--Continued

Red sand, water	11	61
Rock	2	63
Red sand, water	12	75
Red clay	4	79
Sand and gravel, water	32	111
Red clay	24	135
Clayey fine-grained sand	18	153

Well C-19

Log of test well drilled at site of City of Lubbock well 19; 4 miles northwest of post cffice in Lubbock. Altitude, top of steel casing 1.5 fer.t abcve land surface, 3225.3 feet.

Tonsoil and caliche clay	20	20
Calichs clay and small		
rcsk	19	30
Gray sand, water	13	43
Sandy red clay	sin	83
Red sand, honeycomb rack		
and some gravel, water	11	94
Coarse send and gravel,		
water	13	107
Sandy red clay	33	$14 J$
Dry packsand	11	151
Whit caliche rock	3	154

Well 9

Laon Estate, 14 miles northwest of Lubbock.

Surface material	15	15
Caliche	10	25
Clay	10	35
Facksand	100	135
Sand, water	10	145
Clay	3	148
Sand and greval, water	22	170
Sand rock	1	171
Light-colored sand	8	179
Clay	3	182

Thickness	Depth (feet)
(feet)	

Well 35
A. M. Beckton, $18 \frac{1}{2}$ miles northeast of Lubbeck.

No record	80	80
Sand, water	10	90
Shale and red clay	20	110
Sand, water	5	115
Shale and clay	20	135
Sand, water	10	145
Red clay	3	148
Sand, wnter	7	155
Caliche. shell rock and		
clay	65	2.20
Hard rock	10	230
Sandy crlich 3	25	2.55

Well 41

R. Q. Mabry, $18 \frac{1}{2}$ miles northeast of Lubbock.

No reccrd	78	78
Quicksand	18	96
Coarse-grained red sand,		
water	18	114
Coarse grevel	3	117
Clay	15	132
Ccarse-grained red sand		
with streaks of alay	30	162
Coarse-grained white		
sand, water	17	179
Clay	19	198
Red sand, water	9	207
Packsand	10	217
Red sand, water	8	225
Red clay	5	230

WG11 34

J. B. MaCauley, $5 \frac{1}{2}$ miles northwest of Lubbock.

| Sandy surface material 45 | 45 |
| :--- | :--- | :--- | :--- |

$\begin{array}{ll:l}\text { Sand, water } & 12 & 57\end{array}$
$\begin{array}{ll:l}\text { Clay and rock } & 4 & 61\end{array}$
Sand, water
Gravel, water
39
16

Tabls of drillers' logs, Lubbock County--Continued

	$\begin{gathered} \text { Thickness } \\ (\text { fe } 0 t) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
Well 100		
0. P. Bowser, $15 \frac{1}{2}$ miles northwest of Lubbock.		
Surface material	4	4
White sand	8	12
Shell rock	4	16
Red rock	3	19
Red clay	4	23
Shwll rock	8	31
Caliche	10	41
Whits sandy clay	16	57
Yellow clay and gravel	10	67
Sand, water	7	74
Sandy red clay	12	86
Sand and gravel, water	11	97
White gravel and clay	10	107
Ccarse gravel and sand with streaks of yellow clay		
Yellow shale	3	160

Well 121
Claude Campbell, $7 \frac{1}{2}$ miles west of Lubbcck

Surface material	4	4
Caliche	36	40
Sand rock	3	43
Sand	7	50
Sand rock	2	52
Sand	16	68
Sand rock	4	72
Sand	3	75
Sand, water	8	83
Rock and gravel	17	100
Sand and shell	21	121
Sand and shavel	10	131
Snnd and gravel	11	142
Yellow clay	1	143
Sand and grevel	63	206
Bluz shale	2	208

Well 205
J. M. Hettler, $5 \frac{1}{2}$ miles northeest of Lubbock.

Clay and sand

	Thickness (feet)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
W?11 205--Continued		
Clay	9	113
Water sand	13	126
Red clay	3	129
Well 245		
F. \& S. F. Ry. Co. well 8, $16 \frac{1}{2}$ miles southeast of Lubbock.		
Surface material	4	4
Rad clay	6	10
Soft gypsum and rock	12	22
Red packsand	10	32
Red sand rock	10	42
Red packsend	15	57
Red sendy clay	33	90
Quicksand, water	12	102
Red clay	2	104
Coarse send and gravel, water	, 19	123
Fine-grained nacksand	21	144
Hard white limestone	31	175
Yoilow sand and clay	5	180
Blue stale	20	200
Gray sand, water	10	210
Black flint rock	3	215
Light-gray (?)	5	218
Red clay	6	224

Woll 247
F. \& S. F. Ry. Co. well 13, $16 \frac{1}{2}$ miles southeast of Lubbock.

Light-colored clay	30	30
Clay and boulders	10	40
Red clay	50	90
Quicksand	17	107
Clay, gynsum, and rock	25	132
Limestane	35	167
Gr?y sendsten:	3	170
Blia shale	32	202
Gray quicksand	5	207
Red clay	35	242
Light-gray clay	35	277
Red clay	15	292
Gray sandstone	10	302
Red clay	70	372
Brown sandstone	20	392
Red clay	78	470
Shells	87	557
Light-reddish-gray sand-	35	592
Sark-gray sandstone	10	602

Table of drillers' logs, Lubbock Count:7--Continued

Thickness (feet)	Depth (foet)

Well 253

City of Slaton well 1 , $14 \frac{1}{2}$ miles southeast of Lubbock.

No record	84	84
Fine soft sand, little	5	89
wiater	5	92
Stiff red clay Snnd and clay	14	106
Sand, some water	10	116
Hard red clay	3	119
Fine-grained sand, water	4	123
Sand, water		
Large gravel, rock and coarse sand, water	9	132

Well 256
A. T. \& S. F. R.R. Co. well 9, 14 miles scutheast of Lubbock.

Surface material	3	3
Clay	27	30
Soft white rock	10	40
Hard white rock	5	45
Soft sand, rack and clay	37	82
Sand and gravel, water	42	12.4
Red sand rock	13	137

Well 262

D. \& S. F. Ry. Co. well 4, 10 miles southesst of Lubbcck.

Surface material	10	10
Caliche	10	20
Red sandstone	15	35
Red packsand	5	40
Red sandstone	5	45
Fine-grained red sand	20	65
Gray sandstene	25	90
Fine-grained red sand,		
water	20	116
Red clay	2	112
Fine-grained red sand,		
\quad water	8	120
Red clay	3	123

$\substack{\text { Thickness } \\ \text { (feet) }}$
Depth (feet)
Well 334

M. E. Casey, 11 miles southwest of Lubbock.

Burface material	3	3
Red clay	9	12
Yellow sand and clay	12	24
Red clay	12	36
Fink rock and sand	14	50
Red sand rock	5	55
Fink sand	15	70
Gray sand	11	81
White rcck	4	85
White packsand	4	89
Red rock	4	93
Gray sand	23	1.16
Chalk rock and sand	24	140
Gravel	20	160
Yellow sand and gravel	20	180
Yellow sand	20	200
Sand and gravel	8	208

Well 345
D. S. Tucker, $11 \frac{1}{2}$ miles west of Lubbock

Surface material 3
Caliche 8
Red sand and chalk 8
White sand 22
White rock 4
White sand 2
White rock 16
Chelk and sand 11
Red sand rock, first water

11
Sand, water 8
Sand and gravel, water 10
Black gravel 14
Yellow sand and gravel 23
Gray sand 10
Facksand 10
Yellow sand and gravel 8
Sand 4
Soapstone and gravel 9
Gravol and coarse sand 13
Blue soepstone

Table of drillers' logs, Lubbock County--Continued

	$\begin{aligned} & \text { Thickness } \\ & \text { (feet) } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	ThicknessDepth (feet) (feet).				
Well 355			Well 435--Continued				
J. A. Modlock, 13 $\frac{1}{2}$ miles southwast of Lubbock.			Red clay	25	70		
			Dry red sand	15	85		
			Red clay	5	90		
	4	4	Red sand, weter	10	100		
Red sand	8	12	Clayey fine-grainsd send	23	180		
Whits rock	4	16	Red sand, water	20	140		
Red sand	4	20	Clayey fine-grained sand	10	150		
Light-red sand	10	30	Red sand, water	21	171		
Whits rock	8	38	White clay	18	189		
Red sand	10	48					
White flint rock 20			Well 443				
Light-red sand	10	60					
Sand and clay	15	75					
Sand rock	12	87	C. O. Andorson, 16 milos north of				
Whits flint rock	3	90	Lubbock; 1 mile south of Abernathy.				
Sand and clay, water	10	100					
Sand with layors of clay	25	125	Sandy scil	5	5		
Yellow sand	10	135	Sandy clay and caliche	20	25		
White sand and gravel	8	143	Dry red sand	60	85		
Gravol and clay	8	151	Sand and sandy clay	20	105		
Yallow sand	10	161	Sand (water at 112 feot)	15	120		
Yellow sand and grevel	10	171	Rock, cley and sand	20	140		
Black sand and gravel	10	181	Clay and sand	40	180		
\qquad			Corrse-grained sand and gravel		190		
			193				
Well 408					Shals and clay	6	204
			Red clay	4	208		
E. T. Daniels, $14 \frac{1}{2}$ milss northeast of			Soft lima rock	4	212		
Lubbuck; 4 miles east of Idalou.			Yellow clay	8	220		
			Black clry	15	235		
Sandy soil	4	4	Blue clay	6	241		
Caliche	17	21	Red bed	11	2.52		
Dry red sand	31	52					
Hard rock	12	64					
Dry red sand	20	84	Well 450				
Sand, water	17	101					
Sanly reddish-buff clay	18	119	L. L. Watson, $11 \frac{1}{3}$ miles northoast of Lubbock; $2 \frac{1}{5}$ miles eest of Monroe.				
Sand, water	49	168					
Sendy reddish-buff clay	4	172	Lubbock; $2 \frac{1}{6}$ miles east of Monroe.				
Yellow sand, water	22	194	Sandy red soil and cley		5		
Sand and gravel, weter	76	270	Red clay	7	12		
Clay	4	274	Caliche cley	85	97		
Well 435			Fine-grainod red send, water				
			Red joint clay	6	120		
Ross Edwards, $11 \frac{1}{2}$ miles north of Lubbock; l辛 miles northwest of Monroe.			Rock	8	128		
			Fine-grained red sand, water				
			Red cley	25	170		
			Fine-grained red sand, 25				
Caliche	18	20	water(Continued on next page)		185		
Whita clay	25	45					

Table of drillers' logs, Lubbock Ccunty--Continued

Thickness Depth (feet) (feet)				$\begin{aligned} & \text { ickn } \\ & \text { feet } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet } \end{aligned}$
Nell 450--Continued			Well 468--Continued		
Sandy yollow clay	10	195	Sandy soil	5	5
Fine-grained rod sand, water			Caliche	9	14
	20	215	Sandy clay end clay	14	28
Red clay	2	217	Dry red sand	45	73
Rэd bed, clay	3	220	Hard clay	4	77
			Rock (water at 76 foet)	5	82
Well 453			Sandy clay and cley	30	112
			Soft red sand	6	118
J. R. Vrest No. 3, ll $\frac{1}{2}$ miles northeast of			Hord clay	14	132
			Send	13	145
Lubbock.			Clay	7	152
			Soft sand	13	164
Sandy soil	4	4	Rock	5	169
Seady clay and caliche	61	65	Soft sand, and ccarse- 169		
Caliche rock	4	69	grained send and gravel	71	240
Fink and buffecclored			Blue clay	6	246
Red sand, weter	10	95			
Clayey fine-grained sand	4.7	142	Well 473		
Red witer sand	16	158			
Clryey fine-grained sandSand and clay in alter-			Floyd Cannon, 19 miles northeast of		
			Lubbock, naer Becton.		
Pink clay	10	224	Soil	4	4
Red sand, water	18	248	Celiche	33	37
Sand and rock, water	15	2.57	Buff-colored clay	26	63
Reddish-buff clay	5	262	Caliche reck	11	74
			Clayey fine-grained sand	34	108
Well 457			Rock	19	127
			Buff clay	23	150
E. N. Nance, 14 miles northeast of			Clayey fine-grainsd sand	15	165
			Rock and clay	27	192
Lubbock, 51 $\frac{1}{2}$ miles north of Idalou.			Clayey fine-grained sand	48	240
			Rock and sand	24	264
Soil	4 7	4	Clayey fine-groined sand	36	300
Caliche	37	41			
Sondy rod clay	42	83			
Caliche rock	7	91	Well 481		
Fed sand, water	26	117			
Sanily buff-red clay	23	140	Dr. A. C. Scott, $22 \frac{1}{\text { E }}$ miles northeast of		
Red clay	11	151	Lubbock.		
Sandy clay	38	189			
Red sand, wster	38	227	Sendy soil	3	3
Red clay	11	238	Caliche and sendy clay	37	40
Coarse-grained sand, water			Celiche rock	$\begin{array}{r}5 \\ \hline\end{array}$	45
Clay	21 1	259 260	Clay Rock	15	60
			Clay	10	73 83
Well 468			Red sand, water	7	90
			Red clay and sand	35	125
J. T. Ellerd, 19 miles ncrtheast of			Joint clay	8	133
			Sand, water	30	163
Lubbock.			Clay	14	177
			Send and gravel, water	28	205

Table of drillers' logs, Lubbock County-mContinued

Thickness (feet)	Depth (feet)

Well 492
Donald Bledsoa, 17 miles northeast of Lubbock.

Soil caliche	3	
Red cal	23	3
Sandy yellaw clay	11	26
Caliche rock	6	37
Yollow clay	4	43
Chalk rock	4	47
Red clay	5	51
Very hard caliche rock	6	56
Red clay	13	62
Red sand and gravel,		75
water	21	
Red clay	17	96
Red sand and clay	7	113
Rэddish-brown sand, water 11	120	
Honeycomb sand and clay	9	131
Hard sand, clay end		140
gravel	12	
Brown sand	35	152
Sandy brown clay	11	187
Red clay	16	198
Red sand	8	214
Sandy red clay	10	222
Red sand	8	232
Brown clay	10	240
Brown sand and gravel	2	250
Yellow clay	5	252

Well 495
G. C. MoKinney, 15 miles ncrtheast of Lubbock.

Sandy soil	5	5
Caliche	37	42
Sandy clay	23	65
Clay	32	97
Sand and gravel, water	20	117
Clay	11	128
Clayey fine-grained sand	11	139
Coarse-grained sand,		
water	12	151
Clayey fine-grained sand	39	190
Sand and gravel, water	50	240
Clay	4	244

	$\begin{aligned} & \text { Depth } \\ & \text { (fe日t) } \end{aligned}$
Well 507	

Mary C. Brown, 18 miles northeast of Lubbock.

Soil	3	3
Caliche and clay	27	30
Dry rad sand	20	50
Calicne rock	6	56
Red sand (water at 95		
feet)	57	113
Clay	27	140
Red sand, water	12	152
Red clay	20	172
Sand	8	180
Rock	4	184
Red clay	19	203
Rock	3	206
Clay	2	208
Rock	8	216
Clay	20	236
Sand	6	242
Cley	32	274
Rock	2	276
Sand	6	282
Clay	20	302
Sand	20	322
Clay	1	323

Well 511

G. B. Forrest, $15 \frac{1}{2}$ miles northeast of Lubbock.

Sandy soil	4	4
Caliche	54	58
Caliche rock	10	68
Caliche bculders	12	80
Reddish-buff clay	17	97
Red send, water	17	114
Clayey fine-grained		
sand	8	122
Red sand, water	18	140
Reddish-buff clay	22	162
Sand, water	23	185
Reddish-buff clay	7	192
Water-bsaring gravol	15	207
Clay	14	221

Table of drillers' logs, Lubbock County--Centinued

	$\begin{aligned} & \text { Thickness } \\ & \text { (fegt) } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
Well 553		
R. E. Bryant, 12 miles ncrtheast of Lubbock; 1 mile north ef Idalou.		
Soil, clay and caliche	25	25
Dry sand	30	55
Sand rock	2	57
Sena, wator	16	73
Sandy buff-colcred cley) 6	79
Claysy red sand	11	90
Red clay	49	139
Clayay red sand	6	145
Clayoy fine-grained sand	nd 39	184
Sand and grevel, water	8	192
Rad clay	11	203
Clayey sand, weter	8	211
Fracksand	50	271
Graval and clay	20	291
Clay	2	293

Well 564

C. A. Lawrence, 10 miles northeast of Lubbock; 1 mile south of Idelou.

		4
Sandy red scil	10	4
Caliche	6	14
Clayey red sand	6	20
Sandy caliche rock	14	26
Clayey dry sand	40	
Calcareous sand rock	4	44
Sandy buff-colored clay	9	53
Rad sand, water	17	70
Sandy buff-colored clay	6	76
Red sand, water	32	108
Clay water	8	116
Snnd, war	15	131
Cinyny fine-grained sand	49	180
Scind, weter	5	185
Clayoy fine-grained sand	50	235
Grnvel, water	3	238
Rod clay	4	242

Woll 569

Ed Foreman, 11t miles ncrtheast of Lubbock; lit miles southerst of Idelou.

Sandy red soil and clay 5 Caliche
Sandy buff-colored clay 9

$\begin{gathered} \text { Thickness } \\ (\text { feet }) \end{gathered}$		$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
Well 569--Continued		
Sandy reddish-buff caliche rock	21	85
Red send, water	16	101
Hard reddish-buff caliche rock (drills like limestene)	14	115
Pink sand with clay bells	13	128
Recidish-bufí clay	15	143
Clayey fine-grained red sand	41	184
Hard conplomerate	7	191
Clayey fine-grained red sand	57	248
Coerse grevol and hard conglomerate	15	263
White clay	7	270
Conglcmeratic sand and gravel	21	291
Tough dark-red cley	13	304

Well 570
W. O. Grimes, lla miles northeast of Lubbock; 3 miles scutheast of Idalou.

Sandy scil	4	4
Caliche	14	18
Calcerecus send reck	32	50
Rock with seens of water	21	71
Gravel, water	22	93
Clay	4	97
Conglomerate	4	101
Red clay	12	113
Ccarse sand and gravel,	8	121
water	10	131
Red clay	7	138
Water-boarines gravol	22	160
Red clay with a littlo sand	22	

Well 575

J. C. Sherrcd, $8 \frac{1}{2}$ miles ncrthoast of Lubbock.

Sandy soil	4
Clay and caliche	16
Sandy caliche rock	3
Sandy aray clay	17
Sandy red clay	18
White sand, water	14
(Continued en next page)	

Table of drillers' logs, Lubbock Ccunty--Continued

	$\begin{aligned} & \text { Thicknoss } \\ & (f \text { feet }) \end{aligned}$	Dnpth (feet)
Well 575--Ccntinued		
White cley	11	83
Red sand and gravel, water	23	106
Gray clay	4	110
Red sand and gravol, water	10	120
Gray clay	1	121
Rod sand and gravel, water	12	133
Red clay	1	134
Well 582		
W. J. Grimos, $11 \frac{1}{2}$ miles enst of Lubbeck.		
Sandy red soil	4	4
Caliche	41	45
```Red send (weter at 48 foot)```	10	55
Thin beds f clay and sand	25	80
Rod clay	15	95
Sandy clay	30	125
Red sand, water	5	130
Cleyey fine-grained sand	nd 55	185

## Well 592

J. F. Gcodnight no. 2, $5 \frac{1}{2}$ miles east of Lubbuck.

Sendy red soil	2	2
Caliche	29	31
Caliche rock	11	42
Reddish-buff clay	22	64
Red sand, water	17	81
Reddish-buff clay	9	90
Watar-bearing gravel	7	97
Reddish-buff clay	9	106
Ccarse sand, water	34	140
Hard ruck		140

Well 601, pertisl 100
R. S. Collins, $4 \frac{1}{2}$ miles northeast of Lubbeck. Compcsite lig of wslls 600 and 601.
. (Well 601, irrigation well)


Well 601, partial log-Continued


## Woll 616

Kenneth Williams, 9 miles northeast of Lubbcek; $2 \frac{1}{2}$ miles west of Idalcu.

Sandy scil	3	3
Sandy clay end caliche	32	35
Caliche rack	5	40
Sandy light-yellow clay	13	53
Sandy caliche (water at		
53 foet)	21	74
Cavey cley	27	101
Red sand, weter	11	112
Reddish-buff clay	6	118
Red sand, water	3	121
Clayey fine-grained sand	12	133
Reddish-buff clay	3	136
Clayey fin?-grained sand	29	165
Red clay	5	170
Red sand, watir	12	182
Clayey fine-greined sand	58	240
Sand and gravel, water	8	248
Clay	7	255

Table ${ }^{f}$ drillers' logs, Lubbock Ccunty--Cuntinuad


## Well 642

F. C. Litton, 9 miles ncrth cf Lubbock; 2 miles scuthwest cf Mcnree.

Soil caliche and clay	2	16
Gray caliche	19	18
Red caliche	19	37
Sandy red clay	38	75
Red sand, water	11	86
Clayy fine-grained sand	38	124
Red sand, water	11	135
Clay	15	150
Hard lime rock	2	152


	Thickn3ss (feet)	$\begin{aligned} & \text { Depth } \\ & \text { (f set) } \end{aligned}$
Well 650		
Elmar Edwards, $6 \frac{1}{2}$ miles northeast of Lubbeck; near airpurt.		
Sendy red scil	5	5
Caliche	23	28
Dry red sand	23	51
Caliche reck	7	58
Sandy buff-cclcred clay	21	79
Red sand, weter	15	94
Clay	18	112
Sand, water	16	128
Clay	21	149
Sandy, reddish-buff clay	- 29	178
Hard rcck (caliche or		
limestine)	2	180

## Mell 662

J. E. Vickers, $5 \frac{1}{2}$ miles ncrth ©f Lubbcck.

Sandy red scil
Calicho clay
Celcerecus sand rock 8
Dry red sand 12
Sana rcck 3
Dry red sand 5
Sand rock 4
Sandy red clay 9
Red send, water 15
Rcck 15
Red sand, water 10
Red clay 27
Sand,water 23
Red clay 9

Well 701
S. E. Ccne nc. 2, 8 miles ncrthwest of Lubbeck.

Sandy red scil	3	3
Caliche	28	31
Sendy red clay	47	78
Sand rock	5	83
Red sand, weter	20	103
Gray clay	7	110

Table cf drillers' logs, Lubbeck Ccunty--Centinued

Thickness	Denth
(feet)	(feet)

Well 201-.Continued

Fin3-grained red sand,		
water	25	135
Red clay	5	140
Red sand, water	35	175
Sandy gray clay	3	178

## Well 765

Herbsit Gelbraith, 10 miles ncrthwest af Lubb :ck.

,		
Sandy suil end clay	5	5
Clay and caliche rock	15	20
Caliche rock	4	24
Cley	26	50
Reck	10	60
Dry rod sand	20	80
Red sand, :gster	10	90
Sand ruck	10	100
Red sand, weter	20	120
Sani ruck	10	130
Red sand, weter	2.	150
Pin's clay	9	159
Ricl: and clay	21	180
Sond, water	6	186
White clay	6	192

## Well 722

B. B. Kent, 5l miles west if	Lubbeck.	
Sandy soil and clay	5	5
Santy red clay	20	25
Caliche	40	65
Red sand, water	10	75
Red clay	20	95
Sand and grevel, water	15	110
Light-gray clay	20	130
Sand and gravel, water	10	140
Sandy gray clay	15	155
Sand and gravel, water	21	176
Thita caliche rock	1	177

## Well 732

G. T. Williams, 8 miles n:rthwast of Lubbick.

Sendy soil	1	1
Caliche	33	34
Sand, water	10	44

$\left.\begin{array}{cc}\text { Thickness } & \begin{array}{l}\text { Depth } \\ \text { (fjet) }\end{array} \\ \text { (feet) }\end{array}\right]$

## V!911 733--Ccntinued

Red clay	6	50
Sand, weter	5	55
Red clay	10	65
Sand, water	15	80
Red clay	25	105
Red and yelliw clay	45	150
Blue clay	10	160

Well 736
Glenn Blackman, $10 \frac{1}{2}$ miles ncrthwest of Lubbeck; 2 miles sfuth of Shallowater.

Sandy red siil	4	4
Caliche	28	32
Sandy buff-cclired clay	22	54
Caliche rcck	14	68
Red sand	11	79
Clay	6	85
Sand, water	18	103
Hard rcck	7	110
Sand, water	10	120
Yellcw clay	6	126

Woll 739
E. A. Prestion, $13 \frac{1}{3}$ miles northwest of Lubbock; $2 \frac{1}{2}$ miles ncrthwest of ... Shallcwater.

Sandy scil and clay	4	4
Caliche clay	48	52
Caliche rick	16	68
Clayey fine-grained sand	28	96
Red send, water	15	111
Clayey fine-grainod red		
$\quad$ sand	10	121
Hard sand	37	158
Clay	14	172
Cuarse-grained sand and		
$\quad$ Qravel, weter	18	190
Red bed	2	192

## Wall 749

J. J. Calleway, $14 \frac{1}{2}$ miles northwest. ©f Lubbcick; 5 miles scuthwest of Shellcwater.

Table (f drillers' logs, Lubbcck Ccunty--Ccntinued

	Thickness   (feet)	Depth   (feet)
Well 749--Cintinued		
Clay and sand	48	60
Clayey fine-grained red		
sand rock	33	93
Red sand, water	3	96
Red clay	29	125
Sand, weter	20	145
Sand rock	25	$17 n$
Yellow clay	5	175
Yellow sand	10	185
	27	212

Well 756
Bellows and Greer nc. 2, 13 miles northwest of Lubbcck; 3 miles west of Shallowater.

Scil	4	4
Caliche	31	45
Clay	20	55
Sand, wator	6	61
Clay	6	67
Pecksand	4	71
Sand, weter	14	85
Packsand	20	105
Sand and gravel, water	15	120
Yellcw clay	18	138
Bluc clay	2	140

## Well 765

A. L. King, 10 miles west of Lubbeck;


Sendy loam suil	3	3
Cley and caliche	37	40
Herd red rock	5	45
Caliche	5	50
Fard red rcck	3	53
White caliche	17	70
Scft gray rock	5	75
Ted clay	5	80
Snnd, water	2	82
Clay with a little sand	18	100
Red clay	10	110
Sand and gravel, water	4	114
Tuagh red clay	2	116
Seft red clay	12	128
Sand and gravel, water	10	138
Scft red clay	8	146
Tcugh yellcw clay	14	160


	Thickness (feet)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$
Well 767		
C. R. M:cre, 10 miles west of Lubbcck; 1 mile east of Hurlwucd.		
Sandy soil and clay	5	5
Caliche and clay	20	25
Sandy red clay	25	50
Gray clay	10	60
Reck	12	72
Gray clay	8	80
Red flint ruck	5	85
Gray clay	7	92
Red flint rcck	6	98
Sand and grevel, water	20	118
Sandy grey clay	12	130
Scft sand rick	10	140
Sand and gravel, water	14	154
Gray clay	11	165
Sand and gravel, water	20	185
Yellow clay	5	190
Well 780		
W. B. Atkins, $13 \frac{1}{2}$ miles southwest of Lubb:.ck; 3妾 miles northwest if Wolfferth.		
Sandy sail end clay		
	20	25
Sandy red clay	25	50
Sand reck	35	85
Sandy gray clay	5	90
Sand, water	15	105
Gray clay	20	125
Sand and grevel, water	10	135
Gray clay	10	145
Sand and gravel, water	10	155
Yellow clay	19	174

## Well 787

R. S. Hibgcod, 15 miles southwest uf Lubbcek; 5 miles southwest of Nolfforth.

Sandy scil and clay	5	5
Light-gray clay	13	18
Small caliche rock and		
clay	17	35
Hard caliche rock	5	40
Caliche clay	6	46
Caliche clay and rock	4	50
Limy sand rcck	32	82
Yellcw sand, water	13	95
(Cintinued cn next page)		

Table of drillers' logs, Lubbcek Ccunty--Centinued

	Thickness   (feet)

Well 787--Ccntinued

Clayoy fine-grained sand	5	100
Yollew sand and gravel, water	26	126
Gray clay	15	141
Yollow sand and gravel, water	21	162
Srej clay	1	163
Yelicw sand and gravel, water	2.7	190
Blue clay	3	193

Well 791
J. C. Stanf'crd, $14 \frac{1}{2}$ miles southwest of Lub. © ck; 8 miles suutheast of Welfferth.

Sci.: and cley	5	5
Cia: and caliche	50	55
San? ${ }^{\text {a }}$ clay	9	64
Sand rock	8	72
Sandy clay	23	95
Sanit, water	13	108
Cloy	14	122
Saxi, water	9	131
Cisy	17	148
Sanit, water	15	163
Yel?ow clay	2	165

## Well 811

E. C. Hatton No. 3, $8 \frac{1}{2}$ miles southwest of rubbock.

Seridy soil	4	4
Caliche clay	26	30
Celiche rock	5	35
Pracikand	15	50
Sandy gray clay	30	80
Sand rock	7	87
Candy gray clay	12	99
Sand, water	11	110
Sandy gray clay	7	117
Sand and gravel, water	10	127
Sandy gray clay	8	135
Sand and gravel, water	12	147
Yellow clay	10	157
Elue clay	3	160


Thiokness   (foet)	Depth   (feet)

## We.l1 814

T. D. Julian, 10 miles southwest of Lubbock; 2,1 miles west of Woodrow.

Soil and clay	5	5
Caliche	20	25
Red clay	15	40
Sard rock	20	60
Packsand	30	90
Sand rock (water level,		
95 feet)	10	100
Sand and gravel, water	38	138
Yellow clay	20	158

## Well 822

W. M. Martin, 12 miles south of Lubbock.

Sandy soil	4	4
Clay	24	28
Caliche	10	38
Sandy clay	16	54
Sand rock	11	65
Sandy clay	27	92
Sand, water	12	104
Clay	14	118
Sand, water	10	128
Clay	7	135
Sand, water	27	162
Yellow clay	3	165

## Well 830

Alvin B. Allen, 9 miles south of Lubbock.

Sandy soil	4	4
Clay	11	15
Caliche	27	35
Sandy clay	27	62
Hard rock	5	67
No record	--	-
Sand and aravel, water	9	99
Clay and gravel, water	4.	103
Sand and	26	129
Yellcw clay	18	147

Table of dri.llers' logs, Lubbock County--Continued

| Thickness Depth <br> (feet) (feet) |
| :---: | :---: |

Well 841
H. B. Davis, 7 miles south of Lubbcck.

Sandy soil	3	3
Caliche clay	6	9
Red clay	3	12
Caliche and thin beds		13
of red clay	10	25
Caliche clay and rock	10	35
Sand rock and caliche		
rock	9	44
Clayey fine-grained sand	8	52
Sand rock	5	57
Clayey fine-grained sand	18	75
Hard rock	4	79
Sand, water	8	87
Roak and gravel with thin	4	91
Sand and		
beds of sand rock, water 53	144	
Yellow clay	11	155
Yellow clay and blue shale	11	166

## Well 849

R. D. Brown, 2 miles southeast of Lubbcck.

Sandy soil and clay
Caliche clay
Caliche rock 15
Sandy clay and dry sand 22
Sand (water level 57 feet) 8
Sandy yellow clay 5
Sand and gravel, water 9
Sandy yellow clay 21
Gand and gravel, water 17
Yeilow clay

## Well 866

I.: D. Moss, 8 miles scutheast of Lubbcek; aiz miles northeast of Woodrow.

Eandy soil and clay	6	6
Caliche	14	20
Sandy red clay	20	50
Hard sand rock	25	75
Sandy gray clay	3	78
Gray clay, water	17	95
Gray clay	8	103
Sand and gravel, water	20	123
Sandy gray clay	12	135
Sand and gravel, water	20	155
Yellow clay	7	162


Thickness   (feet)	Depth   (feet)

Well 880
F. O. Miller, $9 \frac{1}{2}$ miles east of Lubbock.

Sandy red soil	4	4
Caliche	8	12
Clay	29	41
Red clay	24	65
White clay and caliche rock	30	95
No record	-	-
Red sand, water	30	125
Red clay	13	138
Red sand, water	14	152
Red clay	12	164
Fed sand, water	10	174
Red clay	4	178
Red sand, water	40	218
Red bed	4	222

S. E. Cone no. 4, 11 miles east of Lubbock.
Sandy red soil.

Caliche clay and rock

2	2
33	35
5	40
25	65
7	72
35	107
21	128
4	132
23	155
5	160
5	165

## Well 888

M. F. Klattenhoff, lli $\frac{1}{2}$ miles southeast of Lubbock, near north rim cf canyon of
Dcuble Mountain Fork of Brazos River.
Soil
Caliche clay and rock 18
Red clay 25
Dry red sand and boulders 41
Dry coarse gravel 23
Reddish-buff clay 7
Dry gravel 14
Red clay 24
Gravel with some water 42
Sticky red clay 6

3

Water levels，Lubbock Ccunty，Texas
Water levels in observation wells in Lubbock County，in feet below measuring point （Owner，distance and direction of well from County Courthouse at Lubbock，and des－ cription of measuring points．）

3a
E．E．Winters； 17 miles NV．；top of pipe clamp， 0.5 f＇oct abcre land surface． Apr．11， $1938 \quad 29.48$ June $21 \quad 29.43$ Juns 28 Aug． 10 Sept． 19 Oct． 19 28．51
Jan．16， 1939
Nov．18， $1940 \quad 29.24$
Tだ．9， $1944 \quad 23.50$
Feb．21， $1945 \quad 28.61$

## 37

S．E．Blair； 17 miles NE．；$\frac{1}{2}$－inch hole on east side of steel pump base， 1 fuot above land surface．
Mar．12， $1937 \quad 74.15$
Dec．22 74.02
Jan．10， 1939
Dec． 16
Nov．19， 1940
Jan．25， 1941
Mar．23， 1942
Oct． 30
Jan．28， 1943
Feb．22， 1944
Feb．9， $1945 \quad 72.43$

64a
W．O．Fortenberry；10t miles N．；top or concrete pump foundation， 1 foot above land surface．
Dec．21， 1937
June 15， 1938
Oct． 18
Dec． 22
Mar．7， 1939
Juno 23
Oct． 10
Dec． 17
Mar．13， 1940
Nov． 13
ひ̈こn．22， 1941
C．c． 27
Mis．r．24， 1942
Feb．： 1,1943
Feb．9， $1944 \quad 83.54$
$74 a$
J．S．George； $6 \frac{1}{2}$ miles N．；top of con－ crete curb， 1 foot above land surface．
June 30， $1938 \quad 33.06$
Aug． $10 \quad 34.20$
Sopt．23 34.98
Oot． $24 \quad 35.33$
Dec． $22 \quad 35.40$
Jan．28， $1939 \quad 35.23$
Mar． 4 35．42
Apr． $3 \quad 35.50$
June $16 \quad 35.94$
June 22 34.87
June $30 \quad 33.32$
$\begin{array}{ll}\text { July } 5 & 32.97\end{array}$
July $10 \quad 33.52$
July $20 \quad 32.98$
Aug． $4 \quad 34.36$
Aug． $16 \quad 34.48$
Oct． $10 \quad 35.35$
Dec． $16 \quad 35.53$
Mar．13， $1940 \quad 35.60$
July $10 \quad 35.81$
Nov． $13 \quad 36.30$
Jan．22， $1941 \quad 36.13$
Mar． $6 \quad 36.52$
June $3 \quad 30.41$
July $28 \quad 29.30$
Mar．24， $1942 \quad 31.50$
Feb．1， $1943 \quad 29.66$
Feb．9， 1944 32．21
Feb．9， $1945 \quad 32.63$

## 7年b

J．S．George；7 $\frac{1}{2}$ miles N．；top of concrete curb， 1 foct abcve land surface．
June 22， $1939 \quad 37.42$
June $30 \quad 36.06$
July $5 \quad 35.41$
July $10 \quad 35.88$
July $20 \quad 36.06$
Aug． 4 ． 36.70
$\begin{array}{ll}\text { Aug．} 16 & 36.36\end{array}$
Oct． $10 \quad 37.04$
Dec． $16 \quad 37.53$
$\begin{array}{ll}\text { Mar．13，} 1940 & 37.89\end{array}$
Jan．22，1941 38.66
$\begin{array}{ll}\text { Mar．} 6 & 38.55\end{array}$
June $3 \quad 33.58$
July $28 \quad 31.43$
（Continued on next page）

$7 \hat{1} \mathrm{~b}-$-Continued	
Mar. 23, 1942	32.95
Dec. 17	29.94
Feb. 1, 1943	30.40
Feb. 9, 1944	34.02
F¢b. 9, 1945	$3 \% 40$

$77 \varepsilon$
J. H. Felton; $6 \frac{1}{2}$ miles N. ; top of ccncrete pump foundation, 0.8 foot above land surface.
Apr. 12, $1938 \quad 70.87$
Jun: 15
70.88

Tune 30
Sept. 23
70.83

Oct. 18
70.72

Mar. 7, 1939
70.67

June 23
70.67

Jct. 10 70.80
Dac. 16 71.16
Mar. 13, 1940
71.16

Nov. 13
Fob. 1, 1943
73.44

Feb. 9, 1944
70.77

Feb. 21, 1945
71.21
70.92

81
J. E. Vickers; 5 miles N.; toc of lower edey large opening in pump base, $2 \mathrm{fe} \mathrm{f} \boldsymbol{\mathrm { f }} \mathrm{t}$ nbove land surface.
Dec. 6, 1936
14.52

Dec. 21, 1937
Jan. 25, 1938
Juns 15
4.4 .25

Tune 30 4.1.65
Dec. 23
Mar. 7, 1939
Oct. 10
44.33
15.48

Dec. 16
Mar. 13, 1940
Nov. 13
Jan. 22, 1341
Mar. 6
Dec. 27
Dec. 17, 1942
47.98
47.40
46.92
48.14
46.74
47.15
41.78
42.59

Fob. 1, 1943
$\therefore 2.00$
Frb. 9, 1944 . 43.30
Feb. 23, 1945
42.52

99
R. B. Sray; 15 $\frac{1}{2}$ miles NW. ; top of concrote curb, inside trap docr, level with 1 :n. 1 surface.

Tune 22, 1937
34.29
i).c. 20 34.31

Jan. 26, 1938 3士.35
Anr. 9 3:41

107
B. G. Lokey; in Shallowater; top of cnsing, A. 7 foct abcve land surfice. Apr. 9, 195751.30
Sept. 8 50.80

Sept.22 50.82
Jan. 26, 1938 50.74
Apr. 9 50.94
June $17 \quad 50.87$
Oct. 1950.82
Jan. 16, 193950.80
Mar. $11 \quad 50.87$
June $19 \quad 51.01$
Auz. 15 50.21
Oct. 13 50.05
Mer. 13, 19亿0 50.08
Nov. 18 50.56
Mer. 7, 194150.58
May $30 \quad 50.11$
July 29
47.81

Mar. 26, 1942
46.43
46.28
44.56
45.01
46.08

Wator lovels, Lubbock Cnunty--Continued

118
T. C. James; 9 miles W.;.top of concrete pump foundation, 0.5
foot above land surface.

Dec. 7, 1936	81.94
Dec. 18, 1937	81.11
Dec. 23. 1938	81.17
Dec. 16, 1939	81.27
Mar. 7, 1941	82.06
Mar. 27, 1942	80.68
Dec. 18	80.16
Feb. 13, 1943	30.10
Feb. 4, 1944	80.06
Feb. 22, 1945	80.12

121
Claude Campbell; 7 miles W.; top of
lower edge large opening in pump base, 1.2 feet above land surface.
May 20, 1937
June 2l $\quad 75.59$
Dec. 18
Apr. 12, 1938
Juns 22
Dec. 23
Mar. 14, 1939
June 26
Oct. 12
Dec. $12 \quad 76.79$
Mar. 26, 1940
Nov. 18
Jan. 22, 1941

Mar.
Mar. 27.
27

Dec. $18 \quad 74.28$
Feb. 18, 1943
Feb. 10, $1944 \quad 74.42$
Feb. 20, 1945
123
Travis Tubbs; 6 miles W.; top of concrete pump foundation, 1.4 feet above land
surface.
Dec. 8, 1936
Dec. 18, 1937
Dec. 23, 1938
Oct. 12, 1939
Dec. 16
Dec. 18, 1940
Jan. 22, 1941
$\begin{array}{ll}\text { Mar. } & 7 \\ \text { Mar. } & 27,1942\end{array}$
Feb. 18, 1943
Feb. 10, 1944
Feb. 21, 1945
63.75
63.4 C
64.20
65.53
65.12
66.54
67.48
66.05
63.60
62. $\epsilon$
63.10
63.56

128
Rufus Rush; 4 miles W.; top of concrete pump foundation, 0.8 foot above land surface.

Dec. 8, 1936	42.89
Dec. 18, 1937	41.94
Dec. 23, 1938	41.48
June 26, 1939	--
Jct. 11	44.58
Dec. 16	42.76
Nov. 18, 1940	44.95
Jan. 22, 1941	43.89
Mar. 7,	47.33
Mar. 27, 1942	40.08
Dec. 18	38.99
Feb. 18, 1943	38.37
Feb. 10, 1944	38.72
Feb. 21, 1945	40.05

138
Edith Collie; 7 $\frac{1}{2}$ miles NW.; top of concrete pump foundation, 1.4 feet above land surface.
Apr. 13, 193745.68
Dec. 18 41.44
June 17, 193841.51
June $21 \quad 41.53$
June 28 41.53
Sept. 10 41.03
Oct. 19 41.00
Dec. 23 . 40.99
Mar. 10, $1939 \quad 40.98$
June 19 41.18
Aug. 15 41.20
Oct. 13 41.26
Dec. 16 41.23
Mar. 13, 1940 41.32
Apr. 4 41.30
Nov. 18 41.60
Mar. 7, 1941 \$1.81
July $29 \quad 39.23$
Mar. 26, $1942 \quad 37.65$
Dec. $18 \quad 36.00$
Feb. 1, 1943 35.94
Feb. 23, 1945 37.50
139
O. C. Ballard; 7 miles NW.; top of stecl
casing in concrete, I foot above land surface.
Apr. 13, $1937 \quad 28.24$
Dec. 20 26.81
Jan. 2C, 1938 2. 8 E
Apr. 9227.25
June 17
28.04
(Continued on next page)

Water Levels, Lubbock County--Continued

139--Continued		151--Continued	
June 21, 1938	27.79	June 21, 1938	27.69
June 28	2.7 .34	June 28	27.56
Sept.10	26.69	Aug. 10	26.88
Jen. 16, 1939	26.32	Sept. 10	26.78
Nar. 10	26.86	Oct. 19	26.87
June 19	25.04	Dec. 6	26.96
July 20	--	Jan. 16, 19:39	27.06
Aug. 15	2.4.52	Mar. 10	27.14
Oct. 1?	2.4. 88	June 19	26.98
Dec. 16	25.41	July 12	27.00
Mar. 13, 1940	25.88	Aug. 15	27.00
Apr. 4	26.01	Oct. 13	¢7.08
Nov. 18	27.07	Dec. 16	2.7 .13
Mar. 7, 1941	27.23	Mar. 13, 1940	27.24
May 30	25.91	July 10	2.7 .44
July 29	23.23	Oct. 27	2.7 .95
Mar. 26, 1942	33.76	Nov. 18	23.06
Dec 18	22.45	Mar. 7, 1941	28.33
Feb. 1, 1943	22.43	May 30	27.26
Feb. 9, 1944	23.33	July 29	24.40
Feb. 22. 1945	2.4.77	Mar. 26, 19.12	22.86
		July 4	22.30
150a		Nov. 18	19.96
M. C. Gibson; 5 $\frac{1}{2}$ miles Now. ; top of con-		Feb. 1, 1943	19.41
crete curb, 1.2 feet abcve land	surface.	Feb. 4, 1944	--
Jun-.28, 1938	28.78	Feb. 9	21.73
Aug. 10	28.12	Feh. 22, 194.5	23.31
Sept. 10	27.83		
Oct. 19	28.18		
Jan. 16, 1939	28.38	J. S Hamilton, 4 miles W.; top of con-	
Mar. 10	28.43	crete pump fou	h land
Juns 19	28.21	surface.	
Aug. 15	28.23	June 21, 1937	40.55
Oct. 13	28.24	Dec. 18	38.71
Dec. 16	28.23	Dec. 23	38.18
Mar. 13, 1940	28.30	Oct. 11, 1909	39.41
Tuly 13	38.49	Dec. 16	38.90
Nov. 18	29.00	Nov. 18, 1940	40.34
Mar. 7, 1941	29.16	Jan. 22, 1041	40.07
May 30	28.01	Mar. 7	40.33
July 29	25.40	Mar. 27, 1942	36.48
Mar. 26, 1942	23.92	Dec. 18	34.96
July 28	28.32	Feb. 18, 1943	34.82
Feb. 1, 1943	20.69	Feb. 10, 1944	35.43
Fob. 4, 1944	22.21	Feb. 21, 1945	37.04
Feb. 22, 1945	24.62		
		J. M. Fhillips; 3 miles NW . ${ }^{\text {c }}$ top of con-	
Broadview School; 5 miles NW.; top of concrate curb, 0.1 foot above land			
		crete pump foundation, level with land surface.	
surfiace.		Dec. 8, 1936	40.53
Apr. 13, 1937	29.41	Dec. 18, 1937	40.21
Sont. 21	2.7 .48	Dec. 23, 1938	39.88
Jan. 26, 1938	27.44	June 26, 1939	40.58
Apr. 9	27.58	Oct. 11	41.77
June 17	27.74	(Continued on next page)	

Water levels, Lubbock Ccunty--Continued


222－－Continued
53.23
53.12
53.08
53.06
53.08
53.04

53．月2
53.13
50.55
50.12
48.61
47.50
48.10

223
W．C．Grimes； 12 miles E．；top of pipe clamp， 0.4 foot above land surface．
Feb．4， 1937
47.20
47.81

June 14， 1938
Aug． 9
Jan．6， 1939
Mar． 8
Jung 30
Oct． 10
Dec． 16
Mar．2玉， 1940
Nov．． 19
Tan．25， 1941
Mar． 6
July 29
Mar．23，1948．
July 31
Jan．28，1943
Frb．8， 1944
Feb．20， 1945
47.86
47.82
47.79
47.82
48.05
47.80
47.86
47.80
47.76
$\ddagger 7.80$
44.85
43.25
43.34
43.03
43.01
43.07

228
G．H．Hutchings； 16 miles NE．；top of steel casing， 2.5 feet above lend surface．
Feb．3， 1937
Sept． 10
Jen．24， 1938
Apr． 14
Juns 14
Jun－3 23
Aug． 9
Sept． 30
Mar．7， 1939
June 23
Sept． 30
！ビッ． 17
irsr．22， 1940
Nov． 19
テ̄n．25， 1941
Ms．r． 6
Jine 3
70.89
70.74
70.63
70.59
70.56
70.58
70.49
70.42
70.41
70.37
70.34
70.30
70.29
70.37
70.35
70.36
70.38

July 29， 1941
Mar．23， 1942
July 31
Jan．28，19．43
Feb．3， 1944
Feb．20， 1945
228－－Continued
69.17
68.03
67.85
67.74
67.58
67.8 .2

301
S．D．Stewart； 8 miles SE．；top of concrete curb， 0.8 foot abcve land surface．

Jan．6， 1937	58.50
Jan．6，1939	57.36
Wrer．8	57.32
June 30	57.61
Oct．11	57.97
Dec．16	57.57
Nov．19，1940	58.33
Mar．6，1941	58.13
Feb．16，1943	51.00
Feb．7，1944	50.38
Feb．27，1945	50.93

314
T．B．Zelner； 4 miles SW．；top of lower
edge large cpening in pump bese， 1.5
feet gbeve land surface．
liey 27， $1937 \quad 52.45$
June 21
19.49

Dec． 23
46.69

Tan．26， 1938
Juns 20
July 22
Jen．26， 1939
Mar． 10
Aug． 9
Oct． 11
Jan．16，19：10
Nov． 20
Mar．7， 1941
July 28
Dec． 18
Feb．18， 1943
Feb．10，19．44
46.56
48.32
47.51
46.11
15.92
45.60
45.59
45.58
49.39
47.06
46.82
47.94
46.36

Feb．27， 1945
45.68
44.62

316
E．A．Hankins； $4 \frac{3}{4}$ miles SW．；top of lower edge large opening in pump bese
1．5 feet above land surface．
Niay 27， 1937
64.90

June $21 \quad 64.36$
Aug． 2
64.62

Apr．26， 1938
Jan．6， 1930
Mar．27， 1942
63.98
63.89
63.00

Feb．18， 1943
62.65
62.12

Water levels, Lubbock County--Continued

336a
Mary Coons; 10 miles SW.; top of low 3 edge large opening in pump base, 1.2 feet above land surface.
Apr. 27, 1938
79.15

July $22 \quad 80.10$
Oct. $27 \quad 79.82$
Jan. 26, 1939
Aug. $9 \quad 79.85$
Oct. $11 \quad 79.88$
Jan. 16, 1940
July 31
Nov. 20
Jrn. 22, 1941
Mar. 7
July 28
Mar. 25, 1942
July 30
Feb. 19, 1943
Fob. 10, 1944
Feb. 27, 1945
79.90
80.02
80.13
80.14
80.20
78.47
77.75
78.94
77.78
77.67
77.82

339
J. E. Hinson; $8 \frac{1}{2}$ miles SW.; top of $\frac{1}{2}$-inch airline hole in pump bese, 0.5 foot above land surface.
May 18, 1937
Dec. 23
Jan. 4, 1939
Oct. 11
Jan. 16, 1940
Nov. 20
Jan. 22., 1941
Mnr. 7
Mar. 25, 1942
Dec. 18
Feb. 18, 1943
Feb. 10, 1944
Fob. 21, 1945
62.68
62.23
62.30
63.33
62.96
64.34
64.00
63.95
61.57
60.67
60.44
60.03
59.96

355
J. A. Medlock; $13 \frac{1}{2}$ milos SW.; top of
airline hole in pump base, 0.6 foct
abcve land surface.
May 14, 1937
June 21
8.1. 58

Dec. 23
Jan. 25, 1938
Apr. 26
Jan. 6, 1939
Oct. 11
Jan. 16, 1940
Nov. 20
Jan. 22, 1941
Mar. 7
July 28
84.50
84.29
84.24
88.10
84.62
86.02
85.2 .1
86.21
85.40
86.29
35.21

355-Continued

Mar. 25, 1942	83.94
Feb. 18, 1943	83.55
Feb. 10, 1944	83.18
Feb. 27, 1945	82.63

369
A. D. Thomas; $9 \frac{1}{2}$ miles S.; top of cencrete curb, 0.6 foct above land surface.
Dec. 22, 193681.57
Jan. 21, $1938 \quad 81.47$
Dec. $12 \quad 91.10$
Nov. 19, $1940 \quad 81.67$
Mar. 27, $1942 \quad 75.32$
Feb. 16, $1943 \quad 75.00$
Feb. 7, $1944 \quad 76.70$
Fob. 27, $1915 \quad 76.51$
372
W. P. Martin; 13 miles S. ; top of concrete pump foundation, 2 feet above land surface.

Niay 12, 1937	91.28
Sept.28	90.32
Jan. 21, 1938	90.05
Apr. 30	91.48
July 22	90.52
Oct. 26	90.50
Dec. 12	90.33
Feb. 7, 1944	94.20
Feb. 2.7, 1945	94.28

## 376

Union Schecl; 12t miles SE.; top of concrete curb, 1 foct above land surface.
Jan. 6, $1937 \quad 94.06$
Jan. 6, 1939 93.81
Mar. 8 93.18
June $30 \quad 94.32$
Oct. $11 \quad 94.10$
Dec. $16 \quad 93.95$
Mar. 27, 194292.75
July 31
92.42

Feb. 16, 1943
91.78

Feb. 7, 1944
91.21

Feb. 27, 1945
90.95

## 383

H. B. Hobgood; $14 \frac{1}{2}$ miles SW.; top of wooden curb, 0.2 foct abive land surface.
July 1, $1937 \quad 73.65$
Aug. 273.52
Jan. 25, $1938 \quad 73.48$
Aug. 14, $1939 \quad 73.68$
Oct. $11 \quad 73.72$
Jan. 16, 1940
73.84

Water levels, Lubbock County--Ccntinued


Water levels, Lubbuck County--Ccntinued

391--Continued		397--Continued	
Feb. 18, 1943	77.45	June 19, 1939	18.04
Feb. 10, 1944	77.47	Aug. 15	18.56
		Oct. 13	18.43
392		Dec. 16	18.43
Mrs. Betty Lindsey; 13 miles W.	top if	Mar. 12, 1940	18.54
weaden curb, 0.8 foct above land	surface.	Apr. 4	18.55
July 21, 1937	93.34	July 10	18.80
Sept. 7	94.05	Nov. 18	19.54
Jan. 25, 1938	93.31	Mar. 7, 1941	18.61
June 22	93.21	May 20	16.18
Feb. 6, 1939	93.07	July 29	14.84
Mar. 14	92.98	Mar. 26, 1942	14.54
Oct. 12	92.96	Feb. 1, 1943	11.70
Mar. 25, 1942	92.54	Fob. 4, 1944	13.62
Feb. 18, 1043	92.00	Feb. 9, 1945	14.91

398
E. E. Ircland; 9 miles NW.; tcp edge cf steel tracter wheel, 1.4 fest abcve land surface.
395
H. W. Stanton; $2 \frac{1}{2}$ miles N.; tep of cencrete pump foundation, 1 foct abcve
land surface.
Sept. 8, 1937
Sept. 21
Oct. 16
Jan. 26, 1938
Apr. 9 4!. 96
Jun $17 \quad 44.89$
Mar. 10, 1939
June 19
Aug. 15 54.07
Mar. 13, 1940
Nov. 19
47.15

Jan. 22, 1941
Mar. 7
Dec. 17, 1942
Feb. 1, 1943
Feb. 8, 1944
46.21

Feb. 23,1945
4.5 .91
45.46
45.04
44.95
54.00
51.43
49.00
48.83
42.94
43.12
41.36
46.20

397
C. L. Dean; 5 $\frac{1}{2}$ miles NWi.; tcp of steel cesing, 1.6 feet abcve land surface.
Sept. 8, 1937
18.27

Sopt.21 18.46
Jan. 26, 1938
Apr. 9
18.60

June 17
18.79
$\begin{array}{ll}\text { June } 17 & 18.42\end{array}$
June 21
18.37

Juns 28
18.34
$\begin{array}{ll}\text { Sept. } 13 & 17.99\end{array}$
Oct. 19
Jan. 16, 1939
18.33

Mar. 10

Sept. 8, 1937	16.64
Sept.22	16.69
Jen. 26, 1938	16.76
Apr. 9	16.94
June 21	15.63
June 28	16.10
Sept. 10	16.66
Oct. 19	16.83
Jan. 16, 1939	16.98
Mar. 10	17.10
Juns 19	16.12
Aug. 15	15.07
Oct. 13	15.09
Dec. 16	15.33
Mar. 13, 1340	15.69
July 10	16.11
Nov. 18	16.83
Mar. 7, 1941	16.92
May 30	13.05
July 29	13.02
Mar. 26, 1942	13.30
Feb. 1, 1943	11.69
Feb. 9, 1944	13.78
Oct. 5	14.03

401
Virginia Bacen; 8 miles N.; tcp of casing, 0.1 ficct above land surface.
Sept. 9, 1937
71.24

Jan. 25, $1938 \quad 71.10$
Apr. $18 \quad 71.07$
June $15 \quad 71.09$
June $30 \quad 71.05$
Jan. 28, $1939 \quad 70.81$
$\begin{array}{ll}\text { Mar. } 4 & 70.68\end{array}$
June 16
70.72
(Ccntinued on next page)

Water levels, Lubbock Ccunty--Continued

	401--Ccntinued	
July 10, 1939		70.74
Aug. 16		70.80
Oct. 10		70.74
Dec. 16		70.65
Mar. 13, 1940	70.63	
July 10	70.64	
Nov. 13	70.98	
Jan. 22, 1941	70.97	
Mar. 6	70.98	
July 28	70.49	
Mar. 24, 1942	69.34	
July 28	69.05	
Fer. . 1, 1943	68.62	
Feb. 9, 1944	69.06	
Feb. 9, 1945	67.76	

402
Fort Worth and Denver City Failway Co.; at Kitalou sidirg, 8 miles NE.; top of concrete curb, 0.2 foct abc:ve land surface.

Sent.10, 1937	38.57
Jan. 24, 1938	38.44
Apr. 14	38.54
June 14	38.77
Sent.30	38.20
Mar. 7, 1939	38.43
June 23	38.62
Sept.30	39.23
Dec. 17	39.64
Nar. 22, 1940	39.88
Nov. 19	40.91
Jan. 25, 1941	41.20
Mar. 6	41.32
June 3	39.60
Tuly 29	36.65
Mar. 23, 1942	35.08
Dec. 18,	30.54
Jan. 28, 1943	30.78
Feb. 7, 1944	31.32
Feb. 9, 1945	31.90

403
J. E. Smiley; 7 $\frac{1}{2}$ miles NE.; top of con-
cret.e pump foundation, 0.65 foot above
land surface.
Sept.10, 1937
40.95

Jen. 24, 1938
40.29

Apr. 14
June 14
39:91
June 14 40.13
Sept. $30 \quad 39.58$
Mar. 7, $1939 \quad 30.72$
Iun: $23 \quad 39.76$
Sept. 30 41.35
Dec. 1.
41.15

Mar. 22, 1940
41.06

Nov. 19, 1990 43.07
Jan. 25, 1941 42.81
Mar. 6 42.71
July $29 \quad 40.58$
Mar. 23, 19 $9_{5}^{2} \quad 36.51$
Dec. 18 3.1.47
Jan. 28, $1943 \quad 33.83$
Feb. 7, 1944 35.56
Feb. 7, 19.15 35.51
498
Ed Snodgrass; $15 \frac{1}{2}$ miles NE.; top of concrete pump foundation, 1 foot above land surface.

Jan. 25. 1941	88.20
Feb. 22, 1914	85.43
Feb. 9,1915	86.00

666
R. E. Karper; 3 miles N.; top of $\frac{1}{2}$-inch airline hole in steel punp base, 1 foot above 1 and surface.

Mar. 29,1540	53.00
Aug. 13	57.62
Sept. 10	59.18
Oct. 13	57.62
Jan. 22, 1941	56.18
Mar. 6	55.87
June 3	56.20
July 28	54.95
Mar. 28, 19.12	52.94
Dec. 17	51.70
Feb. 1, 19.43	51.38
Feb. 9,1941	52.00

839
W. J. Baker; 8 $\frac{1}{c}$ miles S.; top of lower edge large opening in pump base, l.4. feet abovs land surface.
Mar. 27, $1942 \quad 79.87$

Feb. 16. $1943 \quad 79.08$
$\begin{array}{ll}\text { Mar. 5, } 1945 & 79.62\end{array}$
$8 \therefore 7$
Texas Highway Department; 3童 miles S.;
top of concrete pump founation, 1.5
feet shova land surface.
Mar. 8, 1939
83.77

June 20
83.91

Feb. 5, 1944
78.56

Feb. 21, 1945
78.19

Partial anslyses of water from wells and springs in Lubbock County, Texas
(Results are in parts per million)

Well	Owner	Depth of well (ft.)		Total dissolved solists	Calcium (Ca)	Magnesium (Mg)	Sodium and Potassium $(\mathrm{Na}+\mathrm{K})$ (calc.)	cicar_ bonate $\left(\mathrm{HCO}_{3}\right)$	Sul-   fate $\left(\mathrm{SO}_{4}\right)$	Chloride (cl)	Fluor-   ide ( 7 )	Nitrate $\left(\mathrm{NO}_{3}\right)$	$\begin{gathered} \text { Total } \\ \text { herdness } \\ \text { as CaCO } \\ \left(\text { calc. }{ }^{2}\right. \\ \hline \end{gathered}$
C-1	ty of Lubbock	98	Sept.?2, 1944	1,200	79	96	150	423	379	126	3.2	11	589
C-2	do.	300	Feb. 15, 1944	746	57	65	102	313	159	110	5.4	7.5	410
C- 3	do.	210	Sept.22, 1944	739	63	63	76	316	165	98	3.4	4.1	416
C- 4	do.	156	Oct. 2, 1944	628	48	57	69	331	139	62	-	0.9	354
C- 5	do.	150	do.	694	53	60	118	318	153	150	-	3.8	379
C-6	do.	$11 . ?$	Sept.22, 1944	1,020	78	86	114	354	319	114	3.3	4.1	549
C-7	do.	158	Scpt.25, 1\%4	74.4	61	66	74	324	145	109	3.5	5.3	424
C-8	do.	157	do.	736	61	63	83	310	157	114	3.4	5.1	411
C-9	do.	1.51	तo.	781	61	67	73	309	154	111	3.4	10	428
C-10	d).	151	Sept.22, 1944	629	50	56	74	325	121	79	3.5	3.2	356
C-11	do.	145	Sept.25, 1944	675	58	61	74	326	153	84	3.4	2.5	395 ,
C-12	do.	145	तo.	651	50	58	76	321	126	97	3.5	4.0	3.54 它
C-13	do.	150	Sept.22, 1944	1,200	76	94	165	345	421	146	3.2	1.5	$576 \sim$
C-14	do.	J. 35	0ct. 2, 1944	1,080	78	96	164	386	398	151	-	3.2	599
C-15	do.	135	Sept 22,1914	831	70	62	101	339	240	80	2.2	1.8	430
C-16	do.	135	Sept.25, 1944	619	45	53	59	249	120	98	3.5	2.9	351
C-17	do.	125	Oct. 2, 1944	960	76	92	132	317	292	198	-	14	563
C-19	do.	110	do.	520	59	73	137	391	219	140	-	0.5	447
C-20	do.	Spring	Oct. 4, 1944	1,120	56	112	186	328	347	239	4.1	1.2	600

Analyzed at The University of Texas under the direction of W. W. Hastings and E. W. Lohr, Chemists, U. S. Department of the Interior, Geological Survey, and Dr. E. P. Schoch, Director of the Bureau of Industrial Chemistry. Results are in parts per million. Well numbers correspond to numbers in table of well records.

Well	Owner	Depth of well (ft.)	Date of collection	$\begin{gathered} \text { Total } \\ \text { dissolved } \\ \text { solids } \end{gathered}$	Cal-cium(Ca)	Magnesium (Mg)	Sodium and Potassium ( $\mathrm{Na}+\mathrm{K}$ ) (calc.)	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$		Chloride (Cl)	Fluoride (F)	$\left\lvert\, \begin{gathered} \mathrm{Ni}- \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}\right.$	$\begin{aligned} & \text { Total } \\ & \text { hardness } \\ & \text { as CaCO } \\ & (\text { calc. })^{3} \end{aligned}$
1	H. H. Berryman	95	Apr. 26, 1937	475	-	-		268	120	54	-		
2	W. F. Gilbert	112	do.	5.92	-	-		146	176	136	-	-	
3	F. E. Winters	50	Apr. 15, 1937	1,938	203	201	162	438	831	326	-	-	1,333
4	Hardy School	147	do.	941	-	-	-	159	365	124	-	-	1,333
5	J. A. Brown	115	do.	362	94	79	102	300	337	112	-	-	534
6	B. W. Gilos	160	Apr. 26, 1937	435	-	-	-	171	120	80	-	-	-
7	S. E. Cone	135	Nov. 4, 1944	613	79	55	36	276	115	102	1.9	4.2	420
9	R. L. Hood	105	d..	481	58	36	47	285	76	53	1.9	2.8	292
9	Leon Estate	192	Apr. 26, 1937	417	-	-	-	256	104	38	-	-	-
10	New Deal School	119	Apr. 30, 1937	462	-	-	-	268	99	66	-	-	-
11	Temple Trust Co.	-	Apr. 27, 1937	641	-	-	-	342	140	104	-	-	-
14	Richard Carruth	99	Apr. 26, 1937	595	86	55	56	343	96	128	-	-	439
15	T. V. Lovelace	209	May 7, 1937	274	42	34	20	305	a/	28	-	-	246
16	H. A. Iverson	120	Oct. 2, 1937	407	52	50	31	307	47	64	1.4	10	335
17	P. H. Sammons	157	Apr. 26, 1937	372	-	-	-	329	32	36	-	-	-
19	L. Stephenson	110	Apr. 27, 1937	423	-	-	-	317	64	46	-	-	-
22	Fritz Fuchs	129	May 6, 1937	335	-	-	-	329	15	28	-	-	
23	L. D. Perry	115	do.	371	67	29	35	329	42	36	-	-	238
24	Center School	94	Sept.30, 1937	510	63	70	28	298	63	135	1.8	2.2	444
26	R. H. Emery	136	Apr. 27, 1937	316	6	-	-	293	23	28	-	-	4
27	S. Johnston	92	Oct. 1, 1937	403	59	41	35	306	72	42	2.0	1.2	336
28	J. W. Kerley	94	May 3, 1937	327		-	-	317	12	32	-	-	-
29	Geo. R. Bean	115	May 6, 1937	350	-	-	-	317	30	30	-	-	-
30	0. C. Powell	62	Feb. 4, 1937	507	-	-	-	390	57	68	-	-	-
31	3. F. Davis	95	do.	344	63	45	5	231	19	74	-	-	343
32	C. S. Williams	100	do.	370	-	-	-	256	60	48	-	-	-
33	E. P. Hildreth	87	त).	692	-	-	-	378	113	136	-	-	-
34	A. M. Becton	100	do.	543	-	-	-	256	83	139	-	-	-
35	do.	255	Sept.30, 1937	358	38	34	55	349	36	16	2.0	5.0	234

a) Sulfate less than 10 parts per million.

Fartial analyses of wator from wells and springs in Lubbock County-Continued

Well	Owner	Depth of well (ft.)	Date of collection	$\begin{gathered} \text { Total } \\ \text { dissolved } \\ \text { solids } \end{gathered}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	$\begin{aligned} & \text { Magne- } \\ & \text { sium } \\ & (\mathrm{Mg}) \end{aligned}$	Sodium end Potassium $(\mathrm{Na}+\mathrm{K})$ (calc.)	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	Sul-   fate $\left(\mathrm{SO}_{4}\right)$	Chloride (C1)	Fluor   ide   (F)	$\left\lvert\, \begin{gathered} \mathrm{Ni-} \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}\right.$	
36	Bledsje School	100	Feb. 4, 1937	344	-	-	-	232	49	54	-	-	-
38	Frank Bledsoe	61	Mar. 11, 1937	440	-	-	-	342	60	48	-	-	_
39	Mrs.R.B.Catching	100	Feb. 4, 1337	230	-	-	-	281	26	8	-	$-$	-
40	Estacoda School	100	Sept. 30, 1937	468	59	67	19	284	70	98	2.5	9.0	422
41	R. Q. Mabry	230	Feb. 3, 1937	388	-	-	-	342.	41	32	-	-	-
44	S. A. Tharp	115	do.	385	31	27	86	360	34	30	-	-	187
45	A. J. Sanders	95	F=b. 4, 1937	510	82	63	16	311	86	110	-	-	464
47	George Young	77	Mar. 10, 1737	359	-	-	-	354	185	196	-	-	-
50	F. H. Cannon	137	May 3, 1937	301	50	41	12	349	a/	26	-	-	296
51	W. A. Armstrong	90	do,	555	81	61	45	451	68	78	-	-	453
52	O. B. Hankins	136	Apr. 23, 1937	304	-	-	-	293	12	30	-	-	-
53	W.0.Fortenberry	200	Apr. 27, 1937	243	35	29	18	220	19	34	-	-	208
54	L. L. Watson	264	May 6, 1937	231	26	24	29	177	23	42	-	-	165
55	R. D. Holmes	94	Apr. 27, 1937	270	-	-	-	220	26	34	-	-	- io
59	L. E. Howard	-	Mar. 15, 1937	447	-	-	-	317	80	47	-	-	
60	Liberty School	10 C	do.	357	67	38	22	366	a/	50	-	_	323
61	G. R. Bean	67	Jan. 23, 1937	632	90	43	89	451	110	78	-	-	401
62	H. T. Atkins	99	do.	361	54	43	23	305	49	42	-	-	311
63	Gayle Wallace	85	Nov. 2, 1944	652	86	54	37	291	108	102	3.9	14	436
64	W. Y. Barrett	211	Sept.30, 1937	341	43	35	40	320	30	28	2.0	4.2	255
66	New Deal School	125	Oct: 1, 1937	362	54	35	36	314	46	31	2.4	3.0	278
72	J. I. Exum	156	Apr. 27, 1937	359	-	-	-	281	49	38	-	-	-
75	B. R. Shaw		Apr. 12, 1937	590	-	-	-	256	151	100	-	-	-
76	Tom J. Foster	150	Apr. 28, 1937	302	-	-	-	232	47	30	-	-	-
77	A. E. Griffis	216	Mar. 16, 1937	396	-			291	64	42	-	-	250
81	J. E. Vickers	160	Dec. 6, 1936	458	44	41	67	297	113	52	-	-	281
92	G. H. Grissom	51	Apr. 12, 1937	765	104	49	103	329	205	142	-	-	460
83	W. P. Perser	115	Apr. 13, 1937	462	52	34	73	311	102	48	-	-	271
84	J. B. McCauley	116	do.	631	-	-	-	305	185	76	-	-	
85	do.	115	do.	646	75	44	94	305	213	70	-	-	367
87	W. O. Arnold	44	Apr. 12, 1937	950	76	66	130	317	306	116	-	-	461
98	J. A. McClatchy	74	do.	491	-	-	-	207	125	92	-	-	-

a) Sulfate less than 10 parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued

Well	Owner	Depth of well (ft.)	Date of collection		Cal-   cium   (Ca)	Magnesium (Mg)	Sodium and Potassiun $(\mathrm{Na}+\mathrm{K})$ (calc.)	Bicar-   bonate $\left(\mathrm{HCO}_{3}\right)$	Sulfate $\left(\mathrm{SO}_{4}\right)$	Chloride (c.1)	$\begin{aligned} & \text { Fluor- } \\ & \text { ide } \\ & (\mathrm{F}) \end{aligned}$	$\begin{gathered} \mathrm{Ni}- \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { hardness } \\ & \text { as CaCO } 3 \\ & \text { (calc.) } \end{aligned}$
89	Grovesville Schcol	92	Sept.30, 1937	606	70	47	-79	288	188	72	2.0	.10	368
91	Lubbock National Bank	200	Apr. 21, 1937	696	116	49	61	348	225	74	-	-	490
93	T. H. Sears	108	Nov. 4, 1944	616	58	55	74	347	113	96	1.9	4.2	370
95	Meyers Estate	100	Apr. 10: 1937	724	-	-	-	171	242	154	-	-	-
96	K. D. Kidd	100	do.	1,179	-	-	-	146	538	190	-	-	-
97	G. R. Johnson	105	Apr. 22, 1937	1,189	-	-	-	293	502	152	-	-	-
98	Lon A. Mullican		Apr. 15, 1937	1,325	102	113	174	232	682	140	-	-	720
79	R. B. Gray	108	June 22, 1937	920	-	-	-	220	366	142	-	-	-
100	O. P. Bowser	165	do.	515	-	-	-	342	108	52	-	-	-
102	J. L. Lindsey	95	Apr. 15, 1937	756	75	69	99	365	217	116	-	-	473
103	H. T. Fergeson	59	do.	815	-	-	-	281	221	174	-	-	-
106	S. F. Fields	53	Sept.30, 1737	793	56	60	145	323	253	112	5.2	3.0	386
109	C. C. Vance	99	Nov. 2, 1944	93.8	58	61	107	31.1	293	131	4.9	1.8	396
111	W. D. Duncan	92	Nov. 7, 1944	914	61	79	97	360	153	145	5.8	16	477
113	E. G. Hutchings	156	Oct, 1, 1937	502	40	46	85	326	95	64	4.5	7.0	2\%9
114	G. W. McCleary	143	Apr. 13, 1937	516	55	52	67	390	92	58	-	-	352
116	J. B. Edmards	150	Apr. 14, 1937	538	-	-	-	268	165	96	-	-	-
117	J. H. Able	170	do.	499	-	-	-	281	133	52	-	-	-
121	Claude Campbell	203	Oct. 1, 1937	541	46	53	81	350	128	53	4.3	3.0	332
122	Mrs.M.M.Pevehouse	153	Way 20, 19,37	564	-	-	-	317	144	64	-	-	-
124	Isham Tubbs	195	Dec. 8, 1936	605	69	51	81	342	150	86	-	-	332
130	C. C. Lane	159	May 22, 1937	623	-	-	-	342	147	36	-	-	-
132	J. W. Ross	202	May 20, 1937	642	62	57	94	366	153	96	-	-	390
134	O. C. Ballard	65	Dec. 8, 1936	688	83	60	84	366	169	112	-	-	452
136	John King	162	June 21, 1937	739	-	-	-	281	189	154	-	-	-
133	Edith Collie	120	Apr. 14, 1937	437	-	-	-	256	92	62	-	-	-
140	J. C. James	87	do.	657	72	56	99	492	116	72	-	-	410
14.2	M. K. Dean	100	June 22, 1937	1,064	-	-	-	317	402	150	-	-	-
143	R. R. Marshall	101	Apr. 14, 1937	1,106	128	73	156	415	405	140	-	-	620
149	J. B. McCauley	116	Apr. 13, 1937	1,342	122	83	222	366	567	168	-	-	646
153	Clyde McCrummen	55	Dec. 8, 1936	602	-	-	-	348	133	82	-	-	-
154	J. S. Hamilton	160	June 21, 1937	596	-	-	-	244	169	100	-	-	-
156	J. M. Phillips	152	Dec. 8, 1936	601	-	-	-	354	129	82	-	-	-

a/ Sulfate less than 10 parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued
(Rosults ar: in parts per million)

Well	Owner	Depth of well (ft.)	$\begin{aligned} & \text { Date } \\ & \text { of } \\ & \text { collecti on } \end{aligned}$	Total dissolved solids	Cal-   cium   (Ca)	Magnesium (Mg)	Sodi um and Pot.assium $(\mathrm{Na}+\mathrm{K})$ (calc.)	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	Sulfate $\left(\mathrm{SO}_{4}\right)$	Chloride (ci)	Fluoride (F)		$\begin{aligned} & \text { Total } \\ & \text { harcuness } \\ & \text { as Cac.CO } \\ & \text { (caic.) } \end{aligned}$
160	Texas Tech College	200	Oct. 1, 1937	537	49	63	96	338	162	93	4.2	3.6	384
198	Texas Fxp. Station		Sept.30, 1937	410	46	39	54	303	76	40	2.5	3.2	275
192	Caryon School		Nov. 1, 1944	510	50	46	52	325	53	61	3.6	12	314
193	J.A.Burleson	125	May 19, 1937	450	54	40	60	336	72	56	-	-	300
199	Jess Levrns	59	Jan. 28, 1937	619	-	-	-	329	125	110	-	-	-
203	Russell Bean	138	do.	426	-	-	-	317	64	48	-	-	-
216	J. T. Mattingly	78	Feb. 3, 1937	384	-	-	-	329	34	42	-	-	-
225	Acuff School	100	Oct. 2, 1937	842	100	77	94	343	216	178	4.2	4.0	556
226	T. U. Hunt		0ct. 30, 194/4	599	47	48	83	350	83	73	4.7	9.2	315
227	L. S. Evitt		Feb. 4, 1937	279	-	-	-	232	30	29	-	-	-
229	Roy Naney	85	Feb. 3, 1937	426	-	-	-	256	71	74	-	-	-
230	Gus Collett	100	do.	4,52	-	-	-	305	$5 \%$	78	-	-	-
231	F. N. Cummings	107	Jan. 14, 1937	711	-	-	-	464	108	114	-	-	-
232	Mrs. Annie E. Parks	100	Jan. 20, 1937	428	-	-	-	305	64	56	-	-	-
233	Hrs. Y. P. Pace	200	do.	582	-	-	-	354	100	96	-	-	-
234	San Augustine Ranch	100	do.	532	-	-	-	403	92	79	-	-	-
235	W. F. Klattenhoff	76	do.	411	36	49	49	275	76	65	-	-	290
236	\%. N. Ferris	100	do.	576	-	-	-	354	83	108	-	-	-
238	Mrs. Annie E. Parks	100	do.	551	-	-	-	451	49	79	-	-	-
239	W. A. Ferguson	35	Jan. 14, 1937	433	33	35	87	366	60	38	-	-	227
240	W. M. Meyer	185	do.	395	-	-	-	268	69	44	-	-	-
241	O. W. Carr		Jan. 26, 1937	591	-	-	-	379	117	74	-	-	-
253	City of Slaton Well	1135	Feh. 17, 1944	611	42	51	103	342	121	71	5.9	3.0	314
254	City of Slaton Well	3206	Jan. 18, 1937	591	52	50	98	379	133	72	-	-	336
255	City of Slaton Well	2125	do.	561	52	50	87	354	124	74	-	-	336
257	W. M. Johnson	165	Jan. 26, 1937	451	-	-	-	293	110	42	-	-	-
259	J. T. Lokey	107	do.	432	35	44	54	268	97	60	-	-	267
263	W. H. Rogers	Spring	May 11, 1937	1,668	-	-	-	500	517	335	-	-	-
264	do.	Spring	do.	416	50	39	58	366	41	48	-	-	284
265	do.	Spring	do.	434	-	-	-	329	56	$54_{i}$	-	-	-
266	do.	Spring	do.	464	-	-	-	329	71	60	-	-	-
267	A. H. Baer	100	Dec. 21, 1936	460	-	-	-	329	72	56	-	-	-

2] Sulfate less than $10^{\circ}$ parts per million.

Partial anclyses of water from wells and springs in Lubbock County-Continued
(Results are in parts per million)

a) Sulfate less than $1 \overline{0}$ parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued

Well	Owner	$\begin{array}{\|c\|} \hline \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft} .) \\ \hline \end{array}$	Date of collection	Total dissolved solids	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	Magnesium ( Mg )	Socium and Potassium $(\mathrm{Na}+\mathrm{K})$ (calc.)	Dicarbonate $\left(\mathrm{HCO}_{3}\right)$	Sul_   fate   $\left(\mathrm{SO}_{4}\right)$	Chloride (Cl)	Fluor ide (F)	$\begin{array}{\|c} \mathrm{Ni-} \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { hardness } \\ & \text { as } \mathrm{CaCO} \\ & \text { (calc.) } \end{aligned}$
331	J. M. Locklar	89	Dec. 15, 1936	599	-		-	403	106	75	-	-	-
332	A. L. Walker	-	Dec. 14, 1936	631	73	56	75	354	140	108	-	-	425
333	Wilmer McCrummen	-	do.	541	-	-	-	372	99	62	-	-	-
335	-- Borger	203	Nov. 3, 1944	572	28	53	103	394	99	50	5.9	0.8	289
336	D. G. Kulms	95	Dec. 14, 1936	763	-	-	-	354	197	12 h	-	-	-
337	Dr. J. T. Hutchinson	-	do.	650	-	-	-	384	155	80	-	-	-
338	George Langford	160	May 20, 1937	539	-	-	-	390	91	58	-	-	-
340	J. E. Hinson	80	Dec. 19, 1936	757	-	-	-	390	185	112	-	-	-
341	Dr. D. D. Cross	173	May 20, 1937	622	-	-	-	403	140	60	-	-	-
342	S. O. Adamson	169	May 18, 1937	679	-	-	-	390	130	66	-	-	-
343	J. P. Thomas	-	Dec. 9, 1936	782	-	-	-	397	201	110	-	-	-
345	D. S. Tucker	196	do.	546	42	40	113	427	87	54	-	-	270
346	A. M. Leftwich	86	Dec. 2, 1936	677		-	-	354	135	80	-	-	-
347	J. S. Sharp	190	May 20, 1937	656	26	26	192	427	128	74	-	-	171
350	R. D. Martin	206	do.	637	-	-	-	329	204	50	-	-	-
352	W. V. Hill	155	Oct. 1, 1937	615	40	48	120	325	169	72	5.4	. 80	297
353	W. H. Hill	170	May 14, 2937	696	59	45	131	372	179	90	-	-	333
354	I. Elwood	-	Dec. 2, 1936	790	61	52	152	354	241	110	-	-	367
355	J. A. Medlock	189	May 20, 1937	627	-	-	-	366	147	76	-	-	-
356	A. M. Hughes	105	Dec. 14, 1936	674	-	-	-	379	151	96	-	-	-
357	L. P. Thomas	140	Dec. 2, 1936	786	-	-	-	458	169	110	-	-	-
358	M. F. Klattenhoff	77	Dec. 15, 1936	507	66	51	49	342	117	56	-	-	375
360	J. C. Stanford	85	Dec. 22, $1 \times 36$	514	-	-	-	366	98	48	-	_	-
361	H. C. Young	-	do.	571	-	-	-	354	117	74	-	-	-
362	J. M. Burch	109	Dec. 15, 1936	523	-	-	-	403	68	62	-	-	-
363	Otis A. Rogers	100	Dec. 22, 1936	747	-	-	-	373	174	122	-	-	-
364	W. A. Frost	106	do.	492	-	-		354	83	54	-	-	-
365	First Natl. Bank	100	Dec. 15, 1936	499	46	43	86	390	76	56	-	-	291
367	Jacob Schieber	116	Dec. 22, 1936	491	51	45	74	384	76	56	-	-	313
368	John B. Lewis	100	do.	787	-	-	-	488	174	90	-	-	-
369	A. D. Thomas	98	do.	483	$-$	-	-	403	53	50	--	-	-
370	E. F. Wollbrueck	90	Jan. 4, 1937	677	66	57	107	403	133	116	-	-	400

a] Sulfate less than 10 parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued
(Results are in narts per million)

Well	Owner	Depth of well (ft.)		$\begin{aligned} & \text { Total } \\ & \text { dissolved } \\ & \text { solids } \end{aligned}$	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	Magnesium (䘖)	Soti um and Potassium ( $\mathrm{Na}+\mathrm{K}$ ) (calc.	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	$\left\|\begin{array}{l} \text { Sul_ } \\ \text { fate } \\ \left(\mathrm{SO}_{4}\right) \end{array}\right\|$	Chlo-   ride   (Cl)	Fluoride (F)	$\left\|\begin{array}{c} \mathrm{Ni} \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{array}\right\|$	Tobal hardness as $\mathrm{CaCO}_{3}$ (calc.)
371	R. 0, Gregory	-	Jan. 6, 1937	592	-	-	-	378	124	68			
375	C. L. Griffin	129	0<t. 1, 1937	523	39	48	98	405	85	48	6.1	. 25	292
376	Union School	98	Jan. 6, 1937	576	-	-	-	317	133	82	-	-	-
377	M. D. Gamble	87	do.	607	60	55	91	396	116	90	-	-	375
379	E. E. Wilson	81	do.	713	-	-	-	415	153	100	-	-	-
390	Mrs. S. H. Adams	-	do.	578	-	-	-	378	116	66	-	-	-
381	J. R. Childres	130	May 12, 1937	592	-	-	-	390	117	68	-	-	-
332	J. P. Railsback	120	Jan. 26, 1937	517	-	-	-	378	91	50	-	-	-
395	H. W. Stanton	125	Sept.23, 1944	782	76	51	92	294	216	88	2.6	2.2	399
398	E. E. Ireland	56	Oct. 5, 1944	953	42	96	149	472	227	96	4.2	32	458
432	Claude Tatum	285	Oct. 9, 1944	1,310	107	107	187	299	558	201	1.6	0.8	707
434	Emily Magee	200	Nov. 4, 1944	442	51	36	47	305	49	48	$2 . E$	4.0	276
496	E. H. Truett	232	Oct. 10, 1944	353	44	37	32	312	33	22	2.8	2.2	262 \%
509	A. J. Bryant	361	Oct. 17, 1944	422	39	33	65	360	42	19	2.8	2.2	233 i
530	Lucien Moore		Oct. 19, 1944	436	31	27	92	361	37	31	2.8	3.0	188
539	Wayne Butler	255	Oct. 17, 1944	-	-	-	-	338	36	20	-	-	285
551	J. F. Toler	300	Oct. 9, 1944	387	43	37	44	322	35	31	3.2	3.0	260
559	City of Idalou	125	do.	425	46	49	37	333	45	36	3.6	3.8	316
571	H. W. Lasater	170	Oct. 24, 1944	555	53	52	55	322	79	78	3.2	3.2	346
579	Alex Weaver	142	Oct. 20, 1944	-	-	-	-	314	22	26	-	-	244
599	P. L. Hamilton	114	Nov. 1, 1944	498	52	48	38	303	66	59	3.1	3.8	328
601	R. S. Collins	132	oct. 7, 1944	589	54	49	60	350	99	65	2.3	4.6	361
603	C. Faulkner	63	Oct. 30, 1944	614	48	49	87	320	105	90	3.5	3.2	322
604	do.	117	Oct. 29, 1944	502	52	44	52	326	73	51	2.8	2.8	311
608	Perrin Bean	97	Nov. 1, 1944	444	47	39	49	314	62	37	2.7	3.2	278
611	H. V. Edsall	45	do.	642	54	53	71	328	111	76	3.5	9.0	353
629	T. J. Bovell	200	Sept.22, 1944	390	42	39	44	328	34	29	3.6	3.2	261
636	Lee Minyard	96	Nov. 14, 1944	793	93	73	60	345	123	162	2.7	19	532
653	South Plains Army Air Forces	150	Jan. 9, 1943	582	69	58	63	312	116	119	-	3.5	410
654	do.	155	do.	414	52	42	45	326	70	42	-	2.4	302
656	C. R. McLaurin	102	Oct. 25, 1944	552	75	36	55	315	87	69	2.9	0.8	335

a) Sulfate less than 10 parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued

Well	owner	Depth or well (ft.)	$\begin{aligned} & \text { Date } \\ & \text { of } \\ & \text { collection } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Totel } \\ \text { dissilved } \\ \text { solidids } \end{gathered}\right.$	$\begin{aligned} & \text { Sal- } \\ & \text { cium } \\ & (\mathrm{Ca}) \end{aligned}$	$\begin{array}{\|l\|l} \left.\begin{array}{l} \text { niagne- } \\ \text { sium } \\ (M g) \\ (M g \end{array}\right) \end{array}$	Sociium and Potassium $\binom{\mathrm{Na}+\mathrm{K})}{\mathrm{ce.lc}}$.	Bicarbonat e $\left(\mathrm{HCO}_{3}\right)$	$\left\|\begin{array}{l} \text { sul- } \\ \text { fate } \\ \left(\mathrm{SO}_{4}\right) \end{array}\right\|$	Cnloride (CI)	$\begin{aligned} & \text { Fluor- } \\ & \text { ide } \\ & \hline(\mathrm{F}) \end{aligned}$	$\begin{gathered} \text { Ni- } \\ \text { (rate } \\ \text { ( } \mathrm{NO} \mathrm{O}_{3} \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { hardnes } \\ & \text { as Coco } \\ & \text { (calc.) } \end{aligned}$
371	R. O. Gregory		Jen. 6, 1937	592				378	12.4	68			
375	C. L. Griffin	129	Oct. 1, 1937	523 576	38	48	98	405	35	48	6.1	. 25	292
376	Union School	99	Jen. 6, 1937	576	-	-		317	133	32			
377	:. D. Gamble	87	do.	507	60	55	91	376	116	90	-	-	375
379	F. E. Wilson	31	do.	713	-	-	-	415	153	100			
330	Mrs. S. Ho Adams		do.	578	-	-	-	378	116	66	-	-	
331	J. R. Childres	130	Mey 12, 1937	572	-	-	-	390	11.7	58	-		
382	J. P. Railsback	120	Jan. 26, 1937	517				373	91	50			
395	H. W. Stanton	125	Sept .23, 1944	732	76	51	92	294	216	83	2.6	2.2	399
338	F. ©. Irclend	56	Oct. 5, 1944	953	42	31	149	472	227	86	4.2	32	458
4.16	J. R. West	250	Feb. 9, 1945	371	38	38	34	293	22	42	-	4.9	251
419	F. L. Sowder	140	F?b. 17, 1945	421	35	39	27	267	38	32	-	3.5	243
422	Jim Asburn	177	Feb. 28, 1745	506	35	42	67	337	50	53		3.2	260
432	Claude Tatum	235	Oct. 5, 1944	1,310	107	107	137	297	558	201	1.6	0.8	707
434	Fmily Magee	20.5	Nov. 4, 1944	442	51	36	47	305	49	48	2.0	4.0	276
496	F. H. Truett	232	Oct. 10, 1944	363	44	37	32	312	33	22	2.9	2.2	262
502	A. J. Bryant	361	Dct. 17, 1944	422	39	33	65	360	42	19	2.8	2.2	233
530	Lucien Moore	260	Oct. 19, 1944	436	31	27	92	361	37	31	2.9	3.0	188
539	Wayne Eutler	255	Dct. 17, 1944	-	-	-	-	338	35	20			285
551	J. F. Toler	300	Oct. 9, 1944	387	43	37	4	322	35	31	3.2	3.0	250
559	City of Idalou	125	do.	425	46	49	37	333	45	36	3.6	3.3	316
571	H. W. Lasater	170	Det. 24, 1944	555	53	52	55	322	79	78	3.2	3.2	346
579	Alex Wraver	142	Oct. 20, 1944					314	22	26			244
599	P. L. Hamilton	114	Nov. 1, 1944	499	52	48	39	303	66	59	3.1	3.3	328
601	R. S. Collins	132	Oct. 7, 1344	539	64	49	60	350	99	65	2.3	4.6	361
503	C. Faulkner	63	Oct. 30, 1944	614	48	49	37	320	105	90	3.5	3.2	322
604	do.	117	Oct. 28, 1944	502	52	44	52	326	73	51	2.8	2.9	311
608	Ferrin Bean	97	Nov. 1, 1944	444	47	39	49	314	52	37	2.7	3.2	273
611	H. V. Edsall	45	do.	642	54	53	71	328	111	76	3.5	8.0	353
623	T. J. B.ovell	200	Sept.22, 1944	390	42	39	44	328	34	29	3.6	3.2	261
636	Lee Minyard	96	Nov. 14, 1944	799	93	73	60	345	123	162	2.7	19	532
653	South Plains Army Air Forces	150	Jan. 9, 1943	532	69	53	63	312	115	119	-	3.5	410

a/ Sulfate less than 10 parts per million.

Partial analyses of water from wells and springs in Lubbock County-Continued

Well	Ownrer	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & (\mathrm{ft} .) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \text { Date } \\ \text { of } \\ \text { collection } \end{array}$	Total   dissolved solids	$\left\|\begin{array}{l} \text { Cal- } \\ \text { cium } \\ \text { ( } \mathrm{Ca} \text { ) } \end{array}\right\|$	Magnesium (Vg)	Sodium and Potassium ( $\mathrm{Na}+\mathrm{K}$ ) (calc.)	Bicarbonate $\left(\mathrm{HO}_{3}\right)$	Sulfate $\left(\mathrm{SO}_{4}\right)$	Chloride (Cl)	Fluor-   ide   (F)	$\begin{aligned} & \mathrm{Ni-} \\ & \text { trate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { hardness } \\ \text { as CaC. } \\ (\text { calc. })^{3} \end{gathered}$
354	South Plains Army Air Forces	155	Jan. 9, 1943	414	52	42	45	326	70	42	-	2.4	302
056	C. R. McLaurin	102	Oct. 25, 1;44	552	75	36	55	315	87	69	2.8	0.9	335
¢67	E. L. Steck	110	Nov. 2, 1944	726	67	61	82	322	160	108	2.6	7.6	413
571	?ollie D.Abernathy	190	Oct. 7, 1.944	520	59	42	55	317	98	49	1.9	3.2	320
672	C. R. Styles	80	Oct. 25, 1944	586	65	43	71	330	120	62	2.7	2.9	339
573	J. W. Lemon	126	Oct. 27, 1944	516	52	41	66	318	91	54	2.3	3.0	298
593	Texas Tech Collsge	51	Nov. 11, 1944	916	59	70	109	368	132	101	5.0	27	432
693	H. L. McCauley	110	Sept.27, 1944	730	93	63	71	290	279	77	2.9	1.2	491
594	C. L. Quillen	55	Oct. 4, 1944	1,390	73	107	225	356	484	222	4.0	6.5	634
695	Y. D. McMillen	Lak	Sept.29, 1944	-	-	-	-	326	2,200	645	-	-	1.640
704	J. B. Marion	84	Nov. 10, 1944	875	76	52	90	37'	207	132	1.9	10	526
707	Shallowater Public School	110	Nov. 7, 1244	1,020	70	95	137	362	191	148	4.2	132	524
715	H. V. Feazel	49	Oct. 5, 1944	1,410	94	135	22.0	330	338	440	3.3	19	790
715	Will Stacy	40	Oct. 24, 1944	1,130	67	92	140	321	213	240	5.0	18	546
119	W. B. Gregory	179	Sept.26, 1944	633	53	50	39	314	148	76	4.0	3.2	338
761	Lubbock Army fir Forces	157	Feb. 23, 1943	590 575	35	41	126	386	137	50	-	. 4	256
$\begin{array}{r} 762 \\ 951 \end{array}$	do. City of Lubbock	155	do.	575	30	39	135	410	125	44	-	. 4	236
	(disposal plant)	105	Nov. 11, 1944	717	28	46	148	352	150	84	5.9	3.9	259
991	Double Mountain Fork of Brazos River near Slaton	Creek	Mar. 4, 1945	1,060	63	96	201	479	294	177	-	0.9	510


[^0]:    $1 /$ Rose, N. A., White, W. N., and Iivingston, Penn, Exploratory water well drilling in the Houston district, Texas: U.S. Geol. Survey Water-Supply Paper 889-D, pp. 229-304, 1944.

[^1]:    5/ Theis, C. V., The significance and nature of the cone of depression in

[^2]:    Teat hole 2; 512 feet south and 96 feet east of the NW currer sec. 47, bik. $A ;$ $5 \frac{3}{4}$ miles northeast of post office at Lubbock. Surface altitude, $3,183.8$ feet.

    Quaternary and Tertiary (mostly Ogallala formation)
    Soil, sandy, chccolata-brown 3
    Clay, sandy, brown and caliche, sandy, light-yellow 17
    Sand, limy, pink-buff and caliche, in hard end sof $\ddagger$ layers, poroue, pink

    11
    Water level, 27.7 feet below and surface (measured 6 days after drilling)
    Sand, finc to medium-grained, unconsolidated, red with thin seams of soft caliche 19
    Caliche, sandy, buff-red in hard and soft leyers 64

