Please do not destroy or throw away this publication. If you have no further use for it, write to the State Board of Water Engineers, Austin, requesting return postage.

TEXAS

* * *

STATE BOARD OF WATRR ENGINE
C. S: Clark, Chairman
A. H. Dunlap, Member
J. W. Pritchett, Member

* * * * *

COMAI COUNTY, THXAS
Records of wells, drillers' logs;
and water analyses, and map showing location of wells.

* * * * * *

WORKS PROGRESS ADETNISTRATION
GROUND WATER SURVEY
PROJECT 2084
E. J. Michal

Project Superintendent

* * * * * * * *

Analyses made, map prepared, data assembled, and report mimeographed by WORKS PROGRESS ADMINISTRATION PROJECT 6507-5112

* * * * * * * * *

Sponsored by the State Board of Water Engineers with the Bureau of Industrial Chemistry of the University of Texas and the U. S. Geological Survey cooperating.

COMAL COUNTY, TEXAS

Introduction
by
Samuel F. Turner
Associate Hydraulic Engineer
U. S. Geological Survey

The purpose of this survey was to obtain information concerning existing wells and springs and the quantity and quality of water they yield, and put down test holes where additfonal information was needed.

This project was part of a statewide Works Progress Administration project known as a "Statewide Inventory of Water Wells," sponsored by the State Board of Water Engineers. The Division of Ground Water of the U. S. Geological Survey cooperated in the technical dir ection of the project and the Bureau of Industrial Chemistry of The University of Texas furnished laboratory space and equipment and supervised the chemical analyses.

The analyses were made by chemists amoloyed on Works Progress Administration Project 6507-5112 at Austin, Texas, sponsored by the State Board of Water Engineers. This release was typed and assembled by typists and draftsmen amployod on this project.

The field work in Comal County was started on October 9, 1936, and completed Jan. 30, 1937. This work was done as Project 2084 of District 10 of the Works Progress Administration, San Antonio, Texas. E. J. Michal, an engineer, was project superintendent. Mr. Michal should be given credit for his great interest in the work and for the many extra hours he spent on the project. The office of the Works Progress Administration in the San Antonio District made this work possible by their constant help and cooperation.

This release contains the well and spring records and well logs obtained by the project super intendent, logs of the test holes drilled by the W. P. A. labor, and the chemical analyses of water from privately owned wells and springs. Location of all wells and springs listed are shown on the folded map in the back of the release.

The test wells were drilled by W. F. A. labor using a soil auger, drop auger, chum drill, and a sand bucket. Samples were collected at one foot intervals by the well driller in charge of the party. Thc project superintendent studied these samples and compiled the logs.

Records of wells and spriars in Comal County, Texas
(All wells are bored or drilled unless otherwise noted in "Remarks" column.)

No.	Distance from Hancock	Survey	Owner	Driller	Date com-pleted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { fft. }) \end{array}\right\|$	$\begin{array}{\|c} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \\ \hline \end{array}$	Height of moasuring point above ground (ft.) a
1	$\begin{aligned} & \hline 9 \text { miles } \\ & \text { northwest } \end{aligned}$	Jomn Hargrove	C.L. Mescrol	---		Spring	--	--
2	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { northrost } \end{aligned}$	do.	do.	--	old	217	6	0
3	$7 \frac{1}{2}$ miles northwest	do.	do.	--	-	220	6	--
4	$5 \frac{1}{2}$ miles northwest		E. Kederli	E. Kaderlf.	1914	250	6	0.7
5	$\begin{aligned} & 5 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{gathered} \text { G.W.T.\& P.R.R. } \\ \text { CO. } 897 \end{gathered}$	Fmil Doell	Emil Doell	1895	300	6	--
6	do.	Jos. F. Johnson	H. Eisher	H. Fishtr	01d	327	6	--
7	$\begin{aligned} & 5 \text { miles } \\ & \text { north } \end{aligned}$	Jamss Pasloy	R. O. Fisher	--		Epring	--	--
8	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	do.	W.O.Fischer	W.0.Eischer	r1922	218	6	0
9	$\begin{aligned} & 5 \text { miles } \\ & \text { north } \end{aligned}$	Wiley Hughes	\qquad	H.J.Hass	01 d	275	6	0.6
c/10	$\begin{aligned} & 4 \frac{1}{2} \operatorname{miles} \\ & \text { north } \end{aligned}$	F. Veinstrom	$\begin{aligned} & \text { Paul Schla- } \\ & \text { mous } \end{aligned}$	--	01 d	253	6	--
E/II	$\begin{aligned} & \hline 4 \text { miles } \\ & \text { north } \\ & \hline \end{aligned}$	Fh. Carper	$\begin{gathered} \text { Emil Fester } \\ \text { fer } \end{gathered}$	--	01d	100	6	--
12	do.	do.	$\begin{gathered} \text { Fucene E. } \\ \text { Scheol } \end{gathered}$	--	01 d	220	6	0.9
13	$\begin{aligned} & 4 \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	M. W. Potter	Otto Truer	Otto Truer	01d	350	6	0
14	3I miles northwest	do.	do.	--		Spring	--	--
15	$\begin{aligned} & 3 \text { miles } \\ & \text { northwest } \end{aligned}$	do.	Lrs. D.Hall	--	--	do.	-	--
16	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	do.	C,D,Hall	--	1900	240	6	0.8
17	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	$\begin{gathered} \hline \text { G.W.T.\& P.R.R. } \\ \text { Co. } 899 \\ \hline \end{gathered}$	F.J.Feters	--	01d	500	6	1
18	$\begin{aligned} & 2 \frac{1}{2} \mathrm{miles} \\ & \text { northeast } \end{aligned}$	$\begin{gathered} \hline \text { Chas. Menzen- } \\ \text { berger } 124 \\ \hline \end{gathered}$	Theo Myers	--	010	400	6	--
19	$\begin{aligned} & 3 \text { miles } \\ & \text { northeast } \end{aligned}$	M. Ampora	J.C.Tglley	--	1928	325	6	0.8
20	$\begin{aligned} & 6 \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	C. Rooney	$\begin{aligned} & \text { MrseJemi: B } \\ & \text { Hickmen Boll } \\ & \hline \end{aligned}$		01d	80	6	0.4
21	$\begin{aligned} & \text { 2t miles } \\ & \text { east } \end{aligned}$	Maria Ampora	$\begin{gathered} \text { Chas.Pentcr } \\ \text { mueh1 } \end{gathered}$			Spring	--	--
22	do.	do.	do.	--	018	110	6	2.1
23	$\begin{aligned} & 1 \mathrm{milo} \\ & \text { east } \end{aligned}$	John Linde 33	Max Linnartz	--	1902	228	ϵ	0.6

a/ Measuring point was usually tnp of casing, top of purap base or top of wcil curb. b/ A, air-lift; B, bucket; C, cylinder; Cf, eentrifugal; G, gasoline ongine; H, hand; P, public supply; W, windmill; number indicates horscpower.

Records obtained by Emil J. Michal, Project Superintencent (Chemical analyses of water from these wells and sprirgs are in the table of analyses.') No. | Wepth Later Level | | |
| :--- | :--- | :--- |
| Date of | Pump | Use |
| Remarks | | |

	$\begin{gathered} \text { below } \\ \text { measur } \\ \text { ing po } \\ \text { (feet) } \end{gathered}$	measure-r- ment oint)	$\left\|\begin{array}{c} \text { and } \\ \text { power } \\ \mathrm{b} / \end{array}\right\|$	of water c/	
1	Flows	$\begin{aligned} & \text { Nov. } 13 \\ & 1936 \\ & \hline \end{aligned}$	C, 0	D,S	Estimated flow, 8 gallons a minute from 1 opening in linestone.
2	155.7	do.	C,W	S	Concrote curb; 10 feet steel casing ot top. Well measured mhile numping.
3	200	d/	C, 7	D, S	10 foct stcol casing at top. Reportod never frils in 1 drought.
4	36.8	$\begin{aligned} & \text { lov } \cdot 13, \\ & 1936 \end{aligned}$	O, 17	D, S	concrete curb.
5	160	d)	C, 7	D, S	10 ficet stool casine nt top. Roported never frils in drought.
6	122.8	$\begin{aligned} & \text { Nov. } 4 \\ & 193 E \end{aligned}$	$\begin{gathered} C, G \\ 3 \end{gathered}$	D, S	Mreasurine point 0.7 below ground level; 20 feet steel casing it top. Tater reported from sond, 3:0-327 fect, and from senustone ct 250 feet. Drilled in 1908, 250 327 feet to ircrease supply. Reported never frils in
7	Flows	do.	C, 7	D, S	9 feet rock e sing it top. Reported water level drops to 4 feet below ground level in drought. Estimeted flor, 60 gallons 2 minute from 1
8	175	$\begin{aligned} & \text { Dec. } 31, \\ & 1936 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}, \mathrm{G}, \\ 1 \mathrm{I} \\ \hline \end{gathered}$	D,S	15 feet steel cising st lopening in linestone. top. Reportca nevor fails in drought.
9	156.2	$\begin{aligned} & \text { Nov: } 4, \\ & 1936 \end{aligned}$	C, 7	D, S	On Comel-Hrys County line. Reported nover frils in drought.
10	85	d/	C, W	D, S	Reported nevir feils in drought.
11	36	d/	S, 7	D, S	DO.
12	48	$\begin{aligned} & \text { Dec. } 3, \\ & 1936 \\ & \hline \end{aligned}$	C, 7	D, S	Wood block curb; 30 feet stcel cosing at top. Rcporte nover feils in drought. Weter roported from sendstonc,
13	144.1	$\begin{aligned} & \text { Dec. } 4, \\ & 1936 . \end{aligned}$	C\%	D, S	Reported never fails in drought. $190-210$ feet.
14	Flows	$\begin{aligned} & \text { DCC. } 31 \\ & 1936 \\ & \hline \end{aligned}$	None	D	Estimeted flom, 75 gallons : minute from 3 opinings in limestone. Roportad nescr fails in drought.
15	Flows	$\begin{aligned} & \text { Nov. 4, } \\ & 1936 \\ & \hline \end{aligned}$	None	S	Estimoted flou, 75 gallons a minute from 3 openings in limestone. Reported springs flow about 6 months a yeer
16	45.7	do.	C, W	D, S	22 feet steel essing st top. Vater reported from sand at 240 feet, frors sandstone at 80 feet. Reported never
17	140.4	$\begin{aligned} & \text { Dec. } 31, \\ & 1936 \\ & \hline \end{aligned}$	C, W	D. C	Steel casing. K:ported never fails fails in drought. in drought.
18	345	d/	0,7	D, 5	Reported nower ils in drought.
19	171.3	$\begin{aligned} & \text { Dec. } 8, \\ & 1936 \end{aligned}$	C, 7	D, S	Steel crsine. Faported never fails in drought. Toll mossurcd -hilc pumping.
20	6.4	d/	O, W	D, S	Reported never fails in drought.
21	F10ws	$\begin{aligned} & \text { Dec. } 31, \\ & 1936 \end{aligned}$	None	S	Estimsted flo7, 100 gallons a minute from 5 openings in limestone, only one of which is reported to flor the
22	13.4	do.	C, D	D, S	Steel cesing. Reported never fails. Lyear around. in droucht.
23	128.9	$\begin{aligned} & \text { Nov. } 3, \\ & 1936 \end{aligned}$	C, V	D, S	Do.

c/ I, irrigation; Ind, industrial; D, domestic; S, stock; N, not used.
d/ Water level reported.
E/ No water sample collected for anelysis.
-5-
Records of wells and springs in Comal County--Continued

No.	Distance from Hancock	Survey	Omer	Driller	$\begin{aligned} & \text { Date } \\ & \text { com- } \\ & \text { ple- } \\ & \text { ted } \end{aligned}$	Depth or well (ft.)	$\begin{array}{\|c} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \end{array}$	$\|$Height of measuring point above ground (ft.) a/
24	In Hancock	John O'Daniel	Frank Guenther	--	1915	169	6	0.8
25	$\begin{aligned} & 5 \text { miles } \\ & \text { west } \end{aligned}$	Julius Bremer 651	George T. Spears		eld	300	6	0
E/26	$\begin{aligned} & 10 \text { miles } \\ & \text { west } \end{aligned}$	A.Scott 24	Fred and Richard Schaefer- koeter	Tim. Naeu erbauo		125	6	0.5
27	do.	$\begin{gathered} \text { F. Schaefer } \\ \text { koeter } \end{gathered}$	do.	--		Spring	--	--
28	$\begin{aligned} & 11 \text { miles } \\ & \text { west } \end{aligned}$	T.M.Fowler 27	Bert Specht			do.	--	--
E/29	$\begin{aligned} & 8_{2}^{1} \text { miles } \\ & \text { vest } \end{aligned}$	H. Raisnor 53	Fr. Porter	Ot to Vog \& Bob Pa	1890	226	6	1.1
30	$\begin{aligned} & 8 \text { miles } \\ & \text { west } \end{aligned}$	C.Hendenberg 62	Mrs. P. G. Rermler	-		$\overline{184}$	6	1.4
31	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	G. Long 345 ${ }^{\text {a }}$	J.K.BEretta			280	6	0.7
32	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	S.Folley 340	$\begin{gathered} \text { Mrs. J. } \\ \text { Hecrd } \end{gathered}$	-	O1d	100	6	-
33	$\begin{aligned} & \hline 6 \text { miles } \\ & \text { west } \end{aligned}$	D.Louders 345	Clance liear	$\begin{aligned} & \mathrm{d} \text { Tom } \\ & \text { Aãare } \\ & \hline \end{aligned}$		120	--	0.6
34	$\begin{aligned} & 5_{\frac{1}{2} \text { miles }} \\ & \text { west } \end{aligned}$	do.	Ed.Kaderli	Jessie ${ }_{\text {Pege }}$	1903	112	6	0.1
35	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	- Clemons	A.H.FIugrath	--	--	Spring	--	--
e/36	$\begin{aligned} & 4 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { Isaac H. Tur- } \\ \text { ner } 342 \end{gathered}$	M. Engle	--	01d	--	--	1.3
37	$\begin{aligned} & 7 \text { miles } \\ & \text { southwest } \end{aligned}$	Robt.Kelly 391	T.A.Ellis	--		240	6	--
38	do.	do.	do.	--	01d	20	36	3
39	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	J. R.Hermann 558	do.	--	01 c	50	24	0.3
40	4 $\frac{1}{8}$ miles southrest	Chas.Schuchaal 561	ilbert Pape	--	$\begin{array}{r} 1906 \\ \hline \end{array}$		6	1
41	$\begin{aligned} & \hline \text { iT miles } \\ & \text { south } \end{aligned}$	A.C.Horton 29	W.H.Hans	--	$\begin{array}{r} 1902 \\ 1 \\ \hline \end{array}$	175	6	0.4
42	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { Southeast } \end{aligned}$	Maria Ampara 3	Henry Pantermuehl	--	O1d	--	6	0.5
43	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	đo.	Theo. Kreft	--	1896		6	0.6
44	$\begin{aligned} & 6 \text { miles } \\ & \text { east } \end{aligned}$	Fm.C.Gould 106	Fugene Grein	--	01d	250	6	--
45	$5 \frac{1}{2}$ miles southeast	H.A.Reed 16	$\begin{aligned} & \text { Walter } \\ & \text { Kadurli } \end{aligned}$	--	01d	170	6	0.4
46	$\begin{aligned} & 5 \mathrm{miles} \\ & \text { south } \end{aligned}$	$\begin{gathered} \hline \text { Hy Weichold } \\ 728 \\ \hline \end{gathered}$	K.Leaghline			Spring	--	--
47	$7 \text { miles }$ south	J. Preusser 671	--	--	--	do.	--	--

Finil J. Michel, Projeet Superintendent

No.	$\begin{aligned} & \text { Depth } \\ & \text { Delow } \\ & \text { measur } \\ & \text { ing po } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Level Date of measure- - ment	Pump and power b/	Use of rater c/	Remerks
24	88	$\begin{aligned} & \text { Nov. }{ }^{4}, \\ & 1936 \end{aligned}$	$\begin{gathered} C_{y}, 7, \varepsilon \\ G,- \end{gathered}$	D,S	20 feet steel casing top. Weter from sandstone at 85 feet and $\mathrm{y} t 110$: sand, 168-169 feet. Reported novor
25	--	--	C, ${ }^{\text {c }}$	D,S	Steel cesing. fails in arought.
26	114	$\left\|\begin{array}{l} \text { Dec. } 10_{2} \\ 1936 \end{array}\right\|$	C, H	D, S	Tood block eurb; 20 feet steel cesing it top. Fell measurcd wile pumping. Reported dry, pumping 2^{1} gallons a minuta for 1 hour 20 minutes required for water level to rotum to nomsl.
27	Flows	do.	None	D, S	Concretc bisin, $4 \times 2 \times 4$ fect. Estimeted flor, 120 gallons s minute from 3 openings in limustone.
28	do.	do.	None.	S,I	Estimeted flog, 300 g llons a minute from soveral openings in limestone. Irrigated $1 \frac{1}{2}$ ncres.
29	151.9	$\begin{aligned} & \hline \text { DCc. } 9, \\ & 1936 \\ & \hline \end{aligned}$	None.	N	Revorted :indmill formerly pumped rell dry in $\frac{1}{3}$ hour. Teter level returned to normal in 3 hours. -inter re-
30.	100.8	do.	C, ${ }^{\text {d }}$	D, S	10 feet steel cas- Tported from blue clay, $220-226$ fect ing at top. Measured while pumping. Reported formerly pumped dry with gasoline engine in $2 \frac{1}{2}$ hours at 10 gallons $=$ minute. Water level returned to normal in $\frac{1}{2}$ hour. Roprted newr fails in drought.
31	198.2	do.	$\begin{gathered} \hline \mathrm{C}_{3} \mathrm{~F}, 8 \\ \mathrm{G}, 2 \\ \hline \end{gathered}$	D, S	2 feet steel crsing it top. Measured while pumping. Reported drawdon 1.1 fert pumping 3 gallons a minute
32	--	--	C, 0	D, S	Reported never frils in drought. ${ }^{\text {dor }} \frac{1}{4}$ hour.
33	64.7	$\begin{aligned} & \text { Dec. } 9, \\ & 1936 \end{aligned}$	C, 7	D,S	No casing. Fieported never fails in drought.
34	55.5	do.	C, N	D, 5	40 feet gelrinized casing at top. Reported never fail. in drought.
35	Flows	$\begin{aligned} & \text { Nov. } 13, \\ & 1936 \end{aligned}$	None	D, S	Estimeted fict 1240 gellons \approx minute in summer and 1650 gellons minute in winter from 1 lrge opening
$\overline{36}$	42.2	do.	C, H	N	Rock curb. in limestono.
$\overline{37}$	190	$\begin{gathered} \text { d/Sept. } \\ 1936 \end{gathered}$	$\begin{aligned} & \hline \text { C,W } \\ & \text { G, } 1 \frac{1}{2} \end{aligned}$	D, S	10 fect stcol casing at top.
38	7.8	$\begin{aligned} & \text { Dec. } 15, \\ & 1936 \end{aligned}$	None	N	Dug - 611. Rock curb. Reported no failure since 1931, Previous history not ε vilinble.
39	2.4	do.	B, H	D, S	Due woll. Rock curb. Reportsd never frils in drouglit.
40	79.7	$\begin{aligned} & \text { Nov. 13, } \\ & 1936 \end{aligned}$	c, W	D, S	Steel cesing.
41	41.4	$\begin{aligned} & \text { Dec. 31, } \\ & 1936 \end{aligned}$	C, W	D,S	8 feet steel crsing at top.
42	32.8	$\begin{aligned} & \text { Nov. }{ }^{4,} \\ & 1936 \\ & \hline \end{aligned}$	C, 7	S	Mer sured drawdown 10.9 seet pumping 1 gallon n ninute for $1 / 6$ hour. Steel cosing. Reported never fails in
4.3	39.4	$\begin{aligned} & \text { Nov. } 3, \\ & 1936 \end{aligned}$	C,7	D, S	2 feet steel c'sing at top. Weter reported drought. from srnd stone sit 80 feet end white sand, $420-428$ foet.
$4 \pm$	--	--	C, V	D, C	Steel cnsing. Reported navor fails in droucht.
45	67.9	$\begin{aligned} & \text { Nov. } 3, \\ & 1936 \end{aligned}$	$\begin{gathered} C, 0, x \\ G, 5 \end{gathered}$	D, S	Steel crsing Reported never fails in drought.
46	Flo:s	$\begin{aligned} & \text { Nov: } 5, \\ & 1936 \end{aligned}$	None	S	Estimeted flo: 2 grillons a minute from 1 or 2 openings in limestore.
47	do.	do.	None	S	Concrete besin. Locetad nenr top of hill.

Records of wells and springs in Comel County－Continued

NO．	Distance from Hancock	Survey	Owner	Driller	Date com－ ple－ ted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { fft. } \end{array}\right\|$	Diam eter of well （in．）	Height of measuring point above ground （ft．）a／
48	$\begin{array}{\|l} 5 \text { miles } \\ \text { southwest } \end{array}$	$\begin{gathered} \text { Sam Nelson } \\ 331 \\ \hline \end{gathered}$	$\begin{gathered} \text { H. W. Kratt } \\ \text { Estate } \end{gathered}$	－－	O1d	69	－	1.7
49	do．	do．	do．	－－		Spring	－－	－－
No．	$\begin{gathered} \text { Distance } \\ \text { from } \\ \text { f/Bul- } \\ \text { verde } \end{gathered}$	Survey	Ominer	Driller	Date com－ ple－ ted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ (\mathrm{ft.} . f \end{array}\right\|$	Diam－ eter of well （in．）	Height of measuring point above ground （ft．）$/$／
101	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	TM．Fowler 27	Bert Specht	－	1881	212	6	0.7
102	$\begin{aligned} & 12 \text { miles } \\ & \text { north } \end{aligned}$	$\begin{gathered} \hline \text { Chas. Stroud } \\ 26 \\ \hline \end{gathered}$	Ed．Gass	\cdots	Old	140	6	0.5
103	$\begin{aligned} & 11 \text { miles } \\ & \text { north } \end{aligned}$	$\begin{gathered} \text { W.C.Howerd } \\ 165 \end{gathered}$	Arno Knibbe	－－	1885	124	6	－－
104	do．	$\begin{gathered} \text { Amos Smith } \\ 103 \end{gathered}$	G．7．Iyles	－－	－－	Spring	－－	－－
105	do．	A．Crier 11	Frie Speeh	t－－	1926	75	6	1.2
106	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	do．	dos	－－	－－	250	6	0.5
107	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { north } \end{aligned}$	E．Howard 19	$\begin{gathered} \text { Fim. Neuge- } \\ \text { bauer } \end{gathered}$	Monken \＆ Neugenbauer	1886	163	6	0.4
108	$\begin{aligned} & 10 \frac{7}{2} \text { miles } \\ & \text { north } \end{aligned}$	do．	Arno Enibbe	－－	1900	225	6	1.1
109	do．	$\begin{aligned} & \text { J.Christian } \\ & 22 \end{aligned}$	D．L．Knibbe	－－	01d	120	6	2.2
110	do．	$\begin{aligned} & \text { John Angel } \\ & 21 \end{aligned}$	do．	－－	Old	280	6	0.5
111	do．	$\begin{aligned} & \text { H. G•Henderson } \\ & 348 \end{aligned}$	Chas．ElbeI	＊－	O1d	100	6	1．2
e／112	$\begin{aligned} & 9 \text { miles } \\ & \text { north } \end{aligned}$	J．Angel 21	$\begin{aligned} & \text { Alfred } \\ & \text { Gass } \end{aligned}$	－	O10	78	6	\sim
113	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { north } \end{aligned}$	do．	do．	－－	1918	175	－－	0
114	$00 .$	Ed．Howard 19	Harry Knibb		$-\infty$	Spring	－－	－－
115	$\begin{aligned} & 9 \text { miles } \\ & \text { north } \end{aligned}$	A．H．Jones 89	William Specht	－－	－－	250	6	0.6
116	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	$\begin{aligned} & \text { J. Henderson } \\ & 46 \\ & \hline \end{aligned}$	Ed．Bartels	－－	1886	80	6	0.8
127	B $\frac{1}{2}$ miles northeast	Elias Elint 73	Alfred Beie	1e－－	1928	157	6	0
118	$\begin{aligned} & 9 \text { miles } \\ & \text { northeast } \end{aligned}$	A．H．Jones 78	Henry Jonas Estate	－－	1901	108	6	0.6
119	$8 \frac{1}{2}$ miles northeast	M．morena 77	John Stricke	er－－	Old	250	6	0.2
120	$\begin{aligned} & \text { 7⿱亠䒑⿱二厶力八 miles } \\ & \text { north } \end{aligned}$	Wh．Strawn 74	S．L．Gill	$\begin{gathered} \text { Bob Johni } \\ \text { son } \end{gathered}$	1935	280	6	0.8
121	$\begin{aligned} & 7 \text { miles } \\ & \text { north } \end{aligned}$	E．Flint 76	Wm．Gast	－－	01d	115	6	0.6

f／Bulverde is a small settlement，variously knom as Bartel＇s or Togue s and lacated
about lis miles north of a settlement in Bexar County that is al so known as Bulverde．
about $1 \frac{1}{2}$ miles north of a settlement in Bexar County that is also known as Bulverde．

Emil J. Michal, Project Superintendent

No.	Water Depth below measur ing po (feet)	Level Date of measure- - ment	Pump and power b/	Use of water c/	Remariks
48	57.5	$\begin{array}{\|l\|} \hline \text { ivor. } 13, \\ 1936 \end{array}$	C, 7	D, S	Reported never fails in drought.
49	Flows	$\begin{aligned} & \text { Nov. 16, } \\ & 1936 \end{aligned}$	None	S	
IVo.	Water Depth belon measur ing po (feet)	Level Date of measure- r- ment oint)	Pump and power b/	Use of water c/	Remarks
101	--	--	C, 7	D, S	20 fict stel casing at top. Water levol belor. 141 foct.
102	50.8	$\begin{aligned} & \text { Dec. } 9, \\ & 1936 \end{aligned}$	C, 71	D, S	Stcol casing.
$\overline{103}$	43	$\begin{aligned} & \text { Dec. } 10, \\ & 1936 \end{aligned}$	C,Ti	D, S	
104	Flows	$\begin{aligned} & \text { Nov. } 20, \\ & 1936 \end{aligned}$	None	D,S	Estimated flow, 700 gallons a minute from cavity in limestone.
105	64.7	do.	C, 7	D, S	Reported never fails in drought.
106	178	do.	C, V	D, 5	
107	45.8	do.	C, 1	D, S	Water reported from blue clay, 69-71 feet.
108	112.6	$\begin{aligned} & \text { Pec. } 10, \\ & 1936 \end{aligned}$	C,77	N	
$\overline{109}$	48.4	do.	C, F	D, S	Measured while pumping. Reported never fails in drought.
110	113.8	do.	C, ${ }^{\text {F }}$	S	
111	61.3	$\begin{aligned} & \text { Dec. } 9, \\ & 1936 \\ & \hline \end{aligned}$	C, 7	D, S	Stevl easing. Reported never fails in drought. Iocatea in rivir bottoms.
112	28	d/	C, 0	D, S	
113	58	$\begin{aligned} & \text { Nov. } 20, \\ & 1936 \end{aligned}$	C, 7	D, S	Galvanizea eurb.
114	Floms	Nov. 20, 1936 do.	C, W	D, S	Estimated fio J5 gellons a minute from l opening in limeston=. Hydraclic ram supplies school and community Poported deptr formerly 70 fect. Supply failed. Drill ca 7u-250 fect, b-inen steel casing, top to botom. Dater reported from sanaslone, $240^{\circ}-40$ 1eet.
116	66.6	$\begin{aligned} & \text { Dec. } 10, \\ & 1936 \end{aligned}$	G, $0^{\text {a }}$	D, S	Steel casing. Well measured while pumping.
117	119.1	$\begin{aligned} & \text { Nor. } 20, \\ & 1936 \end{aligned}$	C, Wid	D, S	2 feet galvanized iron casing at top. Reported slight drawdown pumpine 7 galions a minute for 12 hours.
118	93.5	$\begin{aligned} & \text { Jan. 26, } \\ & 1937 \end{aligned}$	C, W	D, S	20 feet steel casing at top. Reported never fails in drought.
119	166.9	$\begin{aligned} & \text { Nov. } 19, \\ & 1936 \end{aligned}$	C, V	D, S	Concrete curb; steel casing. lell measured while pumping.
120	74.9	$\begin{aligned} & \text { Nov. } 16, \\ & 1936 \end{aligned}$	C, 7	$\begin{aligned} & \text { D, } \mathrm{S}, \\ & \text { Ind } \\ & \hline \end{aligned}$	10 feet steel casing at top. Tater reported from limestone at 70 feet and 23r-232 feet. Reported never
121	108	$\begin{aligned} & \text { Nov. } 27, \\ & 1936 \end{aligned}$	C, 7	D, S	Steel casing. Tell moasured while fails in drought. pumping.

Records of wells and springs in Comal County--Continued

No.	$\begin{gathered} \text { Distance } \\ \text { from } \\ \text { Buiverde } \end{gathered}$	Survey	Owner	Driller	Date com- ple- ted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \left.\mid f t_{*}\right) \end{array}\right\|$	$\begin{gathered} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in.) } \end{gathered}$	Height of measuring point above ground (ft.) a/
122	$\begin{aligned} & 8 \text { miles } \\ & \text { north } \end{aligned}$	A.H.Jones 89	Erie Specht	--	O1d	200	6	0.6
123	$\begin{aligned} & 6 \text { miles } \\ & \text { north } \end{aligned}$	$\begin{gathered} \text { Henry Wehe } \\ 610 \end{gathered}$	Fred Wehe	A. Brom	1901	1350	-	--
124	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { north } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Simon Free- } \\ & \text { child } 75 \\ & \hline \end{aligned}$	Ed. Kuebel	--	1916	210	6	0.9
125	$\begin{array}{\|l\|} \hline 8 \text { miles } \\ \text { northeast } \end{array}$	$\begin{gathered} \text { Hugh White } \\ 392 \\ \hline \end{gathered}$	Otto Erben	--	01d	450	6	0.3
126	$\begin{array}{\|l\|} \hline 9 \frac{1}{2} \text { miles } \\ \text { northeast } \\ \hline \end{array}$	B.S.\& F. 813	$\begin{gathered} \text { Julius Bre } \\ \text { mer } \\ \hline \end{gathered}$	--	1906	185	6	--
E/127	$\begin{array}{l\|} \hline \frac{1}{2} \text { miles } \\ \text { northeast } \end{array}$	$\begin{aligned} & \text { H.E.\& V.T. } \\ & \text { R.R.CO. } 919 \\ & \hline \end{aligned}$	A.J.Walser	--	01d	264	6	0.5
128	do.	do.	do.	--	--	64	6	0.2
e/129	$\left\lvert\, \begin{aligned} & 7 \text { miles } \\ & \text { northeast } \end{aligned}\right.$	$\begin{gathered} \hline \text { C.Weidner } \\ 873 \\ \hline \end{gathered}$	C. ${ }^{\text {Peidner }}$	--	O1d	350	6	3.0
130	$\begin{array}{\|l\|} \hline 6 \text { miles } \\ \text { northeast } \end{array}$	E. Flint 73	R.P. Holt	--	01d	620	6	--
131	$\begin{aligned} & 5 \text { miles } \\ & \text { north } \end{aligned}$	Theo. Hanz 725	J.J.Arre chea	--	O1d	300	6	1.
132	$\begin{array}{\|l} 5 \text { miles } \\ \text { northwest } \end{array}$	C. Mocis 600	A.P. Scheel	-	1913	350	6	--
133	$\begin{array}{\|l\|} \hline 6 \text { miles } \\ \text { northwest } \end{array}$	R.Moos 722	Eugene V. Scheel	Schwartz \& Nichol	1898	280	6	0.6
134	do.	$\begin{gathered} \text { D.0.Dougherty } \\ 239 \end{gathered}$	E.A.MOOS	$\begin{gathered} \text { Herman } \\ \text { Moos } \end{gathered}$	1922	96	6	0.7
135	$\begin{aligned} & 9 \text { miles } \\ & \text { northwest } \end{aligned}$	Henry S . Stouffer 240	John Kunc	--	1924	300	6	-
136	$\begin{aligned} & 8 \text { miles } \\ & \text { northwest } \end{aligned}$	do.	Mrs. Frme Saur	--	01d	218	6	0.3
137	$\left\lvert\, \begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}\right.$	Maria de la Luz Guerra 172	Guy S. McFarland	--	O1d	300	6	0
138	$\begin{aligned} & 8 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \hline \text { D. I. Babcock } \\ 228 \\ \hline \end{gathered}$	Bruno Klar	-	1860	25	36	1.
139	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { Henry } S . \\ & \text { Stouffer } 222 \end{aligned}$	Joseph Offer	r-	--	200	-	0
140	$\begin{aligned} & 6 \text { miles } \\ & \text { west } \end{aligned}$	E.Velasco 223	Ex. Neugebauer	--	1885	300	6	1.
141	do.	do.	George Bros.		1885	216	6	--
142	do.	John Rhea 225	Mrs. C. L. Ellsworth	--	Old	217	--	--
143	$\begin{aligned} & \begin{array}{l} 4 \frac{1}{2} \text { miles } \\ \text { west } \end{array} \\ & \hline \end{aligned}$	H. Yaerger 235	Aug-Scholz Est.	R.Schwartz	1906	236	6	0.3
144	do.	do.	do.	do.	1906	265	6	0.4
145	$\begin{aligned} & 5 \text { iniles } \\ & \text { west } \end{aligned}$	J. Webb 237	Mrs: Chas. Erben	- Brown	1895	235	6	--
146	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	do.	E.A.Laubach	--	$01 d$	400	--	--

a/ lieasuring point mas usualiy top of casing, top of pump base or top of well curb. b/ A, air-lift; B, bucket; C, cylinder; Cf, centrifugal; G, gasoline engine; H, hard; P, public supply; W, windmill; number indicates horsepowor.

Emil J. Miohel, Project Superintendent

NC.	$\begin{array}{\|l} \hline \text { Water } \\ \text { Depth } \\ \text { belon } \\ \text { measur } \\ \text { ing po } \\ \text { (fect) } \\ \hline \end{array}$	Level Date of measure- $-\quad$ ment	$\left\lvert\, \begin{gathered} \text { Pump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}\right.$	Use of water c/	Reme rks
122	157.8	$\text { Hov. } 27$	C, 0	D, S	Steel casing. Reportod never fails in drought.
123	315	$\begin{array}{\|l\|} \hline \text { Nov. } 21, \\ 1936 \end{array}$	C,7	D, S	No casine. Roportoz novir fails in drought.
124	210	$\begin{array}{\|l\|} \hline \text { Nov. } 16, \\ 1936 \end{array}$	C, ${ }^{\text {T }}$	D, S	Gavenizca casine. Rontod novor fails in drought.
125	273.4	$\begin{aligned} & \mathrm{NOV} \cdot 2, \\ & 1936 \end{aligned}$	$\left.\begin{array}{r} 0, W, 8 \\ 0,2 \end{array} \right\rvert\,$	2,5	Stocl cesine. Raportod slight dramdom pumping tith zasoline cngine for 24 hours.
$\overline{126}$	85	$\begin{aligned} & \text { Nov. } 25, \\ & 1936 \end{aligned}$	$\begin{gathered} C, G, \\ 1 \frac{1}{2} \\ \hline \end{gathered}$	D, S	10 fuct st el casing at top. Reported nevar fails in drought.
127	236.8	$\begin{aligned} & \text { Nov. } 2, \\ & 1936 \end{aligned}$	C,G2	D, S	
128	14.5	do.	C, 1	D, 5	Soncrete eurb; stsel casing. Reported never fnils in arourht.
129	261.6	$\begin{aligned} & \text { Nov } \cdot 25, \\ & 1936 \end{aligned}$	C, $\overline{7}$	N	Reported never fils in drought.
130	--	--	C, H	D, S	Steel casine. Reported never fails in drought.
$\overline{131}$	117.8	$\begin{aligned} & \text { Nov. } 16, \\ & 1936 \end{aligned}$	$\begin{array}{\|r\|} \hline 0, W \\ G, 1 \frac{1}{4} \\ \hline \end{array}$	D, 5	Do.
132	--	--	C, iv	D, S	Tater level belor: 300 feet. Reported never feils in drought.
133	134.5	$\begin{aligned} & \text { Dec.7\% } \\ & 1936 \end{aligned}$	$\begin{gathered} 0,7,8 \\ G, 2 \\ \hline \end{gathered}$	D, S	2 feet steel casing et top. Reported neter feils in drought.
134	54.0	do.	C, 7	D, S	Steel crsing. Reported never fails in drought.
$\overline{155}$	273	d/	C, W	D, S	$2 C$ feet steel casing at top. Reportod nover fails is drought.
136	210.4	$\begin{aligned} & \text { Dec. } 23, \\ & 1936 \end{aligned}$	C, T	D, ${ }^{\text {S }}$	6 feet steel cesing at top. Reported nover fails in drought.
137	124.6	do.	C, ${ }^{\prime}$	D, S	10 foct steal casing at top. Reported never fails in arought.
138	14.7	do:	C, 7	D, S	Dus mell. Rock curb. Reported flows in mot seasons.
139	125.6	do.	C, ${ }^{\text {P }}$	D,S	e curb. Feporte
140	136	$\begin{aligned} & \text { Dec. }{ }^{7} \\ & 1936 \\ & \hline \end{aligned}$	$\begin{gathered} C, W, \& \\ G,- \end{gathered}$	D, 5	Rock curb; 20 feat steel casins at top. Reported never fatis in aroucht.
141	180	d/	C, 71	D, S	Reporteă singt ârulom pumping 7 gallons ε minute for 10 hours.
142	187.3	$\begin{aligned} & \text { Dec. } 23, \\ & 1936 \end{aligned}$	C, 6,3	I, S	Voncrete durb; ro ofsins. Reported never fails in Groucht.
143	216	$\begin{array}{\|l\|} \hline \text { Nov. } 30, \\ 1936 \end{array}$	C,7	D,S	Rock curl; 5 foet steel casing et top. Reported never fails in drought.
144	209.6	do.	C, 7	S	Hoek curb. 5 fiet steel casing at top. Reported rever fails in Erought.
145	220	d/	0,70	D, S	15 feet steel crsirg et top. Reportud nover fails ir drought.
146	300	d/	c, W	D, S	Ropor ${ }^{+}$d ncvor fitils in drought.

I, irrigetion; Ind, industrial; \bar{D}, domostic; S, stock; \mathbb{N}, not used.
d/ Water lovel reported.
e/ No water sample collect á for analysis.

Records of wells and springs in Comal County--Continued

No.	Distance from Bulverde	Survey	Omer	Driller	Date com- pleted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { ft. } \end{array}\right\|$	$\begin{gathered} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \end{gathered}$	Height of measuring point above ground (ft.) a/
147	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	J.Webb 237	E.A.Laubach	--	01 a	25	36	2.9
148	$\begin{aligned} & 4 \text { miles } \\ & \text { northwest } \end{aligned}$	S.Fish 413	Aug. Scheel	Aug. Scheel	1870	15	36	2
149	do.	do.	do.	- Brown	1892	318	6	0.8
150	$\begin{aligned} & 4 \text { miles } \\ & \text { north } \end{aligned}$	$\begin{aligned} & \text { Henry Theis } \\ & 411 \frac{1}{2} \\ & \hline \end{aligned}$	Mrs. Louise Hill	--	01 d	480	--	1
151	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	$\begin{aligned} & \text { A.Schlather } \\ & 656 \\ & \hline \end{aligned}$	0. Wehe	--	01d	350	--	--
152	do.	G.Bauer 764	do.	--	01d	110	6	0.4
153	$\begin{aligned} & 4 \text { miles } \\ & \text { north } \end{aligned}$	C.V.Haas 454	J.A.Laubach	--	1896	60	6	0
154	do.	do.	do.	--	010	25	36	1.3
155	$\begin{aligned} & \text { 4 } \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	Aga. Hara 451	George Fronne	--	01 d	145	6	0.7
156	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	$\begin{gathered} \text { Theo. Miller } \\ 323 \\ \hline \end{gathered}$	Gus feidner	-	01d	360	6	0.4
$\begin{array}{r} 1568 \\ \hline \end{array}$	$\begin{aligned} & 94 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	Robert Bose	-	1897	465	6	--
1560	do.	do.	do.	-	--	Spring	--	--
157	$\begin{aligned} & 6 \text { miles } \\ & \text { northeast } \end{aligned}$	$\begin{gathered} \hline \text { C. Weidner } \\ 848 \\ \hline \end{gathered}$	$\begin{gathered} 0 . \mathrm{RaMcKin} \\ \text { ney } \end{gathered}$	-	01d	635	6	--
158	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	H. Pantermuehl 761	$\begin{gathered} \text { W. F.Sumb } \\ \text { ling } \end{gathered}$	--	01d	383	6	--
159	$\begin{aligned} & 9 \text { miles } \\ & \text { northeast } \end{aligned}$	$\begin{aligned} & \text { B. Smithson } \\ & 920 \\ & \hline \end{aligned}$	$\begin{gathered} \text { O+A.Dneppen } \\ \text { schmidt } \end{gathered}$		O1d	615	6	--
e/160	do.	do.	do.	--	01d	80	8	0.4
161	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	$\begin{aligned} & \text { H.E.\&T.T. } \\ & \text { R.R.Co. } 925 \end{aligned}$	do.	--	01d	--	6	0.5
162	$\begin{aligned} & 9 \text { miles } \\ & \text { east } \end{aligned}$	T. Alley 525	do.	--	--	350	6	--
e/163	$\begin{aligned} & 9 \frac{\pi}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	F.Gass 858	H. Comrads	--	--	500	6	--
164	$\begin{aligned} & 8 \text { miles } \\ & \text { northeast } \end{aligned}$	H. Pantermueh1 761	B.Stapper	--	1882	480	6	--
165	$\begin{aligned} & 6 \text { miles } \\ & \text { northeast } \end{aligned}$	J. Hering 319	Ed. Adam	--	01d	24	36	0
166	do.	do.	do.	- Smith	1885	600	6	--
167	$\begin{aligned} & 4 \text { miles } \\ & \text { east } \end{aligned}$	$\begin{aligned} & \text { J. Birland } \\ & 438 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Clemens } \\ & \text { scholz } \end{aligned}$	-	O1d	245	6	0.4
168	$\begin{aligned} & 3 \text { miles } \\ & \text { northeast } \end{aligned}$	Dan Lewis 347	sulius Bose	--	01d	348	6	1.3
169	do.	do.	Ben Bose	Otto Vogel	1892	348	6	--
170	do.	$\text { J.Kaderdi. } 449$	$\begin{gathered} \text { Erifin Sch- } \\ \text { neider } \\ \hline \end{gathered}$	--	1890	414	6	0.7
171	do.	C.Georg 432	Irrs. Mattio Shelburne	--	1935	248	8	0.4.

No.	Tater Depth below measur- ing poi (feet)	Level Date of int ment	Pump and power b/	Use of water c/	Femarks
147:	$9.3 \mathrm{D}$	$\begin{aligned} & \hline \text { Dec. }{ }^{7}, \\ & 1936 \end{aligned}$	C, 7	S	Dug well. Roek curb. Reported never fails in aroueht.
148	9.0	do.	C, F	N	Due vell. Rock curb; 15 feet rock casing at top. Reported dry pumping $1 \frac{1}{8}$ gallons a minute for 1 hour in
149	263.5	do.	$\begin{array}{r} 0,4,8 \\ 6,1 \frac{1}{2} \end{array}$	D, S	5 feet stecl casing at top. Reported dry seasons. never fails in drought.
150	$\begin{array}{r} 248.91 \mathrm{~N} \\ \hline 1 \end{array}$	$\begin{aligned} & \text { Nov. } 21, \\ & 1936 \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{~W}, \mathrm{E}, \\ & \mathrm{G}, \mathrm{E} \end{aligned}$		Reported nevcr fails in drought.
151	N_{2}	$\begin{aligned} & \text { Nov. } 27, \\ & 1936 \end{aligned}$	C, 7	D, S	DO.
152	67.8	do.	C. T	S	Soncreto curb; 5 feet galvanized steel casing at top. Reported never fails in drought.
153	33.4	do.	0,7	D, S	2 foot galvanized stol casing at top. Reported nctor fails in drought.
154	9.7	do.	C	N	Dug rell. Roct curb. Reported never fails in drought.
155	$\begin{array}{r} 83.710 \\ 11 \\ \hline \end{array}$	$\begin{aligned} & \text { Dec. 10, } \\ & 1936 \end{aligned}$	C, 7	D,S	Storl casing. Roported rater lcvel 130 feet in summer. geportud nev ir fails in drought.
156	240	$\begin{aligned} & \text { Dec. } 11, \\ & 1936 \end{aligned}$	C, W	S	Stecl casirs. Reported never fails in drought.
15	310	d/	C,G,3	D,S	14 feet sts cone at top. Reported never fails in drought.
15	Flows	$\begin{aligned} & \text { Dec. } 11, \\ & 1936 \end{aligned}$	None	S	Roct basir. Estimatad flow, 15 gallons a minute from 1 opening in limestono. Reported nevor fails in dro-
157	--	do.	$\begin{gathered} 0,7,8 \\ G, 3 \\ \hline \end{gathered}$	D, S	20 fect stea casing at top. Tater levil be- Lught. lon 30 C feet. Riported dry pumping 3 gallons a minutc
158	244	a/	C, 7	D, S	Steel casing. Keported̃ never fails in for 12 hours.
159	1	$\begin{aligned} & \text { Tiov. } 2, \\ & 1936 \end{aligned}$	C,7	D, S	Sterl easing. Tater level below 30 feet. Reported never fails in crought.
160	46.4	do.	B,H	N	3 feet galvanized steel casing at top. Reported never fails in drought.
161	24	do.	C,	D,S	Stsel casine. Reported never fails in drought.
162	-- 1	$\begin{aligned} & \text { Jan. } 26, \\ & 1937 \end{aligned}$	C,G,4	D, S	Steel casing. Water level below 95 feet. Reported never fails in drought.
163	-	$\begin{aligned} & \hline \text { Nov. } 2, \\ & 1936 \\ & \hline \end{aligned}$	C,G,6	D, S	Steel casing. Tator levol below 300 feet. Reported nover fails in drought.
164	--	do.	C, 7	D, S	Stsel casing. Roporiod mater level bclow 300 feet. Reportcd never fails in drought.
165	9.0	Dec. 11,	C, H	S	Dug well. Hock casing. Reported flows in wet seasor; mater level about 20 feet in dry season.
166	--		$\begin{gathered} \mathrm{C}, \mathrm{~F}, 8 \mathrm{~B} \\ \mathrm{G}, 4 \end{gathered}$	D, S	Steel casing. liater level belor 300 feet. Water level reported 100 feet in wet seasons. Reported
167	227	б0.	C, 7	D, S	10 feet steel casing at top. never fails in droueht Reportcd never fails in drought.
168	311	d/	C,G,3	\|D, S	20 feet steel casing at top. Reported nover fails in
$\overline{169}$	320	a)	C, W, G	D, S	100 feet stecl casing at top. Water reported from gray sendstone, $300-325$ feet. Reported never fails
170	290	$\begin{aligned} & \text { Dec. } 15, \\ & 1936 \end{aligned}$	C,G	D, S	Stecl casing. Roported never fails in in drought. drought.
171	228.9	$\begin{aligned} & \text { Nov: } 16, \\ & 1936 \end{aligned}$	B, H	D	3 fout stc 11 casing at top. Tater ruported from sand stone, $244-246$ feet. Feported never fails in drought.

-13-
Records of wells and springs in Comal County--Continued

No.	Distance from Bulverde	Survey	Owmer	Drillex	Date com-pleted	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft.) } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { Dian- } \\ \text { eter } \\ \text { of } \\ \text { weli } \\ \text { (in. } \end{array}$	Height of measuring point above ground (ft.) a/
172	$\begin{aligned} & 3 \text { miles } \\ & \text { north } \end{aligned}$	T. Gothard 464	V.T.Moos	--	018	320	--	0.8
173	$\begin{array}{\|l\|} \hline 2 \frac{1}{2} \text { miles } \\ \text { northwest } \end{array}$	Edward Ryan 411	$\begin{aligned} & \text { Edear Bro- } \\ & \text { mer } \end{aligned}$	--	1890	100	6	0.6
174	do.	W.H.Beard 415	Nrs. K. K. Hohman	--	01d	30	6	0.8
175	$\begin{array}{\|l\|} \hline 3 \text { miles } \\ \text { northwest } \end{array}$	do.	do.	--	1886	315	6	0.5
176	do.	do.	do.	--	-*	Spring	--	--
177	$\begin{array}{\|l\|} \hline 3 \frac{1}{2} \text { miles } \\ \text { northwest } \\ \hline \end{array}$	A. Holbrook 414	I.T.Jones	--	010	300	6	0.5
178	$\begin{aligned} & 4 \text { miles } \\ & \text { west } \end{aligned}$	J. Tate 455	H. Laubach	- Dietz	1934	700	6	0.6
179	$\begin{aligned} & 3 \text { miles } \\ & \text { west } \end{aligned}$	J.M.Rivas 191	70.0.stahl	--	01 d	308	6	0.4
180	$\begin{aligned} & 1 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	G. Herrera 192	Fhilip Lux	--		348	6	--
e/181	$\begin{array}{\|l\|} \hline 1 \text { mile } \\ \text { southwest } \end{array}$	do.	$\begin{gathered} \text { Mrs. Wm. } \\ \text { Scholz } \end{gathered}$	--	1896	360	6	--
182	do.	$\overline{d o}$	Aug. Scholz	--	1896	336	6	--
183	At Bulverd	do.	Aug. Wehe	- Vogues	O1d	375	6	0.2
184	$\begin{aligned} & 1 \text { mile } \\ & \text { east } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { A. Gaytan } \\ 194 \\ \hline \end{gathered}$	Chas.Willig	--	1914	300	6	1.
185	$\begin{aligned} & 1 \frac{1}{z} \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	do.	$\begin{aligned} & \text { Herman } \\ & \text { Scholz } \\ & \hline \end{aligned}$	--	--	320	6	--
	$\begin{aligned} & 2 \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	do.	$\begin{gathered} \text { Mre. Fmilie } \\ \text { Stahl } \\ \hline \end{gathered}$	--	--	450	6	--
6/ 187	do.	do.	Adolph Kap- pelmann	--	1899	444	6	0.8
188	$\begin{aligned} & 3 \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { M.B.Dykes } \\ 343 \\ \hline \end{gathered}$	Adem Meyer	--	01 a	90	6	0.3
189	$\begin{aligned} & 4 \text { miles } \\ & \text { east } \end{aligned}$	$\begin{gathered} \text { Richard Rul- } \\ \text { leage } 403 \\ \hline \end{gathered}$	$\begin{gathered} \text { Otto Hitz- } \\ \text { Ielder } \\ \hline \end{gathered}$	--	1933	15	--	0.7
190	do.	do.	do.	--		Spring	--	--
191	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	$\begin{aligned} & \text { F.Ximenes } \\ & 346 \end{aligned}$	do.	- Schwartz	1900	381	6	-
192	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { east } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Anna Vecker } \\ 678 \end{gathered}$	$\begin{gathered} \text { T. B. Eth- } \\ \text { ridge } \end{gathered}$	--		Spring	--	--
193	do.	do.	do.	-	--	200	6	0.2
194	$\begin{aligned} & 6 \text { miles } \\ & \text { east } \end{aligned}$	do.	That Zeucher	--	1922	535	6	--
195	$\begin{aligned} & 9 \text { miles } \\ & \text { east } \end{aligned}$	$\begin{gathered} \text { Franz Heimer } \\ 912 \\ \hline \end{gathered}$	$\begin{gathered} \text { Robert } \\ \text { Heimer } \end{gathered}$	--	1926	178	6	--

Emil J. Michal, Project Superintendert

No.	Water Denth ID below measur ing poi (feet)	Level Date of measure- - ment int	Pump and power b/	Use of water c/	Remaris
772	262	$\begin{aligned} & \text { Not } \cdot 27,1 \\ & 1936 \end{aligned}$	0,7	D, 5	Teil measured while puping. Reported never fails in arought.
173	86	$\begin{aligned} & \text { Tov. } 21, \\ & 1936 \end{aligned}$	$\begin{gathered} C, 7,8 \\ G, 1 \frac{1}{8} \end{gathered}$	D, S	Rock curb; 10 feet steel casing at top. Reported never fails in drought.
174	11.6	$\begin{aligned} & \text { NOT. } 30, \\ & 1936 \\ & \hline \end{aligned}$	None	N	30 feet galvanized steel casing. Reported never fails in drought.
175	247.6	do.	$\begin{gathered} C, \mathrm{~V}, \& \mathrm{~B} \\ \mathrm{G}, 7 \end{gathered}$	D, S	Steel casing. Reported never fails in drought.
$\overline{176}$	Flows	do.	--	D	Dovereć concreto basin. Estimated flow, li gallons a minute from I opening in limestone. Reported never
177	264.7	do.	C, 0	id, S	Rock curb; stesl casing. Reported fails in drought. never fails in drought.
178	244.2	do.	C -	D, 5	Soncrete curb; steel casing. Tatar reported from blue clay, $680-700$ feet. Reported never fails in drought.
$\overline{179}$	88.5	$\begin{aligned} & \text { Nov. } 27 \\ & 1936 \end{aligned}$	$\begin{gathered} \hline, W, \& \\ G,- \end{gathered}$	D, S	Concrete curb; 35 feet steel casing at top. Reported pumps ary at 8 gellons a minute in 4 hours. Reported
180	142	do.	$\begin{gathered} C, \pi, \& \mid \\ 6,4 \end{gathered}$	D, S	Wood block curb; 10 foct steell never fails in drought. casing at top. Moasured while pumping $\frac{1}{2}$ gallon a minute. Feported nevor fails in drought.
181	250	d/	C, 7	D,S	Stecl casins. Reported nover fails in drought.
188	300	d]	$\begin{array}{\|c\|} \hline C, 7,8 \\ G, 1 \frac{1}{3} \end{array}$	D, S	Reported watir level 80 feet in wot season. Fatar raported from yellow clay at 40 feet, and from yellow sanc, $334-336$ feet. Roportod nevor fails in drought.
183	218.0	$\begin{aligned} & \text { Nov - 12, } \\ & 1936 \end{aligned}$	C, 0	1D, 5	40 fect ster masing at top. Reported nevor fails in drought.
184	214.	do.	C, ${ }^{\text {W }}$	D, S	Sticl cesine. Reportod ncvar fails in drought.
185	280	d/	0, 0	iD, S	St-el casing. Peport d nevir fails in drought.
186	--	$\begin{aligned} & \text { Dec, } 15, \\ & 1936 \end{aligned}$	C, Vi	D, S	50 foct 6-inch st casing at top. Tater lovil below 250 fcet. Reportcd ncvor fails in drought.
187	--	do.	$\begin{gathered} C, W, \& \\ G,- \end{gathered}$	D, S	Stfel casing. Feported never fails in drought.
188	49.	$\begin{aligned} & \text { Nov - } 15, \\ & 1936 \end{aligned}$	0, W	D, S	DO.
189	11.0	$\begin{aligned} & \text { Nov. 11, } \\ & 1936 \end{aligned}$	C,W	D, S	Due well. Limstone and caliche, top to bottom. Reported never fails in drought.
190	flows	$\begin{aligned} & 1936 \\ & 1936 \end{aligned}$	--	S	Rock basin. Estirasted flow 10 gallons a mimute. Reported flow increases to 60 gallons a mirute in wet
191	160	d/	C, 7	D, S	10 feet steel casing at top. Tater reported seasor. from sendstone, $375-375$. Reported never fails in dro-
192	Flows	$\begin{aligned} & \text { Nov . } 12, \\ & 1936 \end{aligned}$	--	S	Flows into pool from 1 under-water opening in ught. limestonc.
193	153.9	do.	C,G,6	D, S	Steel casing. Feported never fails in drought.
194	121	1935	$\begin{gathered} C, W, \& \\ G, 4 \end{gathered}$	D,S	6 feet steel casing at top. 400 fest of tubing reported necessary when well is pumped hoavily. Report-
195	78	d/	$\begin{array}{r} \mathrm{C}, \frac{1,8}{}, \\ \mathrm{G}, 1 \frac{3}{4} \\ \hline \end{array}$	$10,5$	

$-15-$
Records of wells and springs in Comal County--Continued

No,	```Distance from New Braun- fels```	Survey	Owner	Driller	Date con-pleted	$\left\{\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \left(f t_{e}\right) \end{array}\right.$	$\begin{gathered} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { gin. } \end{gathered}$	Height of measuring point above ground (ft.) a/
201	$\begin{aligned} & 11 \text { miles } \\ & \text { north } \\ & \hline \end{aligned}$	John Johnson	$\begin{aligned} & \text { S.B.Craw } \\ & \text { ford } \end{aligned}$	--	--	300	6	--
202	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { north } \\ & \hline \end{aligned}$	B.F.Hanna 15	H. Kanc	--	01 d	50	36	1.2
203	$\begin{aligned} & 9 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { Juan Cassil- } \\ & \text { Ias } 310 \end{aligned}$	H.A.Conrad	--		Spring	--	--
204	do.	$\begin{aligned} & \text { J.M.Tejerino } \\ & 349 \\ & \hline \end{aligned}$	ao.	--	01 d	180	${ }^{6}$	--
205	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { G.W.T\& } \& P_{1} \\ & \text { R.R.OO. } 839 \end{aligned}$	Ed. Haag	--	--	475	6	0.7
206	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { B.S.\&F.R.R. } \\ & \text { Co. } 817 \end{aligned}$	A.I.Kabelmacher	--	--	475	6	--
207	$\begin{aligned} & 13 \text { miles } \\ & \text { west } \end{aligned}$	T. Losoya 571	Ea. Reeh	--	01 d	325	--	--
e/208	$\begin{aligned} & 12 \frac{1}{3} \text { miles } \\ & \text { west } \end{aligned}$	do.	do.	--	--	400	6	0.9
209	$\begin{aligned} & 13 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { J.mhompson } \\ 758 \end{gathered}$	do.	--	1916	390	6	--
210	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { Fred Gesche } \\ 779 \end{gathered}$	$\begin{aligned} & \text { George } \\ & \text { Gesche } \end{aligned}$	--	1929	320	6	0.4
211	$\begin{aligned} & 9 \text { miles } \\ & \text { west } \end{aligned}$	Theodor Koester 769	$\begin{gathered} \text { Otto Ohl- } \\ \text { rich } \end{gathered}$	--	1897	350	6	0.7
212	$\begin{aligned} & 8 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { G.W.T.\& P. } \\ & \text { R.R.CO. } 837 \\ & \hline \end{aligned}$	E. Herbst	--	0.1d	425	6	-*
213	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { A. M. Hol brook } \\ & 423 \\ & \hline \end{aligned}$	B. Borchers	--	1902	402	--	--
214	$\begin{aligned} & 6 \text { miles } \\ & \text { northwest } \end{aligned}$	John Kneuper 587	Paul Dietz	--	Q1d	300	6	0.2
215	$\begin{aligned} & 5 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \hline \text { Christian Pape } \\ & 948 \end{aligned}$	Jerome Schumenn	$\begin{aligned} & \text { Alox. } \\ & \text { Fabian } \end{aligned}$	1915	365	6	--
216	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { northvest } \end{aligned}$	Chas. Pape 947	Alvin Jahns	-	1906	300	6	0.7
217	$\begin{array}{\|l\|} \hline 6 \text { miles } \\ \text { northreest } \end{array}$	G.Carrosco 272	H.D.Stronberg	--		Spring	-	--
e/218	$\left\lvert\, \begin{aligned} & 7 \text { miles } \\ & \text { north } \end{aligned}\right.$	G.F-Lamrence 8	Dr. Wright	\cdots	--	15	36	2.4
219	$\begin{aligned} & 8 \text { miles } \\ & \text { north } \end{aligned}$	Wesley Hughes 30	E.T.Lackey	--	1911	500	6	--
220	do.	Wiley Hughes 29	Albert Pfeuffer	--	gld	400	6	--
221	$\begin{aligned} & 4 \text { miles } \\ & \text { north } \end{aligned}$	Juan M. de Veramendi	Albert Simon	--	1931	186	6	--
222	$\begin{aligned} & 4 \text { miles } \\ & \text { northrest } \end{aligned}$	do.	Wm.Kraft	--	1906	190	6	0.5
223	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { northvest } \end{aligned}$	T.Miller 266	$\begin{gathered} \text { Albert } \\ \text { Kraft } \end{gathered}$	--	--	320	6	0.9
224	do.	C.Taca 275	$\begin{gathered} \text { Herman } \\ \text { Kraft } \\ \hline \end{gathered}$	--	Q1d	256	6	10.8

a/ Measuring point was usually top of casing, top of pump base or top of well curb.
b/ A, air-lift; B, bucket; C, cylinder; Cf, centrifugal; G, gasoline engine; H, hand; P, public supply; \mathbb{T}, windmill; number indicates horsepower.

Finil T. Ficha, Project Superintendent

No.	Water Lenin beior measu: ins po ifust	Level of acasure, int ment	Fump and power b/	Use of mater c/	Remarks
201		1003	$0, \therefore$	$\overline{D, S}$	Steel casing. Пtported never fails in drought.
$\overline{202}$	43.9	Hov. 4	C.		Unncret carb.
203	Floms	$190-5$	--	D, S	Estimeted rio: ${ }^{\text {l }}$ gellons a minute from 2 oponings in limestonc. Rcported nevor fails in drought.
20	1100	d/	c, V	D, 5	Stcal cosing. Reportod n ver fails in drought.
205	193.1	$\left\lvert\, \begin{aligned} & \text { oct. } 28, \\ & 1936 \end{aligned}\right.$	C,	D,S	Reporteç never fails in drought.
206	+400	d)	C,G,2	D,S	Steol casing. neported slight drawdown pumping 6 gallons a minute for 24 hours. Reported never fails in
207	156.6	$\begin{aligned} & \text { Dec. I, } \\ & 1936 \end{aligned}$	IJone	N	Fo casins. drought.
208	242.9	do.	C, 7	N	Steel essing. Wer reported from limestone, $375-400$ feet. Reported never fajls in arought.
209	1360	d/	C, 7	D,S	250 fert steel casing at top. Reported never fails in drouch..
210	256.1	$\begin{aligned} & \text { Nov. } 9, \\ & 1936 \end{aligned}$	C, 7	D, 5	Stiol casing. Reported never feils in droueht.
211	196.4	do.	$\begin{array}{r} 0,77,8 \\ G, 1 \frac{1}{2} \end{array}$	[D,S	Do.
212	200	d/	C, 7	D,S	Do.
213	1332	a/	$\begin{gathered} \mathrm{C}, \mathrm{G}, \\ 1 \frac{1}{8} \end{gathered}$	D,S	Rcported nevcr fails in drought.
214	251.7	$\begin{aligned} & \text { Nov. } 5, \\ & 1936 \end{aligned}$	C, Vi	D, S	20 feet stcel cising at top. Reported nevor fails in drought.
215	285	a/	©,77	D, S	10 feet steel casing at top. Reported never fails in drought.
216	273	$\begin{aligned} & \operatorname{lan} 18,18 \\ & 1937 \end{aligned}$	C, 7	D, S	Ste. 1 cesing. Feported rever fails in droupht.
217	Floms	$\begin{aligned} & \mathrm{Nov} \cdot 5, \\ & 1936 \end{aligned}$	--	N	Estime ted flow 1 g -llon minute from 1 oponing in limestone. ReDirted nev r fails in drought.
218	9.0	$\begin{aligned} & \text { Oct. 22, } \\ & 1936 \end{aligned}$	B, H	D, S	Dug well. Roci curb. Torik supply reportod.
219	--	$\begin{aligned} & \text { Nov } \cdot 3, \\ & 1936 \end{aligned}$	$\begin{aligned} & 0,7,8 \\ & G, 6 \end{aligned}$	D,S	Stocl cesirg. ter lemil reportad below 300 foet. Reported nuter rails in arought.
220	--	do.	A, G, 6	D, S	Do.
221	171	d/	C, 7	D, S	Steel casing. Feported never fails in drought.
225	161.5	$\begin{aligned} & \hline \text { Oct. } 28, \\ & 1936 \end{aligned}$	C, Fi	D, S	134 foet steel casing et top. Reported never fails in drought.
223	212	$\begin{aligned} & \text { Dec. } 21, \\ & 1936 \end{aligned}$	C, 7	D,S	Steel casing. Feported nevfr fails in drought.
224	230.7	do.	C,	D, S	3 feet galvanized steel casing at top. Reported never fails in drought.

c/ I, irrigation; Ind, industrial; D, domestic; S, stock; N, not used.
(/ Water level reportod.
E/ No water sample collected for analysis.
-17-
Records of wells and springs in Comal County--Continued

No.	Distance from Nem Braun- fels	Survey	Omer	Driller	$\left\|\begin{array}{l} \text { Date } \\ \text { com- } \\ \text { ple- } \\ \text { ted } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { ft. }) \end{gathered}\right.$	$\begin{array}{\|c} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \\ \hline \end{array}$	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (rt.) a/ } \end{gathered}$
225	$\begin{aligned} & 4 \text { miles } \\ & \text { northwest } \end{aligned}$	E. Hernandez 454	T. H. Harborth Est.	-	1895	265	6	1.1
226	$\begin{aligned} & 4 \frac{1}{2} \text { milos } \\ & \text { northrocst } \end{aligned}$	đo.	Fenry Feise	--	1923	290	¢	0.6
227	$\begin{aligned} & 4 \frac{1}{2} \text { mil } \epsilon s \\ & \text { west } \end{aligned}$	do.	H. Borchers	--	012	300	6	--
229	$\begin{aligned} & 5 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { Lewis Sa- } \\ & \text { linas } 360 \end{aligned}$	Edward Nomotny	--	012	325	6	--
230	do.	$\begin{aligned} & \text { Henrietta } \\ & \text { Boehme } 447 \end{aligned}$	H. Doehne	--	01 d	1,000	6	--
231	$\begin{aligned} & 6 \text { miles } \\ & \text { mest } \end{aligned}$	$\begin{gathered} \text { Aug. Micheli } \\ 485 \end{gathered}$	Gus Vogel	Fey \& Marshall	1915	325	6	--
232	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	H. Adams 652	$\begin{gathered} \text { A.J.Cald- } \\ \text { mell } \end{gathered}$		O1d	250	6	0.4
233	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	C.Gesche 659	Fichard Gesche	[-	1902	313	6	0.9
234	$\begin{aligned} & 8 \frac{1}{8} \text { miles } \\ & \text { west } \end{aligned}$	Comal County School Land Sur. 39	$\begin{aligned} & \text { otto } \\ & 6 \quad \text { Ohlrich } \end{aligned}$	--	O1d	265	6	--
236	$\begin{aligned} & 9 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { M.Gallardo } \\ 363 \end{gathered}$	--	--	cid	--	36	1.
237	$\begin{aligned} & 10 \text { miles } \\ & \text { west } \end{aligned}$	do.	Eugene Krause	\cdots	--	275	6	1.4
2/238	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	Chas. H. Artzt 318	Mrs. T. Hermant	--	1901	295	6	--
239	$\begin{aligned} & 11 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { F.Zuercher } \\ 679 \\ \hline \end{gathered}$	$\begin{gathered} \text { Krs. H.Hed- } \\ \text { wig } \\ \hline \end{gathered}$	Fr.Hillert	1932	45	6	0.6
240	do.	C.Busch 441	H.Blank	--	1926	340	6	0.8
e/241	$\begin{aligned} & 12 \text { miles } \\ & \text { west } \end{aligned}$	Thomas Hand 390	IIrs. A. Schncider	--	1925	322	6	0
242	$\begin{aligned} & 13 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { J. Hamilton } \\ 90 \end{gathered}$	$\begin{gathered} \text { Lavine Hoffit } \\ \text { man } \end{gathered}$	--	01 C	--	6	0.3
243	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{gathered} \text { U.P. O. Han- } \\ \text { lon } 72 \\ \hline \end{gathered}$	$\begin{gathered} \text { EdT. Ger- } \\ \text { hardt } \\ \hline \end{gathered}$	--	--	326	6	--
244	$\begin{aligned} & 13 \text { milcs } \\ & \text { west } \end{aligned}$	do.	$\begin{gathered} \text { Linnie Bin- } \\ \text { scil } \\ \hline \end{gathered}$	--	--	240	8	0.8
245	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	V. Flores 70	$\begin{array}{c\|} \hline \text { Lavine } \\ \text { Hoffman } \\ \hline \end{array}$	-	01d	--	6	0.6
246	$\begin{aligned} & 13^{1} \text { miles } \\ & \text { southrest } \end{aligned}$	V.Micheli 114	$\begin{aligned} & \text { Henry } \\ & \quad \text { Schmidt } \end{aligned}$	--	1880	50	36	1.5
247	do.	do.	Henry Simeon	--	01d	200	6	1.5
248	$\begin{aligned} & 13 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	$\begin{gathered} \text { A. B. Eurk- } \\ \text { hardt } \\ \hline \end{gathered}$	Chès. Donoubauer	1910	250	6	1.
249	$\begin{aligned} & 12 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{aligned} & \hline \text { Geo. M. } \\ & \text { Doison } 96 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Edgar } \\ & \text { Burkhardt } \end{aligned}$	-	Old	180	6	0.5
250	$\begin{array}{\|l} 10 \frac{1}{2} \text { miles } \\ \text { southwest } \end{array}$	J.Hirsch- lober 501	Glen Wilson	--	01d	--	6	--
251	$\begin{aligned} & 7 \frac{1}{z} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \hline \text { P. Hemandez } \\ & 422 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Schaeffer } \\ & \text { Bros, et et } \end{aligned}$		01d	275	6	0.7

Emil J. Michel, Frojugt Superintendent

No.	$\begin{array}{\|c\|} \hline \text { Vater } \\ \hline \text { Depth } \\ \text { below } \\ \text { measur } \\ \text { ing po } \\ \text { (feot) } \\ \hline \end{array}$	Level Date of measure- ment int	Pump and power b/	Use of Tater c/	Renarks
225	188.1	Oct. 28,	C, 1	D, S, I	Stool casing. Reported used for irrigation in 1925. Roported n vir feils in drought.
226	259.7	$\begin{aligned} & \mathrm{DEC.} 21, \\ & 1936 \end{aligned}$	C, W	D, 5	Stucl casing. Reported nutar fails in drought.
227	258	$\begin{aligned} & \text { Oct. } 28, \\ & 1936 \end{aligned}$	C,G,3	D, S	Stevl casing. Water reported in sandstone, 295-300 feet. Reported nevor fails in drought.
229	300	a/	$\begin{gathered} C, W, \& \\ G, 6 \end{gathered}$	D, S	Steel casing. Reported never fails in drought.
230	--	$\begin{aligned} & \mathrm{Jan} \cdot 18, \\ & 1937 \end{aligned}$	C, 7	D, S	Steel casing. Water level below 300 feet. Reported never fails in drought.
231	--	$\begin{aligned} & \text { Dec. 22, } \\ & 1936 \end{aligned}$	C, ${ }^{\text {\% }}$	D, S	36 feet steel casing at top. Water level reported below 300 feet. Vater roported from sand and gravol, 300-325 foet. Reported nevor fails in drought.
232	189.2	$\begin{aligned} & \text { Jan. } 25, \\ & 1937 \end{aligned}$	$\begin{gathered} \mathrm{C}, \mathrm{~T}_{2} 8 \\ \mathrm{G}, 4 \end{gathered}$	D, S	Steol cesing.
$\overline{233}$	260.8 265.5	$\begin{array}{\|l\|} \hline \text { Dec.16. } \\ 1936 \\ \text { Jan. 10-3 } \\ \hline \end{array}$	$\begin{aligned} & C, 7,8 \\ & G, 6 \\ & 7 \end{aligned}$	D, S	Stefl casing. Tater level reported by Penn Livingston, october 11, 1933, 267.4 feet below ground level. Reported never fails in drought.
234	250	d/	$\begin{gathered} 0,7,84 \\ 6,4 \end{gathered}$	D, S	Stesl osing. Roported slight drawdown pumping 10 gallons a minuts for 12 hours. Reported never fails
236	24.3	$\begin{aligned} & \text { Jan. } 21, \\ & 1937 \end{aligned}$	C, 17	D, S	Dug \quad boll. Food block curb; rock easing. in drought. Rcportca n-v.r fails in drought.
237	25,	$\begin{aligned} & 10 \mathrm{ct} \cdot 26, \\ & 1936 \\ & \hline \end{aligned}$	C, G, ${ }_{\text {i }}$	D, S	Stocl casing. Fator lavel measured by Penn Livinostor Oct. 11, 1933, 257.0 fuet below ground level. Reported
238	--	do.	C,7	D, S	Steel casine. Tater level $\frac{\text { never fails in drought. }}{\text { below } 200 \text { feet. Reported never fails in drought. }}$
239	20.6	$\begin{array}{\|l\|} \hline \text { Nov. } 24, \\ 1936 \end{array}$	C, 7	I	35 feet steel casing at top. Reported never fails in drought.
240	297.5	do.	C,7	D, S	Steol casing. Reported never fails in drought.
241	300	d/	C,G,-	D, 5	315 feet steel casing at top. Water reported from sendstone, 320-322 feet. Reported never fails in dro-
242	231.4	$\begin{aligned} & \text { Dec. } 17 \\ & 1936 \\ & \hline \end{aligned}$	C, 7	S	Stocl casing. Well measured while pumping. Re-Lught. ported never fails in drought.
243	${ }^{--}$	do.	C. 7	D, S	Stucl casing. Tater lovol below 300 feet. Water levi measurcd by Penn Livingston, Oct. 11, 1933, 306.8 fect below ground levol. Roported never fails in drought.
244	175.6	do.	C, N	D, S	Steel casing. Well measured while pumping. Reported never fails in drought.
245	151.8	do.	C, 7	D, S	Steel casing. Reported never fails in drought.
246	42.4	do.	C,	D, S	Dug well. Concrete curb; rock casing. Reported never fails in drought.
247	131.7	do.	C, W	D, S	Steel casing. Reported never feils in drought.
248	149.0	$\begin{aligned} & \text { oct. } 26, \\ & 1936 \\ & \hline \end{aligned}$	C, 7	D, S	Sterl cesing. Ifeasur thile pumping. Reported revtr fails in drought.
249	169.5	$\begin{aligned} & \text { Nov. } 24, \\ & 1936 \\ & \hline \end{aligned}$	C, 6	D, S	Do.
250	${ }^{--}$	$\begin{aligned} & \text { Dec. 19, } \\ & 1936 \end{aligned}$	C.W	D,S	Stocl casing. ワetor levil below 242 feet. Reported nover ficils in drought.
251	1244.2	$\begin{aligned} & \text { Dec. } 18, \\ & 1936 \end{aligned}$	$\begin{gathered} C, W, 80 \\ G, 3 \end{gathered}$	D, S	Tater levil measurud by Penn Livingston, May 28, 1934, 241.4 below grouna level. Reported never fails in

Records of wells and springs in Comal County--Continued

No.	```Distance from New Braun- fels```	Survey	Orner	Driller	Date com-pleted	Depth of well (ft.)	$\left\lvert\, \begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & o f \\ & \text { well } \\ & \text { (in. }) \end{aligned}\right.$	Height of measuring point above ground (ft.) al
252	$\begin{aligned} & 8 \text { miles } \\ & \text { west } \end{aligned}$	C. Andreas 437	Herman Vogel	$\begin{gathered} \text { Enil } \\ \text { Fey } \end{gathered}$	1916	300	6	0.9
253	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V. Salinas } \\ & 393 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C. Kreus- } \\ & \text { ler } \\ & \hline \end{aligned}$	--	1900	300	6	0.6
254	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { mest } \end{aligned}$	$\begin{aligned} & \text { C. Kreussier } \\ & 696 \end{aligned}$	Erwin Voigt	Paul Schumann	1936	375	6	--
255	$\begin{aligned} & 7 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { V. Salinas } \\ & 393 \end{aligned}$	$\begin{aligned} & \text { Carl } \\ & \text { Kreusler } \end{aligned}$	--	1919	330	6	--
256	$\begin{aligned} & 6 \text { miles } \\ & \text { mest } \end{aligned}$	$\begin{aligned} & \text { Geo.Wlirich } \\ & 392 \end{aligned}$	$\begin{aligned} & \text { Prs. ITn } \\ & \text { Hillort } \end{aligned}$	--	1915	390	6	--
258	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	Jos. Thompson 751	$\begin{aligned} & \text { Fritz } \\ & \quad \text { Kunkle } \\ & \hline \end{aligned}$	--	1865	90	36	3.5
259	do.	do.	do.	--	1906	420	6	--
260	do.	$\begin{aligned} & \text { Honry Doitz } \\ & 448 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Imil } \\ & \text { Deitz } \end{aligned}$	--	1895	450	6	--
261	$\begin{aligned} & 5 \text { miles } \\ & \text { west } \end{aligned}$	J.H.Hartmann 358	$\begin{gathered} \text { 0.C. Breh- } \\ \text { mer } \\ \hline \end{gathered}$	--	1898	304	6	0.5
262	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { J.G.Brenier } \\ & 424 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ed. C. Heid } \\ & \text { rich } \end{aligned}$	--	1922	335	8	--
e/264	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Louis Salinas } \\ & 458 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ed. Disch- } \\ \text { inger } \end{gathered}$	$\begin{aligned} & \text { Frenk } \\ & \text { Hillert } \end{aligned}$	1925	305	6	--
265	$\begin{aligned} & 3 \text { miles } \\ & \text { wost } \end{aligned}$	Tm Wockford 285	R.f.Coreth	--	--	290	8	--
266	$\begin{aligned} & 2 \text { milcs } \\ & \text { northriest } \end{aligned}$	J.M. do Voramendi	A. Stranson	A.Sranson	1936	152	6	1.
E268	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	$\begin{gathered} \text { Orilla Rus- } \\ \text { sel } 2 \\ \hline \end{gathered}$	C.t.Conring	$\begin{aligned} & \text { C.A.Con- } \\ & \text { ring } \end{aligned}$	1900	175	6	0.4
269	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	do.	$\begin{gathered} \text { Jack Kretz- } \\ \text { meir } \end{gathered}$	Jack Hretzmeir	--	168	6	0.9
270	do.	do.	Alvin. Kraft	- Owens	1932	138	6	0.2
271	do.	do.	Fobert Rabbe	-	1901	140	6	0.6
272	$\begin{aligned} & 5 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	Bruno Raabe	--	01d	--	6	1.5
273	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	do.	C.Conrad	--	--	145	6	1.1
274	$\begin{aligned} & 6 \text { miles } \\ & \text { northeast } \end{aligned}$	$\begin{gathered} \text { Nancy Kemor } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Chas. Soech- } \\ \text { ting } \\ \hline \end{gathered}$	--	1896	210	6	1.
275	do.	do.	Erich Resonthal	-	1901	230	6	--
E/276	do.	do.	$\begin{gathered} \text { Cherlio Orav } \\ \text { ford } \\ \hline \end{gathered}$		01 d	---	$\overline{6}$	--
277	$\begin{aligned} & 6 \frac{1}{2} \text { milos } \\ & \text { mortheast } \end{aligned}$	do.	$\begin{gathered} \text { Chris. Rosen } \\ \text { thal } \end{gathered}$		1898	212	--	0
278	$\begin{aligned} & 7 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	Hancy Greune		01d	160	6	0.6

Records of wells and springs in Conal County--Continued

No.	Distance from New Braunfels	Survey	Omer	Driller	Date com-pleted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft. } . \end{array}\right\|$	Diameter of well (in.)	Height of measuring point above ground (ft.) a/
279	$\begin{aligned} & 8 \text { miles } \\ & \text { northeast } \end{aligned}$	Samuel Graft Sr .	Wh.Posey	--	1891	160	6	0.9
280	$\begin{array}{\|l\|} \hline \frac{1}{2} \text { miles } \\ \text { northeast } \end{array}$	do.	Hiner Docime	--	01d	250	6	0.9
281	$\begin{array}{\|l\|} \hline 9 \text { miles } \\ \text { northeast } \end{array}$	do.	$\begin{gathered} \text { Travis } \mathrm{H} \\ \text { Tate } \end{gathered}$	--	--	152	-	0.6
282	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	$\begin{gathered} \text { Phoonix Lifo } \\ \text { Ins. } 00.1 \end{gathered}$	$0-$	--	145	6	0.3
283	$\begin{aligned} & 9 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	$\begin{gathered} \text { Imil Preus- } \\ \text { ser } \end{gathered}$	--	--	330	6	2.1
284	$\begin{aligned} & 7 \text { milos } \\ & \text { northeast } \end{aligned}$	Antonio Meria Esnaurizar	$\begin{gathered} \hline \text { Csrl Kut- } \\ \text { schcr Est. } \end{gathered}$	--	1930	50	36	1.
285	$\begin{aligned} & 5 \text { miles } \\ & \text { northeast } \end{aligned}$	do.	H.Mittendorf	--	1925	32	36	0
287	$\begin{aligned} & 3 \frac{1}{2} \text { milcs } \\ & \text { northoast } \end{aligned}$	$\begin{aligned} & \text { Orilla Rus- } \\ & \text { sel } 2 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Arthur Bar- } \\ \text { tels } \\ \hline \end{gathered}$	--	--	65	36	--
288	$\begin{aligned} & 2 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	A.P.Fuquay 35	Iman Wallhoefer	--		\$pring	--	--
289	$\begin{aligned} & 2 \frac{1}{2} \text { milos } \\ & \text { north } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J. M. de } \\ & \text { Veramondi } \end{aligned}$	$\begin{gathered} \text { Dim. Dio- } \\ \text { mors } \end{gathered}$	--	01d	80	6	1.4
291	do.	do.	Osear Praess	--	-	65	6	1.3
292	do.	do.	Johohna Baetde	--	1912	85	6	1.4
293	$\begin{aligned} & 1 \frac{1}{2} \text { miles } \\ & \text { northoest } \end{aligned}$	do.	H. ${ }^{\text {a }}$ Landa	--	--	--	6	1.1
294	$\begin{aligned} & 1 \text { mile } \\ & \text { norinwest } \end{aligned}$	do.	City of New Braunfels	--		\$pring	--	--
295	$\begin{aligned} & 1 \frac{1}{2} \text { miles } \\ & \text { northrest } \end{aligned}$	do.	Mrs. Meta Penshom	--	01 d	25	36	0.2
296	$\begin{aligned} & 2 \frac{1}{m i l e s} \\ & \text { vest } \end{aligned}$	do.	lex fitgelt	Paul Schumann	1934	345	8	0.8
297	$\begin{aligned} & 3 \text { miles } \\ & \text { west } \end{aligned}$	do.	$\begin{gathered} \text { U.S.Gypsum } \\ \text { Co. } \end{gathered}$	--	--	125	--	6
298		S.A.\& M.G. R.R.CO: $599 \frac{1}{2}$	Fi.R.Coreth	--	--	275	6	1.5
299	$\begin{aligned} & 5 \text { milos } \\ & \text { west } \end{aligned}$	J.M. de Voramendi	Fin. Fey	Paul Schumann	01d	89	6	1
300	do.	do.	$\begin{aligned} & \text { Rolend } \\ & \text { Welsch } \end{aligned}$	do.	1934	372	6	1.6
304	$\begin{aligned} & 6 \text { milcs } \\ & \text { southwest } \end{aligned}$	F.Rodriquez 99	$\begin{aligned} & \text { Cerl } \\ & \text { Kreuger } \end{aligned}$	--	01d	300	6	1.1
305	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	$\begin{gathered} \text { Josoph } \\ \text { Friesenhehn } \end{gathered}$	--	1895	360	6	0
306	$\begin{aligned} & 8 \text { miles } \\ & \text { southinest } \end{aligned}$	$\begin{aligned} & \text { V. Bennett } \\ & 100 \end{aligned}$	Oscar Jonas	--	1890	360	6	1.2

a/ Measuring point was usually top of casing, top of pump base or top of mell curb. A, air-lift; B, bucket; C, cylindcr; Cf, centrifugel; G, gasoline engine; H, hand; P, public supply; W, windmill; number indicates horsepower.

No.	$\begin{aligned} & \text { Tater } \\ & \text { Depth } D \\ & \text { Revor } \\ & \text { necsur } \\ & \text { in poi } \\ & \text { ati } \end{aligned}$	Level i Date of measure-- ment int	Pump and power	Use of water c/	Remarks
	13.3	$\begin{aligned} & c \cdot 2 \mathrm{ct} \cdot 2 l \\ & -93 \mathrm{c} \end{aligned}$	O,	, S	10 feet stecl casing at top. Water reported from sanc stone, 158-160 foet. Deported nover fails in drought.
	33.10	01.5	C, 7	D, S	Stcel cesing. Reportcă ntvor foils in drought.
81	23.1	1	C, 7	S	Reported ncver fails in drought.
	114.910	$120.21,$	C, !	D, S	Stoul casing. Reportid never fails in drought.
$\overline{283}$	$\begin{array}{r} 14.2[8 \\ 1 \end{array}$	$\begin{aligned} & \text { ven. } 5, \\ & 1937 \end{aligned}$	C,77	N	Do.
284	33.31	$\begin{aligned} & \text { oct. } 21 \\ & 1936 \end{aligned}$	C, W	D, S	Dug vell. Rock casing. Reported never fails in drousht.
285	12.0	do.	C, 7	D, ${ }^{\text {S }}$	Dug well. Brick curb and casing. Reported never fails in aroucht.
287	48.6	0ct. 22, 1936	C, 7	D, S	Dug mell. Box curb; rock casing. Reported never fails in drought.
288	Floms	$\begin{aligned} & \text { Dec. } 30, \\ & 1936 \end{aligned}$	W	D, S	Estimated flow, 60 gellons a minute from 1 opening in limestore. Reported novor feils ir drought. Locatod on east bink Gucdelupe River.
289	48.5	do.	$\begin{gathered} C, W, \& \\ G, 3 \end{gathered}$	D, 5	Stool crsing. Reported ncver fails in drought.
291	52.4	$\begin{array}{\|l\|} \hline 0 \mathrm{ct}_{\mathrm{t}} \cdot 21 \\ 1936 \end{array}$	C,7	D, S	
232	55.310	$00^{\frac{2}{4}} .28$ 1936	C, 7	I, S	Do.
293	120.6	$\begin{aligned} & \text { Doc. } 6 \text {, } \\ & 1936 \end{aligned}$	C,7	D, S	
294	Flows	$\begin{array}{\|ll\|} \hline 0 \mathrm{ct} . & 27 \\ 1936 \end{array}$	None	P	Maximum flow 157,000 and minimum flow 112,500 gellons a minute from 6 openings in limestons. Supplies city of Nert Braunfels. Knom as Comel Springs.
295	8.3	$\begin{array}{\|l\|} \hline \text { Dec. 22, } \\ 1936 \end{array}$	C, 7	D, S	Dug rell. Rock curb and cesine. Reported never feils in drought.
296	53.3 D	$\begin{aligned} & \text { Dec. } 4, \\ & 1936 \end{aligned}$	C, G, 4	D, 5	Steel casing. Water reported from gravel at 345 feet. Blue clay reportea, $50-345$ feet. Reported never fails
297	51.1	do.	None	N	Rock curb. Reported rever fils in. in drought. drought. Loc:t d inside groinds of plant.
298	230	$\begin{array}{\|l\|} \hline \text { Dec. } 16, \\ 1936 \end{array}$	C, 7	5	Steel casine. feter lefi mfasured by Ponn Livingston, Ney 25, 1934, 230.7 rest below ground level. Reported nevir zeils in drought.
299	$\overline{6 \epsilon .4}$	$\begin{aligned} & \text { Dec. } 5, \\ & 1936 \end{aligned}$	Q, W	5	Stucl casing. Export.a nevir fails in drought.
300	$\overline{33.7}$	1936	C, ${ }^{\text {星 }}$	D, S	Steel ensine. 3 lue cloy reported, top to bottom; no water cbove 37% feet. Fater level measured by Penn Livineston, Hay 25, 1934, 38.3 feet below ground level. Reported never fails in drought.
304	20.5	$\begin{aligned} & \text { Dee. } 16, \\ & 1936 \\ & \hline \end{aligned}$	C,77	D, S	Concrete curb; 15 feet stoel cesing at top. Reported rever fails in drought.
305	56	$\begin{aligned} & \text { Dec. } 18, \\ & 1936 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{C}, \mathrm{~W}, 2 \\ \mathrm{G}, 2 \end{gathered}$	D*S	40 foet relvenized steol casing st top. Strong supply reported.
306	68.4	do.	C, W	D,S	Stocl casing. Reportod never fails in drought.

c/ I, irrigetion; Ind, industrial; D, domestic; S, stock; N, not uscd.
$\bar{a} /$ Wetor lovel reported.
c/ No meter semple collected for malysis.

No．	Distance from New Braun－ fels	Survey	Owner	Driller	Date com－ ple－ ted	$\begin{array}{\|c} \text { Depth } \\ \text { of } \\ \text { weli } \\ (\mathrm{ft.}) \end{array}$	$\left\|\begin{array}{c} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \end{array}\right\|$	Height of measuring point above ground （ft．）a／
307	$\begin{aligned} & \text { 8咅 miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { V. Bennett } \\ 100 \end{gathered}$	$\begin{aligned} & \text { Adolph } \\ & \text { Mueller } \end{aligned}$	－－	1911	160	6	0.9
308	do．	J．Nelson 97	Vesley Hierholzer	$-$	O1d	117	6	0.7
309	$\begin{aligned} & 9 \text { miles } \\ & \text { southwest } \end{aligned}$	do．	Ben Eiley	－－	－－	125	6	0
311	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { E. Woodruff } \\ 95 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Robert } \\ & \text { Hierholzon } \end{aligned}$	－－	01 d	130	6	0.7
312	$\begin{aligned} & 10 \text { miles } \\ & \text { southwest } \end{aligned}$	do．	．O．K． Klacmer	$-$	01 d	109	6	1.1
313	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { southrest } \end{aligned}$	$\begin{aligned} & \text { J. de Cardova } \\ & 514 \end{aligned}$	$\begin{gathered} \text { R.P Schnei- } \\ \text { der } \end{gathered}$	－－	1928	192	6	0.6
314	$\begin{aligned} & 11 \text { miles } \\ & \text { southrest } \end{aligned}$	$\begin{gathered} \text { Geo. M. Dol- } \\ \text { son } 96 \end{gathered}$	Aoc．fiedel	－－	1925	225	6	0.2
315	$\begin{aligned} & 12 \text { miles } \\ & \text { southwest } \end{aligned}$	do．	do．	－－	01d	306	5	0
316	$\begin{aligned} & 13 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{aligned} & \text { T. Herrera } \\ & 68 \\ & \hline \end{aligned}$	Joe Gleitz	－－	－－	310	6	1.5
317	do．	do．	do．	－－	01d	200	6	0.6
318	$\begin{aligned} & 11 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do．	Th．Tonne	Spring \＆ Donnerbaue	1910	476	6	1.1
319	$\begin{aligned} & 9 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{aligned} & \text { R. Garza } \\ & 98 \end{aligned}$	Joe Vogel	－－	－－	350	6	1.3
320	do．	do．	J．C．Stigall	－－	012	400	6	0.8
e／321	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { southrost } \end{aligned}$	do．	F．Schnab	－－	Old	150	6	1.1
322	do．	do．	Valentine Schwab	－－	－－	38	36	2.1
323	$\begin{aligned} & 8 \text { miles } \\ & \text { southiwest } \end{aligned}$	do．	$\begin{aligned} & \text { Albert } \\ & \text { Kechnor } \end{aligned}$	－－	1911	130	6	0.7
325	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { southrost } \end{aligned}$	$\begin{gathered} \text { F.Rodriquez } \\ 99 \\ \hline \end{gathered}$	Bruno Schrab	－－	1916	150	6	1
326	do．	do．	酮。 Schaeffer	--	－－	300	4	I． 1
327	$\begin{aligned} & \text { 5T miles } \\ & \text { southwest } \end{aligned}$	do．	I．E： Kreupper	$\begin{aligned} & \text { Hgnry } \\ & \text { Spring } \\ & \hline \end{aligned}$	1911	84	6	0.5
328	$\begin{aligned} & 7 \text { miles } \\ & \text { southrest } \end{aligned}$	$\begin{gathered} \text { C.In. Gahagan } \\ 258 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Alvin } \\ & \text { Schecffer } \end{aligned}$	－	1900	360	6	0.4
329	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { southorest } \end{aligned}$	do．	Gus kleemer	－－	1914	131	6	1.1
330	$\begin{aligned} & 7 \text { miles } \\ & \text { southrest } \end{aligned}$	$\begin{gathered} \text { F•Rodriquaz } \\ 99 \\ \hline \end{gathered}$	Ed．Solm	－－	－－	300	－－	0.7
332	$\begin{aligned} & 6 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { J. Noyes } \\ 259 \\ \hline \end{gathered}$	Ben Jahn	－－	Old	395	6	1.2
333	do．	$\begin{gathered} \text { F.Rodriquaz } \\ 99 \\ \hline \end{gathered}$	O．Penshorn	－－	Old	428	6	0.8

Emil J. Michal, Projoct Superintendent

No.	$\frac{\text { Tater }}{\text { Depth }}$ belon me measur- ing poin (feet)	Level Date of measure- ment int	Pump and power b/	Use of water c/	Remarks
307	37.71	$\begin{aligned} & \text { Dec. } 18, \\ & 1936 \end{aligned}$	C, ${ }^{\text {W }}$	D,S	20 feet galvanized steel casing at top. Reported never fails in drought.
308	$81.6 \begin{gathered} D \\ 1 \end{gathered}$	$\begin{aligned} & \text { Dec. 19, } \\ & 1936 \end{aligned}$	C, ${ }^{\text {a }}$	D, S	Food biock curb; 40 feet stuel casing at top. Reportcd rever fails in drought.
305	79.4	do.	C, 7	D,S	Concrete curb; steal casing. Reportod never fails in drought.
311	125.7	do.	C,7	D, S	Sted casing. Reported never fails ir drought.
312	81.20	$\begin{aligned} & \text { Oct. } 26, \\ & 1936 \end{aligned}$	C, V/	D, S	Do.
313	119.1	do.	C, 7	D, S	Stel casins. Water reported from sand at 145 feet, and sandston., 190-192 feet. Reported never fails in
314	${ }^{133.2}{ }^{\text {d }}$	$\begin{aligned} & \text { Dec. } 17, \\ & 1936 \\ & \hline \end{aligned}$	C, 7	D,S	Concrete cint; sterl casing. Reported drought. nevor fails in droveht.
$\overline{315}$	135	do.	C, 7	D,S	200 foet strel casine at top. Water level measurcd by Ponn Livingston, May 24, 1934, 141.5 feot below ground 1.vel. Reportod never fails in drought.
316	101.7 ${ }^{1}$	$\begin{aligned} & \text { Dec. } 12, \\ & 1936 \end{aligned}$	0, 7	D:S	Steel casing. Water level measured by Penn Livineston, Oct. 2, 1933, 108.3 feet below ground level. Reported
317	74.6	do.	None	N	Steel casint: ater level measured by Ponn Livingston, oct. $2,1933,76.2$ feet
318	155	$\begin{aligned} & \text { Nov. } 24, \\ & 1936 \end{aligned}$	C, w	D,S	20 feet steel cosing at top, fin- belor ground level. ish 450 feet $4 \frac{1}{z}$-inch steel casing. Measured while pumpire. Reported never fails in drought.
319	128.6	$\begin{aligned} & \text { Dec. } 3, \\ & 1936 \end{aligned}$	C, ${ }^{\text {a }}$	S	Tood block curb; steel casing. Tater level measured by Pemn Livingston, May 24, 1934, 134 feet below ground level. Reported never fails in drought.
320	63.8	$\begin{aligned} & \text { NOT. } 24, \\ & 1936 \end{aligned}$	C, W	D, 5	Steel casing. Reported never fails in drought.
321	71.1	$\begin{aligned} & \text { Dec. 16, } \\ & 1936 \end{aligned}$	None	N	Tile casing. Weak supply reported. Hydrogen sulphide odor.
32.2	24.1	do.	C, ${ }^{77}$	D,S	Dug weil. Concrete curb; rock casing. Reported never fails in drought.
323	69.3	$\begin{aligned} & \text { Dec. 1, } \\ & 1936 \end{aligned}$	C, W	D, ${ }^{\text {S }}$	50 fect stisel casing at top. Rcported never fails in drought.
325	17.0	$\begin{aligned} & \text { Dec. } 18 \text {, } \\ & 1936 \end{aligned}$	C, G, 4	D, 5	20 feet stenl cosing at top. Water reported from lime stone, $138-142$ feet. Reported never fails in drought.
326	29.3	$\begin{aligned} & \text { Dec. } 3, \\ & 1936 \end{aligned}$	C, W	D, S	Food block curb; starl casing. Reported never fails in drought.
327	26.0	$\begin{aligned} & \text { Oct. } 26, \\ & 1936 \end{aligned}$	C,V]	D, S	22 feet steal casing at top. Water reported from sand stone, 85-84 fivet. Reported never fails in drought.
$\overline{328}$	32.3	$\begin{aligned} & \text { Doc. 16, } \\ & 1936 \end{aligned}$	C,	D,S	Wood curb; steul casing. Reported never fails in drought.
329	47.8	$\begin{aligned} & \text { Dec. } 4, \\ & 1936 \end{aligned}$	C, Vi	5	Steci casing Feported never fails in drought.
$\overline{330}$	21.1	$\begin{aligned} & \text { Dec. 3, } \\ & 1936 \end{aligned}$	C, W	D,S	Reported netry fails in drought.
332	80.6	$\begin{aligned} & \text { Doc. } 18, \\ & 1936 \end{aligned}$	C, ${ }^{\text {w }}$	S	Steel casing. Water level measured by Penn Livingston May 28, 1934, 82.9 foot below ground level. Reportod
$\overline{333}$	30.3	$\begin{aligned} & \text { Dec. } 3, \\ & 1936 \end{aligned}$	C, 7	D, S	Stecl casine. Fatcr level never fails in drought. measured by Penn Livingston, May 28, 1934, 53 foet below ground lovel. Reported nover fails in drought.

-25-
Records of wells and sprines in Comel County--Continued

No.	```Distance from New Braun- fels```	Survey	Omer	Driller	Date com-pleted	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \left(f^{\prime} t .\right) \end{array}\right\|$	$\begin{gathered} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \\ \hline \end{gathered}$	Height of measuring point above ground (st.) a
336	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { F.Rodriquez } \\ 99 \\ \hline \end{gathered}$	A.TV.Feick	Paul Schumann	01 d	700	6	0.7
337	$\begin{array}{\|l\|} \hline 5 \text { miles } \\ \text { southwiest } \end{array}$	John Thompson	Tim.Stratemann	-	Old	--	--	0.5
338	do.	do.	do.	--	010	--	36	1.6
339	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	Otto Reinarz	--	O1d	465	3	--
341	do.	$\begin{gathered} \text { J.if. de Vera- } \\ \text { mendi } \\ \hline \end{gathered}$	Otto Feick	--	01d	200	6	--
342	do.	do.	W.E.F. Eilers	--	Old	240	6	1
343	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	do.	Otto Feick	$\begin{aligned} & \text { Paul } \\ & \text { Schumann } \end{aligned}$	1934	91	6	--
344	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	A. Triesch	--	1898	90	6	1.5
346	$\begin{aligned} & 2 \frac{1}{\text { miles }} \\ & \text { wost } \end{aligned}$	do.	A.H. Gemer	--	1900	148	6	2.1
347	$\begin{aligned} & 2 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	Theo Docrr	--	O1d	503	6	0.7
348	$\begin{aligned} & 2 \text { miles } \\ & \text { west } \end{aligned}$	do.	$\begin{gathered} \text { Hy } \text { Moellex } \\ \& 0 . \end{gathered}$	-		Spring	--	0
349	$\begin{aligned} & 1 \frac{1}{2} \text { milos } \\ & \text { most } \end{aligned}$	do.	Max 7alther	--	1898	31	36	0.5
352	$\begin{aligned} & 1 \frac{1}{2} \text { milvs } \\ & \text { cast } \end{aligned}$	$\begin{aligned} & \text { AM.Esnau- } \\ & \text { rizar } \end{aligned}$	Erwin Soofjo	--	O1d	427	6	0
355	$\begin{aligned} & 2 \text { milos } \\ & \text { cast } \\ & \hline \end{aligned}$	do.	Ad. Tausch	--	01 d	--	36	1.4
356	do.	do.	Fritz Neuse	$\begin{gathered} \text { Eritz } \\ \text { Neuse } \\ \hline \end{gathered}$	1915	24	36	0.7
359	$\begin{aligned} & 3 \mathrm{milcs} \\ & \text { oast } \end{aligned}$	do.	$\begin{gathered} \text { Albert } \\ \text { Soefje } \end{gathered}$	--	1895	57	36	0.4
360	$\begin{aligned} & 5 \frac{7}{2} \text { miles } \\ & \text { east } \end{aligned}$	do.	$\begin{aligned} & \text { H. Kicker- } \\ & \text { itz } \\ & \hline \end{aligned}$	$\begin{gathered} \text { H. Kick- } \\ \text { oritz } \end{gathered}$	1933	36	6	0.2
361	$\begin{aligned} & 4 \frac{1}{2} \text { milcs } \\ & \text { cast } \\ & \hline \end{aligned}$	do.	Emma Rose	--	--	32	60	0.2
362	$\begin{aligned} & 4 \text { milos } \\ & \text { east } \end{aligned}$	do.	R. Kraft	--	01d	40	36	3.2
363	$\begin{aligned} & 3 \text { miles } \\ & \text { oast } \end{aligned}$	do.	August Timmormenn	Sr	018	50	36	3.1
364	do.	do.	E. W-Musilar	--	1918	35	36	1.4
365	$\begin{aligned} & 3^{\frac{1}{2} \text { miles }} \\ & \text { southeast } \end{aligned}$	do.	B. Bartlos	--	--	Spring	--	--
367	$\begin{aligned} & 2 \frac{1}{2} \text { milos } \\ & \text { cast } \\ & \hline \end{aligned}$	do.	$\begin{aligned} & \text { Mrs. H. } \\ & \text { Osikers } \end{aligned}$	--	01 d	40	36	2.2
368	$\begin{aligned} & 2 \text { milos } \\ & \text { east } \\ & \hline \end{aligned}$	do.	D. Themer	--	01d	30	60	0.5
372	$\begin{aligned} & 3 \frac{1}{2} \text { milcs } \\ & \text { southwest } \end{aligned}$	John Thomp- son	$\begin{gathered} \text { Hcnry } \\ \text { Voight } \end{gathered}$	--	1898	510	6	2.2
373	do.	do.	L. Jentsch	--	old	485	6	1.5

Emil J. Michal, Froject Superintendent

No.	Water Depth betow measur ing po (feet)	Level Date of measure int ment	Pump and power b/	Use of water c/	Remarks
336	77.8	$\begin{aligned} & \text { cet. } 26 \\ & 1936 \end{aligned}$	C,	D, S	Steel casing. Wator level measured by Ponn Livingstor May 28, 1934, 69.? feet below ground level. Roported
$\overline{357}$	60.8	$\begin{aligned} & \operatorname{Jan} \cdot 6,^{1937} \end{aligned}$	C, 7	S	Concrete curb; no cosing. Lnever fails in droucht. Reported ncvir fails in drought.
338	3.4	do.	C, H	D	Dug well. Concrete curb; brick casing. Reportod never fails in droupht.
$\overline{539}$	7.0	$\begin{aligned} & \text { Dec. } 3, \\ & 11936{ }^{3} \end{aligned}$	None	N	Feported never foils in drought.
341	35	d/	C,	S	Stacl casing. Reported never fails in drought
$\overline{342}$	26	$\begin{aligned} & \text { Oct } \cdot 27, \\ & 1936 \end{aligned}$	C.7	D, S	Do.
343	86	$\begin{gathered} \alpha / \text { kpril } \\ 1934 \end{gathered}$	C,G,2	S	10 fect steel casing at top. Rock reported, top to bottom. Reported never fails in drought.
344	29.4	$\begin{aligned} & \text { Nov. } 9, \\ & 1936 \end{aligned}$	C, W	D, S	Wood block curb; 40 fectstocl easing at t?p. R(p)rted nover fails in drought.
$\overline{346}$	2.0	$\text { Dec. }{ }^{4,}$	C, Wi	D, S	Concrate curb; 48 fect steel casing, at top. Flows at tines. Wetur reported from bluc clay, 144-148 feot. Reported nower fiaile in drought.
347	10.8	do.	C, 7	D, S	Conercte curb; steel casing. Reported ncver fails in drought.
348	3	do.	$\begin{array}{r} C f, \& \\ \mathrm{G}_{2}- \\ \hline \end{array}$	D, S	Sink 60 fect deep. Spring flowimg 50 gallons a mirutc roported 45 feet below surface. Reported
349	28.9	$\begin{array}{ll} \hline 0 \operatorname{ct} . & 27 \\ 1936 \end{array}$	C, W	D,S	Dug \quad mill. Brick casing. Reported notur fails in drought.
352	31	d/	0, Wid	S	Stocl casing. Reported nevir fails in drought.
$\overline{355}$	22.6	$\begin{aligned} & \operatorname{Jar}_{1} \cdot 6, \\ & 1937 \end{aligned}$	C.W	D, S	Dug well. Rock curbing and casing. Reported never fails in drought.
$\overline{356}$	25.1	$\begin{aligned} & \text { Nov. 18, } \\ & 1936 \end{aligned}$	C, W	D, S	Dug well. Concrete curb; brick casing. Reported never feils in drought.
259	52.8	$\begin{array}{\|ll\|} \hline \text { Oct. } & 20, \\ 1936 \end{array}$	C, V7	D, S	Dug well. Rock casing. Reported never fails in drought.
$\overline{360}$	28.2	$\begin{array}{\|l\|} \hline \text { Nov. } 18, \\ 1936 \end{array}$	C, H	N	5 feet galvanized steel casing at top. Reported never fails in drought.
$\overline{361}$	33.9	do.	C, 7	D, S	Dug mell. Brick c"sing. Reported never fails in drought.
$\overline{362}$	37.9	do.	B, H	D, S	Dug well. Donerete curb and casing. Reported never fails in drought.
$\overline{363}$	44.4	do.	C,7	D,S	Dug well. Rock curb and casing. Reported never fails in drought.
364	36	$\begin{array}{\|l\|} \hline \text { oct. 10, } \\ 1936 \end{array}$	C, ${ }^{\text {T }}$	$\begin{gathered} D, S, \\ I \\ \hline \end{gathered}$	Dug well. Concrete curb. Reported never fails in drought.
365	Florts	$\begin{aligned} & \text { Nov. } 11, \\ & 1936 \end{aligned}$	None	Drs	Estimated flow, 15 gallons a minute from 3 openings in gravel bed. Reported never fails in drought.
$\overline{367}$	36.3	$\begin{aligned} & \text { Oct. } 10, \\ & 1936 \end{aligned}$	C, 7	D, S	Dug well. Brick casing. Reported never fails in drought.
368	26.1	do.	c, ${ }^{1}$	D, S	Dug well. Reported never fails in drought.
372	76	$\begin{array}{\|l\|} \hline \text { Oct } . \\ 1936 \end{array}$	C, 7	S	500 feet stecl casing at top, Water reported from sand stone at 200 and 510 feet. Reported never fails
373	17.9	$\begin{array}{\|ll\|} \hline \text { Dec. } & 4 \\ 1936 & \\ \hline \end{array}$	C,V	5	Stcel casing. Roported ncvor fails in drought.

-27-
Records of mells and springs in Comal County--Continued

No.	```Distance from New Braun- fels```	Survey	Omer	Driller	$\begin{array}{\|l\|} \text { Date } \\ \text { com- } \\ \text { ple- } \\ \text { teda } \end{array}$	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft.) } \end{array}\right\|$	$\begin{array}{\|l} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in.) } \\ \hline \end{array}$	Height of measuring point above ground (ft.) a/
374	$\begin{aligned} & 4 \text { miles } \\ & \text { southwest } \end{aligned}$	$\begin{gathered} \text { John Thomp- } \\ \text { son } \end{gathered}$	Gus Reinerz	--	--	500	6	0.9
375	$\begin{aligned} & 4 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	F.A.Burket	--	O1a	450	6	0.6
377	$\begin{aligned} & 5 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	\qquad		1924	498	6	0
378	$\begin{aligned} & 4 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	J.A.Wetz	\| --	01d	542	6	1.4
a/ Measuring point was usually top of casing, top of pump base or top of well curb. B/ A, air-lift; B, bucket; C, cylinder; Cf, centrifugal; G, gasoline engine; H, hand; P, public supply; W, windmill; number indicates horsepower.								

Emil J. Michel, Project Superintendent

No. $=$	Water Level Depth Date of below reasure- measur- ment ing point (feet)	Pump and power b/	Use of water c/	Remaris
374	$\begin{gathered} 30.7 \text { Dec. }^{4} \\ 1936 \end{gathered}$	C, W	S	Steel casing. Teported never fails in drought.
375		C, 7	S	Do.
377	$\begin{gathered} \hline 52.3 \begin{array}{l} \mathrm{Jan} .6, \\ 1937 \end{array}, \end{gathered}$	C,V	S	450 feet steel casing at top. Reported never fails in drought.
378	114.1 do.	C,W	D, S	Stecl casing. Reported ncvor fails in drought.
c/ I, irrigation; Ind, industrial; D, domestic; S, stock; N, not used. d/ Wator levol reported. E/ No wator sample collected for analysis.				

Logs of test wells drilled by $\mathrm{J}_{\text {. P P A. A. labor }}$ in Comal County, Texas (Samples examined and classified by Pmil J. IVichal, Froject Superintendent.)

Well 228
Junction of county roads, Edward Hernandez Survey 454, $4 \frac{1}{2}$ miles west of New Braunfels.

$$
\begin{gathered}
\text { Thickness Depth } \\
\text { (feet) (feet) }
\end{gathered}
$$

Red clay and large gravel- -	1	1
Limestone- . - -	4	5

Woll 235
County road, Heirs of Jacob Steubing Survey 825,9 miles west of New Braurfels. Red clay and large grevol- - $7 \quad 17$ No water sample collected. Jen. 2i, 1937.

Woll 257
County road, George Jllrich Survey 392, 6 : miles west of New Eraunfels.
 Grayish-rollow clay- - - - 1416 Yellow clay end gravel - - 2 : 18 No water sample collectod. Jan. 18, 193 .

Well 263
Junction oi county roads, Lewis Salinas Survey 458 , $3 \frac{1}{2}$ miles west of New Eraunfels Red clay 2
 No water semple collected. Jan. 25, 1937.

HeIl 267
County road, Juan de Veramendi Survey, 3 miles north of New Braunfels.
Topsoil- - 2 2 Yellowish-brown clay - - - 4
Rock - 410 No water samplo collected. Nov. 3, 1936.

Well 286
Twenty yards north of highway, neer junction of highway and county road, Orrilla Russell Survey 2, 5 miles northeast or New Braunfels.
Black topsoil- - - - - - - 1
Topsoil and gravel - - . - 2
Chalk- 4
Gravel and yellow clay - - 4
Yellow clay and chalk- - - 10
No water sample collected. Oct. 22, 1936.:
Well 290
County road, Juan Martin de Veramendi Survey, $2 \frac{1}{3}$ miles north of New Braunfels. Whitish-yellow sand and
gravel - 5 . 5
Yellow clay, sand and gravel 5
Yellow clay and pravel - - 5

We11 290--Continued Thickness Depth (feet) (feet)
Eluish-gray clay . - . - - 1 16

| Yellor clay and sand $\ldots \ldots$ | 17 |
| :--- | :--- | :--- |

Reddish-yellow clay end
gravei - - 1128
Grey sand. 1 Z9
Yellon clay and gravel - - 2
Red clay - - - 4 Struck mater at 33 feet.
Water level, 32.7 feet below top of ground, $\frac{t}{x}$ hour after hole completed. No water sample collected. Nov. 2, 1936.

7 T 1 l 301
Junction of county roads, F. Rodriguez Survey 99,6 miles southwest of liew Braunfels.
Black topsoil. - . . . - 7 | 7
Yellowish-brom clay, black
topsoil, and gravel - - 310 Struck water at 9.8 feet.
Thater level, 8.3 feet below top of ground, $\frac{7}{x}$ hour after hole completed. Tater sample collected. Dec. 16, 1936.

Well 302
County road, F. Rodriguez Survey 99, 5妾 miles southrest of New Braunfels.
Black topsoil- - 10
Yellowish-brown clay, black
topsoil, and gravel -:- $1 \quad 11$ Struck water at 11 feet. Water level, 7.3 feet below top of ground, $\frac{1}{4}$ hour after hole completed. Water sample collected. Dec. 18, 1936.

Well 303

County road, F. Rodriguez Survey $99,5 \frac{1}{2}$ miles southwest of New Braunfels.
Elack topsoil- - - - - $8 \mid 8$
Black topsoil and gravel - 210 Btrack water at 8 feet.
Jater level, 8 feet belom top of ground, 8 minutes after hole completed.
Tlater sample collected. Dec. 18, 1936.
Well 310
County road, John Nelson Survey 97, 9를 miles southwest of New Braunfels. Grayish-islack topsoil- - - $3 \mid 3$
Light yelloz clay streaked with bright yellow- - - 14
Yellon clay and gravel - - 18
No water sample coilected. Jan. 11, 19:7.
-30-
Logs of W. P. A. tost wells in Comal County--Continued

Well 324
County road, V. Bennett Survey 100, 8 miles southmest of New Braunfels.

> Thickness Depth
(feet) (foet)
Gray clay and gravel- - - $2 \mid 2$ Laminated light orange and yellov clay - - 4 Yellow clay and gravel- - - 5 No water sample collectod. Jan. 11, 1937.

Well 331
County road, F. Rodriguez Survey 99, 6 miles southwost of Nem Braunfels:
Black topsoil 3 Grayish-yellow clay - . . - 2 Reddish-yellow clay and gravel - - 11
No rater sample collected. Jan. 19, 193%.
Well 334
County road, F. Rodriguez Survey 99, 6 miles southeest of Ner Braunfels.
 Light yellow clay, chalk,
and gravel. 2
Light yellow clay - - - - - 3
Light yello: clay and gravel 2
16
No water sample collected. Jan. 7, 1937.
Tell 335
Road junction, Fe Rodriguez Survey 99, $5 \frac{1}{2}$ miles southrest of Nem Braunfels.
Bleck topsoil 4
Black topsoil and gravel- - 2
Brownish-yoilow clay- - - 7
Light yellow clay and gravel 4
Iight yollor clay - 18
Light yello: clay $\left.1 \frac{1}{2} \right\rvert\, 20$ struck weter at $18 \frac{1}{2}$ feet. Watir level, 16.9 feet belor top of ground, 4 hours after hole completed. No rater sample collected. Dec. 16, 1936.

Well 340
County road, Juan de Veramendi Survey, 11 miles southwest of New Braunfels. Black topsoil - - 4 Yellow clay - 3 Reddish-yellow clay - - - 2 Light yollow clay and gravel 2 Grayish-brown clay and grevel 4 Light yellow clay and sand- 6 Blue clay 8
No water sample collected. Nov.

We11 345
County road, Juan Liartin de Veramendi Survey, 5 miles southwest of New Braunfels. Thickness Depth (feet) (feet)
Black topsoil - - 3 | 3
Light yellow clay and black

Bromish-yellow clay- - - 7
iron-stained chalk- . . - 215
Iight yellow clay and light
gray soapstone- 7
Light yellow clay - - 6
Yellow clay and iron-stained
sand - 1

Light yellow clay and gray
soapstone - - 6
Blue clay - 1
Yellow clay - - 1
Blue clay 30
Blue and yellow clay- . . - $1 \quad 41$
Blue clay - 30 71
No water sample collected. Nov. 17, 1936.
Well 350
County road, Juan hartin de Veramendi Survey, 1 mile southmest of New Braunfels. Black topsoil - - 2 Reddish-yellow clay and
small gravel- - - . - 3
Reddish-yellow sand and clay 16
Yellow sand and gravel- - 5
Yellow clay and gravel- - $\quad 2 \quad 28$
rravel- 1 29
No water sample collected. Dec. 21, 1936.
7ell 351
County road, Juan Martin de Veramendi Surm frey, I mile southwest of Nem Braunfels. Biack topsoil - - - 3
Tellow clay and gravel- - $\quad 2 \quad 5$
Yellow clay and sand- - - 15 Wellowish-brown clay and

No mater sample collected. Dec. 21, 1936.
Mell 353
County road, f. M. Esnaurizar Survey, l_{2} miles east of New Braunfels.
Yellow clay and black top-
soil- - - $\quad 1 \quad 1$
Yellow clay … 3
Yellow sand - 3
Yellow sand and gravel- - 9816
No water sample collected. Jan. 7, 1937.

Well 354
County road, A. M. Esnaurizar Survey, $1 \frac{1}{2}$ miles east of New Braunfels.

Thickness Depth
(feet) (feet)
Black topsoil- - - \quad ?

Gray sand- - 2 Reddish-yellow sand- - - - 4 | Reddish-yellow sand and gravel 7 | 20 |
| :--- | :--- | :--- | No water sample collected. Jan. 6, 1920.

Well 357
50 yards north of highway, at junction of highmay and county road, A. M. Esnaurizar Survey, $2 \frac{1}{2}$ miles east of New Braunfels. Black topsoil- - 4 Yellow clay- - - - 5 Yellor clay and sand - - - - $17 \quad 26$ Gray soapstone - - - - - - 10 Yellow clay and chalk. - - - 5 Yellow sand- - - 1 l 42 Sandstone- $\frac{1}{2}$ 421 Struck mater at 42 feet. Water level, 40 feet below top of ground, $\frac{1}{2}$ hour after hole completed.
Water sample collected. Oct. 20, 1936.
Well 358
County road, Henry Foster Survey 34, $2 \frac{1}{2}$ miles east of New Braunfels.
Topsoil- - . . - - - - $2 \mid 2$
Yellow sand and smail gravel 4
Yellow sand - - 10 16
Yellow sand and clay - . - - 2
Reddish-yollow clay and gravel 5
Grayish-yellow clay- - - - 1 No mater sample collected. Nov. 5, 1936.

Tell 366
River bottom, 100 yards north of highmay intersection, A. M. Esneurizar Survey, $2 \frac{1}{2}$ miles east of New Braunfels.
Black topsoil- - - $4 \mid 4$
Black topsoil and pink gravel 1 5
Pinkish-yellow clay and chalk 4
Yellow clay and gravel - - $\quad 2 \quad 11$ Gravel and caliche - - - - 5 Rock - $\frac{1}{2}$ 16 $\frac{1}{2}$ No water sample collected. Oct. 10, 1936!
mell 369
Road junction, John Thompson Survey, $1 \frac{1}{2}$ miles south of New Braunfels.
Topsoil. 3
Yellow clay and gravel - - - $9 \quad 12$
Rock - - . - - 13 No water sample collected. Oct. 28, 1936.

Well 370
County road, John Thompson Survey, 2 miles southwest of Nem Braunfels.

Thickness Depth
(feet) (feet)
 Struck water at 45 feet.
TVater level; 43.4 feet below top of ground, 2 hours after hole completed.
rater sample collected. Nov. 16, 1936.
Well 371
County road, John Thompson Survey, 3 miles southwest of New Braunfels.
Black topsoil - - 3
Grayish sand and clay - - - 4
Yellow clay and sand- - - - 4
Grayish clay- 2
iight yellow clay - . . - - 1
Grayish-yellow clay - . - - 13
Light yello\# clay - . . . - 2229
Light gray clay and yellow
sand- - - - 1
Iight gray clay - . . . - . $\quad 1$
Light gray clay and bluish
soapstone - - . . - - - 2 33
Light yellow clay - - . - - 1 Struck water at 33 feet.
Water level, 29.2 feet below top of ground,
3 hours after hole completed.
Water sample collected. Nov. 16, 1936
Well 376
County road, John Thomps on Survey, $4 \frac{1}{2}$ miles southrost of Nen Braunfels.
Black topsoil - 3
Black topsoin, yellow clay
and gravel- - - 2
Yellor cley, chalk and gravel 4

Logs of W. P. A. test rells in Comal County--Continued

Well 376mCentinued

Thickness Depth (feet) (feet)
Light yellow clay and gravel- - - . . . - - 110
Yellow clay and ferrous sand 1 Light yellow clay and soapstone - - - - - - - - 3
Orange clay and sand- - - 1
Yellow clay and soapstone - $11 \quad 25$
Yellow clay - - - . - - $\quad 2 \quad 28$ Struck water at $27 \frac{1}{2}$ feet.
Water level, 27 feet below top of ground,
1 hour after hole completed.
Water sample collected. Nov. 17, 1936,
(Analyzed at the State University under the direction of Dr. E. P. Schoch, Director of the Bureau of Industrial Chemistry, by J. E. Stullken, C. R. Stewart, D. F. Riddell, and Alfred J. Kelly, Chemists, and J. A. Harmaza, Martin Wieland and Jack Ramsey, Assistant Chemists. Results are in parts per million. Well numbers correspond to numbers in table of well records.)

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (\text { feet }) \\ \hline \end{gathered}$	Date of collection	$\left\|\begin{array}{c}\text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calculated) }\end{array}\right\|$	Calcium (Ca)	$\left\lvert\, \begin{aligned} & \text { Magnes } \\ & \text { ium } \\ & (\mathrm{Mg}) \end{aligned}\right.$	$\left(\left.\begin{array}{c}\text { Sodium and } \\ \text { Potassium } \\ \text { (Na } \neq \mathrm{K}) \\ \text { calculated }\end{array} \right\rvert\,\right.$	$\begin{gathered} \text { Bicar- } \\ \text { bonate } \\ \left(\mathrm{HCO}_{3}\right) \end{gathered}$	$\underset{\left(\mathrm{SO}_{4}\right)}{\text { Sulphate }}$	$\begin{gathered} \text { Chloride } \\ \text { (Cl) } \end{gathered}$	Total hardenss as CaCO (calculated)
1	C.I. Meserolo	Spring	Nov.13,1936	251	76	17	-	290	a/	15	260
2	do.	217	do.	250	56	24	11	293	a/	15	237
3	do.	220	do.	227	-	-	-	250	a/	14	-
4	E. Kaderli	250	do.	89	-	-	-	85	a/	12	-
5	Finil Doell	300	Dec.31,1936	166	-	-	-	134	12	25	-
6	H. Fisher	327	Nov. 4,1936	178	-	-	-	146	20	19	-
7	R.O. Fisher	Spring	do.	301	101	9	6	342	a/	17	291
8	ji.0. Fischer	218	Dec. 31,1936	293	-	-	-	323	a/	18	-
9	H. Pantormuehl	275	Nov. 4,1936	- 276	-	-	-	244	39	13	-
12	Eugene E. Schee	1220	Dec. 8,1936	290	-	-	-	195	71	19	-
13	Otto Truer	350	Dec. 4,1936	389	60.	57	-	230	114	35	385
14	do.	Spring	Dec.12,1936	177	41	9	15	159	16	18	140
15	Mrs. D. Hall	do.	Nov. 4,1936	228	74	13	-	256	a/	15	238
16	C.D. Fall	240	do.	258	65	14	17	256	16	20	218
17	F. J. Peters	500	Dec. 31,1936	295	32	42	22	275	42	22	251
18	Theo. Meyers	400	Dec. 8,1936	431	63	55	21	378	83	23	384
19	J.C. Talley	325	do.	455	42	73	18	329	138	22	406
20	Mrs. Jennie B. Hickman Bell	80	do	262	-	-	-	214	45	15	-
21	Chas. Pantermue	hl Sprin	1 g Dec.31,193	36-187	30	21	13	189	16	14	163
22	do.	110	do.	223	55	24	-	256	a/	18	235
23	Max Linnartz	228	Nov. 3,1936	446	68	49	27	329	103	37	370
24	Frank Guenther	169	Nov. 4,1936	166	25	23	7	165	16	14	155
25	Geo. T. Spears	300	Nov.11,1936	176	46	10	10	183	a/	20	157
	F. and R. Schac koeter	fer- Spring	Dec.10,1936	14.1	36	10	6	146	a)	17	132
28	Bert Specht	do.	do.	159	41	8	11	146	a/	27	135
30	Mrs. P.G. Remml	er 184	Dec. 9,1936	329	21	38	55	311	42	20	208
31	J.K. Baretta	280	do.	168	23	24	6	122	28	27	155
32	Mris. J. W. Heard	100	do.	360	118	16	1	470	16	11	360

a/ Sulphate less than 10 parts per million.

Partial analyses of water from wells in Comal County--Continued

$\begin{gathered} \text { Well } \\ \text { No. } \end{gathered}$	Owner	$\left\|\begin{array}{c}\text { Depth } \\ \text { of } \\ \text { well } \\ \text { (feet) }\end{array}\right\|$		$\left[\begin{array}{c}\text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calculated) }\end{array}\right.$	$\begin{gathered} \text { Calcium } \\ \text { (Ca) } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Magnes- } \\ \text { ium } \\ \text { (Mg) } \end{array}$	$\|$Sodium and Potassium ($\mathrm{Na} \nmid \mathrm{K}$) calculated)	$\begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}$	$\underset{\left(\mathrm{SO}_{4}\right)}{\text { Sulphate }}$	$\begin{gathered} \text { Chloride } \\ \text { (Cl) } \end{gathered}$	Total hardness as CaCO_{3} calculated)
33	Claude Heard	120	Dec. 9,1936	196	-	-	-	153	28	20	-
34	Ed. Kaderli	112	do.	193	27	24	14	183	20	18	165
35	A.H. Flugrath	Spring	Nov.13,1936	323	94	19	9	372	a/	18	312
37	W.A. Ellis	240	Dec.15,1936	335	-	-	-	329	26	18	-
38	do.	20	do.	154	-	-	-	146	a/	22	-
39	do.	50	do.	289	-	-	-	311	a/	22	-
40	Albert Pape	26	Nov.13,1936	338	-	-	-	372	a)	21	-
41	W. H. F9 ${ }^{\text {P }}$	175	Dec.31,1936	144	\cdots	-	-	92	20	26	\cdots
42	Henry Pantermuen	-	Nov. 4,1936	1,557	-	-	-	317	870	41	-
43	Theo. Krart	428	Nov. 3,1936	504	72	57	32	378	158	19	412
44	Eugeno Grcin	250	Doc. 3,1936	227	34	36	-	207	40	15	232
45	Waluer Kaderli	170	Nov. 3,1936	777	-	-	-	293	356	12	-
46	M. Leaghling	Spring	NOV. 5, 1936	174	-	-	-	165	10	16	-
47	--	do.	oct, 5,1936	295	58	34	8	311	26	16	286
48	H. W. Kraft Esta	$t e 6 y$	Nov.11,1936	218	-	-	-	232	2.	18	-
49	do.	Spring	NOV.16,1936	265	70	19	7	275	16	18	252
101	Bert Specht	212	Nov.10,1936	538	-	-	-	281	142	68	-
102	Ed. Gass	140	Dec. 9,1936	174	-	-	-	116	26	27	-
103	Arno Kinibbe	124	Dec. 10,1936	437	168	19	-	317	47	47	497
104	G.W. Iyles	Spring	Nov.20,1936	121	26	12	6	122	a/	17	112
105	Erie Spocht	75	do.	110	\sim	-	-	98	a]	19	-
106	do.	250	do.	105	20	12	5	92	a/	23	97
107	Wm. Neugebauer	163	do.	445	-	-	-	445	35	19	-
108	Arno Knibbe	225	Dec. 10,1936	512	85	26	66	214	93	137	321
109	D.I. Knibbe	120	do.	340	-	-	-	183	103	28	-
110	do.	280	do.	1,348	71	71	325	171	237	560	469
111	Chas. Eibel	100	Dec. 9,1936	190	-	-	-	165	16	21	-
113	Alfred Gass	175	NOV.20,1936	598	43	47	108	171	138	178	299
114	Harry Knibbe	Spring	do.	136	23	17	8	140	a/	19	125
115	William Specht	250	do.	248	52	42	-	159	35	41	301
116	Ed. Bartels	80	Dec. 10,1936	336	-	-	-	323	28	20	-
117	Alfred Beierle	157	Nov.20,1936	148	11	1	50	134	a/	20	30
118	Henry Jonas Esta	te 108	Jan.26,1936	323	-	-	-	250	24	54	-
119	John Stricker	250	Nov.19,1936	230	51	25	6	268	a/	16	230

a/ Sulphate less than 10 parts per million.

Partial analyses of water from wells in Comal County--Continued

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (feet) } \\ \hline \end{gathered}$	$\left.\left\lvert\, \begin{array}{c}\text { Date } \\ \text { of } \\ \text { collection }\end{array}\right.\right]$	$\left\|\begin{array}{c}\text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calculated) }\end{array}\right\|$	Calcium (Ca)	$\begin{aligned} & \text { Magnes- } \\ & \text { ium } \\ & \text { (Mg) } \\ & \hline \end{aligned}$	$\|$Sodium and Bicar- Potassium bonate (Na \& K) $\left(\mathrm{HCO}_{3}\right)$ calculated)	$\underset{\left(\mathrm{SO}_{4}\right)}{\mathrm{Sulphate}^{2}}$	$\begin{gathered} \text { Chloride } \\ \text { (Cl) } \end{gathered}$	Total hardness as CaCO (calculated)
120	S.L. Gill	280	Nov. 16,1936	339	115	9	8 403	a)	9	326
121	Wh. Gast	115	Nov. 27,1936	102	-	-	92	a	17	-
122	Erie Specht	200	do.	394	27	44	$60 \quad 262$	71	63	247
123	Fred Wehe	350	Nov. 21,1936	237	70	20	98	35	64.	257
124	Ed. Encbel	210	Nov.16,1936	194	-	-	195	a/	22	-
125	Otto Erben	450	Nov. 2,1936	203	-	-	220	a/	15	-
126	Julius Bremer	185	NOV. 25,1936	302	54	49	372	a/	16	335
128	A.J. Waloer	264	Nov. 2,1936	224	-	-	183	24	26	-
130	R.P. Holt	680	Dec.11,1936	2,608	346	201	179 232	1,642	126	1,689
131	J.J. Arrechea	300	Nov.16,1936	214	66	7	$10 \quad 244$	a)	11	198
132	A.P. Scheel	350	Dec. 7,1936	293	83	23	$1 \quad 342$	a/	18	194
133	Eugene T . Scheel	280	do.	131	-	-	122	日/	20	191
134	Fin. Mons	96	do.	391	-	-	415	12	22	-
135	John runc	300	Dec.23,1936	318	-	-	336	16	13	-
136	Miss. Erma Saur	218	do.	222	-	-	226	12	13	-
137	Guy S. McFarland	300	do.	261	51	24	$18 \quad 275$	20	13	225
138	Bruno Klar	25	do.	313	-	-	- 5 -	a/	15	-
139	Joseph offer	200	do.	357	85	26	$17 \quad 366$	32	17	321
140	F. Neugebauor	300	Dec. 7,1936	158	19	23	$10 \quad 159$	12	16	144
141	George Bros.	216	Dec.12,1956	328	-	-	354	8	17	-
142	Mrs. C.I. Ellswo	rth 217	7 do.	151	-	-	134	16	12	-
143	August Scholz Est	t. 236	Nov. 30,1936	165	-	-	177	a/	13	-
144	do.	265	do.	226	32	31	$12 \quad 238$	20	14	209
145	Mrs. Chas. Erben	235	Dec. 7,1936	200	-	-	- 171	26	15	209
146	E.A. Laubach	400	do. ${ }^{\text {do. }}$	164	24	26	$3-171$	12	15	166
147	do.	25	do.	139	-	-	92	24	19	16
148	August Scheel	15	do.	385	-	-	- 390	24	20	-
149	do.	318	do.	360	-	\sim	- 342	28	26	-
150	Mrs. Louise Hill	480	Nov. 21,1936	173	45	18	- 85	24	44	186
151	0. Wohe	350	Nov. 27,1936	142	12	18	$21-153$	a/	16	101
152	$\frac{\text { do. }}{\text { dab }}$	110	do.	112	-	-	110	a/	14	101
153	J.A. Laubach	60	do.	298	-	-	232	28	44	-
154	(do.	25	do.	217	-	-	238	1	14	-
155	George Fronne	145	Dec.10,1936	263	-	-	- 220	32	21	-

[^0]Partial analyses of water from wells in Comal County--Continued Results are in parts per million.

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	Depth of well (feet)	$\left\|\begin{array}{c}\text { Date } \\ \text { of } \\ \text { collection }\end{array}\right\|$ (ca	Total dissolved solids calculated	Calcium (Ca)	$\left\lvert\, \begin{gathered} \text { Magnes } \\ \text { ium } \\ (\mathrm{Mg}) \end{gathered}\right.$	$\left\|\begin{array}{c}\text { Sodium and } \\ \text { Potassium } \\ \text { (Na \& K) } \\ \text { calculated) }\end{array}\right\|$	$\left\|\begin{array}{l} \text { Bicar- } \\ \text { bonate } \\ \left(\mathrm{HCO}_{3}\right) \end{array}\right\|$	$\underset{\left(\mathrm{SO}_{4}\right)}{\substack{\text { Sulphate }}}$	$\left\lvert\, \begin{gathered} \text { Chloride } \\ \text { (Cl) } \end{gathered}\right.$	Total hardness as CaCO_{3} (calculated)
156	Gus Weidner	360	Dec.11,1936	200	62	18	-	220	a/	12	232
$156 a$	Robert Bose	465	do.	287	13	24	68	268	36	14	130
156 b	do.	Spring	do.	204	48	12	14	159	16	36	167
157	O.R. McKinney	635	do.	314	77	24	12	336	24	12	290
158	W.F. Sumbling	383	Jan.26,1936	368	52	57	8	378	53	12	365
159	O.A. Doeppenschm	idt 615	5 Nov. 2,1936	742	151	62	11	366	323	15	633
161	do.	-	do.	394	-	-	-	390	28	22	-
162	do.	350	Jan. 2,1936	400	72	49	12	390	55	20	380
164	B. Stapper	480	Nov. 2,1936	634	98	75	7	287	299	14	551
165	Ed. Adam	24	Dec.11,1936	262	-	-	-	293	a)	14	-
166	do.	600	do.	481	97	45	10	329	150	17	428
167	Clemens Scholz	245	do.	219	18	36	16	220	28	13	192
168	Julius Bose	348	do.	138	30	13	7	146	a/	16	128
169	Ben Bose	348	do.	235	69	17	1	268	$3 /$	16	240
170	Erwin Schneider	414	Dec. 15,1936	312	-	-	-	281	36	20	-
171	Mrs. Mattie Shelb	lburne 2	248 Nov.16,1936	36302	-	-	-	342	a/	14	-
172	V.F. Moos	320	NOV.27,1936	281	78	13	14	293	20	12	248
173	Edgar Bremer	100	Nov.21,1936	111	-	-	-	98	$2 /$	20	-
174	Mrs. M.K. Holman	- 30	Nov.30,1936	113	-	-	-	110	a/	15	-
175	do.	315	do.	240	36	30	13	226	36	14	213
176	do.	Spring	do.	265	86	10	6	305	$9 /$	13	256
177	I.T. Jones	300	do.	334	-	-	-	336	24	16	-
178	H. Laubach	700	do.	486	39	71	26	226	209	30	389
179	W.0. Stah1	308	Nov. 27,1936	176	-	-	-	153	16	18	-
180	Philip Iux	348	do.	277	89	17	-	305	a/	21	290
182	August Scholz	336	do.	278	74	21	3	244	19	41	272
183	August Wehe	375	Nov. 12,1936	357	-	-	-	305	39	33	-
184	Chas. Willig	300	do.	584	91	72	15	421	185	14	524
185	Herman Scholz	320	Dec.15,1936	169	-	-	-	140	24	13	-
186	Mrs. Emilie Stahl	1450	do.	574	117	46	19	348	195	26	484
188	Adam Meyer	90	Nov.15,1936	348	144	4	-	268	$3 /$	68	378
189	Otto Hitzfelder	15	Nov.11,1936	180	-	-	-	171.	12	15	-
190	do. S	Spring	Nov.15,1936	297	95	10	9	342	a/	15	281
191	do.	381	Nov.12,1936	911	-	-	-	67	590	13	-
192	W.B. Ethridge S	Spring	do.	143	51	10	-	159	a/	4	171

Partial analyses of water from wells in Comal County-montinued
Results are in parts per million.

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\|$Depth of well feet $)$	Date of collection	$\left\|\begin{array}{c}\text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calculated) }\end{array}\right\|$	Calcium (Ca)	$\left\lvert\, \begin{aligned} & \text { Magnes- } \\ & \text { ium } \\ & \text { (Mg) } \end{aligned}\right.$	$\left(\begin{array}{c}\text { Sodium and } \\ \text { Potassium } \\ \text { (Na } 4 \mathrm{~K}) \\ \text { calculated }\end{array}\right)$	$\sqrt{\text { Bicar }} \begin{aligned} & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}$	Sulphate $\left(\mathrm{SO}_{4}\right)$	Chloride (Cl)	Total hardness as CaCO_{3} (calculated)
193	W.B. Ethridge	200	Nov.12,1936	1,277	-	-	-	299	716	11	-
194	Wm. Zeucher	535	do.	593	122	48	10	293	260	9	501
195	Robert Heimer	178	Nov. 2,1936	230	58	23	2	281	a/	9	239
201	C.B. Crawford	300	Nov. 3,1936	303	\cdots	-	-	305	24	12	-
202	H. Kanc	50	Nov. 4,1936	310	-	-	-	342	a/	19	-
203	H.A. Conrad	Spring	Nov. 5,1936	172	27	26	5	201	a)	15	176
204	Herman Conrads	180	Jan.26,1936	414	-	-	-	384	28	38	-
205	FA. Haag	475	cct.28,1936	323	-	-	-	366	a/	15	-
206	A.I. Kabelmacher	r 475	Nov. 9,1936	222	-	-	-	189	35	11	-
207	Ed. Reeh	325	Dec. 1,1936	49	-	-	-	12	$\underline{ }$	25	-
209	do.	390	do.	142	-	-	-	153	a/	11	-
210	George Gesche	320	Nov. 9,1936	239	59	17	14	281	2	11	215
211	otto ohlrich	350	do.	741	212	29	-	329	295	13	648
212	F. Herbst	425	Jan.25,1937	264	56	30	5	287	18	$1 / 4$	263
213	B. Bochers	402	Nov. 2,1936	183	-	-	-	183	$2 /$	21	-
21.4	Paul Dietz	300	Nov. 5,1936	237	62	31	-	293	a/	10	259
215	Jerome Schumann	365	Jan.18,1936	261	64	28	2	317	a/	11	272
216	Alvin Jahns	300	do.	195	48	21	-	232	a)	12	208
217	H.D. Stronberg	Spring	NOV. 5,1936	232	45	25	13	275	a/	14	216
219	E.T. Lackey	500	Nov. 3,1936	234	64	19	3	281	a/	10	237
220	Albert Pfeufier	400	do.	279	83	18	3	329	a/	13	281
221	Albert Simon	186	Dec. 21,1936	286	-	-	-	305	12	12	-
222	Von. Krast	190	Oct.28,1936	266	83	15	-	268	12	24	270
223	Albert Kraft	320	Dec.21,1936	206	-	-	\cdots	207	12	12	-
224	Hermen Kraft	256	do.	291	-	-	-	311	12	12	-
225	W.H. Harborth Es	t. 265	Oct.28,1936	421	86	20	35	207	130	48	298
226	Henry Heise	290	Dec.21,1936	304	91	16	6	336	12	14	295
227	H. Borchers	300	Oct.28,1936	228	69	18	-	256	a/	15	246
229	Edward Nowotny	325	Dec.22,1936	240	59	16	12	250	16	14	215
230	H. Doehne	1000	Jan.18,1937	180	35	15	13	171	20	13	150
231	Gus Vogel	325	Dec.22,1936	285	85	18	1	311	16	12	286
232	A.J. Caldwell	250	Jan.25,1936	296	94	11	4	281	22	27	282
233	Richard Gesche	313	Dec.16,1936	345	141	9	-	329	a/	33	391
234	Otto Ohlrich	265	Nov. 9,1936	298	-	-	-	348	a/	8	-
a/ Sulphate less than 10 parts per militon.											

Partial analyses of water from wells in Comal County--Continued

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { feet) } \end{gathered}$	Date of collection	$\left(\begin{array}{c}\text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calculated) }\end{array}\right.$	Calcium (Ca)	$\begin{gathered} \text { Magnes- } \\ \text { fum } \\ (\mathrm{Mg}) \end{gathered}$	$\|$Sodium and Potassium (Na $\neq \mathrm{K}$) calculated)	$\begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{Sulphate}_{\left(\mathrm{SO}_{4}\right)} \end{aligned}\right.$	$\begin{gathered} \text { Chloride } \\ \text { (Cl) } \end{gathered}$	Total hardness as CaCO_{3} (calculated)
236	-	-	Jan. 21,1936	377	-	-	-	262	32	75	-
237	Eugene Krause	275	Oct.26,1936	130	34	6	5	79	31	15	108
239	Mrs. H. Hedwig	45	Nov . 24,1936	557	291	9	-	55	71	159	766
246	H. Blank	340	do.	257	-	-	-	293	a/	11	-
242	Lavine Hoffman	-	Dec.17,1936	143	-	-	-	159	a/	8	-
243	Edwin Gerhardt	326	Feb.17,1936	241	-	-	-	275	a)	10	-
244	Linnie Binseil	240	do.	243	-	-	-	281	a/	8	-
24.5	Lavine Hoffman	-	do.	136	-	-	-	146	a/	10	-
246	Honry Schmidt	50	do.	207	93	2	-	146	8	32	241
247	Ennry Simeon	200	do.	266	83	17	-	293	8	14.	275
248	A.B. Burphnrdt	250	Oct. 25,1936	278	-	-	-	299	12	10	-
249	Ederar Burlmardt	180	Nov.24, 1936	265	-	-	-	293	a/	16	-
250	Glen Tision	-	Dcc.19,1936	448	-	-	-	323	75	49	-
251	$\begin{aligned} & \text { Schaeff ir Bros. } \\ & \text { et al. } \end{aligned}$	275	Dec.18,1936	318	118	7	-	372	a/	10	324
252	Herman Vogel	300	Jan.21,1936	235	80	7	3	214	2	25	229
253	C. Vreuslor	300	Nov.24,1936	198	-	-	-	214	a/	15	-
254	Erwin Toigt	375	Jan.21,1936	329	111	10	6	390	a/	10	320
255	Carl Krousler	330	do.	280	119	8	-	73	51	66	305
256	Mrs. Fin. Hillert	390	Nov. 9,1936	212	-	-	-	238	a/	11	-
258	Fritz Kunkle	90	Oct.27,1936	516	-	-	-	500	35	36	-
259	do.	420	do.	331	81	24	13	317	31	26	300
260	Imil Deitz	450	Dec.22,1936	253	47	26	13	244	32	15	226
261	O.C. Brohmer	304	Dec. 1,1936	139	-	-	-	116	a/	28	-
262	Ed. Heidrich	335	Oct. 27,1936	120	35	8	1	122	a/	16	120
265	R.R. Coreth	290	Dec.16,1936	304	-	-	-	311	20	13	-
268	CA. Conring	175	0ct.22,1936	162	33	17	6	153	16	15	150
269	Jack Kretzmcir	168	do.	303	82	19	10	317	20	16	282
270	Alvin Praft	138	Oct.21,1936	253	60	19	12	256	20	16	227
271	Robert Raabe	140	Dec.30,1936	309	-	-	-	293	30	17	-
272	Bruno Raabe	-	do.	303	-	-	-	293	26	17	-
273	C. Conrad	145	Oct.20,1936	319	73	25	15	311	35	18	285
274	Chas. Soechting	Est. 210	Jan. 5,1936	$6 \quad 714$	-	-	-	354	213	78	-
275	Erich Roscnthal	230	Jexwentef	, $\times 10,380$	76	21	38	305	65	30	278

Partial analyses of water from wells in Comal County--Continued
Results are in parts per million.

$\begin{gathered} \text { Well } \\ \text { No. } \end{gathered}$	Owner $\left\|\begin{array}{c}\text { Depth } \\ \text { of } \\ \text { well } \\ \text { feet }\end{array}\right\|$		Total dissolved solids calculated)	Calcium (Ca)	$\begin{aligned} & \text { Magnes } \\ & \text { lum } \\ & \text { (Mg) } \\ & \hline \end{aligned}$	Sodium and Potassium (Na $f \mathrm{~K})$ (calculated)	$\left\lvert\, \begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}\right.$	Sulphate $\left(\mathrm{SO}_{4}\right)$	Chloride (C1)	Total hardness as CaCO_{3} (calculated)
277	Chris. Rosenthal 212	Jan. 5,1936	310	-	-	-	287	32	19	-
278	Nancy Gruene 160	Oct.20,1936	856	112	59	98	159	307	202	521
279	Wh. Posey 160	0ct.21,1936	697	79	55	94	311	197	119	424
280	Hilmer Doehne 250	Jan. 5,1937	564	-	-	-	268	162	73	
281	Travis H. Tate 152	Jan. 6,1937	573	99	37	58	305	130	99	398
282	Phoenix Life Ins.Co.145	50ct.21,1936	6 648	111	32	77	275	169	124	410
283	Emil Pruesser 330	Jan. 5,1936	981	24	29	289	201	326	214	178
284	Carl Kutscher Est. 50	Oct.21,1936	680	-	-	-	458	98	106	-
285	H. Mittendorf 32	do.	228	78	6	5	256	a)	13	218
287	Arthur Bartels 65	Oct.22,1936	352	-	-	-	256	a/	91	-
288	Ivan Wallhoefer Spring	Dec. 30,1936	260	94	7	-	232	24	21	264
289	Wm. D. Wiemers 80	do.	287	68	15	21	268	32	19	234
291	Oscar Priess 65	0ct.21,1936	286	-	-	-	268	23	17	-
292	Johanna Baetde 85	0ct.28,1936	273	-	-	-	305	27	15	-
293	H.IN. Landa -	Jan. 6, 1936	265	-	-	-	244	28	16	-
294	City of New Braunfels spring	Oct.27.1936	253	55	19	1.5	244	26	17	219
295	Mrs. Meta Penstorn 25	Dec.22,1936	285	-	-	-	268	28	16	-
296	Max Artgelt 345	Dec. 4,1936	203	\cdots	-	-	128	47	20	-
297	U.S. Gypsum Co. 125	do.	268	50	18	25	244	32	17	202
298	R.R. Coreth 275	Dec.16,1936	288	99	9	3	336	a)	12	286
299	Wm. Fey 89	Dec. 5,1936	169	-	-	-	183	a/	12	-
300	Roland Welsch 372	Dec. 4,1936	314	49	25	37	281	43	22	226
301	W.P.A. test well 10	Dec. 16, 1936	985	-	-	-	525	299	84	-
302	do. 11	Dec. 18,1936	451	-	-	-	476	35	7	-
303	do. 10	do.	634	-	-	-	226	220	88	\cdots
304	Carl Krueger 300	Dec. 16,1936	319	-	-	-	244	45	35	-
305	Joseph Friesenhahn 360	Dec. 18,1936	412	-	-	-	200	103	55	-
306	Oscar Jonas 360	do.	296	-	-	-	281	26	19	-
307	Adolph Mueller 160	do.	181	-	-	-	140	26	19	-
308	Vesley Hierholzer 117	Dec.19,1936	344	88	13	64	311	12	14	273
309	Ben Elley 125	do.	256	79	14	4	299	a/	12	254
311	Robert Hierholzer 130	do.	193	-	-	-	189	16	10	-
312	O. K. Klaerner 109	0ct.26,1936	260	-	-	-	293	a/	13	-

a/ Sulphate less than 10 parts per million.

Partial analyses of water from wells in Comal County--Continued
Results are in parts per million.

[^1]Partial analyses of water from wells in Comal County-Continued
Results are in parts per million.

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\|$Depth of well feet)	```Date of collection```	Total dissolved solids (calculated)	Calcium (Ca)	$\begin{aligned} & \text { Magnes- } \\ & \text { ium } \\ & (\mathrm{Mg}) \end{aligned}$	$\|$Sodium and Potassium (Na $\not \subset \mathrm{K})$(calculated)	$\begin{array}{\|l\|} \hline \text { Bicar }- \\ \text { bonate } \\ \left(\mathrm{HCO}_{3}\right) \end{array}$	$\int_{\left(\mathrm{SO}_{4}\right)}$	$\begin{gathered} \text { Chloride } \\ \text { (CI) } \end{gathered}$	$\left\{\begin{array}{l}\text { Total } \\ \text { hardness } \\ \text { as } C a C 0_{3} \\ \text { calculated }\end{array}\right.$
359	Albert Soefje	57	Oct.20,1936	386	-	\cdots	-	403	a/	36	- -
360	K. Kickeritz	36	Nov.18,1936	792	132	33	104	354	248	101	460
361	Enma Rose	32	do.	519	-	-	-	268	59	138	-
362	R. Fraft	40	do.	239	-	-	-	250	a/	22	-
363	August Timmerman	Sr. 50	do.	238	-	-	-	256	a/	18	-
364	E.W. Mueller	35	0ct. 10,1936	163	-	-	-	134	a/	34	-
365	B. Bartles	Spring	Nov.11,1936	266	93	9	-	293	a)	20	271
367	Mrs. H. Oelkers	40	0ct.10,1936	257	-	-	\cdots	250	a/	33	-
368	D. Werner	30	10.	291	106	6	-	244	35	24	288
370	W.P.A. test well	43	Nov.16,1936	9,410	781	500	1,780	232	2,905	3,330	4,004
371	do.	34	do.	4,802	-	-	-	110	I,759	1,420	-
372	Henry Voight	510	Nov. 26,1936	1,148	119	72	194	354	287	302	594
373	I. Jentsch	485	Dec. 4,1936	1,647	114	107	322	207	422	580	726
374	Gus Reinarz	500	do.	1,983	1.56	117	387	281	505	680	872
375	F.A. Burket	450	0ct.26,1936	1,957	166	110	380	348	500	630	868
376	W.P.A. test well	27	Nov.17,1936	1,367	-	-	-	268	291	170	-
377	Otto Timmermann	498	Jan. 6,1936	2,300	236	136	390	233	574	820	1,148
378	J.A. Wetz	542	do.	1,019	132	33	193	348	245	245	466

a/ Sulphate iess than 10 parts per million.

[^0]: a) Sulphate less than IO'parts por million.

[^1]: a/ Sulphate less than 10 parts per million.

