# TRANS-TEXAS WATER PROGRAM

West Central Study Area

Phase II

Summary Report of Water Supply Alternatives

> San Antonio River Authority

San Antonio Water System

Edwards Aquifer Authority

Guadalupe-Blanco River Authority

> Lower Colorado River Authority

Bexar Metropolitan Water District

> Nueces River Authority

Canyon Lake Water Supply Corporation

Bexar-Medina-Atascosa Counties WCID No. 1

Texas Natural Resource Conservation Commission

Texas Parks and Wildlife Department

Texas Water Development Board





# TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA

# PHASE 2

# SUMMARY REPORT OF WATER SUPPLY ALTERNATIVES

San Antonio River Authority San Antonio Water System Edwards Aquifer Authority Guadalupe-Blanco River Authority Lower Colorado River Authority Bexar Metropolitan Water District Nueces River Authority Canyon Lake Water Supply Corporation Bexar-Medina-Atascosa Counties WCID No. 1 Texas Natural Resource Conservation Commission Texas Parks and Wildlife Department Texas Water Development Board



Derhert M. Amblen 3/25/98

March 1998



# TRANS-TEXAS WATER PROGRAM WEST TEXAS CENTRAL STUDY AREA

# **TABLE OF CONTENTS**

#### Section

| 1.0 | INTI | INTRODUCTION |                                                               |  |  |  |  |
|-----|------|--------------|---------------------------------------------------------------|--|--|--|--|
|     | 1.1  | The St       | udy Area                                                      |  |  |  |  |
|     | 1.2  | Object       | ives                                                          |  |  |  |  |
|     |      |              |                                                               |  |  |  |  |
| 2.0 | SUM  | IMARY (      | <b>DF PROJECTED POPULATION, WATER DEMANDS, AND</b>            |  |  |  |  |
|     | EXIS | STING S      | U <b>PPLIES</b>                                               |  |  |  |  |
|     | 2.1  | Popula       | tion Projections                                              |  |  |  |  |
|     | 2.2  | Water        | Demand Projections                                            |  |  |  |  |
|     | 2.3  | Water        | Supply Projections                                            |  |  |  |  |
|     |      | 2.3.1        | Groundwater Supply Projections                                |  |  |  |  |
|     |      | 2.3.2        | Surface Water Supply Projections                              |  |  |  |  |
|     | 2.4  | Compa        | rison of Projected Water Demands with Projected Water         |  |  |  |  |
|     |      | Suppli       | es                                                            |  |  |  |  |
|     |      | 2.4.1        | Nueces River Basin Study Area Projected Water Demand and      |  |  |  |  |
|     |      |              | Water Supply Comparisons2-24                                  |  |  |  |  |
|     |      | 2.4.2        | San Antonio River Basin Study Area Projected Water Demand     |  |  |  |  |
|     |      |              | and Water                                                     |  |  |  |  |
|     |      |              | Supply Comparisons2-27                                        |  |  |  |  |
|     |      | 2.4.3        | Guadalupe River Basin and Adjacent Lavaca-Guadalupe Coastal   |  |  |  |  |
|     |      |              | Basin Study Area Projected Water Demand and Water Supply      |  |  |  |  |
|     |      |              | Comparisons2-30                                               |  |  |  |  |
|     |      | 2.4.4        | Lower Colorado River Basin and Adjacent Coastal Basins Area   |  |  |  |  |
|     |      |              | Projected Water Demand and Water Supply Comparisons2-33       |  |  |  |  |
|     |      | 2.4.5        | Projected Water Demand and Water supply Comparison for Study  |  |  |  |  |
|     |      |              | Area Counties of Colorado-Lavaca Coastal Basin, Lavaca Basin, |  |  |  |  |
|     |      |              | and San Antonio-Nueces Coastal Basin2-38                      |  |  |  |  |
| 3.0 | SUM  | IMARY (      | OF POTENTIAL WATER SUPPLY OPTIONS                             |  |  |  |  |
|     | 3.1  | Classif      | ication of Alternatives                                       |  |  |  |  |
|     | 3.2  | Water        | Delivery Locations                                            |  |  |  |  |
|     | 3.3  | Orderi       | ng of Alternatives                                            |  |  |  |  |
|     | 3.4  | Copm         | Darison of Unit Costs                                         |  |  |  |  |
|     | 3.5  | Summa        | ary of Water Quantity Provided by All Options                 |  |  |  |  |
|     | 3.6  | Prorat       | e Sharing of Delivered Water                                  |  |  |  |  |

#### 

| 5.0 | SUMMARY OF PUBLIC PARTICIPATION AND STAKEHOLDER 5-1 |                                                                   |        |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------------------|--------|--|--|
|     |                                                     |                                                                   |        |  |  |
| APP | ENDIX A West                                        | Central Trans-Texas Water Supply Options Data Sheets              | A-1    |  |  |
|     | L-10                                                | Demand Reduction                                                  |        |  |  |
|     | L-11                                                | Exchange Reclaimed Water for Edwards Irrigation Water             | A-2    |  |  |
|     | L-12                                                | Exchange Reclaimed Water for BMA Medina Lake Water                | A-3    |  |  |
|     | L-13A                                               | Recycling/Reuse Plans by SAWS                                     | A-4    |  |  |
|     | L-13B                                               | Reclaimed Water to Edwards Aquifer                                | A-5    |  |  |
|     | L-14                                                | Transfer of Reclaimed Water to Corpus Christi through Choke       |        |  |  |
|     |                                                     | Canyon Reservoir                                                  | A-6    |  |  |
|     | L-15                                                | Purchase or Lease of Edwards Irrigation Water for Municipal       |        |  |  |
|     |                                                     | and Industrial Use                                                | A-7    |  |  |
|     | L-16                                                | Demineralization of Edwards Bad Water                             | A-8    |  |  |
|     | L-17                                                | Natural Recharge- Type 1 Projects                                 | A-9    |  |  |
|     | L-18A                                               | Natural Recharge- Type 2 Projects                                 | A-10   |  |  |
|     | L-23A                                               | Edwards RecirculationSustainable Yield PumpageLake                |        |  |  |
|     |                                                     | Dunlap Diversion                                                  | A-11   |  |  |
|     | L-23B                                               | Edwards RecirculationSustainable Yield PumpageGonzales            |        |  |  |
|     |                                                     | Diversion                                                         | A-12   |  |  |
|     | L-24                                                | Flood Retarding Structures Outlet Modifications                   | A-13   |  |  |
|     | L-19                                                | Springflow Augmentation for Comal and San Marcos Springs          |        |  |  |
|     |                                                     | Source: "Springflow Augmentation of Comal Springs and San M       | larcos |  |  |
|     |                                                     | Springs, Texas: Phase 1 - Feasibility Study", March 1, 1994, Cen  | ter    |  |  |
|     |                                                     | for Research in Water Resources, University of Texas at Austin, I | Draft  |  |  |
|     |                                                     | Report                                                            | A-14   |  |  |
|     | N-10                                                | Existing Water Rights in Neuces River Basin                       | A-15   |  |  |
|     | S-10                                                | San Antonio River Unappropriated Streamflow at Elmendorf          | A-16   |  |  |
|     | S-11                                                | San Antonio River Unappropriated Streamflow at Falls City         | A-17   |  |  |
|     | S-12                                                | San Antonio River Unappropriated Streamflow at Goliad             | A-18   |  |  |
|     | S-13A                                               | Medina LakeDivert and Inject to Aquifer                           | A-19   |  |  |
|     | S-13B                                               | Medina LakeDivert to Edwards Aquifer Recharge Zone in             |        |  |  |
|     |                                                     | North Bexar County                                                | A-20   |  |  |
|     | S-13C                                               | Medina LakeDivert to Water Treatment Plant and then to            |        |  |  |
|     |                                                     | Municipal Distribution System                                     | A-21   |  |  |
|     | S-13D                                               | Medina LakeBuy Water Rights and Release to Applewhite             | A-22   |  |  |
|     | S-14A                                               | Applewhite ReservoirDivert and Inject to Aquifer                  | A-23   |  |  |
|     | S-14B                                               | Applewhite ReservoirDivert to Recharge Zone                       | A-24   |  |  |
|     | S-14C                                               | Applewhite ReservoirDivert to Water Treatment Plant and           |        |  |  |
|     |                                                     | Municipal System                                                  | A-25   |  |  |
|     | S-14D                                               | Applewhite ReservoirOperated in Conjunction with Medina           |        |  |  |
|     | 5112                                                | Lake with Diversion to Water Treatment Plant and Distribution     |        |  |  |
|     |                                                     | System                                                            | A-26   |  |  |
|     | S-15A                                               | Cibolo ReservoirDivert and Inject to Edwards Aquifer              |        |  |  |
|     | ~                                                   | · · · · · · · · · · · · · · · · · · ·                             |        |  |  |

| S-15B  | Cibolo ReservoirDivert to Recharge Structures in the Edwards     |
|--------|------------------------------------------------------------------|
|        | Aquifer Recharge Zone A-28                                       |
| S-15C  | Cibolo ReservoirDivert to Water Treatment Plant and then to      |
|        | Municipal Distribution System A-29                               |
| S-15Da | Cibolo Reservoir with Imported Water from the San Antonio        |
|        | River near Floresville                                           |
| S-15Db | Cibolo Reservoir with Imported Water from the San Antonio        |
|        | River near Floresville and the Guadalupe River at Cuero A-31     |
| S-15Dc | Cibolo Reservoir with Imported Water from the San Antonio        |
|        | River near Floresville, the Guadalupe River at Cuero and the     |
|        | Colorado River near Columbus                                     |
| S-15Ea | Cibolo Reservoir with Imported Water from the Guadalupe River    |
|        | at the Salt Water Barrier A-33                                   |
| S-15Eb | Cibolo Reservoir with Imported Water from the Guadalupe River at |
|        | the Salt Water Barrier and the Colorado River below Garwood A-34 |
| S-16A  | Goliad ReservoirDivert and Inject to Edwards Aquifer A-35        |
| S-16B  | Goliad ReservoirDivert to Edwards Aquifer Recharge Zone A-36     |
| S-16C  | Goliad ReservoirDivert to Water Treatment Plant and then to      |
|        | Municipal Distribution System A-37                               |
| S-17   | Upper Cibolo Creek ReservoirCost AnalysisFirm Yield A-38         |
| G-10   | Guadalupe River Unappropriated Streamflow near Gonzales A-39     |
| G-11   | Guadalupe River Unappropriated Streamflow near Cuero A-40        |
| G-12   | Guadalupe River Unappropriated Streamflow at Salt Water          |
|        | BarrierA-41                                                      |
| G-13A  | San Marcos River DiversionUnappropriated Flow below Blanco       |
|        | Confluence A-42                                                  |
| G-13B  | San Marcos River DiversionUnappropriated Flow below Blanco       |
|        | Confluence to Edwards Aquifer Recharge Zone A-43                 |
| G-14A  | Guadalupe River DiversionUnappropriated Flow at Lake Dunlap;     |
|        | Inject to Edwards Aquifer A-44                                   |
| G-14B  | Guadalupe River DiversionUnappropriated Flow at Lake Dunlap      |
|        | to Edwards Aquifer Recharge Zone A-45                            |
| G-15A  | Canyon Lake Water Released to Lake DunlapDivert and Inject       |
|        | to Aquifer A-46                                                  |
| G-15B  | Canyon Lake Water Released to Lake DunlapDivert to Aquifer       |
|        | Recharge Zone A-47                                               |
| G-15C  | Canyon Lake Water Released to Lake DunlapDivert to Aquifer       |
|        | Recharge Zone A-48                                               |
| G-15D  | Canyon Lake Water Released to Lake DunlapDivert to Water         |
|        | Treatment Plant and then to Municipal Distribution System        |
| G-15E  | Canyon Lake Water Released to Lake DunlapDivert to Water         |
|        | Treatment Plant and then to Municipal Distribution System        |
| G-16A  | Cuero ReservoirDivert and Inject to Aquifer A-51                 |
| G-16B  | Cuero ReservoirDivert to Edwards Aquifer Recharge Zone A-52      |
| G-16C1 | Cuero ReservoirDivert to Water Treatment Plant A-53              |

| G-17A       | Sandies ReservoirDivert and Inject to Aquifer                 |
|-------------|---------------------------------------------------------------|
| G-17B       | Sandies ReservoirDivert to Edwards Aquifer Recharge Zone A-55 |
| G-17C1      | Sandies ReservoirDivert to Water Treatment Plant and then to  |
|             | Municipal Distribution System A-56                            |
| G-18A       | McFaddin ReservoirBuy Water Rights in Calhoun County and      |
|             | Divert and Inject to Edwards Aquifer A-57                     |
| G-18B       | McFaddin ReservoirBuy Water Rights in Calhoun County and      |
|             | Divert to Aquifer Recharge Zone                               |
| G-18C       | McFaddin ReservoirBuy Water Rights in Calhoun County and      |
|             | Divert to Water Treatment Plant and then to SAWS Municipal    |
|             | Distribution System                                           |
| G-19        | Guadalupe River Dam 7Raw Water at the Reservoir A-60          |
| G-20        | Gonzales ReservoirRaw Water at the Reservoir A-61             |
| G-21        | Lockhart ReservoirRaw Water at the Reservoir A-62             |
| <b>G-22</b> | Dilworth ReservoirRaw Water at the Reservoir A-63             |
| G-23A       | Canyon Lake Area Water SupplyAreas Adjacent to Canyon         |
|             | Lake; 2020 Demands A-64                                       |
| G-23B       | Canyon Lake Area Water SupplySmithson Valley, Bulverde,       |
|             | and Oak Village North; 2020 Demand A-65                       |
| G-24        | Wimberley and Wood Creek Water Supply from Canyon Lake,       |
|             | Combined with Option G-23; 2020 Demands A-66                  |
| G-25        | Northeast Hays and Northwest Caldwell Counties Water Supply   |
|             | from near Lake Dunlap; 2020 Demands A-67                      |
| G-26        | Mid-Cities (IH-35 and Highway 78 areas) Water Supply from     |
|             | near Lake Dunlap; 2020 Demands A-68                           |
| G-27        | Guadalupe River Diversion Near Lake Dunlap to North WTP,      |
|             | with Transfer of Downstream Water Rights A-69                 |
| G-28        | Guadalupe River Diversion Near Gonzales to North WTP, with    |
|             | Transfer of Downstream Water Rights                           |
| L-20        | Transfer of SAWS Reclaimed Water to Coleto Creek Reservoir in |
|             | Exchange for CP&L Rights being Relocated Upstream for Use in  |
|             | Options G-27 & G-28                                           |
| G-30        | Guadalupe River Diversion Near Comfort to Recharge Zone via   |
|             | Medina LakeDrought Average                                    |
| G-32        | Diversion of Canyon Lake Flood Storage to Recharge Zone via   |
|             | Cibolo CreekLong Term Average                                 |
| G-33        | Guadalupe River Diversion Near Lake Dunlap to Recharge Zone,  |
|             | Using Enhanced Spring Flow, Water Rights Transfers, and       |
|             | Unappropriated Streamflow1947-56 Drought Average A-74         |
| G-34A       | Canyon Lake Water to Canyon Lake WSC, Bulverde & North        |
|             | Bexar CountyUniform Delivery                                  |
| G-34B       | Canyon Lake Water to Canyon Lake WSC, Bulverde, & North       |
|             | Bexar CountySummer Peak Delivery                              |
| G-34C       | Canyon Lake Water to Canyon Lake WSC, Bulverde, & North       |
|             | Bexar CountyUniform Delivery                                  |

| G-34D  | Canyon Lake Water to Canyon Lake WSC, Bulverde, & North      | . 70        |
|--------|--------------------------------------------------------------|-------------|
| C 26 A | Bexar CountySummer Peak Delivery                             | A-/8        |
| G-35A  | Guadalupe River Diversion at New Braunfels to Mid-Cities     |             |
|        | and Bexar County, with Expanded New Braunfels Water          |             |
|        | Treatment PlantUniform Delivery                              | A-79        |
| G-35B  | Guadalupe River Diversion at New Braunfels to Mid-Cities     |             |
|        | and Bexar County, with Expanded New Braunfels Water          |             |
|        | Treatment PlantSummer Peaking Delivery                       | A-80        |
| G-36A  | Guadalupe River Diversion at Lake Dunlap to CRWA/Mid-Cities/ |             |
|        | Bexar County, with Expanded CRWA Water Treatment Plant       |             |
|        | Uniform Delivery                                             | A-81        |
| G-36B  | Guadalupe River Diversion at Lake Dunlap to CRWA/Mid-Cities/ |             |
|        | Bexar County, with Expanded CRWA Water Treatment Plant       |             |
|        | Summer Peaking Delivery                                      | A-82        |
| G-36C  | Guadalupe River Diversion at Lake Dunlap to CRWA/Mid-Cities/ |             |
|        | Bexar County, with Expanded CRWA Water Treatment Plant       |             |
|        | Uniform Delivery                                             | A-83        |
| G-36D  | Guadalupe River Diversion at Lake Dunlap to CRWA/Mid-Cities/ |             |
|        | Bexar County, with Expanded CRWA Water Treatment Plant       |             |
|        | Summer Peaking Delivery                                      | A-84        |
| G-37A  | Guadalupe River Diversion at Lake Dunlap to Mid-Cities/CRWA/ |             |
|        | Bexar County, with Regional Water Treatment PlantUniform     |             |
|        | Delivery                                                     | A-85        |
| G-37B  | Guadalupe River Diversion at Lake Dunlap to Mid-Cities/CRWA/ |             |
| -      | Bexar County, with Regional Water Treatment PlantSummer      |             |
|        | Peaking Delivery                                             | A-86        |
| G-37C  | Guadalupe River Diversion at Lake Dunlap to Mid-Cities/CRWA/ |             |
|        | Bexar County, with Regional Water Treatment PlantUniform     |             |
|        | Delivery                                                     | A-87        |
| G-37D  | Guadalupe River Diversion at Lake Dunlap to Mid-Cities/CRWA/ |             |
|        | Bexar County, with Regional Water Treatment PlantSummer      |             |
|        | Peaking Delivery                                             | A-88        |
| G-38A  | Guadalupe River Diversion at Gonzales to Mid-Cities/CRWA/    |             |
| 0 5011 | Bexar County with Regional Water Treatment PlantUniform      |             |
|        | Delivery                                                     | A-89        |
| G-38B  | Guadalune River Diversion at Gonzales to Mid-Cities/CRWA/    | 11 07       |
| 0.200  | Beyer County with Regional Water Treatment Plant_Summer      |             |
|        | Peaking Delivery                                             | <u>م_00</u> |
| G 38C  | Guadaluna Diversion at Conzeles to Mid Cities/CRWA/          | A-90        |
| 0-380  | Bayer County, with Degional Water Treatment Plant, Uniform   |             |
|        | Delivery                                                     | A 01        |
| C 20D  | Guadaluna Diversion at Controles to Mid Citics/CDWA/         | M-71        |
| 0-200  | Boyar County with Degional Water Treatment Diant, Summer     |             |
|        | Dexai County, with Regional water Treatment Plant-Summer     | 1 02        |
|        | reaking Delivery                                             | A-92        |

| G-39A  | Guadalupe River Diversion at Lake Dunlap and Near Gonzales<br>to Mid-Cities/CRWA/Bexar County, with Regional Water |              |
|--------|--------------------------------------------------------------------------------------------------------------------|--------------|
|        | Treatment PlantUniform Delivery                                                                                    | A-93         |
| G-39B  | Guadalupe River Diversion at Lake Dunlap and Near Gonzales                                                         |              |
|        | to Mid-Cities/CRWA/Bexar County, with Regional Water                                                               |              |
|        | Treatment PlantSummer Peaking Delivery                                                                             | A-94         |
| G-39C  | Guadalupe River Diversion at Lake Dunlap and Near Gonzales                                                         |              |
|        | to Mid-Cities/CRWA/Bexar County, with Regional Water                                                               |              |
|        | Treatment PlantUniform Delivery                                                                                    | A-95         |
| G-39D  | Guadalupe River Diversion at Lake Dunlap and Near Gonzales                                                         |              |
|        | to Mid-Cities/CRWA/Bexar County, with Regional Water                                                               |              |
|        | Treatment PlantSummer Peaking Delivery                                                                             | A-96         |
| G-40   | Cloptin CrossingRaw Water at the Reservoir                                                                         | A-97         |
| C-13A  | Purchase Lake Travis Water and Run-of-River Water Rights/                                                          |              |
| 0 15/1 | Divert at Lake Austin to Water Treatment Plant and then to                                                         |              |
|        | Injection Wells                                                                                                    | <u>80-</u> ۸ |
| C-13B  | Purchase Lake Travis Water and Run-of-River Water Rights/                                                          | A-70         |
| C-IJD  | Diverted at Lake Austin/Divert to Edwards Aquifer Recharge                                                         |              |
|        | Zone                                                                                                               | A 00         |
| C 12C  | Durchase I also Travis Water and Dun of Diver Water Dights/                                                        | <b>A-</b> 77 |
| C-ISC  | Diverted at Lake Austin/Divert to Water Treatment Plant/                                                           |              |
|        | Municipal Distribution System                                                                                      | A 100        |
| C 12D  | Burshaga Laka Travia Water/Diverted at Laka Austin/Divert/                                                         | A-100        |
| C-15D  | Injost to Edwards A guifer                                                                                         | A 101        |
| C 12E  | Burshage Lake Trevia Water/Diverted at Lake Austin/Divert                                                          | A-101        |
| C-ISE  | to Educada Aquifar Decharge Zone                                                                                   | A 102        |
| C 12E  | to Edwards Aquiler Recharge Zone                                                                                   | A-102        |
| C-13F  | to Water Treatment Plant/Municipal System                                                                          | A 102        |
| 0 174  | Durchase Lake Travis Water and Dur of Diver Water Diskts/                                                          | A-103        |
| C-17A  | Purchase Lake Travis water and Run-of-River water Rights/                                                          |              |
|        | Divert at Columbus to water Treatment Plant and then to SAWS                                                       | A 104        |
| 0.170  | Municipal System                                                                                                   | A-104        |
| C-17B  | Purchase Lake Travis Water and Divert at Columbus to Water                                                         | . 107        |
| 0.10   | I reatment Plant and then to SAWS Municipal System                                                                 | A-105        |
| C-18   | Shaws Bend Reservoir/Divert to Water Treatment Plant/                                                              |              |
|        | Municipal System                                                                                                   | A-106        |
| B-10A  | Allens Creek ReservoirDivert Firm Yield and Inject to                                                              |              |
|        | Edwards Aquifer                                                                                                    | A-107        |
| B-10B  | Allens Creek ReservoirDivert Firm Yield to Edwards Aquifer                                                         |              |
|        | Recharge Zone                                                                                                      | A-108        |
| B-10C  | Allens Creek ReservoirDivert Firm Yield to Water Treatment                                                         |              |
|        | Plant and then to Municipal Distribution System                                                                    | A-109        |
| B-10D  | Allens Creek ReservoirDivert Firm Yield to Water Treatment                                                         |              |
|        | Plant and then to Municipal Distribution System                                                                    | A-110        |
| SB-10A | Toledo Bend ReservoirDivert and Inject to Edwards Aquifer                                                          | A-111        |

| SB-10B                               | Toledo Bend ReservoirDivert to Edwards Aquifer Recharge                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                      | Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-112                            |
| SB-10C                               | Toledo Bend ReservoirDivert to Water Treatment Plant and                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
|                                      | then to SAWS Municipal Distribution System                                                                                                                                                                                                                                                                                                                                                                                                                | A-113                            |
| SB-10D                               | Toledo Bend ReservoirDivert to Water Treatment Plant and                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
|                                      | then to SAWS Municipal Distribution System                                                                                                                                                                                                                                                                                                                                                                                                                | A-114                            |
| SBB-104                              | A Allens Creek and Toledo Bend ReservoirsDivert Firm Yield                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                      | and Inject to Edwards Aquifer                                                                                                                                                                                                                                                                                                                                                                                                                             | A-115                            |
| SBB-10H                              | 3 Allens Creek and Toledo Bend ReservoirsDivert Firm Yield                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                      | to Edwards Aquifer Recharge Zone                                                                                                                                                                                                                                                                                                                                                                                                                          | A-116                            |
| SBB-100                              | C Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|                                      | SAWS Water Treatment Plant and then to Municipal Distribution                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|                                      | System                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-117                            |
| 000                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| SBB-101                              | O Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| SBB-101                              | O Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution                                                                                                                                                                                                                                                                                                                            |                                  |
| SBB-101                              | O Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System                                                                                                                                                                                                                                                                                                                  | A-118                            |
| SBB-101<br>CZ-10A                    | O Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System                                                                                                                                                                                                                                                                                                                  | A-118<br>A-119                   |
| CZ-10A<br>CZ-10B                     | DAllens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System<br>Carrizo AquiferWithdraw and Inject to Edwards Aquifer<br>Carrizo AquiferWithdraw and Divert to Edwards Aquifer                                                                                                                                                                                                 | A-118<br>A-119                   |
| CZ-10A<br>CZ-10B                     | D Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System<br>Carrizo AquiferWithdraw and Inject to Edwards Aquifer<br>Carrizo AquiferWithdraw and Divert to Edwards Aquifer<br>Recharge Zone                                                                                                                                                                               | A-118<br>A-119<br>A-120          |
| CZ-10A<br>CZ-10B<br>CZ-10C           | D Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System<br>Carrizo AquiferWithdraw and Inject to Edwards Aquifer<br>Carrizo AquiferWithdraw and Divert to Edwards Aquifer<br>Recharge Zone<br>Carrizo AquiferWithdraw and Divert to Water Treatment Plant                                                                                                                | A-118<br>A-119<br>A-120          |
| CZ-10A<br>CZ-10B<br>CZ-10C           | D Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System<br>Carrizo AquiferWithdraw and Inject to Edwards Aquifer<br>Carrizo AquiferWithdraw and Divert to Edwards Aquifer<br>Recharge Zone<br>Carrizo AquiferWithdraw and Divert to Water Treatment Plant<br>and then to SAWS Municipal Distribution System                                                              | A-118<br>A-119<br>A-120<br>A-121 |
| CZ-10A<br>CZ-10B<br>CZ-10C<br>CZ-10D | D Allens Creek and Toledo Bend ReservoirsDivert Firm Yield to<br>SAWS Water Treatment Plant and then to Municipal Distribution<br>System<br>Carrizo AquiferWithdraw and Inject to Edwards Aquifer<br>Carrizo AquiferWithdraw and Divert to Edwards Aquifer<br>Recharge Zone<br>Carrizo AquiferWithdraw and Divert to Water Treatment Plant<br>and then to SAWS Municipal Distribution System<br>Carrizo AquiferWithdraw & Divert to Water Treatment Plant | A-118<br>A-119<br>A-120<br>A-121 |

# LIST OF TABLES

# Table

# No.

# Page

| 1-1  | List of Principal Reports 1-3                                                   |
|------|---------------------------------------------------------------------------------|
| 2-1  | Population Projections-32 County West Central Trans-Texas Study Area            |
| 2-2  | Population Projections-Edwards Aquifer Area                                     |
| 2-3  | Population Projections for River Basins-32 County West Central Trans-Texas      |
|      | Study Area                                                                      |
| 2-4  | Total Water Demand Projections-32 County West Central Trans-Texas Study Area2-9 |
| 2-5  | Total Water Demand Projections — Edwards Aquifer Area                           |
| 2-6  | Total Water Demand Projections for River Basins-32 County West Central Trans-   |
|      | Texas Study Area                                                                |
| 2-7  | 1990 Water Use and Projected Annual Groundwater Supplies-32 County West         |
|      | Central Trans-Texas Study Area                                                  |
| 2-8  | Reservoirs and Surface Water Supplies-West Central Study Area                   |
| 2-9  | Summary of run-of-River Water Rights-West Central Study Area                    |
| 2-10 | Comparison of Water Demand and Water Supply Projections-Nueces River            |
|      | Basin Area                                                                      |
| 2-11 | Comparison of Water Demand and Water Supply Projections-San Antonio River       |
|      | Basin Area                                                                      |
| 2-12 | Comparison of Water Demand and Water Supply Projections-Guadalupe River         |
|      | Basin and Adjacent Lavaca-Guadalupe Coastal Basin Area                          |
| 2-13 | Comparison of Water Demand and Water Supply Projections-Lower Colorado          |
|      | River and Adjacent Coastal Basins Area                                          |
| 2-14 | Comparison of Water Demand and Water Supply Projections-Adjacent River and      |
|      | Coastal Basin Areas                                                             |
| 3-1  | Water Supply Options — 32 County West Central Trans-Texas Study Area            |
| 3-2  | Comparison of Average Unit Costs per Water Supply Options                       |
| 3-3  | Summary of Quantity of Water Provided by Alternatives                           |
|      |                                                                                 |

.

# LIST OF FIGURES

# Figure

# No.

# Page

| 1-1 | Study Area                                                                     | . 1-2 |
|-----|--------------------------------------------------------------------------------|-------|
| 2-1 | Population Projections 32 County West Central Study and Edwards Aquifer Areas  | . 2-4 |
| 2-2 | Population Projections River Basin Study Areas                                 | . 2-7 |
| 2-3 | Total Water Demand Projections 32 County West Central and Edwards Aquifer      |       |
|     | Areas                                                                          | 2-10  |
| 2-4 | Total Water Demand Projections River Basin Study Areas                         | 2-13  |
| 2-5 | Nueces Basin Projections Water Demand/ Water Supply                            | 2-26  |
| 2-6 | San Antonio Basin Projections Water Demand/ Water Supply                       | 2-29  |
| 2-7 | Guadalupe and Adjacent Coastal Basins Projections Water Demand/ Water Supply 2 | 2-32  |
| 2-8 | Lower Colorado and Adjacent Coastal Basins Projections Water Demand/           |       |
|     | Water Supply                                                                   | 2-37  |
| 3-1 | Water Delivery Locations                                                       | 3-10  |
| 3-2 | Water Supply Alternatives Ordered by Unit Cost                                 | 3-11  |
| 3-3 | Water Supply Alternatives Ordered by Quantity                                  | 3-13  |
| 3-4 | Water Supply Alternatives, Including Conservation and Lease, Reuse, Natural    |       |
|     | Recharge, and Imported Recharge Options; Ordered by Unit Cost                  | 8-15  |
| 3-5 | Water Supply Alternatives: Treatment and Distribution Options; Ordered by      |       |
|     | Unit Cost                                                                      | 8-17  |
| 3-6 | Comparison of Average Unit Costs of Water Supply Options                       | 5-20  |
| 3-7 | Comparison of Range of Unit Costs of Water Supply Options                      | 5-21  |

(This page intentionally left blank.)

#### **1.0 INTRODUCTION**

A study of the water supply needs of the 32-county West Central Trans-Texas study area (Figure 1-1) was begun in September of 1993.<sup>1</sup> The purpose of this report is to summarize information from the several principal reports that were prepared in the West Central planning effort as indicated in Table 1-1. This report will be useful in present water planning and management for the West Central area, and will serve as a foundation for the new regional planning for the area, as authorized in Senate Bill 1 in 1997.<sup>2</sup>

#### 1.1 The Study Area

The West Central Trans-Texas study area includes the following 32 counties:

| 1. | Atascosa | 9. Colorado   | 17. Hays      | 25. | Refugio  |
|----|----------|---------------|---------------|-----|----------|
| 2. | Bandera  | 10. Comal     | 18. Karnes    | 26. | San Saba |
| 3. | Bastrop  | 11. DeWitt    | 19. Kendall   | 27. | Travis   |
| 4. | Bexar    | 12. Fayette   | 20. Kerr      | 28. | Uvalde   |
| 5. | Blanco   | 13. Frio      | 21. Lee       | 29. | Victoria |
| 6. | Burnet   | 14. Goliad    | 22. Llano     | 30. | Wharton  |
| 7. | Caldwell | 15. Gonzales  | 23. Matagorda | 31. | Wilson   |
| 8. | Calhoun  | 16. Guadalupe | 24. Medina    | 32. | Zavala   |

The 32-county study area, along with the South Central and Southeast study areas is shown in Figure 1-1. Population of the area was 2.5 million in 1990 and is projected to be 6.4 million in 2050.

The Edwards Aquifer area is the area specified in Senate Bill (SB) 1477 and includes all of Bexar, Medina, and Uvalde counties, and parts of Atascosa, Comal, Caldwell, Hays, and Guadalupe counties (Figure 1-1).<sup>3</sup> This area depends upon the Edwards Aquifer for nearly 80 percent of its present water supply. The population of the Edwards Aquifer area (Figure 1-1) was 1.36 million in 1990 and is projected to be 3.60 million in 2050. In addition to supplying the people and economy of San Antonio and neighboring areas, the Edwards Aquifer is home to several endangered or threatened species and is the source of water for Comal and San Marcos Springs. The aquifer cannot meet the growing needs for water and, at the same time,

<sup>&</sup>lt;sup>1</sup> "Water for Texas--Trans-Texas Water Program Description," Texas Water Development Board, Austin, Texas, June, 1992.

<sup>&</sup>lt;sup>2</sup> Senate Bill 1, Texas Legislature, 1997 Regular Session.

<sup>&</sup>lt;sup>3</sup> Senate Bill 1477, Texas Legislature, 1993 Regular Session.



| Table 1-1<br>List of Principal Reports — West Central Trans-Texas Study<br>Trans-Texas Water Program. |                                                                                                                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Phase 1                                                                                               |                                                                                                                |  |  |  |  |  |
| May -94                                                                                               | Phase 1 Interim Report; Volumes 1 and 2.                                                                       |  |  |  |  |  |
| Nov94                                                                                                 | Phase 1 Interim Report; Volume 3.                                                                              |  |  |  |  |  |
| Jan-96                                                                                                | Phase 1 Interim Report; Volume 4.                                                                              |  |  |  |  |  |
| Aug96                                                                                                 | Phase 1 Interim Report; Volume 5.                                                                              |  |  |  |  |  |
|                                                                                                       | Phase 2                                                                                                        |  |  |  |  |  |
| Oct96                                                                                                 | Phase 2 Letter of Intent Analysis Report.                                                                      |  |  |  |  |  |
| Mar-98                                                                                                | Phase 2 Population Water Demand, and Water Supply Projections.                                                 |  |  |  |  |  |
| Mar-98                                                                                                | Phase 2 Edwards Aquifer Recharge Analysis.                                                                     |  |  |  |  |  |
| Mar-98                                                                                                | Iar-98 Phase 2 Guadalupe-San Antonio River Basin Model Modifications and Enhancements.                         |  |  |  |  |  |
| Mar-98                                                                                                | Iar-98         Phase 2 Conceptual Evaluation of Springflow Recirculation.                                      |  |  |  |  |  |
| Mar-98                                                                                                | ar-98 Phase 2 Modification of Principal Spillways at Existing Flood Control Projects for Recharge Enhancement. |  |  |  |  |  |
| Mar-98                                                                                                | Phase 2 Updated Evaluation of Potential Reservoirs in the Guadalupe River Basin.                               |  |  |  |  |  |
| Mar-98                                                                                                | Phase 2 Guadalupe-San Antonio River Basin Environmental Criteria Refinement.                                   |  |  |  |  |  |
| Mar98                                                                                                 | Phase 2 Summary Report of Water Supply Alternatives.                                                           |  |  |  |  |  |
|                                                                                                       | Public Participation and Stakeholders Involvement Reports                                                      |  |  |  |  |  |
| Jan -96                                                                                               | Technical Memorandum.                                                                                          |  |  |  |  |  |
| Sept96                                                                                                | Water Issues Survey Report.                                                                                    |  |  |  |  |  |
| Feb97                                                                                                 | Issues Document.                                                                                               |  |  |  |  |  |
| Feb97                                                                                                 | Public Participation Plan.                                                                                     |  |  |  |  |  |
| Mar-98                                                                                                | Integrated Resource Planning Committee Final Criteria Report.                                                  |  |  |  |  |  |
| Mar-98                                                                                                | Aar-98 Public Participation/Stakeholder Involvement Program Final Summary Report.                              |  |  |  |  |  |

supply adequate spring flows for endangered species, downstream needs of the environment, and downstream water rights holders.

Areas outside of the Edwards Aquifer area within the Nueces, San Antonio, Guadalupe, and intervening Coastal Basins, and in the Lower Colorado and adjacent Coastal Basins to the east are also growing and in need of water planning. These areas depend upon the Carrizo and other aquifers, and upon surface water for their supplies.

## 1.2 Objectives

The objectives of this West Central Trans-Texas Study are to present summarized information from the previous Trans-Texas reports as follows:

- A summary of projected water demands and comparisons with existing water supplies for the West Central Study Area;
- Project data and information sheets describing each water supply alternative studied in the Trans-Texas program;
- A comparison of water supply alternatives studied in the Trans-Texas program; and
- Identification and discussion of other possible water supply alternatives.

The population and water demand projections are based upon the following conditions, assumptions, and data:

assumptions, and data.

- A. The TWDB 1996 consensus water planning projections, as follows:
  - 1. Most likely population;
  - 2. Most likely municipal water demand for below normal precipitation and advanced conservation;
  - 3. Bas oil prices, with conservation for manufacturing;
  - 4. Series 3 irrigation (aggressive adoption of irrigation technology and a reduction in Federal Farm Programs by one-half);
  - 5. Steam-Electric power high series;
  - 6. Mining TWDB only series;
  - 7. Livestock TWDB only series
- B. The quantity of water supply from the Edwards Aquifer is based upon provisions of SB 1477, with pumpage set at 450,000 acft/yr for the period 1997 through 2007, and 400,000 acft/yr beginning in 2008, and the assumption that each entity which obtained water from the Edwards Aquifer in 1990 will have its 1990 pro rata share of Edwards pumpage in future years.
- C. Texas Water Development Board (TWDB) groundwater information for counties of the study area.
- D. The quantity of surface water supply from reservoirs of the study area is the firm yield of each respective reservoir, as determined by previous studies, and in

accordance with water rights permits issued by the Texas Natural Resource Conservation Commission (TNRCC).

E. The quantity of dependable surface water supplies from run-of-river water rights permits was calculated for study area counties of the Nueces and Guadalupe-San Antonio River Basins using the existing Nueces and Guadalupe-San Antonio River Basin models developed by HDR Engineering, Inc.<sup>4</sup> These computations were based upon Edwards Aquifer pumpage of 400,000 acft/yr. Dependable supplies of surface water from run-of-river permits for counties of the Lower Colorado River Basin were tabulated from computer model results that were prepared by the Lower Colorado River Authority for use in the North Central Trans-Texas (NCTT) study.<sup>5</sup>

<sup>&</sup>lt;sup>4</sup> HDR Engineering, Inc. et al., "Regional Water Supply Planning Study-Phase I, Nueces River Basin," Nueces River Authority et al., Uvalde, Texas May 1991, and HDR Engineering, Inc. et al., "Guadalupe-San Antonio River Basin Recharge Enhancement Study," Edwards Underground Water District, San Antonio, Texas, September, 1993. <sup>5</sup> Colorado River Base Case Availability," Unpublished tables, Lower Colorado River Authority, Austin, Texas, June 1997.

(This page intentionally left blank.)

.

# 2.0 SUMMARY OF PROJECTED POPULATION, WATER DEMANDS, AND EXISTING SUPPLIES

The Texas Water Development Board's (TWDB) 1996 consensus population and water demand projections for the 32-county West Central study area are summarized below.<sup>1</sup> Projections are shown in 10-year intervals beginning with 1990 and ending in 2050. Population is shown in numbers of people; water demand is shown in acft per year (one acre-foot is 325,851 gallons).

#### 2.1 **Population Projections**

TWDB 1996 consensus projections are shown in tabular and graphic form for: (1) the 32 county study area, (2) the Edwards Aquifer Area, and (3) the Nueces, San Antonio, Guadalupe, and Lower Colorado River Basin areas.

The population of the 32-county study area was reported at 2.53 million in 1990 (Table 2-1) and is projected to be 3.15 million in 2000, 4.50 million in 2020, and 6.44 million in 2050 (Table 2-1 and Figure 2-1). The TWDB projections of the State of Texas population is from 16,986,510 in 1990 to 36,587,631 in 2050. The 32 county study area population is projected to increase from 14.89 percent of the State total in 1990 to 17.6 percent of the State total in 2050.

The Edwards Aquifer area includes all of Bexar, Medina, and Uvalde Counties, and parts of Atascosa, Comal, Caldwell, Hays, and Guadalupe Counties (Figure 1-1). The population of the Edwards Aquifer area was 1,360,937 in 1990 and is projected to be 3,602,473 in 2050 (Table 2-2 and Figure 2-1).

The population projections for the counties of the West Central Study Area that are located within the Nueces, San Antonio, Guadalupe, and Lower Colorado Basins, respectively were summed and are shown in Table 2-3 and Figure 2-2. The population of the counties of the Nueces Basin that are included in the 32 county study area (Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes counties) was 105,607 in 1990, and is projected

<sup>&</sup>lt;sup>1</sup> For city and county projections for river basin areas, see, "West Central Study Area Phase II, Population, Water Demand and Water Supply Projections," San Antonio River Authority, et al.; HDR Engineering, Inc., Austin, Texas, January, 1998.

at 190,834 in 2050. The population of the 7-county area (parts of Dimmitt, Edwards, Kinney, LaSalle, Maverick, Real, and Webb Counties) of the Nueces Basin that are included here for information purposes, was 19,880 in 1990, and is projected at 39,779 (Table 2-3).

In the case of the San Antonio River Basin, the population was 1,270,884 in 1990, and is projected at 3,331,113 for 2050 (Table 2-3 and Figure 2-2). The population of that part of Goliad County that is located in the adjacent San Antonio-Nueces Coastal Basin was 450 in 1990, and is projected at 587 in 2050 (Table 2-3 and Figure 2-2).

In 1990, the population of the Guadalupe Basin was 302,409 and is projected at 824,550 in 2050 (Table 2-3). The population for the study areas adjacent to the Guadalupe Basin was 48,076 in 1990 and is projected to be 76,605 in 2050 (Table 2-3 and Figure 2-2).

The population of the Lower Colorado River Basin was 706,715 in 1990 and is projected to increase to 1,849,297 in 2050 (Table 2-3). The population of study areas adjacent to the Lower Colorado Basin are also shown in Table 2-3. Those parts of counties located in coastal basins adjacent to the Lower Colorado Basin (i.e., Colorado, Wharton, and Matagorda) had a 1990 population of 73,250. Projected 2050 population of these counties is 124,451 (Table 2-3 and Figure 2-2).

|                                             | Den la din Deni                               | 22.0                         | Table 2-1                           |                                  |                       |           |           |
|---------------------------------------------|-----------------------------------------------|------------------------------|-------------------------------------|----------------------------------|-----------------------|-----------|-----------|
|                                             | Population Project                            | tions32 Co                   | unty West Cen                       | tral Trans-T                     | exas Study Ai         | rea       |           |
|                                             | · · · · · · · · · · · · · · · · · · ·         | Trans-1                      | exas Water Pr                       | ogram                            |                       |           |           |
|                                             |                                               |                              |                                     | Projec                           | tions                 |           |           |
| County                                      | 1990                                          | 2000                         | 2010                                | 2020                             | 2030                  | 2040      | 2050      |
|                                             |                                               |                              |                                     |                                  |                       |           |           |
| Atascosa                                    | 30,533                                        | 35.893                       | 41.807                              | 47,587                           | 52.911                | 57.037    | 59,560    |
| Bandera                                     | 10.562                                        | 14.947                       | 17.801                              | 21.754                           | 24.413                | 27.397    | 30.745    |
| Bastrop                                     | 38,263                                        | 47,917                       | 59,430                              | 71,679                           | 83,583                | 90,915    | 98.331    |
| Bexar                                       | 1,185,394                                     | 1,474,512                    | 1,776,965                           | 2,130,820                        | 2,491,291             | 2.817.680 | 3.081.381 |
| Blanco                                      | 5,972                                         | 7,468                        | 8,998                               | 10,667                           | 11,910                | 12,549    | 12,418    |
| Burnet                                      | 22,677                                        | 28,055                       | 34,010                              | 40,536                           | 45,936                | 47,834    | 49,810    |
| Caldwell                                    | 26,392                                        | 32,158                       | 37,872                              | 43,279                           | 47,086                | 47,220    | 47,355    |
| Calhoun                                     | 19,053                                        | 21,893                       | 23,809                              | 25,968                           | 28,180                | 30,504    | 33,255    |
| Colorado                                    | 18,383                                        | 20,028                       | 21,054                              | 22,221                           | 23,204                | 24,014    | 24,630    |
| Comal                                       | 51,832                                        | 79,378                       | 106,558                             | 144,869                          | 187,464               | 226,133   | 267,843   |
| DeWitt                                      | 18,840                                        | 20,217                       | 21,180                              | 22,340                           | 23,550                | 24,773    | 26,030    |
| Fayette                                     | 20,095                                        | 22,611                       | 25,213                              | 28,714                           | 32,190                | 35,847    | 40,437    |
| Frio                                        | 13,472                                        | 15,421                       | 17,356                              | 18,993                           | 19,918                | 20,733    | 21,343    |
| Goliad                                      | 5,980                                         | 6,408                        | 6,784                               | 7,089                            | 7,161                 | 7,368     | 7,892     |
| Gonzales                                    | 17,205                                        | 17,817                       | 18,647                              | 19,305                           | 19,405                | 19,843    | 20,292    |
| Guadalupe                                   | 64,873                                        | 86,668                       | 111,437                             | 140,370                          | 176,873               | 203,201   | 235,139   |
| Hays                                        | 65,614                                        | 88,614                       | 117,201                             | 145,619                          | 180,349               | 219,637   | 250,091   |
| Karnes                                      | 12,455                                        | 14,578                       | 14,835                              | 16,322                           | 17,460                | 18,457    | 19,353    |
| Kendall                                     | 14,589                                        | 17,129                       | 19,752                              | 22,435                           | 25,007                | 27,906    | 31,140    |
| Кегт                                        | 36,304                                        | 44,162                       | 51,085                              | 59,209                           | 66,982                | 71,611    | 73,461    |
| Lee                                         | 12,854                                        | 14,133                       | 15,586                              | 16,984                           | 18,144                | 19,408    | 20,812    |
| Llano                                       | 11,631                                        | 12,887                       | 13,372                              | 14,538                           | 14,800                | 15,361    | 16,745    |
| Matagorda                                   | 36,928                                        | 41,018                       | 45,805                              | 51,008                           | 56,834                | 63,211    | 70,902    |
| Medina                                      | 27,312                                        | 33,349                       | 38,069                              | 42,299                           | 44,945                | 46,969    | 49,556    |
| Refugio                                     | 7,976                                         | 8,421                        | 8,844                               | 9,110                            | 9,081                 | 9,020     | 8,896     |
| San Saba                                    | 5,401                                         | 5,497                        | 5,470                               | 5,419                            | 5,247                 | 5,144     | 4,989     |
| Travis                                      | 576,407                                       | 744,080                      | 892,047                             | 1,096,329                        | 1,288,441             | 1,413,420 | 1,550,521 |
| Uvalde                                      | 23,340                                        | 26,466                       | 29,756                              | 32,788                           | 35,595                | 38,087    | 40,565    |
| Victoria                                    | 74,361                                        | 81,909                       | 89,539                              | 96,977                           | 104,205               | 111,710   | 120,836   |
| Wharton                                     | 39,955                                        | 42,673                       | 46,218                              | 49,845                           | 53,608                | 57,491    | 61,759    |
| Wilson                                      | 22,650                                        | 26,578                       | 30,757                              | 34,597                           | 36,953                | 39,332    | 42,972    |
| Zavala                                      | 12,162                                        | 13,619                       | 14,584                              | 15,117                           | 15,789                | 16,770    | 18,203    |
| Total                                       | 2,529,465                                     | 3,146,504                    | 3,761,841                           | 4,504,787                        | 5,248,515             | 5,866,582 | 6,437,262 |
| Dimmitt*                                    | 10.385                                        | 12.023                       | 13.874                              | 15.738                           | 17.844                | 20.049    | 22,478    |
| Edwards*                                    | 704                                           | 820                          | 914                                 | 978                              | 1040                  | 1082      | 1123      |
| Kinnev*                                     | 489                                           | 552                          | 611                                 | 651                              | 582                   | 502       | 433       |
| LaSalle*                                    | 5254                                          | 6092                         | 6748                                | 7285                             | 7562                  | 7854      | 8034      |
| Maverick*                                   | 341                                           | 422                          | 489                                 | 542                              | 583                   | 642       | 726       |
| Real*                                       | 2297                                          | 2413                         | 2475                                | 2532                             | 2584                  | 2637      | 2690      |
| Webb*                                       | 410                                           | 1337                         | 1832                                | 2399                             | 3135                  | 3311      | 4295      |
| Total*                                      | 19,880                                        | 23,659                       | 26,943                              | 30,125                           | 33,330                | 36,077    | 39,779    |
| Source: Texas Water<br>*Not in West Central | Development Board;  <br>Trans-Texas study are | 996 Consens<br>a; includes o | sus Water Plan,<br>only part of cou | Most Likely (<br>inty located in | Case.<br>Nueces Basin | •         |           |
| Note: Texas population                      | on in 1990 was 16,986                         | ,510. TWDE                   | 3 projections of                    | th rate                          | tion in year 20       | XUU IS    |           |
| 20,220,182, and in 20                       | 1.23                                          | o / 70 compou                | nu annual grow                      | ui iate).                        |                       |           |           |
|                                             |                                               |                              |                                     |                                  | . <u></u>             |           |           |
|                                             |                                               |                              |                                     | i                                |                       |           | 0000      |

.



| Table 2-2       Population ProjectionsEdwards Aquifer Area |                                       |           |                                       |           |           |           |           |  |                   |
|------------------------------------------------------------|---------------------------------------|-----------|---------------------------------------|-----------|-----------|-----------|-----------|--|-------------------|
|                                                            |                                       |           |                                       |           |           |           |           |  | Total Projections |
| County                                                     | in 1990                               | 2000      | 2010                                  | 2020      | 2030      | 2040      | 2050      |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
| Atascosa (part)                                            | 1,567                                 | 2,312     | 2,718                                 | 3,113     | 3,477     | 3,762     | 4,070     |  |                   |
| Bexar (all)                                                | 1,182,643                             | 1,470,422 | 1,771,697                             | 2,124,142 | 2,483,130 | 2,808,166 | 3,072,461 |  |                   |
| Medina (all)                                               | 27,312                                | 33,349    | 38,069                                | 42,299    | 44,945    | 46,969    | 49,556    |  |                   |
| Uvalde (all)                                               | 23,340                                | 26,466    | 29,756                                | 32,788    | 35,595    | 38,087    | 40,565    |  |                   |
| Comal (part)                                               | 30,981                                | 43,647    | 57,488                                | 75,667    | 96,839    | 112,766   | 130,945   |  |                   |
| Hays (part)                                                | 36,095                                | 44,358    | 54,522                                | 65,185    | 78,887    | 95,155    | 111,871   |  |                   |
| Guadalupe (part)                                           | 39,217                                | 53,509    | 71,996                                | 91,375    | 116,003   | 135,441   | 159,347   |  |                   |
| Caldwell (part)                                            | 19,782                                | 23,702    | 27,569                                | 31,193    | 33,732    | 33,690    | 33,658    |  |                   |
| Total                                                      | 1,360,937                             | 1,697,765 | 2,053,815                             | 2,465,762 | 2,892,608 | 3,274,036 | 3,602,473 |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           | <br>i     | <u>_</u>  |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           | <u> </u>  |  |                   |
|                                                            | · · · · · · · · · · · · · · · · · · · |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       | <u> </u>  |           |           |           |  |                   |
|                                                            |                                       |           | -                                     |           | ·····     |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           | ·····     |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            | · ·· ··                               |           | · · · · · · · · · · · · · · · · · · · |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           | <u>-</u>                              |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
| · · · · · · · · · · · · · · · · · · ·                      |                                       |           |                                       | · · · · · |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           |           |           |  |                   |
|                                                            |                                       |           |                                       |           |           | i         | 0000      |  |                   |
|                                                            |                                       |           | ĺ                                     | i         |           |           | ~~~~      |  |                   |

|                                        |                    |                     | Table 2-3      | <u> </u>         |                    |            |           |  |  |
|----------------------------------------|--------------------|---------------------|----------------|------------------|--------------------|------------|-----------|--|--|
| Population                             | Projections for    | <b>River Basins</b> | 32-County      | West Central     | <b>Trans-Texas</b> | Study Area |           |  |  |
|                                        |                    | Trans-Te            | xas Water P    | rogram           |                    |            |           |  |  |
|                                        |                    | Projections         |                |                  |                    |            |           |  |  |
| River Basin                            | 1990               | 2000                | 2010           | 2020             | 2030               | 2040       | 2050      |  |  |
| NUECES                                 |                    |                     |                |                  |                    |            |           |  |  |
| Study Area In-Basin <sup>1</sup>       | 105,607            | 123,877             | 141,003        | 156,991          | 170,405            | 181,967    | 190,834   |  |  |
| 7-County Adj. Area <sup>2</sup>        | 19,880             | 23,659              | 26,943         | 30,125           | 33,330             | 36,077     | 39,779    |  |  |
| SAN ANTONIO                            |                    |                     |                | ·                |                    |            |           |  |  |
| Total In-Basin                         | 1,270,884          | 1,585,794           | 1,910,695      | 2,291,649        | 2,678,667          | 3,032,625  | 3,331,113 |  |  |
| Adj. Area <sup>3</sup>                 | 450                | 476                 | 505            | 527              | 532                | 547        | 587       |  |  |
| Study Area Subtotal                    | 1,271,334          | 1,586,270           | 1,911,200      | 2,292,176        | 2,679,199          | 3,033,172  | 3,331,700 |  |  |
| GUADALUPE                              |                    |                     | :              |                  |                    |            |           |  |  |
| Total In-Basin                         | 302,409            | 376,518             | 456,574        | 549,599          | 653,361            | 739,799    | 824,550   |  |  |
| Adj. Area <sup>4</sup>                 | 48,076             | 53,562              | 57,980         | 62,510           | 66,814             | 71,207     | 76,605    |  |  |
| Study Area Subtotal                    | 350,485            | 430,080             | 514,554        | 612,109          | 720,175            | 811,006    | 901,155   |  |  |
| LOWER COLORADO                         |                    |                     |                |                  |                    |            |           |  |  |
| Total In-Basin                         | 706,715            | 901,517             | 1,079,653      | 1,316,511        | 1,539,747          | 1,689,580  | 1,849,297 |  |  |
| Adj. Coastal Area <sup>3</sup>         | 73,250             | 79,802              | 87,426         | 95,563           | 104,333            | 113,681    | 124,451   |  |  |
| Area Subtotal                          | 779,965            | 981,319             | 1,167,079      | 1,412,074        | 1,644,080          | 1,803,261  | 1,973,748 |  |  |
| Adj. Inland Area°                      | 22,074             | 24,958              | 28,005         | 31,437           | 34,656             | 37,176     | 39,825    |  |  |
| Study Area Subtotal                    | 802,039            | 1,006,277           | 1,195,084      | 1,443,511        | 1,678,736          | 1,840,437  | 2,013,573 |  |  |
| Study Area Subtatal <sup>7</sup>       | 2.507.201          | 2 121 546           | 2 722 026      | 4 472 250        | 5 212 850          | 5 920 406  | 6 207 427 |  |  |
| Study Area Subiolal                    | 2,507,391          | 3,121,340           | 3,753,030      | 4,475,550        | 5 248 515          | 5,866,582  | 6 137 262 |  |  |
| Study Alea Total                       | 2,529,405          | 5,140,504           | 5,701,041      | 4,504,787        | 5,240,515          | 5,000,562  | 0,457,202 |  |  |
| Source: Texas Water Dev                | velopment Board    | : 1996 Conser       | nsus Water Pl  | an. Most Like    | v Case.            |            |           |  |  |
| <sup>1</sup> Counties of Nueces Basi   | in included in stu | dv area ( Uva       | lde Medina     | Zavala, Frio, A  | tascosa and r      | arts       |           |  |  |
| of Bexar Wilson and K                  | arnes Counties)    |                     |                | ,,               | P                  |            |           |  |  |
| <sup>2</sup> Parts of Dimmitt Edwa     | rds Kinney LaS     | alle Maveric        | k. Real. and V | Vebb Counties    | of the Nuece       | s Basin    |           |  |  |
| but not included in the                | West Central Tra   | ins-Texas stud      | ly area.       |                  |                    | <u> </u>   |           |  |  |
| <sup>3</sup> Part of Goliad County I   | ocated in adjacen  | it San Antonio      | o -Nueces Co   | astal Basin.     |                    |            |           |  |  |
| <sup>4</sup> Part of Victoria County   | located in adjace  | ent Lavaca-Gi       | uadalupe Coa   | stal Basin, plus | s all of Refugi    | o and      |           |  |  |
| Calhoun Counties.                      | <b>_</b>           |                     | 1              | · · · ·          | J                  |            |           |  |  |
| <sup>5</sup> Parts of Colorado, Mata   | agorda, and What   | rton Counties       | located in adj | jacent coastal l | oasins, and ob     | tain       |           |  |  |
| a part of their water sup              | ply from the Col   | orado River.        |                |                  |                    |            |           |  |  |
| <sup>6</sup> Parts of Burnet, Bastrop  | o, and Lee Counti  | ies located in      | the adjacent H | Brazos Basin.    |                    |            | 1         |  |  |
| <sup>7</sup> Does not include parts of | of Burnet, Bastro  | p, and Lee co       | unties located | l in the adjacer | nt Brazos Basi     | n.         |           |  |  |
| <u> </u>                               |                    |                     |                |                  |                    |            | 0000      |  |  |



- \* In basin plus adjacent areas that obtain water from the basin.
- \*\* In basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.
- \*\*\* Includes only study area counties of the Nueces Basin.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA



HDR Engineering, Inc.

H)

FIGURE 2-2

#### 2.2 Water Demand Projections

The Texas Water Development Board's 1996 Consensus Water Plan total water demand projections, "most likely case" with advanced conservation, are tabulated for the counties and are shown in tabular and graphic form for : (1) the 32-county study area, (2) the Edwards Aquifer area (Bexar, Medina, Uvalde, Comal, Hays, and parts of Guadalupe, and Caldwell Counties), and (3) the Nueces, San Antonio, Guadalupe, and Lower Colorado River Basin areas included within the study area.<sup>2</sup> Water use in 1990 was 2,133,894 acft for the 32-county area (Table 2-4), with 15.5 percent in Wharton County, 14 percent in Bexar County, 12 percent in each of Matagorda and Colorado counties, 7.5 percent in Medina County, 6.7 percent in Uvalde County, 6.0 percent in Travis County, and 5.2 percent in Zavala County. The TWDB 1996 consensus water planning projection of water demand for below normal precipitation with advanced conservation for the 32-county area is approximately 2.38 million acft/yr in 2000, 2.40 million acft/yr in 2020, and 2.62 million acft/yr in 2050 (Table 2-4 and Figure 2-3).

Total water use for all purposes within the Edwards Aquifer area in 1990 was 647,769 acft. TWDB's 1996 consensus water planning projected total water demands for the area, with advanced water conservation, in 2000 is 773,352 acft/yr, in 2020 is 838,191 acft/yr, and in 2050 is 1,009,512 acft/yr (Table 2-5 and Figure 2-3).

Total water use in the 32-county study area in 1990 was 2,133,894 acft, of which 558,248 acft (26 percent) were in the Nueces Basin study area counties, 359,144 acft (17 percent) were in San Antonio Basin and adjacent areas, 197,928 acft (9 percent) were in the Guadalupe Basin and adjacent areas, and 1,018,574 acft (48 percent) were in the Lower Colorado Basin and adjacent areas (Table 2-6). Projected total water demands in 2050 are 2,622,184 acft/yr for the 32-county study area, with 498,105 acft/yr (19 percent) in Nueces Basin study area counties, 727,985 acft/yr (28 percent) in the San Antonio Basin and adjacent areas, 381,866 acft/yr (14 percent) in the Guadalupe Basin and adjacent areas, and 1,014,228 acft/yr (29 percent) in the Lower Colorado Basin and adjacent areas (Table 2-6 and Figure 2-4).

<sup>&</sup>lt;sup>2</sup> For projections by type of use (municipal, industrial, steam-electric power, irrigation, mining, and livestock) see "West Central Study Area Phase II, Population, Water Demand, and Water Supply Projections," San Antonio River Authority, et al.; HDR Engineering, Inc., Austin, Texas, January, 1998.

| Table 2-4             |                        |               |                 |                 |               |           |           |
|-----------------------|------------------------|---------------|-----------------|-----------------|---------------|-----------|-----------|
| То                    | ital Water Demand P    | rojections3   | 2 County Wes    | st Central Tra  | ins-Texas Stu | dy Area   |           |
|                       | - Use in               | Trans-16      | exas Water Pr   | Project         | 4:000         |           |           |
| C                     | 1000                   | 2000          | 2010            | 2020            | nons          | 2010      | 2050      |
| County                | 1990<br>acft           | 2000          |                 |                 | 2030          | 2040      | 2050      |
|                       |                        |               |                 |                 |               | acn       | ach       |
| Atascosa              | 61.472                 | 68,208        | 66.820          | 65.595          | 64,893        | 67.034    | 73 134    |
| Bandera               | 2,080                  | 2,476         | 2,547           | 2,736           | 2,951         | 3,187     | 3.452     |
| Bastrop               | 11.333                 | 14.869        | 19.310          | 20.370          | 21.848        | 22,739    | 23 665    |
| Bexar                 | 303.917                | 405.322       | 437.610         | 485,382         | 550,408       | 611,487   | 657 922   |
| Blanco                | 1.940                  | 2 287         | 2.332           | 2,389           | 2 474         | 2 499     | 2 460     |
| Rumet                 | 6.698                  | 7 648         | 8.134           | 8 709           | 9 461         | 9 807     | 10.168    |
| Caldwell              | 7 149                  | 7 873         | 8.030           | 8 181           | 8 463         | 8 283     | 8 136     |
| Calhoun               | 64 225                 | 94 668        | 105 194         | 110 849         | 112 100       | 127 027   | 127 116   |
| Colorado              | 253,847                | 230 377       | 206 791         | 186 870         | 170.071       | 161 018   | 153,000   |
| Comal                 | 15 404                 | 230,57        | 32 527          | 38 640          | 46.974        | 51 004    | 58 528    |
|                       | 5 901                  | 6.035         | 5 827           | 5 718           | 5 836         | 5 989     | 6 152     |
| Favette               | 17 571                 | 21 689        | 26 712          | 21 881          | 47 253        | 17 668    | 52 103    |
| Tayelle<br>Tria       | 87 726                 | <u>21,009</u> | 81 564          | 78 330          | 75 354        | 77 487    |           |
| Coliad                | 14 650                 | 17 713        | 17 560          | 22 446          | 73,334        | 22 226    | 22 220    |
| Conzelec              | 17,050                 | 17,715        | 17,305          | 11 0/8          | 11 636        | 11 477    | 11 270    |
| Cuadaluna             | 12,500                 | 21 060        | 22 508          | 24 510          | 21,610        | 25 272    | 40.116    |
| Guadalupe             | 14,775                 | 17.009        | 23,370          | 20,310          | 21,010        | 24 127    | 40,110    |
| Hays                  | 6.040                  | <u> </u>      | 20,772          | 23,177          | 20,010        | 5 5 4 6   | 50,703    |
| Karnes                | 0,047                  | 0,194         | 3,147           | 3,384           | 5,536         | 5,540     | 3,331     |
| Kendali               | 7 250                  | 3,402         | 3,307           | 3,090           | 3,972         | 4,298     | 4,000     |
| Kerr                  | 1,237                  | 9,881         | 10,555          | 11,285          | 12,282        | 12,700    | 12,988    |
| Lee                   | 4,0//                  | 5,141         | 5,175           | 5,217           | 5,387         | 5,587     | 5,817     |
| Llano                 | 3,520                  | 5,721         | 6,495           | 6,424           | 6,383         | 6,432     | 6,590     |
| Matagorda             | 244,859                | 230,248       | 218,603         | 200,130         | 187,135       | 179,131   | 171,854   |
| Medina                | 164,600                | 176,094       | 164,583         | 158,107         | 152,131       | 146,307   | 140,833   |
| Refugio               | 1,807                  | 1,779         | 1,708           | 1,640           | 1,610         | 1,588     | 1,561     |
| San Saba              | 8,213                  | 8,473         | 8,069           | 7,725           | 7,463         | 7,226     | 7,001     |
| Travis                | 131,280                | 193,165       | 213,238         | 244,696         | 283,241       | 306,671   | 338,507   |
| Uvalde                | 147,897                | 144,315       | 139,328         | 134,509         | 130,355       | 126,341   | 122,592   |
| Victoria              | 49,843                 | 59,887        | 63,506          | 64,350          | 66,219        | 70,214    | 74,836    |
| Wharton               | 329,686                | 341,786       | 319,523         | 292,663         | 269,018       | 252,226   | 236,654   |
| Wilson                | 19,586                 | 19,249        | 17,977          | 16,883          | 16,050        | 15,398    | 15,048    |
| Zavala                | 115,407                | 127,466       | 124,955         | 121,282         | 116,726       | 112,471   | 108,462   |
| Total                 | 2,133,894              | 2,377,318     | 2,380,981       | 2,404,551       | 2,481,906     | 2,546,732 | 2,622,184 |
|                       |                        |               |                 |                 |               |           |           |
| Dimmitt*              | 14,691                 | 15,116        | 14,810          | 14,858          | 15,211        | 15,300    | 15,445    |
| Edwards*              | 334                    | 362           | 362             | 361             | 365           | 367       | 370       |
| Kinney*               | 522                    | 599           | 594             | 584             | 561           | 539       | 518       |
| LaSalle*              | 9,513                  | 9,512         | 9,309           | 9,095           | 8,917         | 8,753     | 8,584     |
| Maverick*             | 6,021                  | 5,728         | 5,492           | 5,281           | 5,091         | 4,914     | 4,752     |
| Real*                 | 1,568                  | 1,539         | 1,469           | 1,418           | 1,396         | 1,378     | 1,364     |
| Webb*                 | 931                    | 718           | 781             | 848             | 958           | 981       | 1,126     |
| Total*                | 33,580                 | 33,574        | 32,817          | 32,445          | 32,499        | 32,232    | 32,159    |
| Source: Texas Water   | Development Board;     | 1996 Consens  | sus Water Plan  | , Most Likely ( | Case, below n | ormal     |           |
| rainfall, and         | advanced water conse   | ervation.     |                 |                 |               | 1         |           |
| * Not in West Central | I Trans-Texas study ar | ea.           |                 |                 |               | :         |           |
| **Does not include N  | lueces Basin Counties  | of South Cen  | tral Trans-Tex: | as Study Area   | (Duval, McM   | ullen,    |           |
| Live Oak, Bee, San    | Patricio, Nueces, and  | Jim Wells).   |                 |                 |               |           |           |
|                       |                        |               | ·····           |                 |               | *         | 000       |



|                                  |                                       | Table            | 2-5            |                |                                       | ····         |           |  |  |  |
|----------------------------------|---------------------------------------|------------------|----------------|----------------|---------------------------------------|--------------|-----------|--|--|--|
|                                  | Tota                                  | i Water Dema     | and Projection | ns             | · · · · · · · · · · · · · · · · · · · | ··· • ·· = · |           |  |  |  |
|                                  | · · · · · · · · · · · · · · · · · · · | Edwards Aqu      | ifer Area*     |                |                                       |              |           |  |  |  |
|                                  | West C                                | entral Trans-    | Texas Study A  | Area           |                                       |              |           |  |  |  |
| Trans-Texas Water Program        |                                       |                  |                |                |                                       |              |           |  |  |  |
|                                  | Total Use                             | Projections      |                |                |                                       |              |           |  |  |  |
| County                           | in 1990                               | 2000             | 2010           | 2020           | 2030                                  | 2040         | 2050      |  |  |  |
|                                  | acft                                  | acft             | acft           | acft           | acft                                  | acft         | acft      |  |  |  |
| Atascosa (part)                  | 1,802                                 | 2,003            | 1,943          | 1,924          | 1,938                                 | 1,942        | 1,953     |  |  |  |
| Bexar (all)                      | 303,586                               | 404,291          | 436,383        | 483,931        | 548,644                               | 609,441      | 656,013   |  |  |  |
| Medina (all)                     | 164,600                               | 176,094          | 164,583        | 158,107        | 152,131                               | 146,307      | 140,833   |  |  |  |
| Uvalde (all)                     | 147,897                               | 144,315          | 139,328        | 134,509        | 130,355                               | 126,341      | 122,592   |  |  |  |
| Comal (part)                     | 11,218                                | 20,233           | 22,678         | 26,114         | 31,099                                | 32,898       | 35,847    |  |  |  |
| Hays (part)                      | 7,882                                 | 10,674           | 12,013         | 13,411         | 15,884                                | 18,882       | 22,136    |  |  |  |
| Guadalupe (part)                 | 6,509                                 | 10,831           | 12,929         | 14,925         | 18,371                                | 21,159       | 24,730    |  |  |  |
| Caldwell (part)                  | 4,275                                 | 4,911            | 5,101          | 5,271          | 5,555                                 | 5,473        | 5,409     |  |  |  |
| Total                            | 647,769                               | 773,352          | 794,959        | 838,191        | 903,976                               | 962,443      | 1,009,512 |  |  |  |
| Source: Texas Water Developmer   | nt Board; 1996 Consensi               | us Water Plan,   | Most Likely (  | Case, below no | ormal rainfall a                      | und          |           |  |  |  |
| advanced water conservation      | n.<br>Tevas Legislature 73rd          | Session 1003     | bebreere ac    |                |                                       |              |           |  |  |  |
| As specificu în Senaie Bin 1477, | Texas Degisiature, 7510               | . 55331011, 1995 | , as amenucu.  |                |                                       |              |           |  |  |  |

,

Trans-Texas Water Program West Central Study Area

|                                            |                                       | · ]            | Table 2-6        |                 |                | · · ·         |                  |
|--------------------------------------------|---------------------------------------|----------------|------------------|-----------------|----------------|---------------|------------------|
| Total Water Dem                            | and Projections                       | for River Bas  | sins32-Coun      | ty West Cent    | ral Trans-Tex  | as Study Are  | a                |
|                                            |                                       | Trans-Tex      | as Water Prog    | gram            |                | <u>-</u>      |                  |
|                                            |                                       |                | 0010             | Project         | lions          | <b>0</b> 0.40 |                  |
| River Basin                                | 1990                                  | 2000           | 2010             | 2020            | 2030           | 2040          | 2050             |
|                                            | acit                                  | acit           |                  |                 |                | acit          | acit             |
| NUECES                                     | · · · · · · · · · · · · · · · · · · · |                |                  |                 |                |               |                  |
| Study Area In-Basin <sup>1</sup>           | 558.248                               | 579.961        | 557.648          | 539:069         | 521,544        | 507.574       | 498,105          |
| 7-County Adi. Area <sup>2</sup>            | 33,580                                | 34,262         | 33.371           | 32,801          | 32,513         | 32.218        | 32,144           |
| ······································     |                                       |                |                  |                 |                |               |                  |
|                                            |                                       |                | !<br>['          |                 |                |               | · • • •          |
| SAN ANTONIO                                |                                       |                |                  |                 |                |               |                  |
| Total In-Basin                             | 358,741                               | 465,222        | 495,983          | 544,416         | 611,854        | 675,913       | 727,459          |
| Adj. Area <sup>3</sup>                     | 403                                   | 533            | 528              | 524             | 523            | 523           | 526              |
| Study Area Subtotal                        | 359,144                               | 465,755        | 496,511          | 544,940         | 612,377        | 676,436       | 727,985          |
|                                            | ,                                     |                |                  |                 |                |               |                  |
|                                            |                                       |                |                  |                 |                |               |                  |
| GUADALUPE                                  | 116 510                               | 156 002        | 169 507          | 194 069         | 202 600        | 217 620       | 224 201          |
| A di Aros <sup>4</sup>                     | P1 400                                | 110 276        | 118.057          | 104,908         | 120,571        | 127 747       | 234,391          |
| Auj. Alea<br>Study Area Subtotal           | 107 028                               | 266 469        | 287 554          | 308 119         | 333 261        | 157,747       | 281 866          |
| Siddy Alca Subiolai                        | 197,920                               | 200,409        | 201,334          | 500,119         | 333,201        | 555,570       | 301,000          |
|                                            |                                       |                |                  |                 |                |               |                  |
| LOWER COLORADO                             |                                       |                |                  |                 |                |               |                  |
| Total In-Basin                             | 370,300                               | 425,346        | 440,975          | 472,264         | 521,919        | 544,231       | 578,657          |
| Adj. Coastal Area <sup>5</sup>             | 641,627                               | 633,391        | 591,382          | 532,616         | 484,428        | 454,163       | 426,254          |
| Area Subtotal                              | 1,011,927                             | 1,060,940      | 1,034,411        | 1,006,758       | 1,008,099      | 1,000,027     | 1,006,435        |
| Adj. Inland Area <sup>6</sup>              | 6,647                                 | 4,191          | 4,858            | 5,664           | 6,625          | 7,319         | 7,793            |
| Study Area Subtotal                        | 1,018,574                             | 1,065,131      | 1,039,269        | 1,012,422       | 1,014,724      | 1,007,346     | 1,014,228        |
|                                            |                                       |                |                  |                 |                |               |                  |
| Study Area Subtotal'                       | 2,127,247                             | 2,373,126      | 2,376,123        | 2,398,887       | 2,475,281      | 2,539,413     | 2,614,390        |
| Study Area Total                           | 2,133,894                             | 2,377,317      | 2,380,981        | 2,404,551       | 2,481,906      | 2,546,732     | 2,622,183        |
| Community Development                      | Dead 100                              |                |                  |                 |                | _1            |                  |
| Source: Texas water Develop                | d water conserve                      | 6 Consensus    | water Plan, M    | ost Likely Cas  | e, below norm  | al            |                  |
| Counting of Nugger Basin in                | u water conserva                      | tion.          | Medine Zoval     | o Erio Atago    | and north      |               |                  |
| of Payar Wilson and Karna                  |                                       | ica (Ovalue,   | Medina, Zavai    | a, riio, Ataset | isa, and parts |               |                  |
| <sup>2</sup> Parts of Dimmitt Edwards      | Sj.<br>Kinnov I oSollo                | Moverial De    | al and Wabh (    | Counties of the | Nucces Reci-   |               |                  |
| but not included in the West               | t Central Trans-T                     | evas study ar  |                  | counties of the | e Nueces Dasi  | 1,            |                  |
| <sup>3</sup> Part of Goliad County locate  | d in adjacent Sar                     | Antonio -Nu    | eces Coastal F   | Racin           |                |               |                  |
| <sup>4</sup> Part of Victoria County loca  | ted in adjacent L                     | avaca-Guadal   | une Coastal Ba   | sin plus all of | f Refugio and  |               |                  |
| Calhoun Counties                           |                                       |                | upe Coastal De   |                 | religio alla   |               |                  |
| <sup>5</sup> Parts of Colorado Matagord    | la and Wharton (                      | Counties locat | ed in adjacent   | coastal basins  | and obtain     |               |                  |
| a part of their water supply f             | rom the Colorad                       | o River.       |                  |                 | ,              |               |                  |
| <sup>6</sup> Parts of Burnet, Bastron, and | Lee Counties lo                       | cated in the a | diacent Brazos   | Basin.          |                |               |                  |
| <sup>7</sup> Does not include parts of Bu  | rnet, Bastrop, an                     | d Lee countie  | s located in the | e adjacent Braz | zos Basin.     |               | •••••••••••••••• |
|                                            |                                       |                |                  |                 |                |               | 000              |



- ▲ 1990 USE
- ----- WATER DEMAND PROJECTIONS
- In basin plus adjacent areas that obtain water from the basin.
- \*\* In basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.
- \*\*\* Includes only study area counties of the Nueces Basin.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

H

FIGURE 2-4

#### 2.3 Water Supply Projections

In subsections 2.3.1 and 2.3.2 the ground and surface water resources of the West Central Trans-Texas study area are identified and described briefly. In Section 2.4, the water demand and water supply projections are summarized and compared for each river and coastal basin area.<sup>3</sup>

#### 2.3.1 Groundwater Supply Projections

The Texas Water Development Board projects that the 32 county West Central Trans-Texas study area has an average annual supply of groundwater from the Carrizo-Wilcox, Edwards-Trinity, Trinity and minor aquifers of approximately 735,605 acft (Table 2-7). In addition, in accordance with provisions of Senate Bill 1477, the Edwards Aquifer area counties of the study area (all of Uvalde, Medina and Bexar Counties, and parts of Atascosa, Comal, Hays, Caldwell, and Guadalupe Counties) have a supply of 450,000 acft/yr from the Edwards Aquifer between the present and December 31, 2007.<sup>4</sup> Beginning in 2008, supplies from the Edwards Aquifer are specified at 400,000 acft/yr with the further condition, as specified in S.B. 1477, that by year 2012, the Edwards Aquifer Authority shall have a plan in place which limits pumpage from the Aquifer to a level that will assure that Comal and San Marcos springs will not go dry. For purposes of this analysis, it is assumed that the annual supply available from the Edwards Aquifer to the Edwards Aquifer Authority (EAA) counties, beginning in year 2008, is 400,000 acft/yr, and that this quantity is prorated among the EAA counties in the same proportions as each county's pumpage was of total pumpage in 1990; i.e., 27.72 percent to Uvalde, 16.02 percent to Medina, 51.58 percent to Bexar, 0.34 percent to Atascosa, 2.16 percent to Comal, 1.52 percent to Hays, 0.08 percent to Caldwell, and 0.58 percent to Guadalupe (Table 2-7). Refer to Section 2.4 for a comparison of projected water supplies with projected water demands of each county of the study area.

In 1990, groundwater use in seven of the non-Edwards Aquifer area counties was greater than the projected average long-term annual supply, meaning that in these counties (Calhoun,

<sup>&</sup>lt;sup>3</sup> Ibid.

<sup>&</sup>lt;sup>4</sup> Senate Bill 1477, Texas Legislature, Regular Session, 1993.

|                         |                       |                       | Table 2-7                           |                       |                               |              |  |  |  |
|-------------------------|-----------------------|-----------------------|-------------------------------------|-----------------------|-------------------------------|--------------|--|--|--|
|                         | 1990 Water            | Use and Pro           | ected Annual Grou                   | ndwater Supplies      |                               |              |  |  |  |
| 32                      | County West Cent      | ral Trans-Te          | xas Study AreaTi                    | rans-Texas Water Pro  | ogram                         |              |  |  |  |
|                         |                       | iter ose (Aer         |                                     | Groundwa              | Groundwater Supply(acre-Feet) |              |  |  |  |
| County                  | Ground                | Surface               | Total                               | Aquifers              | Edwards                       |              |  |  |  |
|                         |                       |                       |                                     |                       |                               |              |  |  |  |
| Atascosa                | 60.019                | 1.453                 | 61.472                              | 47.134                | 1.385                         | 48.519       |  |  |  |
| Bandera                 | 1,848                 | 232                   | 2,080                               | 7,285                 | 0                             | 7.285        |  |  |  |
| Bastrop                 | 7,178                 | 4,155                 | 11,333                              | 41,548                | 0,                            | 41,548       |  |  |  |
| Bexar                   | 269,505               | 34,412                | 303,917                             | 19,125                | 206,342                       | 225,467      |  |  |  |
| Blanco                  | 1,514                 | 426                   | 1,940                               | 7,737                 | 0                             | 7,737        |  |  |  |
| Burnet                  | 1,946                 | 4,752                 | 6,698                               | 16,280                | 0                             | 16,280       |  |  |  |
| Caldwell                | 4,371                 | 2,778                 | 7,149                               | 10,383                | 326                           | 10,709       |  |  |  |
| Calhoun                 | 4,544                 | 59,681                | 64,225                              | 2,940                 | 0                             | 2,940        |  |  |  |
| Colorado                | 49,133                | 204,714               | 253,847                             | 31,659                | 0                             | 31,659       |  |  |  |
| Comal                   | 13,243                | 2,161                 | 15,404                              | 1,800                 | 8,633                         | 10,433       |  |  |  |
| DeWitt                  | 4,170                 | 1,731                 | 5,901                               | 15,866                | 0                             | 15,866       |  |  |  |
| Fayette                 | 3,716                 | 13,855                | 17,571                              | 37,829                | 0                             | 37,829       |  |  |  |
| Frio                    | 85,073                | 2,653                 | 87,726                              | 30,914                | 0                             | 30,914       |  |  |  |
| Goliad                  | 1,344                 | 13,306                | 14,650                              | 12,809                | 0                             | 12,809       |  |  |  |
| Gonzales                | 4,660                 | 7,706                 | 12,366                              | 46,560                | 0                             | 46,560       |  |  |  |
| Guadalupe               | 6,566                 | 8,407                 | 14,973                              | 12,583                | 2,286                         | 14,869       |  |  |  |
| Hays                    | 11,994                | 1,004                 | 12,998                              | 1,810                 | 6,065                         | 7,875        |  |  |  |
| Karnes                  | 4,610                 | 1,439                 | 6,049                               | 18,780                | 0                             | 18,780       |  |  |  |
| Kendall                 | 2,322                 | 579                   | 2,901                               | 4,840                 | 0                             | 4,840        |  |  |  |
| Kerr                    | 3,281                 | 3,978                 | 7,259                               | 9,810                 | 0                             | 9,810        |  |  |  |
| Lee                     | 3,719                 | 958                   | 4,677                               | 24,943                | 0                             | 24,943       |  |  |  |
| Llano                   | 2,122                 | 3,398                 | 5,520                               | 11,882                | 0                             | 11,882       |  |  |  |
| Matagorda               | 28,252                | 216,607               | 244,859                             | 26,000                | 0                             | 26,000       |  |  |  |
| Medina                  | 83,509                | 81,091                | 164,600                             | 7,826                 | 64,079                        | 71,905       |  |  |  |
| Refugio                 | 1,360                 | 507                   | 1,867                               | 7,768                 | 0                             | 7,768        |  |  |  |
| San Saba                | 1,919                 | 6,294                 | 8,213                               | 30,224                | 0                             | 30,224       |  |  |  |
| Travis                  | 9,491                 | 121,789               | 131,280                             | 8,855                 | 0                             | 8,855        |  |  |  |
| Uvalde                  | 144,522               | 3,375                 | 147,897                             | 8,213                 | 110,884                       | 119,097      |  |  |  |
| Victoria                | 29,222                | 20,621                | 49,843                              | 41,130                | 0                             | 41,130       |  |  |  |
| Wharton                 | 153,809               | 175,877               | 329,686                             | 100,000               | 0                             | 100,000      |  |  |  |
| Wilson                  | 15,898                | 3,688                 | 19,586                              | 60,597                | 0                             | 60,597       |  |  |  |
| Zavala                  | 80,138                | 35,269                | 115,407                             | 30,475                | 0                             | 30,475       |  |  |  |
| Total                   | 1,094,998             | 1,038,896             | 2,133,894                           | 735,605               | 400,000                       | 1,135,605    |  |  |  |
| <b>.</b>                |                       |                       |                                     | 02.050                |                               | 05.050       |  |  |  |
| Dimmitt*                | 9,433                 | 5,258                 | 14,691                              | 27,250                | 0                             | 27,250       |  |  |  |
| Edwards*                | 184                   | 77                    | 261                                 | 13,868                | 0                             | 13,868       |  |  |  |
| Kinney*                 | 452                   |                       | 522.                                | 7,708                 | 3,403                         | 11,111       |  |  |  |
| LaSalle*                | 7,529                 | 1,984                 | 9,513                               | 36,635                | 0                             | 36,635       |  |  |  |
| Maverick*               | 5,495                 | 526                   | 6,021                               | 1,242                 | 0                             | 1,242        |  |  |  |
| Real*                   | 747                   | 821                   | 1,568                               | 1,970                 | 0                             | 1,970        |  |  |  |
| Webb*                   | 51                    | 880                   | 931                                 | 18,868                |                               | 18,868       |  |  |  |
|                         | 23,891                | 9,016                 | 33,307                              | 107,541               | 3,403                         | 110,944      |  |  |  |
| Source: Texas Water D   | evelopment Board,     | 1992.                 |                                     |                       |                               | <del>_</del> |  |  |  |
| * Not in West Central T | rans- I exas study an | rea.                  | 0                                   |                       |                               |              |  |  |  |
| includes Carrizo- Wild  | cox, Irinity, Edward  | <u>is-Irinity, Qu</u> | een City, and Sparta                | Aquiters.             | 2008.                         |              |  |  |  |
| Edwards Balcones Fau    | ant Zone Aquiter; As  | s provided in S       | $\frac{56}{14}$ 14// for the period | o oeginning January 1 | , 2008;                       |              |  |  |  |
| Inrough December 31     | , 2007, SB 1477 se    | is the quantity       | at 450,000 acit/yr.                 | 7                     |                               |              |  |  |  |
| Not included in Edwar   | as Aquiter Authori    | iy Area, as est       | aolished by S.B.14/                 | /. <u>1</u>           |                               |              |  |  |  |

Colorado, Frio, Matagorda, Travis, Wharton, and Zavala) groundwater overdrafting or mining was occurring. However, in 16 of the non-Edwards Aquifer area counties (Bastrop, Blanco, Burnet, DeWitt, Fayette, Goliad, Gonzales, Karnes, Kendall, Kerr, Lee, Llano, Refugio, San Saba, Victoria, and Wilson) 1990 groundwater use was less than projected annual supply, which means that groundwater resources can perhaps meet some projected growth in water demands in some of these counties, depending upon location of demands (Table 2-7).

#### 2.3.2 Surface Water Supply Projections<sup>5</sup>

The existing surface water supplies of the West Central Trans-Texas Study Area include: (1) reservoirs that have a firm yield; (2) storage reservoirs for steam-electric power cooling; (3) storage reservoirs for water supply management and recreation; and (4) run-of-river water rights. Information about each of these surface water supply types is presented below.

#### Lakes and Reservoirs

Medina Lake is located on the Medina River at the boundary of Medina and Bandera Counties, with Diversion Lake on the Medina River downstream of Medina Lake. In addition to supplying irrigation water, percolation through the lake and river beds recharges the Edwards Aquifer. Although the firm yield of Medina Lake is only about 8,770 acft/yr, the computed average annual water supply that was obtainable from Medina Lake and Diversion Lake was 57,970 acft during the 1934-1989 period (Table 2-8).

Braunig and Calaveras Lakes are located in Bexar County to the southeast of San Antonio and are used for electric power plant cooling water (Table 2-8). Runoff from the watersheds above the lakes, diversion from the San Antonio River and diversions of San Antonio reclaimed wastewater are used to maintain the necessary lake levels and meet the cooling water demands (24,263 acft in 1990).

Canyon Lake in the Guadalupe Basin is located in Comal County on the main stem of the Guadalupe River. Yield of Canyon Lake is 82,627 acft/yr, of which 50,000 acft/yr is permitted

<sup>&</sup>lt;sup>5</sup> West Central Study Area Phase I, Interim Report, Volume 1, San Antonio River Authority, San Antonio, Texas, May 1994.

|                                                                                                                                                                                                                                                                                              | Table<br>Reservoirs and Surface Water Sup<br>Trans-Texas Wa                                                                                                                                                                                                                          | 2-8<br>plies West Co<br>iter Program <sup>*</sup>  | entral Study                                | / Area              |                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Reservoir                                                                                                                                                                                                                                                                                    | Owner                                                                                                                                                                                                                                                                                | Firm<br>Yield<br>(acft/yr)                         | Average<br>Supply <sup>2</sup><br>(acft/yr) | Permit<br>(acft/yr) | Purposes                                                                                                                                   |
| San Antonio Basin<br>Medina Lake                                                                                                                                                                                                                                                             | Bexar-Medina-AtascosaDistrict                                                                                                                                                                                                                                                        | 8,770 <sup>1</sup>                                 | 57,970                                      | 66,750              | Irrigation, municipal, domestic,                                                                                                           |
| Diversion Lake                                                                                                                                                                                                                                                                               | Bexar-Medina-AtascosaDistrict                                                                                                                                                                                                                                                        |                                                    |                                             |                     | Irrigation, municipal, domestic,                                                                                                           |
| Victor Braunig Lake                                                                                                                                                                                                                                                                          | City Public Service Board of San Antonio                                                                                                                                                                                                                                             |                                                    |                                             | 12,000 <sup>4</sup> | Steam-electric power generation                                                                                                            |
| Calaveras Lake                                                                                                                                                                                                                                                                               | City Public Service Board of San Antonio                                                                                                                                                                                                                                             |                                                    |                                             | 37,000 <sup>5</sup> | Steam-electric power generation                                                                                                            |
| Guadalupe Basin<br>Canyon Lake                                                                                                                                                                                                                                                               | Guadalupe-BlancoRiver Authority/USCOE                                                                                                                                                                                                                                                | 82,627 <sup>3</sup>                                |                                             | 50,000 <sup>3</sup> | Municipal, industrial, steam-<br>electric & hydropower, irrigatic                                                                          |
| Coleto Creek                                                                                                                                                                                                                                                                                 | Central Power and Light Company                                                                                                                                                                                                                                                      |                                                    |                                             | 12,500              | Steam-electricpower generatio                                                                                                              |
| Colorado Basin<br>Highland Lakes                                                                                                                                                                                                                                                             | Lower Colorado River Authority                                                                                                                                                                                                                                                       | 445,266**                                          |                                             | 1,500,000           | Municipal, industrial, steam-<br>electric & hydropower, irrigatic<br>& hydroelectric power,                                                |
| Lake Austin                                                                                                                                                                                                                                                                                  | City of Austin                                                                                                                                                                                                                                                                       |                                                    |                                             |                     | Steam-electric power, water                                                                                                                |
| Town Lake                                                                                                                                                                                                                                                                                    | City of Austin                                                                                                                                                                                                                                                                       |                                                    |                                             |                     | supply storage, rec.<br>Steam-electricpower, water                                                                                         |
| Decker Lake<br>Lake Bastrop<br>Cedar Creek<br>Eagle Lake<br>South Texas Project                                                                                                                                                                                                              | City of Austin<br>Lower Colorado River Authority<br>Lower Colorado River Authority<br>Lower Colorado River Authority<br>Houston Light & Power                                                                                                                                        | <br><br><br>                                       | <br><br>                                    | 36,456<br><br><br>  | supply storage, rec.<br>Steam-electric power<br>Steam-electric power<br>Steam-electric power<br>Irrigation storage<br>Steam-electric power |
| FOTAL                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      | 536,663**                                          |                                             | !                   |                                                                                                                                            |
| See Table 3-3 for reference to run-of-r<br>Includes Lakes Travis, Marble Falls,<br>Firm yield based on uniform monthly<br>Average supply based on the 1934-89<br>Based on subordination of GBRA hyd<br>Includes the rights to divert up to 12,0<br>Includes the rights to divert up to 60.00 | LBJ, Inks and Buchanan.<br>LBJ, Inks and Buchanan.<br>diversion directly from Medina Lake.<br>historical period.<br>ropower rights.<br>00 acfl/yr from the San Antonio River to Braunig Lake and to consume<br>00 acfl/yr of reclaimed wastewater from the San Antonio River to Cala | up to 12,000 acft/yr at<br>vares Lake and to consu | Braunig Lake.<br>me up to 37,000 a          | cft/yr at Calaveras | Lake.                                                                                                                                      |

Trans-Texas Water Program West Central Study Area

2-17

Summary Report of Water Supply Alternatives to the Guadalupe-Blanco River Authority (GBRA) by the TNRCC and made available by GBRA to water users within the basin.<sup>6</sup>

Lakes Dunlap, McQueeny, Placid, Nolte, H-4, and Wood are small hydroelectric power reservoirs located on the Guadalupe River in the reach from New Braunfels to about 8 miles west of Gonzales. The lakes and the water rights are owned by GBRA, and since hydroelectric power generation is a nonconsumptive use of water, these rights and permits (1,300 cfs at lake Dunlap) are not tabulated here.

Coleto Creek Reservoir is located at the borders of Victoria and Goliad counties in the lower Guadalupe Basin and is a cooling reservoir for steam-electric power generation. The source of water is drainage from the Coleto Creek watershed, with diversions from the Guadalupe River, backed by storage in Canyon Lake, when needed. The reservoir supplies water for steam-electric power generation at a power plant located in Goliad County (12,165 acft in 1990).

The Highland Lakes (Travis, Marble Falls, LBJ, Inks, and Buchanan) are located on the main steam of the Colorado River upstream of Austin (Table 2-8). The purposes of the Highland Lakes are water supply for municipal, industrial steam-electric power generation, hydroelectric power generation, irrigation, flood protection, and recreation. The firm yield of the Highland Lakes, as reported by the TWDB<sup>7</sup> in the 1990 Texas water plan is 445,266 acft/yr. The water supply of the Highland Lakes is made available through contracts with various downstream water users for municipal, industrial, steam-electric power generation, and irrigation purposes within the Colorado River Basin and adjacent coastal basins. In addition, LCRA uses water released from the lakes for hydroelectric power generation.

Downstream of the Highland Lakes at Austin on the main stem of the Colorado River are Lake Austin and Town Lake. The three City of Austin municipal water intakes are located on these lakes and Town Lake supplies steam-electric cooling water to Austin (Table 2-8). In addition to these main stem reservoirs, there are four steam-electric power cooling lakes (Decker, Bastrop, Cedar Creak, and the South Texas Project) and one irrigation storage reservoir

<sup>&</sup>lt;sup>6</sup> The Guadalupe-Blanco River Authority plans to apply to TNRCC for a change in its Canyon Lake permit to allow more of the yield to be used for municipal and industrial purposes.

<sup>&</sup>lt;sup>7</sup> Water for Texas -- Today and Tomorrow, 1990, Texas Water Development Board, Austin, Texas, December, 1990.
(Eagle Lake in Colorado County) on tributaries to the Colorado River. These lakes are authorized to capture and store local runoff, with provisions for diversions from the Colorado River when needed.

In the West Central Study Area, the estimated firm water supply from storage reservoirs is 536,663 acft per year (Table 2-8). Of this total, 8,770 acft are in the San Antonio Basin, 82,627 acft are in the Guadalupe Basin, and 445,266 acft are in the Colorado Basin (Table 2-8).

#### Run-of-River Water Rights

In addition to surface water from reservoirs, rights have been issued by the TNRCC and predecessor agencies to individuals, cities, industries, and water districts and authorities for diversion of water from flowing streams of the West Central Study Area. The principle of prior appropriation or "first-in-time-first-in-right" is applied, which means that the senior or oldest rights (earliest date of permit) have first call on flows, with the second, third, and more recent rights having second, third, and later standings for diversions. This procedure gives senior rights holders priority when stream flows are low, as in periods of drought, and renders junior rights less reliable during droughts.

Run-of-river permits have been summarized for the streams of the West Central Study Area (Table 2-9). For the Nueces Basin study area upstream of the Edwards Aquifer recharge zone, the total is 12,915 acft/yr (Table 2-9). For the Nueces Basin study area downstream of the Edwards Aquifer recharge zone in Zavala, Frio, and Atascosa counties total run-of-river water rights are 35,302 acft, all of which are for irrigation purposes in those counties.

In the San Antonio Basin on the Medina River upstream of Medina Lake, there are 1,083 acft/yr of run-of-river rights. Downstream of Medina Lake there are 10,503 acft/yr of such rights (Table 2-9). On the San Antonio River from San Antonio to Goliad, 35,222 acft/yr of run-of-river rights have been awarded (Table 2-9). Most, if not all, of these rights are for irrigation and livestock water, and can be viewed as supply available to meet those needs in areas along the Medina and San Antonio Rivers. (Note: the Medina Lake rights are shown in Table 2-8.)

Total run-of-river rights in the Guadalupe Basin upstream of Canyon Lake are 13,229 acft/yr, and downstream of Canyon to Victoria are 44,599 acft/yr. These are for irrigation, municipal, and industrial purposes. In addition, GBRA and Sequin have hydroelectric power

| Table 2-9<br>Summary of Run-of-River Water Rights<br>West Central Study Area<br>Trans-Texas Water Program |                            |
|-----------------------------------------------------------------------------------------------------------|----------------------------|
| River Basin and Segment                                                                                   | Sum of Permits<br>(acft)   |
| Nueces Basin Study Area                                                                                   |                            |
| Unstream Edwards Recharge Zone                                                                            | 12 915                     |
| Downstream Edwards Recharge Zone                                                                          | 35 302                     |
| Subtotal                                                                                                  | 48 217                     |
|                                                                                                           | 10,217                     |
| San Antonio Basin Study Area                                                                              | 1.000                      |
| Medina Upstream Medina Lake                                                                               | 1,083                      |
| Medina Downstream Medina Lake                                                                             | 10,503                     |
| Downstream San Antonio to Gollad                                                                          | <u> </u>                   |
| Subtotal                                                                                                  | 46,808                     |
| Guadalupe Basin Study Area                                                                                |                            |
| Upstream of Canyon Lake                                                                                   | 13,229                     |
| Downstream Canyon Lake to Victoria                                                                        | 44,599 <sup>1</sup>        |
| Downstream Goliad and Victoria (consumptive)                                                              | <u>214,499<sup>1</sup></u> |
| Subtotal                                                                                                  | 272,327                    |
| Colorado Basin Study Area                                                                                 |                            |
| Upstream of Highland Lakes (Study Area)                                                                   | 36,491                     |
| City of Austin                                                                                            | $334.009^2$                |
| Travis County to Colorado County                                                                          | 34.146                     |
| Gulf Coast Irrigation <sup>3</sup>                                                                        | $262.500^4$                |
| Garwood Irrigation <sup>3</sup>                                                                           | $168.000^4$                |
| Lakeside Irrigation <sup>3</sup>                                                                          | $131.250^4$                |
| Pierce Ranch Irrigation <sup>3</sup>                                                                      | $110.000^4$                |
| South Texas Project (HL&P/LCRA) <sup>3</sup>                                                              | $102,000^{5}$              |
| Subtotal                                                                                                  | 1,178,396                  |
| TOTAL FOR STUDY AREA                                                                                      | 1,545,748                  |
| Source: Data from Water Rights Records of Texas Natural Resource Conservation Commission.                 |                            |

Totals shown include only consumptive right for irrigation, industrial, and steam-electric cooling water. Does not include hydroelectric right of 1,300 cfs at Lake Dunlap, which is a non-consumptive right. <sup>2</sup>Through agreement with LCRA for stored water 290,156 acft is firm supply during drought of record.

<sup>3</sup>Source: "LCRA Drought Management Plan," Lower Colorado River Authority, Austin, Texas, July, 1990. <sup>4</sup>LCRA staff estimates that during the critical period of record (1946-1957), the dependable supply from all of these permits is about 350,921 acft annually. "Water Supply and Demand Assessment of Wharton County," Lower Colorado River Authority, Austin, Texas, October, 1991. <sup>5</sup>Through agreement with LCRA for stored water, the 102,000 is firm supply during drought of record.

generation rights of 1,300 cfs at Dunlap for GBRA and 365 cfs at Sequin for Sequin. Since this is a nonconsumptive use, these rights were not included in this analysis.

In the Guadalupe and San Antonio Basin downstream of Victoria and Goliad, respectively, total run-of-river rights are 214,499 acft/yr considering only consumptive rights for municipal, irrigation and industrial process water (Table 2-9).

In the Colorado Basin, run-of-river water rights holders include the City of Austin (334,009 acft/yr), Gulf Coast Irrigation Division (262,500 acft/yr), Garwood Irrigation Company (168,000 acft/yr), Lakeside Irrigation Division (131,250 acft/yr), Pierce Ranch Irrigation (110,000 acft/yr), and the South Texas Nuclear Project (102,000 acft/yr). Austin's right is for municipal and steam-electric power generation, the south Texas Project right is for steam-electric power generation, and the others are for irrigation. Within the study area upstream of the Highland Lakes there are 36,491 acft/yr of run-of-river rights, and in the stretch from Travis County to Colorado County there are 34,146 acft/yr of such rights.

In the West Central Study Area, the sum of the major consumptive run-of-river permitted water rights is 1,545,748 acft/yr (Table 2-9). The supply from run-of-river rights plus the firm yield of reservoirs is the existing surface water supply for the study area. Refer to Section 2.4 for a comparison of projected water demands with available water supplies.

#### 2.4 Comparison of Projected Water Demands with Projected Water Supplies

In Section 2.2 projected water demands are shown for the 32-county area, the Edwards Aquifer Area, and for each of the river basins (Nueces, San Antonio, Guadalupe, Lower Colorado, and adjacent coastal basins) of the study area. In Section 2.3, water supplies available within the 32-county area are shown. In this section, the municipal, industrial, steam-electric power, irrigation, mining, livestock, and total water demands are summarized for each river basin area of the study area, and compared with the available water supplies of the basin for the purpose of indicating whether additional quantities of water will be needed, the approximate dates at which additional supplies will be needed, and the projected quantities of water that will be needed to meet the projected demands of each basin.<sup>8</sup>

The water supply information tabulated for each river basin was developed from water supply data shown in Section 2.3.1. In the case of groundwater, the annual supplies for counties (Table 2-7) were prorated to the river or coastal basin in which that county or part of county is located (i.e., if 50 percent of the county is in the San Antonio Basin, it is assumed that 50 percent of the county's groundwater supply is also located in the San Antonio Basin). In the case of supplies from Edwards Aquifer, the provisions of SB 1477 were applied (i.e., 450,000 acft/yr until December 31, 2007, and 400,000 acft/yr beginning in 2008) with these quantities prorated among the Edwards Aquifer Authority counties in the same proportion as the county's water use from the Edwards Aquifer in 1990.

Local surface and groundwater is the estimated quantity of water from windmills, stock watering tanks, and stream flows consumed by livestock and is equated to the projected livestock water demands of each county or part of county of the river basin. For example, in practice, livestock water is produced or obtained on or very near the sites where it is used, and although livestock water demands are shown in the water demand projections, this water does not get included in the hydrology data from which water supply information is obtained. Thus the method used here includes projections of livestock water demands in the counties and parts of

<sup>&</sup>lt;sup>8</sup> For individual county and parts of counties of each basin, see "West Central Study Area Phase II, Population, Water Demand, and Water Supply Projections," San Antonio River Authority, et al.; HDR Engineering, Inc., Austin, Texas, January, 1998.

counties of each river and coastal basin, and assumes that projected livestock water demands will be met from local supplies.

Surface water supplies have two components as follows: (1) firm yields of reservoirs ,and (2) run-of-river (ROR) water rights. Firm yields of reservoirs are known and quantities of firm yield were tabulated in the counties or parts of counties having rights or contracts to use the firm yield. The summaries of these county tabulations are shown for each respective river basin of the study area.<sup>9</sup>

With respect to run-of-river water rights, the Texas Natural Resource Conservation Commission (TNRCC) water rights records were obtained and the quantities of permitted diversions were tabulated as to county of location where the water is used. Computer models were then used to obtain estimates of the water supplies available from these permitted diversions for three weather conditions as follows:<sup>10</sup>

- (1) Average quantity available for the period for which streamflow records are available, usually 1934 through 1989;
- (2) Average quantity available for the drought of record of 1947 through 1956; and
- (3) Quantity available for the driest year of record.

A summary of water supplies available for each of the three conditions is shown for each river basin, along with the companion computation of surplus or shortage for the basin.<sup>11</sup> The projections and comparisons are presented below for the Nueces and San Antonio River Basins, the Guadalupe Basin and adjacent Lavaca-Guadalupe Coastal Basin, the Lower Colorado Basin and adjacent Brazos-Colorado and Colorado-Lavaca Coastal Basins, the study area counties of the Brazos and Lavaca River Basins, and the study area counties of San Antonio-Nueces Coastal Basin.

<sup>&</sup>lt;sup>9</sup> Ibid.

<sup>&</sup>lt;sup>10</sup> HDR Engineering, Inc. et al., "Regional Water Supply Planning Study-Phase I, Nueces River Basin," Nueces River Authority, et al., Uvalde, Texas, May, 1991; HDR Engineering, Inc. et al., "Guadalupe-San Antonio River Basin Recharge Enhancement Study," Edwards Underground Water District, San Antonio, Texas, September, 1993; and "Colorado River Base Case Availability," Unpublished, Lower Colorado River Authority, Austin, Texas, June, 1997.

<sup>&</sup>lt;sup>11</sup> op.cit.

2.4.1 Nueces River Basin Study Area Projected Water Demand and Water Supply Comparisons

In the Nueces Basin, the west central study area includes all of Frio, Uvalde, and Zavala counties, and parts of Atascosa, Bandera, Bexar, Karnes, Kerr, Medina, and Wilson counties. The Nueces Basin study area water use in 1990 was 558,248 acft/yr and is projected to decrease to 498,105 acft/yr in 2050 due to reductions in Federal Farm Support programs and increased water conservation in irrigation (Table 2-10). Projected total supply available to meet the projected demands includes supply from the Edwards Aquifer of 163,243 acft/yr from local surface and groundwater sources for livestock use, and between 8,588 acft/yr of surface water in severe drought years and 80,017 acft/yr of surface water during high rainfall years from run-of-river (ROW) water rights, plus Medina Lake depending upon weather conditions that affect stream flow (Table 2-10). Given the demands and supply projections, the Nueces Basin study area is projected to have shortages ranging between 171,503 acft/yr and 242,932 acft/yr in year 2000, and shortages ranging between 110,051 acft/yr and 181,479 acft/yr in year 2050 (Table 2-10 and Figure 2-5).

| Table 2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------|----------------|----------------|--------------|----------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comparison of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water Dem      | and and V     | Vater Supp    | ly Projecti    | ions           |              |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nueces I       | River Basir   | 1 Area        |                | <u></u>        |              | ·····    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Central T    | rans-Texa     | s Study Ar    | ea             | <del>.</del>   |              |          |  |  |  |  |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trans-Texas Water Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |               |                |                |              |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Use      |               |               | Proje          | ctions         |              |          |  |  |  |  |
| Basin/County/City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in 1990        | 2000          | 2010          | 2020           | 2030           | 2040         | 2050     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acft           | acft          | acft          | acft           | acft           | acft         | acft     |  |  |  |  |
| Domand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |               |                |                |              |          |  |  |  |  |
| Municipal Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.844         | 27.000        | 28 110        | 20 010         | 31 340         | 33 214       | 24 779   |  |  |  |  |
| Industrial Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Industrial Demand 2,149 2,320 2,482 2,611 2,719 2,942 3,164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |               |                |                |              |          |  |  |  |  |
| Steam-Electric Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Steam-Electric Power Demand 6,074 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 12,400 |                |               |               |                |                |              |          |  |  |  |  |
| Irrigation Demand 521,395 528,390 504,948 485,204 465,090 445,828 427.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| Mining Demand 1,706 2,506 2,354 2,490 2,650 2,845 3,087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| Livestock Demand 6,080 7.345 7.345 7.345 7.345 7.345 7.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| Total Demand 558 248 579 961 557 648 539 069 521 544 507 574 498 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 550,210        |               | 007,040       |                |                |              |          |  |  |  |  |
| Groundwater/Edwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 212,132        | 183,647       | 163,243       | 163,243        | 163,243        | 163,243      | 163.243  |  |  |  |  |
| Groundwater/Edwards $212,132$ $183,047$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $163,243$ $16$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| Local Surface&Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,080          | 7,345         | 7,345         | 7,345          | 7,345          | 7,345        | 7,345    |  |  |  |  |
| Surface Water/Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RORrights+MedinaL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114,714        | 80,017        | 80,017        | 80,017         | 80,017         | 80,017       | 80,017   |  |  |  |  |
| Surface Water/Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ave.available 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94,241         | 64,402        | 64,402        | 64,402         | 64,402         | 64,402       | 64,402   |  |  |  |  |
| Surface Water/Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ave.avail-dry 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55,219         | 41,340        | 41,340        | 41,340         | 41,340         | 41,340       | 41,340   |  |  |  |  |
| Surface Water/Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min, Yr. Ava. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,935          | 8,588         | 8,588         | 8,588          | 8,588          | 8,588        | 8,588    |  |  |  |  |
| Total Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROR rights 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 587,470        | 408,458       | 388,054       | 388,054        | 388,054        | 388,054      | 388,054  |  |  |  |  |
| Total Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ave.available 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 566,997        | 392,843       | 372,439       | 372,439        | 372,439        | 372,439      | 372,439  |  |  |  |  |
| Total Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ave.avail-dry 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 527,975        | 369,781       | 349,377       | 349,377        | 349,377        | 349,377      | 349,377  |  |  |  |  |
| Total Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min.Yr.Ava. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 481,691        | 337,029       | 316,625       | 316,625        | 316,625        | 316,625      | 316,625  |  |  |  |  |
| Surplus/Shortage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROR rights 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29,222         | -171,503      | -169,594      | -151,015       | -133,490       | -119,520     | -110,051 |  |  |  |  |
| Surplus/Shortage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ave.available 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,749          | -187,119      | -185,209      | -166,631       | -149,105       | -135,135     | -125,666 |  |  |  |  |
| Surplus/Shortage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ave.avail-dry 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30,273        | -210,180      | -208,270      | -189,692       | -172,167       | -158,197     | -148,727 |  |  |  |  |
| Surplus/Shortage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min.Yr.Ava. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -76,557        | -242,932      | -241,022      | -222,444       | -204,919       | -190,949     | -181,479 |  |  |  |  |
| Source: Texas Water Deve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elopment Board; 1996 Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsensus Wate   | er Plan, Mos  | t Likely Case | , below nor    | mal rainfall a | and          |          |  |  |  |  |
| advanced water co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onservation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |               |                | ·····          |              |          |  |  |  |  |
| 1 ROR plus Medina Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is 48,217 acft/yr of run-o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f-river rights | in Nueces E   | asin study a  | rea plus Mec   | tina Lake of   | 31,800 acft/ | yr.      |  |  |  |  |
| 2 Average quantity of wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter available annually from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n 48,217 acft  | /yr of run-of | -river rights | plus Medina    | Lake listed    | above.       |          |  |  |  |  |
| 3 Average quantity of wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter available annually duri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng 1947-56 d   | drought from  | 48,217 acft   | /yr of run-of  | -river rights  | plus Medina  | Lake.    |  |  |  |  |
| 4 Quantity of water availa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble during worst year of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lrought (Min   | .Yr.Ava.) fro | om 48,217 ac  | :ft/yr of run- | of-river righ  | ts plus Medi | na Lake. |  |  |  |  |
| 5 Total supply from grour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndwater and full ROR right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nts plus Medi  | ina Lake (21  | 2,132+254,4   | 55+6.080+1     | 14,714=587     | ,470).       |          |  |  |  |  |
| 6 Total supply from grour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndwater and average quan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tity available | from ROR      | olus Medina   | Lake (566,9    | 97).           |              |          |  |  |  |  |
| 7 Total supply from groundwater and average available (1947-56 drought) from ROR plus Medina Lake (527,975).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| 8 Total supply from groundwater and minimum year available (1947-56 drought) from ROR plus Medina Lake (481,691).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |               |                |                |              |          |  |  |  |  |
| 9 Shortage in year 2000 fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or full ROR rigrts availabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e plus Medir   | na Lake (171  | ,503).        |                | ·····          |              |          |  |  |  |  |
| 10 Shortage in year 2000 fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or average available from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROR rights p   | olus Medina   | Lake (187,1   | 19).           |                | ·            |          |  |  |  |  |
| 11 Shortage in year 2000 fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or average available from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROR rights c   | turing 1947-  | 56 drought p  | lus Medina     | Lake (210,1    | 80).         |          |  |  |  |  |
| 12 Shortage in year 2000 fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or quantity avaliable from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROR rights     | during worst  | year of drou  | ight plus Me   | dina Lake (2   | 242,932).    |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               | 7             |                | ;              |              | <><><>   |  |  |  |  |



 Total Supply ROR is the sum of groundwater, firm yields of reservoirs, if any, and run-of-river permits at maximum permitted quantities.

 Total Supply ROR Minimum Year is the sum of groundwater, firm yields of reservoirs, if any, and quantities from run-of-river permits during driest year of record. TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

**NUECES BASIN PROJECTIONS** 

WATER DEMAND/WATER SUPPLY

HR

HDR Engineering, Inc.

FIGURE 2-5

2.4.2 San Antonio River Basin Study Area Projected Water Demand and Water Supply Comparisons

The San Antonio River Basin study area includes parts of 14 counties, as follows: Atascosa, Bandera, Bexar, Comal, DeWitt, Goliad, Guadalupe, Karnes, Kendall, Kerr, Medina, Refugio, Victoria, and Wilson Counties. Water use in the San Antonio River Basin in 1990, was 358,741 acft/yr of which 84 percent was in Bexar County, 7 percent was in Medina County, 1.5 percent was in Karnes County, and the remaining 7.5 percent was in the remaining 12 counties having parts of their areas located within the basin (Table 2-11). Projected water demands in the San Antonio River Basin are 544,416 acft/yr in 2020, and 727,459 acft/yr in 2050, with approximately 88 percent of projected demands in Bexar County (Table 2-11).

Total water supply available to meet projected water demands in the year 2000 ranges between 468,566 acft/yr during severe droughts and 520,989 acft/yr during high rainfall years (Table 2-11). Of the total supply projected to be available in the year 2000, 48 percent is from the Edwards Aquifer, 19 percent is from the Carrizo, Trinity, and other aquifers, 15 percent is reclaimed wastewater, and between 8 percent and 16 percent is from run-of-river surface water rights. However, due to limits upon pumpage from the Edwards Aquifer, as specified in SB 1477, the annual supply is projected to decline in the year 2010 to a range of 440,868 acft/yr for severe drought to 493,301 acft/yr in high rainfall years (Table 2-11 and Figure 2-6).

The San Antonio River Basin summary shows a projected water shortage in the year 2010 of 2,682 acft/yr for a high rainfall year, and 55,115 acft/yr during severe droughts when surface water availability is at its lowest (Table 2-11). The projected San Antonio River Basin shortage in 2020 ranges between 51,115 acft/yr and 103,549 acft/yr, and for 2050 ranges between 234,158 acft/yr and 286,591 acft/yr (Table 2-11 and Figure 2-6). It should be noted, however, that in this analysis water demands have not been matched to supplies available (i.e., a part of the supply available within the basin may not be readily available to those parts to the basin where shortages are projected).

|                                       | ······································ | Ta                 | ble 2-11         |                |                 |                                       |          |          |
|---------------------------------------|----------------------------------------|--------------------|------------------|----------------|-----------------|---------------------------------------|----------|----------|
|                                       | Comparison of                          | Water Dema         | nd and Wa        | ter Supply     | Projectio       | ns                                    |          |          |
|                                       | <u>+</u>                               | San Antonio        | <b>River Bas</b> | in Area        |                 | · · · · · · · · · · · · · · · · · · · |          |          |
|                                       | Wes                                    | t Central Tr       | ans Texas        | Study Area     | 8               |                                       |          |          |
| · · · · · · · · · · · · · · · · · · · |                                        | Trans-Texa         | s Water Pr       | ogram          |                 |                                       |          |          |
|                                       |                                        | Total Use          |                  |                | Projec          | tions                                 |          |          |
| Basin/County/City                     |                                        | in 1990            | 2000             | 2010           | 2020            | 2030                                  | 2040     | 2050     |
|                                       | · · · · · · · · · · · · · · · · · · ·  | acft               | acft             | acft           | acft            | acft                                  | acft     | acft     |
| · · · · · · · · · · · · · · · · · · · | !                                      |                    |                  | ,              | -               |                                       |          |          |
| Demand                                |                                        | · · · · · ·        |                  |                |                 |                                       |          |          |
| Municipal Demand                      |                                        | 240,233            | 325,199          | 359,369        | 403,907         | 466,116                               | 523,715  | 566,696  |
| Industrial Demand                     |                                        | 14,323             | 17,105           | 20,008         | 22,698          | 25,283                                | 28,630   | 32,092   |
| Steam-Electric Power Der              | mand                                   | 24,263             | 36,000           | 36,000         | 40,000          | 45,000                                | 50,000   | 56,000   |
| Irrigation Demand                     | · · · · · · · · · · · · · · · · · · ·  | 72,393             | 75,745           | 69,629         | 65,936          | 62,494                                | 59,274   | 56,260   |
| Mining Demand                         |                                        | 1,993              | 5,213            | 5,017          | 5,915           | 7,001                                 | 8,334    | 10,451   |
| Livestock Demand                      | 1                                      | 5,536              | 5,960            | 5,960          | 5,960           | 5,960                                 | 5,960    | 5,960    |
| Basin Total                           |                                        | 358,741            | 465,222          | 495,983        | 544,416         | 611,854                               | 675,913  | 727,459  |
| Supply                                | · ·                                    |                    |                  |                |                 |                                       |          |          |
| Groundwater/Edwards                   | · · · · · · · · · · · · · · · · · · ·  | 287,947            | 249,283          | 221,585        | 221,585         | 221,585                               | 221,585  | 221,585  |
| Groundwater/Other                     |                                        | 105,407            | 99,244           | 99,244         | 99,244          | 99,244                                | 99,244   | 99,244   |
| Local Surface&Ground                  |                                        | 5,536              | 5,960            | 5,960          | 5,960           | 5,960                                 | 5,960    | 5,960    |
| Surface/Cooling Water                 | · · · · · · · · · · · · · · · · · · ·  | 49,000             | 49,000           | 49,000         | 49,000          | 49,000                                | 49,000   | 49,000   |
| Surface Water/Medina L                | Medina Lake 1                          | 34,030             | 34,030           | 34,030         | 34,030          | 34,030                                | 34,030   | 34,030   |
| Surface Water/Medina L                | Ave.available(86%)                     | 29,266             | 29,266           | 29,266         | 29,266          | 29,266                                | 29,266   | 29,266   |
| Surface Water/Medina L                | Ave.avail-dry(40%)                     | 13,612             | 13,612           | 13,612         | 13,612          | 13,612                                | 13,612   | 13,612   |
| Surface Water/Medina L                | Min.Yr.Ava. (1%)                       | 1,625              | 1,727            | 1,743          | 1,765           | 1,787                                 | 1,828    | 1,873    |
| Surface Water/Streams                 | ROR rights                             | 53,482             | 53,482           | 53,482         | 53,482          | 53,482                                | 53,482   | 53,482   |
| Surface Water/Streams                 | Ave.available                          | 50,832             | 50,832           | 50,832         | 50,832          | 50,832                                | 50,832   | 50,832   |
| Surface Water/Streams                 | Ave.avail-dry                          | 45,466             | 45,466           | 45,466         | 45,466          | 45,466                                | 45,466   | 45,466   |
| Surface Water/Streams                 | Min.Yr.Ava.                            | 34,739             | 34,739           | 34,739         | 34,739          | 34,739                                | 34,739   | 34,739   |
| Surface Water/Recycle                 |                                        | 0                  | 30,000           | 30,000         | 30,000          | 30,000                                | 30,000   | 30,000   |
| Total Supply                          | ROR rights                             | 535,402            | 520,999          | 493,301        | 493,301         | 493,301                               | 493,301  | 493,301  |
| Total Supply                          | Ave.available                          | 527,988            | 513,585          | 485,887        | 485,887         | 485,887                               | 485,887  | 485,887  |
| Total Supply                          | Ave.avail-dry                          | 506,968            | 492,565          | 464,867        | 464,867         | 464,867                               | 464,867  | 464,867  |
| Total Supply                          | Min.Yr.Ava.                            | 482,969            | 468,566          | 440,868        | 440,868         | 440,868                               | 440,868  | 440,868  |
| Surplus/Shortage                      | ROR rights                             | 176,661            | 55,777           | -2,682         | -51,115         | -118,553                              | -182,612 | -234,158 |
| Surplus/Shortage                      | Ave.available                          | 169,247            | 48,363           | -10,095        | -58,529         | -125,967                              | -190,026 | -241.572 |
| Surplus/Shortage                      | Ave.avail-dry                          | 148,227            | 27,342           | -31,116        | -79,550         | -146,987                              | -211,046 | -262,592 |
| Surplus/Shortage                      | Min.Yr.Ava.                            | 124,228            | 3,344            | -55,115        | -103,549        | -170,986                              | -235,045 | -286,591 |
|                                       |                                        |                    |                  |                |                 |                                       |          | ·        |
| Source: Texas Water Developm          | nent Board: 1996 Consens               | us Water Plan, N   | Aost Likely C    | ase, below no  | rmal rainfall a | nd advanced v                         | water    |          |
| conservation.                         |                                        |                    |                  |                |                 |                                       |          |          |
| 1 Medina Lake Permit is for 65        | 5.830 acre-feet per vear. ar           | id is allocated an | nong Medina      | County in the  | Nueces Basin    | in the amoun                          | tof      |          |
| 31.800 acft/vr. Medina Coun           | ty in the San Antonio Bas              | in in the amount   | of 29.030 acf    | /vr. and Band  | lera County of  | the San Anto                          | nio      |          |
| Basin in the amount of 5 000          | acfl/vr. The allocations a             | re based upon p    | roportions of t  | he acreages in | Tigated using   | Medina Lake                           | water    |          |
| and an agreement between T            | he Bexar-Medina-Atascos                | a Irrigation Dist  | rict and interes | sts in Bandera | County.         |                                       |          |          |
|                                       |                                        | 1                  |                  |                |                 |                                       |          |          |
|                                       |                                        |                    |                  | . <u> </u>     |                 |                                       |          |          |
|                                       |                                        |                    |                  |                |                 | · · · · · · · · · · · · · · · · · · · | 000      |          |



- Total Supply ROR is the sum of groundwater, firm yields of reservoirs, if any, and run-of-river permits at maximum permitted quantities.
- Total Supply ROR Minimum Year is the sum of groundwater, firm yields of reservoirs, if any, and quantities from run-of-river permits during driest year of record.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

HR

SAN ANTONIO BASIN PROJECTIONS WATER DEMAND/WATER SUPPLY

HDR Engineering, Inc.

FIGURE 2-6

## 2.4.3 Guadalupe River Basin and Adjacent Lavaca-Guadalupe Coastal Basin Study Area Projected Water Demand and Water Supply Comparisons

The study area counties and parts of counties within the Guadalupe Basin include Bandera, Bastrop, Blanco, Caldwell, Comal, Fayette, Goliad, Gonzales, Guadalupe, Hays, Karnes, Kendall, Kerr, Travis, Wilson, Calhoun, DeWitt, and Victoria. Those parts of counties of the Lavaca-Guadalupe Coastal Basin are included with the Guadalupe Basin, since parts of Calhoun and Victoria Counties obtain surface water via permits which authorize the diversion and use of water form the Guadalupe River.

In 1990, water use in the Guadalupe/Lavaca-Guadalupe area was 190,261 acft/yr, and water demand for the area is projected to increase to 352,329 acft/yr in 2050 (Table 2-12). In this area, municipal use was 30 percent of the total in 1990 and is projected to increase to 41 percent of total use in 2050. In 1990, industrial use was 22 percent of total water use, and is projected at 39 percent of total use in 2050. Irrigation accounted for 29 percent of water use in the area in 1990 and is projected to decline to 4 percent in 2050 due to reductions in Federal Farm Support Programs and increased water conservation in irrigation water use.

The summary of projected water supplies and demands shows adequate supplies to meet projected demands for the Guadalupe/Lavaca-Guadalupe area (Table 2-12 and Figure 2-7).<sup>12</sup> For the Guadalupe/Lavaca-Guadalupe area, projected annual water supplies beginning in the year 2010 range from a low of 460,658 acft/yr during severe droughts to 570,451 acft/yr during wet weather conditions (Table 2-12 and Figure 2-7). These quantities are greater than projected total demands for the entire area; however, as mentioned in footnote number 12, shortages are projected for the upstream, Hill Country counties.

<sup>&</sup>lt;sup>12</sup> However, it is noted and emphasized that in the Hill Country area, Counties (Bandera, Blanco, Kendall, and Kerr Counties) of Guadalupe River Basin, the margins between projected supply and demand are very thin, and, as a practical matter, groundwater supplies from the Trinity Group aquifers for these counties are not readily available to meet the needs of the growing cities within the area, due to the fact that well yields are quite low which would make it necessary to drill and equip a large number of widely-spaced wells in order to obtain the water that is indicated to be available from these aquifers.

|                                |                                   | Tab               | le 2-12         |                             |                            |              |              |         |
|--------------------------------|-----------------------------------|-------------------|-----------------|-----------------------------|----------------------------|--------------|--------------|---------|
|                                | Comparison of W                   | ater Deman        | id and Wat      | ter Supply                  | Projection                 | <u>s</u>     |              |         |
|                                | Guadalupe River Basin a           | nd Adjacen        | t Lavaca-G      | uadalupe                    | Coastal Ba                 | sin Area     |              |         |
|                                |                                   | central Ira       | No 1 exas S     | tudy Area                   |                            |              | - ·          |         |
|                                |                                   | Tails-Texas       | water Fit       | igi ani                     | Dunia                      | ***          |              |         |
| Denin (Constant) (N) atom      | ¥ 741124                          | Total Use         | 2000            | 3010                        | Projec                     | 2020         | 20.40        |         |
| Basin/County/water             |                                   | n 1990            | 2000<br>acft    | 2010<br>acft                | $\frac{2020}{\text{ooft}}$ | 2030         |              | 2050    |
|                                |                                   | ath               | acit            | acit                        | acit                       | acit         | acit         |         |
| Demand                         |                                   |                   |                 |                             | · ·                        |              |              |         |
| Municipal Demand               |                                   | 60 360            | 81 251          | 89 593                      | 99 959                     | 116 618      | 130 695      | 145 364 |
| Industrial Demand              |                                   | 44 226            | 77 155          | 92 557                      | 101.736                    | 111 573      | 123 776      | 136 593 |
| Steam-Electric Power De        | emand                             | 13.052            | 23 000          | 25 000                      | 30,000                     | 30.000       | 30,000       | 30,000  |
| Irrigation Demand              |                                   | 58 400            | 46 308          | 39 129                      | 33 812                     | 29.482       | 26 265       | 23 781  |
| Mining Demand                  |                                   | 3 606             | 8 868           | 8 081                       | 7 864                      | 7 955        | 5 723        |         |
| Livestock Demand               |                                   | 10 617            | 12 093          | 12 003                      | 12 003                     | 12 003       | 12 003       | 12 003  |
| Basin Tots                     | al 1                              | 10.017            | 248 675         | 266 453                     | 285 464                    | 307 721      | 328 552      | 252 220 |
| Supply                         |                                   | 190,201           |                 | 200,400                     | 205,404                    | 307,721      |              | 332,329 |
| Groundwater/Edwards            |                                   | 10 717            | 17.070          | 15 173                      | 15 173                     | 15 173       | 15 173       | 15 173  |
| Groundwater/Other              |                                   | 158 541           | 155 508         | 155 508                     | 155 508                    | 155 508      | 155 508      | 155 508 |
| Surface Water/Canyon           | Firm Vield to users 7             | 17 502            | 36 000          | 47 305                      | 47 305                     | 47 305       | 47 305       | 135,508 |
| Surface Water/Canyon           | Firm Vield remaining 2            | 65 035            | 46 528          | 25 222                      | 25 200                     | 25 202       | - 47,303     | 47,303  |
| Local Surface & Ground         | Timi Tieu temaining 5             | 10.617            | 12 002          | 12 003                      | 12 002                     | - 12 002     | 12.003       | 12 002  |
| Surface Water/Streams          | POP rights Lavage Bacin           | 801               |                 | <u>12,093</u><br><u>801</u> | 12,095                     | 901          | 12,095       | 12,093  |
| Surface Water/Streams          | Ave available(08%)                | 785               | 785             | 795                         | 705                        | 785          | 795          |         |
| Surface Water/Streams          | Ave avail-dr/(96%)                | 760               | 760             | 760                         | 765                        | 760          | 760          | 760     |
| Surface Water/Streams          | Min Vr Ava (820/)                 |                   |                 | 665                         | 645                        |              | 109          | /09     |
| Surface Water/Streams          | POP rights I av Guad CP           | 549               | 548             | 548                         | 549                        | 549          | 548          | 549     |
| Surface Water/Streams          | Ava supilable(05%) 1              | 521               | 521             | 521                         | 521                        | 521          | 521          | 540     |
| Surface Water/Streams          | Ave.available(95%) 4              | <u> </u>          |                 | 321                         | 321                        |              | 321          |         |
| Surface Water/Streams          | Ave.avail-dry(85%)                | 400               | 400             | 400                         | 201                        | 201          | 201          | 400     |
| Surface Water/Streams          | DOD vielte Crad I                 | 202 701           | 202 701         | 202 701                     | 202 701                    | 202 701      | 202 701      | 202 701 |
| Surface Water/Streams          | ROR rights Guadalupe              |                   | 303,701         | 303,701                     | 303,701                    | 303,701      | 303,701      | 303,701 |
| Surface Water/Streams          | Ave.available                     | 292,245           | 292,245         | 292,245                     | 292,245                    | 292,245      | 292,245      | 292,245 |
| Surface Water/Streams          | Ave.avail-dry                     | 208,300           | 208,350         | 268,356                     | 268,356                    | 268,356      | 268,356      | 208,330 |
| Surface water/Streams          | Min. Yr.Ava.                      | 194,291           | 194,291         | 194,291                     | 194,291                    | 194,291      | 194,291      | 194,291 |
| Total Supply                   | ROR rights                        | 576,552           | 572,348         | 570,451                     | 570,451                    | 570,451      | 570,451      | 570,451 |
| Total Supply                   | Ave.available                     | 565,055           | 560,849         | 558,952                     | 558,952                    | 558,952      | 558,952      | 558,952 |
| Total Supply                   | Ave.avail-dry                     | 541,093           | 536,889         | 534,992                     | 534,992                    | 534,992      | 534,992      | 4,992   |
| Total Supply                   | Min.Yr.Ava.                       | 466,759           | 462,555         | 460,658                     | 460,658                    | 460,658      | 460,658      | 460,658 |
| Surplus/Shortage               | ROR rights                        | 386,291           | 323,673         | 303,998                     | 284,987                    | 262,730      | 241,899      | 218,122 |
| Surplus/Shortage               | Ave.available                     | 374,792           | 312,174         | 292,499                     | 273,488                    | 251,231      | 230,400      | 206,623 |
| Surplus/Shortage               | Ave.avail-dry                     | 350,832           | 288,214         | 268,539                     | 249,528                    | 227,271      | 206,440      | 182,663 |
| Surplus/Shortage               | Min.Yr.Ava.                       | 276,498           | 213,880         | 194,205                     | 175,194                    | 152,937      | 132,106      | 108,329 |
| :                              | i                                 |                   |                 | :                           |                            |              |              |         |
| Source: Texas Water Developm   | nent Board; 1996 Consensus Wa     | ter Plan, Most I  | likely Case, b  | elow normal r               | ainfall and ad             | vanced water | conservtion. |         |
| 1 Totals do not include demand | ds for that part of Calhoun Count | y that is located | d in the Colora | ndo-Lavaca Co               | astal Basin.               |              |              |         |

2 Canyon Lake is located in Comal County, and has an estimated Firm Yield of 82,627 acft/yr. The quantity shown on this row is the sum

of existing contracts and tentative commitments to customers located in counties of the Guadalupe-Blanco River Authority's service area.

3 The uncomitted supply from the yield of Canyon Lake; this quantity is included in basin totals for all cases of weather conditions.

4 Used availibility estimates for neighboring Calhoun County of the Guadalupe Basin.

 $\sim \sim \sim \sim$ 



 Total Supply ROR is the sum of groundwater, firm yields of reservoirs, if any, and run-of-river permits at maximum permitted quantities.

 Total Supply ROR Minimum Year is the sum of groundwater, firm yields of reservoirs, if any, and quantities from run-of-river permits during driest year of record. TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

**GUADALUPE AND ADJACENT** 

**COASTAL BASINS PROJECTIONS** 

WATER DEMAND/WATER SUPPLY

HR

HDR Engineering, Inc.

FIGURE 2-7

2-32

# 2.4.4 Lower Colorado River Basin and Adjacent Coastal Basins Area Projected Water Demand and Water Supply Comparisons

The Lower Colorado River Basin and adjacent Coastal Basins area includes all of Colorado, Matagorda, and Wharton Counties, and parts of Bastrop, Blanco, Burnet, Caldwell, Fayette, Hays, Kendall, Kerr, Lee, Llano, San Saba and Travis Counties that are located within the Colorado River Basin. In the Lower Colorado River Basin Coastal area, parts of Colorado, Wharton, and Matagorda Counties are located in the adjacent Brazos-Colorado and Colorado-Lavaca Coastal Basins, with parts of Colorado and Wharton Counties also located in the adjacent Lavaca River Basin. Since these parts of those counties obtain surface water from the Lower Colorado River, they have been grouped with the Lower Colorado River Basin for purposes of presenting the water demand and water supply comparisons.

In 1990, water use in the Lower Colorado/Adjacent Coastal Basins area was 1,043,323 acft/yr, of which 14 percent was for municipal purposes, 1.5 percent was for industrial uses 5.5 percent was for steam-electric power generation, 71 percent was for irrigation, 3.6 percent was for mining, 1 percent was for livestock, and 3 percent was for in-stream flows (Table 2-13). Projected water demands in 2050, with advanced water conservation, are 1,038,987 acft/yr, of which 35 percent are for municipal purposes, 2.4 percent are for industrial purposes, 9.6 percent are for steam-electric power generation, 46 percent are for irrigation, 2.7 percent are for mining, 1 percent is for livestock, and 3 percent is for in-stream purposes. For the 1990 through 2050 projection period, municipal water demand is projected to increase from 148,325 acft/yr to 362,739 acft/yr, with industrial water demand increasing from 15,657 acft/yr to 25,124 acft/yr, and steam-electric power water demand increasing from 57,718 acft/yr to 100,000 acft/yr. Due to declining Federal Farm Support programs and increase from 740,655 acft/yr in 1990 to 480,018 acft/yr in 2050 (Table 2-13).

The total water supply available from ground and surface sources, including the firm yield of the Highland Lakes and permits to divert run-of-river flows is shown for the Lower Colorado/Adjacent Coastal Basins area (Table 2-13). The summary for all counties and parts of counties shows a total supply for the period 2000 through 2050 ranging from 1,095,256 during

2-33

severe drought conditions to 1,972,093 acft/yr during wet weather conditions (Table 2-13). The comparison of projected water demands with projected water supplies, shows a surplus for the area in 2050 of 56,275 acft/yr for the severe drought condition and a surplus of 933,112 acft/yr for wet weather conditions during which run-of-river flows could potentially supply 1,178,396 acft/yr from run-of-river rights in the Lower Colorado River Basin (Table 2-13 and Figure 2-8). However, as is the case in other basins of the West Central Trans-Texas study area, in this study supplies have not been allocated to individual demands. There are several counties within the basin where shortages are projected.

|                                       |                                         | Tal                                   | ble 2-13   |                                       |            | <del></del> | - <u> </u> |                           |
|---------------------------------------|-----------------------------------------|---------------------------------------|------------|---------------------------------------|------------|-------------|------------|---------------------------|
|                                       | Comparison of W                         | ater Dema                             | nd and Wa  | ter Supply                            | Projection | 15          |            |                           |
|                                       | Lower Colorad                           | o River and                           | l Adjacent | Coastal Ba                            | sins Area  |             |            | ···· ··· -                |
| · · ···                               | West                                    | Central Tra                           | ans-Texas  | Study Area                            |            |             |            | ······                    |
| · · · · · · · · · · · · · · · · · · · | T                                       | rans-Texas                            | Water Pr   | ogram                                 |            |             |            |                           |
|                                       |                                         | Total Use                             |            |                                       | Proje      | ctions      | <u></u>    | · · · · ·                 |
| Basin and Adjacent A                  | reas                                    | in 1990                               | 2000       | 2010                                  | 2020       | 2030        | 2040       | 2050                      |
|                                       |                                         | acft                                  | acft       | acft                                  | acft       | acft        | acft       | acft                      |
|                                       |                                         |                                       |            |                                       |            |             |            |                           |
| Demand                                | ······································  | 149 275                               | 210.047    | 222.049                               | 264 710    | 206 406     | 222 122    | 262 720                   |
| Municipal Demand                      |                                         | 140,525                               | 17 462     | 252,040                               | 204,719    | 300,400     | 332,133    | $-\frac{302,739}{25,124}$ |
| Industrial Demand                     |                                         | 15,057                                | 62 500     | 72 000                                | 77,000     | 21,410      | 23,112     | 25,124                    |
| Steam-Electric Power De               | emand                                   | 740 (55                               | 725.102    | /2,000                                | //,000     | 92,000      | 92,000     | 100,000                   |
| Mining Demand                         | · · · · · · · · · · · · · · · · · · ·   | /40,000                               | 125,192    | 10,00/                                | 008,/39    | 332,487     | 214,908    | 480,018                   |
| Wining Demand                         |                                         | 38,248                                | 29,449     | 20,103                                | 21,603     | 23,344      | 25,508     | 28,100                    |
| Livestock Demand                      |                                         | 10,920                                | 11,200     | 21,200                                | 21,200     | 21,200      | 11,200     | 11,200                    |
| In-Stream Flows                       |                                         | 31,800                                | 31,800     | 31,800                                | 31,800     | 31,800      | 31,800     | 31,800                    |
| Basin Tota                            | al Demand                               | 1,043,525                             | 1,088,550  | 1,062,189                             | 1,035,556  | 1,038,647   | 1,030,721  | 1,038,981                 |
| Groundwater                           |                                         | 419 314                               | 313 606    | 313 606                               | 313 606    | 313 606     | 313 606    | 313 606                   |
| Surface Water/HLakes/It               | 1-Basin/Firm*                           | 403 736                               | 403 736    | 403 736                               | 403 736    | 403 736     | 403 736    | 403 736                   |
| Local Surface& Ground                 |                                         | 10.920                                | 11 200     | 11 200                                | 11 200     | 11 200      | 11 200     | 11 200                    |
| Surface Water/HI akes/In-S            | tream/Firm*                             | 31,800                                | 31 800     | 31,800                                | 31 800     | 31 800      | 31 800     | 31 800                    |
| Surface Water/Streams                 | Lavaca Basin ROR rights                 | 33 355                                | 33 355     | 33 355                                | 33 355     | 33 355      | 33 355     | 33 355                    |
| Surface Water/Streams                 | Ave available(60%)4 LB                  | 20.013                                | 20.013     | 20.013                                | 20.013     | 20.013      | 20.013     | 20.013                    |
| Surface Water/Streams                 | Ave.avali-drv(54%) LB                   | 18.012                                | 18.012     | 18.012                                | 18.012     | 18.012      | 18.012     | 18.012                    |
| Surface Water/Streams                 | Min.Yr.Ave. (43%) LB                    | 14.343                                | 14.343     | 14.343                                | 14.343     | 14.343      | 14.343     | 14.343                    |
| Surface Water/Streams                 | ROR rightsFrom Colo                     | 1.178.396                             | 1.178.396  | 1.178.396                             | 1.178.396  | 1.178.396   | 1.178.396  | 1.178.396                 |
| Surface Water/Streams                 | Ave.available                           | 635,177                               | 635,177    | 635,177                               | 635,177    | 635,177     | 635,177    | 635,177                   |
| Surface Water/Streams                 | Ave.avali-dry                           | 497,108                               | 497,108    | 497,108                               | 497,108    | 497,108     | 497,108    | 497,108                   |
| Surface Water/Streams                 | Min.Yr.Ave.                             | 320,571                               | 320,571    | 320,571                               | 320,571    | 320,571     | 320,571    | 320,571                   |
| Total Supply                          | ROR rights                              | 2,077,521                             | 1,972,093  | 1,972,093                             | 1,972,093  | 1,972,093   | 1,972,093  | 1,972,093                 |
| Total Supply                          | Ave.available                           | 1.520,960                             | 1,415,532  | 1,415,532                             | 1,415,532  | 1,415,532   | 1,415,532  | 1,415,532                 |
| Total Supply                          | Ave.avali-dry                           | 1,380,890                             | 1,275,462  | 1,275,462                             | 1,275,462  | 1,275,462   | 1,275,462  | 1,275,462                 |
| Total Supply                          | Min.Yr.Ave.                             | 1.200.684                             | 1,095,256  | 1,095,256                             | 1,095,256  | 1,095,256   | 1,095,256  | 1,095,256                 |
| Surplus/Shortage                      | ROR rights                              | 1,034,198                             | 883,543    | 909,904                               | 936,757    | 933,446     | 941,372    | 933,112                   |
| Surplus/Shortage                      | Ave.available                           | 477,637                               | 326,982    | 353,343                               | 380,196    | 376,885     | 384,811    | 376,551                   |
| Surplus/Shortage                      | Ave.avali-dry                           | 337,567                               | 186,911    | 213,272                               | 240,126    | 236,814     | 244,740    | 236,481                   |
| Surplus/Shortage                      | Min.Yr.Ave.                             | 157,361                               | 6,706      | 33,067                                | 59,920     | 56,609      | 64,535     | 56,275                    |
|                                       | <u></u>                                 |                                       |            | · · · · · · · · · · · · · · · · · · · |            |             |            |                           |
|                                       |                                         | · · · · · · · · · · · · · · · · · · · |            |                                       |            |             |            |                           |
|                                       |                                         | · · · · · · · · · · · · · · · · · · · | <u> </u>   |                                       |            |             |            |                           |
|                                       |                                         |                                       |            |                                       |            | ·           |            |                           |
| · · · · · · · · · · · · · · · · · · · | <u></u>                                 |                                       |            |                                       |            |             |            |                           |
|                                       | - + · · · · · · · · · · · · · · · · · · |                                       |            | ··· †                                 |            |             |            |                           |
|                                       |                                         |                                       |            |                                       |            | <u></u>     |            |                           |
| See Footnotes on Next P               | 'age                                    |                                       |            |                                       |            |             |            |                           |
|                                       |                                         |                                       |            |                                       |            |             | ••••••     |                           |

Summary Report of Water Supply Alternatives

| Lower Colorado Basin Water Supply Summary                          |                 |                |                |                |                                       |                                         |           |
|--------------------------------------------------------------------|-----------------|----------------|----------------|----------------|---------------------------------------|-----------------------------------------|-----------|
| San Saha County                                                    | 20              | 20             | 20             | 20             | 20                                    |                                         | 20        |
| Liano County                                                       | 1 818           | 1 8 1 8        | 1 8 1 8        | 1 919          | 1 9 1 9                               | 1 919                                   | 1 919     |
| Gillespie County                                                   | 1,010           | 1,018          | 1,010          | 1,010          | 1,010                                 | 1,010                                   | 1,010     |
| Burnet County                                                      | 8.901           | 8.901          | 8,901          | 8 901          | 8 901                                 | 8 901                                   | 8 901     |
| Travis County/ City of AustinM&I                                   | 148.300         | 148,300        | 148,300        | 148,300        | 148.300                               | 148,300                                 | 148 300   |
| Travis County/ Other UtilitiesM&I                                  | 41,286          | 41,286         | 41,286         | 41,286         | 41.286                                | 41.286                                  | 41.286    |
| Reserved                                                           | 50,000          | 50,000         | 50,000         | 50,000         | 50,000                                | 50,000                                  | 50,000    |
| Uncomitted                                                         | 54,967          | 54,967         | 54,967         | 54,967         | 54,967                                | 54,967                                  | 54,967    |
| Total included in Travis County Comparison                         | 294,553         | 294,553        | 294,553        | 294,553        | 294,553                               | 294,553                                 | 294,553   |
| Bastrop County                                                     | 850             | 850            | 850            | 850            | 850                                   | 850                                     | 850       |
| Fayette County                                                     | 63,863          | 63,863         | 63,863         | 63,863         | 63,863                                | 63,863                                  | 63,863    |
| Matagorda County                                                   | 33,743          | 33,743         | 33,743         | 33,743         | 33,743                                | 33,743                                  | 33,743    |
| Surface Water/HLakes/In-Basin/Firm*                                | 403,766         | 403,766        | 403,766        | 403,766        | 403,766                               | 403,766                                 | 403,766   |
| Surface Water/HLakes/In-Stream/Firm*                               | 31,800          | 31,800         | 31,800         | 31,800         | 31,800                                | 31,800                                  | 31,800    |
| Surface Water/HLakes/Out-Basin/Firm*1                              | 9,700           | 9,700          | 9,700          | 9,700          | 9,700                                 | 9,700                                   | 9,700     |
| Surface Water/HLakes/Firm*                                         | 445,266         | 445,266        | 445,266        | 445,266        | 445,266                               | 445,266                                 | 445,266   |
|                                                                    |                 |                |                |                |                                       |                                         |           |
| Surface Water/Streams/In-Basin/ROR rights*                         | 679,246         | 679,246        | 679,246        | 679,246        | 679,246                               | 679,246                                 | 679,246   |
| Surface Water/Streams/Out of Basin/RORrights*2                     | 499,150         | 499,150        | 499,150        | 499,150        | 499,150                               | 499,150                                 | 499,150   |
| Surface Water/Streams/ROR rights*                                  | 1,178,396       | 1,178,396      | 1,178,396      | 1,178,396      | 1,178,396                             | 1,178,396                               | 1,178,396 |
|                                                                    |                 |                |                |                |                                       |                                         |           |
| Source: Texas Water Development Board; 1996 Consensus Wa           | ater Plan, Mos  | t Likely Case, | below norma    | rainfall and a | dvanced wate                          | r                                       |           |
| conservation.                                                      |                 |                |                | 2-1            |                                       |                                         |           |
| Terres Long 1003, DOD more Due of Distance                         | ne Lower Cold   | brado Kiver Ba | asın," Lower ( | olorado Kive   | r Authority, A                        | ustin,                                  |           |
| 1 Soles of Highland Lekes Firm Vield to peichboring sition in V    | Williamaan Co   | water (Cador I | l              |                | <b></b>                               |                                         |           |
| 2 Pup of Piver Picks which are diverted into paighboring contex in | stal basing (Se | Table 4 5      | Park and Lean  | do and Color   |                                       | actal                                   |           |
| Basins and the Lavaca Basin Tables                                 |                 |                |                |                | UU-Lavaca A                           |                                         |           |
|                                                                    | ·               |                | ļ              |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    | <u> </u>        |                |                |                |                                       |                                         |           |
|                                                                    |                 |                |                | <u> </u>       | ·                                     | 1                                       |           |
|                                                                    |                 | +              |                |                |                                       |                                         | <u>├</u>  |
|                                                                    |                 | <u> </u>       |                |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    | 1               |                | <u> </u>       |                | • • • • • • • • • • • • • • • • • • • | • · · · · · · · · · · · · · · · · · · · | i         |
|                                                                    | <u> </u>        |                |                |                | /····=                                |                                         |           |
|                                                                    |                 | 1              | 1              | <u> </u>       | <u> </u>                              | 1                                       | •         |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       |                                         |           |
|                                                                    |                 |                |                |                |                                       | $\diamond\diamond\diamond$              |           |



- Total Supply ROR is the sum of groundwater, firm yields of reservoirs, if any, and run-of-river permits at maximum permitted quantities.
- Total Supply ROR Minimum Year is the sum of groundwater, firm yields of reservoirs, if any, and quantities from run-of-river permits during driest year of record.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

HR

HDR Engineering, Inc.

LOWER COLORADO AND ADJACENT COASTAL BASINS PROJECTIONS WATER DEMAND/WATER SUPPLY FIGURE 2-8 2.4.5 Projected Water Demand and Water Supply Comparison for Study Area Counties of Colorado-Lavaca Coastal Basin, Lavaca Basin, and San Antonio-Nueces Coastal Basin In this section, water demand and water supply projections are presented for those parts of 10 study area counties that are located in adjacent river and coastal basins. Tabulations are shown for parts of Bastrop, Burnet, Lee, and Travis Counties that are located in the Brazos River Basin (Table 2-14). Tabulations are also shown for that part of Calhoun County that is located in the Colorado-Lavaca Coastal Basin; parts of Fayette and Gonzales Counties of the Lavaca River Basin; and parts of Calhoun, Goliad, Karnes, and Refugio Counties located in the San Antonio-Nueces Coastal Basin.

The comparison of projected water demands with projected water supplies for the parts of study area counties mentioned above shows that projected supplies available in each of the parts of counties are adequate to meet projected demands to 2050, except for the small area of Travis County that is located in the Brazos River Basin (Table 2-14). In the case of that part of Travis County, water use in 1990 was 335 acft/yr, with 2050 projected demands of 639 acft/yr. The only locally available water supply is about 80 acft/yr of groundwater, leaving a projected shortage of 559 acft/yr in 2050 (Table 2-14). In most other cases for this group of parts of counties of the study area (with the exception of the San Antonio-Nueces Coastal Basin), projected supply in 2050 is at least 50 percent higher than 2050 projected demands (Table 2-14). However, as is the case elsewhere, there may be local area shortages in addition to the Travis County area mentioned above.

|                                                          |                                         | Т               | able 2-14  | · · · · · · · · · · · · · · · · · · · |             |         |          |         |  |
|----------------------------------------------------------|-----------------------------------------|-----------------|------------|---------------------------------------|-------------|---------|----------|---------|--|
|                                                          | Comparison                              | of Water Dema   | and and W  | ater Suppl                            | y Projectio | ns      |          |         |  |
|                                                          | A                                       | djacent River a | nd Coastal | <b>Basin</b> Are                      | as*         |         |          |         |  |
|                                                          |                                         | West Central Ti | rans Texas | Study Are                             | a           |         |          |         |  |
|                                                          |                                         | Trans-Texa      | s Water P  | rogram                                |             |         |          |         |  |
|                                                          |                                         | Total Use       |            |                                       | Projec      | tions   |          |         |  |
| Basin/County/Water                                       | Utility*                                | in 1990         | 2000       | 2010                                  | 2020        | 2030    | 2040     | 2050    |  |
| ·                                                        |                                         | acft            | acft       | acft                                  | acft        | acft    | acft     | acft    |  |
|                                                          |                                         |                 |            |                                       |             |         |          |         |  |
| Brazos Basin Summar                                      | <u>y</u>                                |                 | 0.707      | 0.004                                 | 2.026       |         |          |         |  |
| Total Municipal Deman                                    | <u>d</u>                                | 2,078           | 2,785      | 2,886                                 | 3,036       | 3,307   | 3,501    | 3,684   |  |
| Industrial Demand                                        |                                         | 251             | 278        | 303                                   | 324         |         | 359      | 3/4     |  |
| Steam-Electric Power D                                   | emano                                   | 250             | 246        |                                       | 224         | 212     | 0        | 100     |  |
| Irrigation Demand                                        |                                         | 239             | 240        | 235                                   | 224         | 213     |          |         |  |
| Mining Demand                                            |                                         | 14              | 2 071      | 2 071                                 | 2 071       | 2.071   | 2 071    | 20      |  |
| Livestock Demand                                         |                                         | 1,808           | 2,071      | 2,071                                 | 2,071       | 5.05()  | 2,071    | 2,071   |  |
| Brazos Basin Total De                                    |                                         | 4,410           | 5,444      | 5,544                                 | 5,090       | 3,930   | 0,154    | 0,343   |  |
|                                                          | <u>+</u> -                              | 10.000          | 10 724     | 10 774                                | 10 724      | 10 774  | 10 774   | 10 77 4 |  |
| Groundwater                                              |                                         | 1 909           | 2 071      | 2 071                                 | 2 071       | 2.071   | 2.071    | 2 071   |  |
| Local Surface&Ground                                     | POP rights                              | 1,000           | 2,071      | 2,071                                 | 2,071       | 2,071   | 2,071    | 2,071   |  |
| Total Suraly                                             | KOK fights                              | 20 700          | 20 807     | 20.807                                | 20.907      | 20.807  | 20.807   | 20 807  |  |
| Sumlus/Shortage                                          | <u> </u>                                | 16 389          | 15 363     | 15 263                                | 15 117:     | 14 851  | 14 653   | 14 462  |  |
| Sulpius/Shortage                                         |                                         |                 | 15,505     | 15,205                                | 13,117      | 14,051  | 14,055   | 14,402  |  |
|                                                          |                                         |                 |            |                                       |             | <u></u> |          |         |  |
| Colorado-Lavaca Coas                                     | stal Basin (1)                          |                 |            |                                       |             |         |          |         |  |
| Calhoun (part)                                           |                                         | 127             | 171        | 1(0)                                  | 155         | 1(0)    | 1.00     | 170     |  |
| Point Comfort                                            | · · · · · · · · · · · · · · · · · · ·   | 137             | 247        | 250                                   | 270         | 100     | 210      | 1/0     |  |
| Kural<br>Tatal Muniainal Dama                            |                                         | 217             | 419        | 410                                   | 425         | 454     | <u> </u> | 533     |  |
| Total Municipal Dema                                     | <u></u>                                 | 6 2 4 2         | 16 529     | 20 201                                | 22 500      | 25 026  | 27 660   | 20 404  |  |
| Steem Electric Power D                                   | emand                                   | 0,543           | 10,558     | 100                                   | 100         | 100     | 100      | 100     |  |
| Irrigation Demand                                        | Cilland                                 | 02              | 100        | 100                                   | 100         | 100     | 0i       | 100     |  |
| Mining Demand                                            |                                         | 0               | 1          | 1                                     | 0           | 0       |          | 0       |  |
| Livestock Demand                                         |                                         | 13              | 15         | 15                                    | 15          | 15      | 15       |         |  |
| Total Dema                                               |                                         | 6 635           | 17 072     | 20.926                                | 23 130      | 25 605  | 28 272   | 31 138  |  |
| Supply                                                   | T                                       | 0,055           | 17,072     |                                       |             | 25,005  | 20,272   | 51,150  |  |
| Groundwater                                              | <u> </u>                                | 294             | 294        | 294                                   | 294         | 294     | 294      | 294     |  |
| Local Surface& Ground                                    | ·                                       | 13              | 15         | 15                                    | 15          | 15      | 15       | 15      |  |
| Surface Water                                            | Lake Texana                             | 7 000           | 32 000     | 32 000                                | 32 000      | 32 000  | 32,000   | 32,000  |  |
| Total Supply                                             |                                         | 7.307           | 32,309     | 32,309                                | 32.309      | 32.309  | 32.309   | 32,309  |  |
| Surplus/Shortage                                         | · · · · · · · · · · · · · · · · · · ·   | 672             | 15.237     | 11.383                                | 9,179       | 6,704   | 4.037    | 1,171   |  |
|                                                          |                                         |                 |            |                                       |             |         |          |         |  |
| Lavaca Basin Summar                                      |                                         |                 |            | <u></u>                               |             |         |          |         |  |
| Total Municipal Demand 915 954 961 980 1 070 1 175 1 300 |                                         |                 |            |                                       |             |         |          |         |  |
| Industrial Demand                                        | <u> </u>                                | 32              | 37         | 44                                    | 50          | 55      | 63       | 71      |  |
| Steam-Electric Power D                                   | emand                                   |                 | 0          | 0                                     | 0           | 0       | 0        | 0       |  |
| Irrigation Demand                                        |                                         | 21              | 19         | 18                                    | 17          | 15      | 14       | 13      |  |
| Mining Demand                                            |                                         |                 |            | 7                                     | 3           | 1       | 0        | 0       |  |
| Livestock Demand                                         | ivestock Demand 431 555 555 555 555 555 |                 |            |                                       |             |         |          |         |  |
| Lavaca Basin /Subtota                                    | I Demand                                | 1.402           | 1.574      | 1.585                                 | 1.605       | 1.696   | 1.807    | 1.939   |  |
| Supply                                                   |                                         | ,               |            |                                       |             |         |          |         |  |

|                                  | ··                           |                  |                |                                        |                 |                |                                       |         |
|----------------------------------|------------------------------|------------------|----------------|----------------------------------------|-----------------|----------------|---------------------------------------|---------|
| Groundwater                      |                              | 2,357            | 2,357          | 2,357                                  | 2,357           | 2,357          | 2,357                                 | 2,357   |
| Local Surface&Ground             |                              | 431              | 555            | 555                                    | 555             | 555            | 555                                   | 555     |
| Surface Water/Streams            | In-BasinRORrights            | 1                | 1              | 1                                      | 1               | 1              | 1                                     | 1       |
| Surface Water/Streams            | Ave.available                | 2,789            | 2,913          | 2,913                                  | 2,913           | 2,913          | 2,913                                 | 2,913   |
| Surface Water/Streams            | Ave.avali-dry                | 1,387            | 1,339          | 1,328                                  | 1,308           | 1,217          | 1,106                                 | 974     |
| Surface Water/Streams            | Min.Yr.Ave.                  | 0                | 0              | 0                                      | 0               | 0              | 0                                     | 0       |
| Surface Water/Streams            | ROR rightsFrom Colo          | 0                | 0              | 0                                      | 0               | 0              | 0                                     | 0       |
| Surface Water/Streams            | Ave.available                | 923              | 968            | 974                                    | 993             | 1,083          | 1,188                                 | 1,313   |
| Surface Water/Streams            | Ave.avali-dry                | 40               | 51             | 57                                     | 63              | 68             | 76                                    | 84      |
| Surface Water/Streams            | Min.Yr.Ave.                  | -0               | 0              | 0                                      | 0               | 0              | 0.                                    | 0       |
| Total Supply                     | ROR rights                   | 21               | 19             | 18                                     | 17              | 15             | 14                                    | 13      |
| Total Supply                     | Ave.available                | 3                | 9              | 7                                      | 3               | 1              | 0                                     | 0       |
| Total Supply                     | Ave.avali-dry                | 431              | 559            | 558                                    | 556             | 555            | 555                                   | 555     |
| Total Supply                     | Min.Yr.Ave.                  | 1,438            | 1,620          | 1,631                                  | 1,651           | 1,742          | 1,853                                 | 1,985   |
| Surplus/Shortage                 | ROR rights                   | 44               | 64             | 62                                     | <b>6</b> 0 :    | 59             | 59                                    | 59      |
| Surplus/Shortage                 | Ave.available                | 2,357            | 2,357          | 2,357                                  | 2,357           | 2,357          | 2,357                                 | 2,357   |
| Surplus/Shortage                 | Ave.avali-dry                | 897              | 1,021          | 1,021                                  | 1,021           | 1,021          | 1,021                                 | 1,021   |
| Surplus/Shortage                 | Min.Yr.Ave.                  | 37               | 47             | 47                                     | 47              | 47             | 47                                    | 47      |
|                                  |                              | ····             |                | •••••••••••••••••••••••••••••••••••••• |                 |                | · · · · · · · · · · · · · · · · · · · | ·····   |
| San Antonio-Nueces Co            | astal Basin Summar           | v                |                |                                        |                 |                |                                       | <u></u> |
| Total Municipal Deman            |                              | 7 259            | 32 246         | 32 235                                 | 32 224          | 32 213         | 32 204                                | 32 106  |
| Industrial Demand                |                              | 7,257            | 32,240         | 37 358                                 | 22 344          | 27 227         | 27 278                                | 32,190  |
| Steam Electric Dower D           | emond                        | 3 /03            | 18 276         | 14 428                                 | 12 2/2          | 0.858          | 7 206                                 | 1 555   |
| Irrigation Domand                |                              | 3,403            | 5 405          | 5 601                                  | 5 752           | 6.024          | 6 220                                 | 6 420   |
| Mining Demand                    |                              | 4,450            | 5,495          | 5,001                                  | 3,733           | 0,024          | 0,230                                 | 0,429   |
| Liverteek Demand                 |                              | 10.025           | 10 707         | 10 712                                 | 10 721          | 10.910         | 10.022                                | 20.047  |
| Sen Antonio Nuessa F             | anin (Subtatel Dam           | 19,923           | 19,707         | 19,715                                 | 102 205         | 100.246        | 19,923                                | 20,047  |
| San Antonio-Nueces E             |                              | 42,330           | 100,097        | 104,335                                | 102,293         | 100,240        | 97,901                                | 95,550  |
| Groundwater                      |                              | 22.250           | 22 446         | 22 456                                 | 22 475          | 22 564         | 22 674                                | 22 805  |
| Local Surface & Ground           |                              | 16 426           | 15 426         | 15 222                                 | 15 190          | 14 011         | 14 712                                | 14 521  |
| Local Surface& Ground            | DOD -labla                   | 10,430           | 13,430         | 15,552                                 | 15,160          | 2 012          | 14,712                                | 14,521  |
| Surface Water/Streams            |                              | 2,700            | 2,912          | 2,912                                  | 2,912           | 2,912          | 2,912                                 | 2,912   |
| Surface Water/Streams            | Ave.avaliable                | 2,700            | 2,912          | 2,712                                  | 2,912           | 2,712          | 2,912                                 | 2,912   |
| Surface Water/Streams            | Ave.avail-ury                | 2,700            | 2,912          | 2,912                                  | 2,912           | 2,912          | 2,912                                 | 2,912   |
| Total Surplu                     | MIR. I I.Ave.                | 41 4923          | 3,003          | 3,072                                  | 3,007           | 3,072          | 3,001                                 | 3,000   |
| Total Supply                     |                              | 41,402           | 40,794         | 40,700                                 | 40,507          | 40,307         | 40,298                                | 40,238  |
| Total Supply                     | Ave.available                | 41,482           | 40,794         | 40,700                                 | 40,507          | 40,387         | 40,298                                | 40,238  |
| Total Supply                     | Ave.avali-dry                | 41,482           | 40,794         | 40,700                                 | 40,567          | 40,387         | 40,298                                | 40,238  |
| Total Supply                     | Min. Yr.Ave.                 | 41,619           | 40,965         | 40,860                                 | 40,722          | 40,547         | 40,467                                | 40,414  |
| Surplus/Shortage                 | KOR rights                   | -876             | -07,303        | -03,035                                | -01,728         | -39,839        | -57,683                               | -55,518 |
| Surplus/Shortage                 | Ave.available                | -876             | -07,303        | -03,035                                | -01,728         | -59,859        | -57,683                               | -55,318 |
| Surplus/Shortage                 | Ave.avali-dry                | -876             | -67,303        | -63,635                                | -61,728         | -59,859        | -57,683                               | -55,318 |
| Surplus/Shortage                 | Min.Yr.Ave.                  | -739             | -67,132        | -63,475                                | -61,573         | -59,699        | -57,514                               | -55,142 |
|                                  |                              |                  |                |                                        |                 |                |                                       |         |
| Source: Texas Water Develop      | ment Board; 1996 Consensu    | is Water Plan, I | Most Likely C  | ase, below no                          | rmal rainfall a | nd advanced v  | vater                                 |         |
| conservation.                    | <u> </u>                     |                  |                |                                        |                 |                |                                       |         |
| * Parts of counties located in t | the Brazos River Basin, Colo | orado-Lavaca C   | Coastal Basin, | Lavaca River                           | Basin and San   | Antonio-Nue    | ces                                   |         |
| Coastal Basin of West Centr      | al Trans-Texas Study Area.   |                  |                |                                        |                 |                |                                       |         |
| (1) Parts of Matagorda and W     | harton Counties of the Braz  | os-Colorado an   | dColorado-La   | waca Coastal                           | Basins, and the | e              |                                       |         |
| Lavaca Basin are tabulated       | d with the Lower Colorado I  | Basin.           |                |                                        |                 |                |                                       |         |
| (2) Parts of DeWitt, Victoria,   | and Calhoun Counties locat   | ed in the Lavac  | a-Guadalupe    | Coastal Basin                          | are tabulated v | with the Guada | alupe                                 | 1       |
| River Basin.                     |                              |                  |                |                                        |                 |                |                                       | 0000    |

#### 3.0 SUMMARY OF WATER SUPPLY OPTIONS

During the West Central Trans-Texas regional water planning study, 122 water supply options (or partial options) were identified, of which 106 were evaluated with respect to potential quantities of water that each option could yield,<sup>1</sup> unit cost of water, number of acres of land impacted, and other factors. Table 3-1 is a listing of all 122 water supply options evaluated. This table includes the option number, the name of each option, the quantity of water provided, the unit costs in 1996 dollars, and the number of acres of land impacted for each option. Additionally, each option is ordered relative to the other 106 options with respect to each of the three key parameters (i.e. unit cost, quantity of water, and acres impacted). A one page summary of each option is included in Appendix A. The one page summary includes a brief description, unit cost of water, potential quantity of water that might be produced, acres impacted, and additional pertinent information about the option. A page number is shown on Table 3-1 for each option which corresponds to the page number in the appendix.

The water supply alternatives have all been studied on a stand-alone basis and many of the alternatives, if implemented, could affect water availability of other alternatives located in the same basin. For this reason, the quantity of water provided by the projects listed in Table 3-1 within the same river basin, cannot be added together. An example of this would be a reuse alternative, such as L-11, Exchange Reclaimed Water for Edwards Irrigation Water. The implementation of L-11 would significantly reduce the yield of the other reuse alternatives (e.g., L-12, L-13, and L-14). Further, the yield of downstream projects, such as Goliad Reservoir, could be affected. Thus, yield available from implementation of multiple options will require more detailed analysis.

<sup>&</sup>lt;sup>1</sup> Options involving the potential use of surface water were initially evaluated using the "Trans-Texas Environmental Criteria" specified by the Texas Water Development Board. The environmental criteria, which was subsequently modified into a "consensus criteria" by the Texas Water Development Board, Texas Natural Resource Conservation Commission, and Texas Parks and Wildlife Department established guidelines as to levels of stream flow which must be allowed to pass a potential surface water diversion point before any consideration could be given to divert surface water for other purposes. In addition, surface water options were evaluated considering full use of all existing surface water rights; i.e., only unappropriated surface water was considered to be available for potential development, except in cases where a particular option being considered was the purchase and relocation of use of existing surface water rights.

|            |                   | Table 3-1                                                                                        |          |        |                |            |                    |         |                    |
|------------|-------------------|--------------------------------------------------------------------------------------------------|----------|--------|----------------|------------|--------------------|---------|--------------------|
|            |                   | Water Supply Options32-County West Central 7                                                     | [rans-Te | xas St | udy            | Area       |                    |         |                    |
|            |                   | Comparison and Order                                                                             |          |        | •              |            |                    |         |                    |
|            |                   | Trans-Texas Water Program                                                                        | m        |        |                |            |                    |         |                    |
| App        | endix             |                                                                                                  | Quantity | of Wa  | ter            | Unit Cost  | of Water           | Acres 1 | mpacted            |
| Page       | Option            | Water Supply Options                                                                             |          | t<br>1 |                | 1st Qt. 19 | 96 Prices          | Long-1  | Гerm               |
| No.        | No                |                                                                                                  | acft/yr  | Orde   | r <sup>4</sup> | \$/acft    | Order <sup>5</sup> | No.     | Order <sup>6</sup> |
|            |                   |                                                                                                  |          |        |                |            |                    |         | •                  |
|            | 10                | Conservation / Local Alternatives                                                                | 00.000   |        | 22             | 276        | 5                  | 0       |                    |
| 1   1      | L-IU              | Euclide and Reduction (Water Conservation)                                                       | 38,000   |        | 23             | 2/0        | ر<br>۲4            | 0       | 14                 |
| 21         |                   | Exchange Reclaimed Water for Edwards Imgation water                                              | 38,000   | NIA    | 30             | 475        | - 24<br>NA         | 127     |                    |
| 3 L        | L-12              | Exchange Reclaimed water for BMA Medina Lake water (included with Option 5-13)                   | 25.000   |        | 61             |            | INA<br>o           | Δ       | INA                |
| 4 L        | L-13A             | Recycling/Reuse Flans by SAWS                                                                    | 33,000   |        | 22             | 300<br>771 | 0<br>61            | 240     | 2/                 |
| ן כ<br>ג ד | L-13B<br>         | Transfer of Basic ined Water to Comus Christi via Choke Conven(Mitigation for other Options)     | 92,000   |        | 22             | //1        |                    | 240     |                    |
| 71         | L-14              | Purchase or Lesse of Edwards Irrigation Water for Municipal and Industrial Lice                  | 68.000   | Ina    | 37             | 152        | 3                  | 0       |                    |
| <br>Q   I  | L-16              | Demineralization of Edwards "Bad Water"                                                          | 00,200   | HNA    | .,,            | 152        | NA                 | . 0     | NA 2               |
|            | L-10              | Natural Recharge-Type 1 Projects: Nueces/Guadalune/San Antonio Basins (1947-56 Drought Average)7 | 35 600   |        | 63             | - 466      | 22                 | 4 660   | 80                 |
| 10 1       | L-19A             | Natural Recharge-Type 2 Projects: Nueces/Guadalupe/San Antonio Basins (1947-56 Drought Average)7 | 33,870   |        | 65             | 458        | 20                 | 4 186   | 70                 |
| 11         | [_73A             | Edwards Recirculation-Sustainable Vield Pumpage Lake Dunlan Diversion to Recharge Zone           | 87,000   |        | 27             | 350        |                    | 414     | 57                 |
| 12 1       | -23R              | Edwards Recirculation-Sustainable Yield Pumpage, Gonzales&Lake Dunlan Diversion to Recharge Zone | 118,000  |        | 17             | 774        | 62                 | 1 004   | 61                 |
| 13 1       | L-24              | Flood Retarding Structures Outlet Modifications for Recharge Enhancement                         | 1.000    | 1      | 106            | 7          | 1                  | 0       |                    |
| 14 L       | L-19              | Springflow Augmentation                                                                          |          | NA     |                | .          | NA                 |         | NA                 |
|            |                   | Nursee Diver Dasin                                                                               |          |        |                |            |                    |         |                    |
|            | N-10              | Nueces River Basin<br>Nueces River Basin Water Rights                                            | 0        |        |                |            |                    |         |                    |
| +          |                   |                                                                                                  |          |        |                |            |                    |         |                    |
|            |                   | San Antonio River Basin                                                                          |          |        |                |            |                    |         | 1                  |
| 16 5       | S-10 <sup>1</sup> | Unappropriated Streamflow near Elmendorf1988 Return Flows; 1947-56 Drought Average               | 15,100   | NA     |                |            | NA                 |         | NA                 |
| 17 5       | S-11 <sup>1</sup> | Unappropriated Streamflow near Falls City1988 Return Flows; 1947-56 Drought Average              | 15,100   | NA     |                |            | NA                 |         | NA                 |
| 18 5       | S-12 <sup>1</sup> | Unappropriated Streamflow near Goliad1988 Return Flows; 1947-56 Drought Average                  | 27,600   | NA     |                |            | NA                 |         | NA                 |
| 19 5       | S-13A             | Medina LakeDivert & inject to aquifer; 1947-56 Drought Average7                                  | 26,700   |        | 70             | 896        | 76                 | 172     | 31                 |
| 20 5       | S-13B             | Medina LakeDivert to aquifer recharge zone; 1947-56 Drought Average7                             | 26,700   |        | 71             | 614        | 40                 | 172     | 30                 |
| Table 3    | 3-1 Conti         | inued Next Page                                                                                  |          | 1      |                |            |                    |         |                    |

| Ар   | oendix     |                                                                                                  | Quantity | of Water           | Unit Cost  | of Water           | Acres In | npacted            |
|------|------------|--------------------------------------------------------------------------------------------------|----------|--------------------|------------|--------------------|----------|--------------------|
| Page | Option     | Water Supply Options                                                                             |          |                    | 1st Qt. 19 | 96 Prices          | Long-T   | `erm               |
| No.  | No         |                                                                                                  | acft/yr  | Order <sup>4</sup> | \$/acft    | Order <sup>5</sup> | No.      | Order <sup>6</sup> |
| 21   | S-13C      | Medina LakeDivert to WTP; Firm Yield with 20,200 acft/yr recharge7                               | 29,000   | 69                 | 451        | 19                 | 298      | 35                 |
| 22   | S-13D      | Medina LakeBuy rights and release to Applewhite; Firm yield with 22,600 acft recharge            | 37,500   | 59                 | 619        | 42                 | 2,717    | 72                 |
| 23   | S-14A      | Applewhite ReservoirDivert & inject to aquifer; 1947-56 Drought Average                          | 22,500   | 73                 | 1,184      | 92                 | 2,889    | 75                 |
| 24   | S-14B      | Applewhite ReservoirDivert to aquifer recharge zone; 1947-56 Drought Average                     | 22,500   | 74                 | 1,305      | 98                 | 2,898    | 76                 |
| 25   | S-14C      | Applewhite ReservoirDivert to WTP; Firm yield                                                    | 7,700    | 93                 | 1,518      | 100                | 2,717    | 73                 |
| 26   | S-14D      | Applewhite ReservoirOperated in conjunction with Medina Lake; Firm yield to WTP                  | 14,900   | 84                 | 1,518      | 101                | 2,717    | 74                 |
| 27   | S-15A      | Cibolo ReservoirDivert & inject to aquifer; Firm yield                                           | 32,300   | 66                 | 1,246      | 95                 | 16,872   | 94                 |
| 28   | S-15B      | Cibolo ReservoirDivert to aquifer recharge zone; Firm yield                                      | 32,300   | 67                 | 1,281      | 97                 | 16,881   | 95                 |
| 29   | S-15C      | Cibolo ReservoirDivert to WTP; Firm yield                                                        | 32,300   | 68                 | 1,145      | 91                 | 16,700   | 90                 |
| 30   | S-15Da     | Cibolo Reservoir with Imported Water from the San Antonio River; Firm yield to WTP               | 75,600   | 29                 | 712        | 51                 | 16,746   | 91                 |
| 31   | S-15Db     | Cibolo Reservoir with Imported Water from the San Antonio & Guadalupe Rivers; Firm yield to WTP  | 79,600   | 28                 | 822        | 68                 | 16,804   | 93                 |
| 32   | S-15Dc     | Cibolo Reservoir with Imported Water from the San Antonio/Guadalupe/Colorado Rivers; Firm YtoWTP | 162,900  | 12                 | 723        | 53                 | 17,272   | 96                 |
| 33   | S-15Ea     | Cibolo Reservoir with Imported Water from the Guadalupe River at the SaltWaterBarrier-FY         | 65,100   | 41                 | 965        | 82                 | 16,779   | 92                 |
| 34   | S-15Eb     | Cibolo Reservoir with Imported Water from the Guadalupe River at the Salt Water Barrier,         |          |                    | 1          | }                  |          |                    |
|      |            | and the Colorado River below GarwoodFirm yield                                                   | 132,000  | 15                 | 786        | 66                 | 17,366   | 97                 |
| 35   | S-16A      | Goliad ReservoirDivert & inject to aquifer; Firm yield                                           | 115,500  | 18                 | 709        | 49                 | 28,147   | 102                |
| 36   | S-16B      | Goliad ReservoirDivert to aquifer recharge zone; Firm yield                                      | 115,500  | . 19               | 748        | 57                 | 28,147   | 103                |
| 37   | S-16C      | Goliad ReservoirDivert to WTP; Firm yield                                                        | 115,500  | 20                 | 662        | 43                 | 28,147   | 101                |
| 38   | S-17       | Upper Cibolo Creek Reservoir Cost AnalysesFirm yield                                             | 8,700    | 89                 | 2,016      | 102                | 3,400    | 78                 |
|      |            | Guadalupe River Basin                                                                            |          |                    |            |                    |          |                    |
| 39   | G-10       | Unapp.Streamflow near Gonzales1947-56 Drought Avg.& 400,000acfi/yr Aquifer pumpage7              | 33,200   | NA                 |            | NA                 |          | NA                 |
| 4(   | ) G-11     | Unapp.Streamflow near Cuero1947-56 Drought Avg.& 400,000acft/yr Aquifer pumpage7                 | 34,900   | NA                 |            | NA                 |          | NA                 |
| 4    | G-12       | Unapp.Streamflow at Salt Water Barrier 1947-56 Drou.Avg.& 400,000acft/yr Aquifer pump7           | 33,800   | NA                 |            | NA                 |          | NA                 |
| 42   | 2 G-13A    | San Marcos River DivUnapp flow below Blanco Confluence; Inject to aquifer, 1947-56 Drought Ave.7 | 6,600    | 94                 | 3,689      | 105                | 325      | 41                 |
| 4    | 3 G-13B    | San Marcos River DivUnapp flow below Blanco Confluence; To recharge zone1947-56 Drought Ave.7    | 6,600    | 95                 | 2,452      | 103                | 455      | 55                 |
| 44   | 4 G-14A    | Guadalupe River DivUnapp flow at Lake Dunlap; Inject to aquifer, 1947-56 Drought Avg.7           | 3,500    | 100                | 5,870      | 106                | 232      | 33                 |
| 4    | 5 G-14B    | Guadalupe River DivUnapp flow at Lake Dunlap; To recharge zone, 1947-56 Drought Avg.7            | 3,500    | 101                | 3,483      | 104                | 362      | 48                 |
| 40   | 5 G-15A    | Canyon Lake Released to Lake DunlapDivert & inject to aquifer; Firm yield                        | 10,000   | 85                 | 5 775      | 64                 | 232      | 32                 |
| 4'   | 7 G-15B    | Canyon Lake Released to Lake Dunlap Divert to aquifer recharge zone; Firm yield                  | 10,000   | 86                 | 543        | 32                 | 362      | 47                 |
| 4    | 8 G-15C    | Canyon Lake Released to Lake DunlapDivert to aquifer recharge zone; Firm yield                   | 15,000   | 76                 | 6 473      | 23                 | 362      | 46                 |
| Tabl | e 3-1 Cont | inued Next Page                                                                                  |          |                    |            |                    |          |                    |

| Ap       | pendix             |                                                                                                        | Quantity | of Water           | Unit Cost  | of Water           | Acres In | npacted            |
|----------|--------------------|--------------------------------------------------------------------------------------------------------|----------|--------------------|------------|--------------------|----------|--------------------|
| Page     | Option             | Water Supply Options                                                                                   |          |                    | 1st Qt. 19 | 96 Prices          | Long-T   | erm                |
| No.      | No                 |                                                                                                        | acft/yr  | Order <sup>4</sup> | \$/acft    | Order <sup>5</sup> | No.      | Order <sup>6</sup> |
| 49       | G-15D              | Canyon Lake Released to Lake DunlapDivert to WTP; Firm yield                                           | 10,000   | 87                 | 540        | 31                 | 131      | 23                 |
| 50       | G-15E              | Canyon Lake Released to Lake DunlapDivert to WTP; Firm yield                                           | 15,000   | 77                 | 504        | 28                 | 131      | 22                 |
| 51       | G-16A              | Cuero ReservoirDivert & inject to aquifer; Firm yield (Phase 1 Environmental Criteria)                 | 168,000  | 10                 | 697        | 47                 | 41,672   | 105                |
| 52       | G-16B              | Cuero ReservoirDivert to aquifer recharge zone; Firm yield(Phase 1 Environmental Criteria)             | 168,000  | 11                 | 740        | 56                 | 41,681   | 106                |
| 53       | G-16C1             | Cuero ReservoirDivert to WTP; Firm yield (TWDB/TNRCC/TPWD Consensus Envir. Crireria)                   | 145,448  | 14                 | 775        | 63                 | 41,500   | 104                |
| 54       | G-17A              | Sandies ReservoirDivert & inject to aquifer; Firm yield(Phase 1 Environmental Criteria)                | 45,800   | 52                 | 1,227      | 94                 | 27,047   | 99                 |
| 55       | G-17B              | Sandies ReservoirDivert to aquifer recharge zone; Firm yield(Phase 1 Environmental Criteria)           | 45,800   | 53                 | 1,266      | 96                 | 27,056   | 100                |
| 56       | G-17C1             | Sandies ReservoirDivert to WTP; Firm yield(TWDB/TNRCC/TPWD Consensus Envir.Cri.)                       | 74,741   | 34                 | 827        | 70                 | 26,875   | 98                 |
| 57       | G-18A              | McFaddin ReservoirBuy Water Rights in Calhoun Co, Divert & inject to aquifer; Firm yield               | 37,000   | 60                 | 929        | 77                 | 1,745    | 69                 |
| 58       | G-18B              | McFaddin ReservoirBuy Water Rights in Calhoun Co, Divert to aquifer recharge zone; Firm yield          | 37,000   | 61                 | 968        | 83                 | 1,875    | 71                 |
| 59       | G-18C              | McFaddin ReservoirBuy Water Rights in Calhoun Co, Divert to WTP; Firm yield                            | 37,000   | 62                 | 847        | 73                 | 1,644    | 66                 |
| 60       | G-19               | Guadalupe River Dam 7Raw water at reservoir; Firm yield (Consensus Rnvironmental Criteria)             | 30,927   | NA                 | 804        | NA                 | 12,830   | NA                 |
| 61       | G-20               | Gonzales ReservoirRaw water at reservoir; Firm yield(Consensus Environmental Criteria)                 | 75,093   | NA                 | 320        | NA                 | 21,370   | NA                 |
| 62       | G-21               | Lockhart ReservoirRaw water at reservoir; Firm yield(Consensus Environmental Criteria)                 | 6,339    | NA                 | 618        | NA                 | 2,910    | NA                 |
| 63       | G-22               | Dilworth ReservoirRaw water at reservoir; Firm yield(Consensus Environmental Criteria)                 | 18,195   | NA                 | 590        | NA                 | 15,400   | NA                 |
| 64       | G-23A              | Canyon Lake Area WS (Areas adjacent to Canyon Lake)2020 Demands                                        | 3,470    | 102                | 1,008      | 86                 | 46       | 10                 |
| 65       | G-23B              | Canyon Lake Area WS (Smithson Valley, Bulverde, and Oak Village North Areas)-2020Dem                   | 1,280    | . 105              | 1,487      | 99                 | 16       | 5                  |
| 66       | G-24               | Wimberley and Woodcreek WS from Canyon Lake, with G-23A & 2020 Demands                                 | 1,424    | 104                | 963        | 80                 | 40       | 9                  |
| 67       | G-25               | Northeast Hays and Northwest Caldwell Counties WS from near Lake Dunlap2020 Dem                        | 1,920    | 103                | 1,220      | 93                 | 52       | 11                 |
| 68       | G-26               | Md-Cities (IH-35 and Highway 78) WS From Near Lake Dunlap2020 Demands                                  | 25,166   | 72                 | 483        | 27                 | 36       | 7                  |
| 69       | G-27               | Guadalupe River Diversion Near Lake Dunlap to North WTP, with Transfer of Downstream Rights            | 49,785   | 51                 | 749        | 58                 | 36       | 8                  |
| 70       | G-28               | Guadalupe River Diversion Near GonzalesTo NWTP with Transfer of Downstream Rights (WoIEC) <sup>3</sup> | 71,260   | 35                 | 828        | 71                 | 102      | 12                 |
| 71       | L-20               | Transfer of SAWS Reclaimed Water to Coleto Creek Reservoir                                             | 8,400    | 90                 | 138        | 2                  | 23       | 6                  |
| 72       | G-30               | Guadalupe River Diversion Near Comfort to Recharge Zone via Medina LakeDrought Ave 8                   | 9,900    | 88                 | 720        | 52                 | 300      | 36                 |
| 73       | G-32               | Diversion of Canyon Lake Flood Storage to Recharge Zone via Cibolo CreekLongTermAv                     | 16,100   | 75                 | 750        | 59                 | 537      | 58                 |
| 74       | G-33               | Guadalupe River Diversions Near Lake Dunlap to Recharge Zone with Enhanced                             |          |                    |            |                    | 1        |                    |
| - · ···· |                    | Springflow, Water Rights Transfer, and Unappropriated Streamflow1947-56 Drought Ave. 9                 | 70,300   | 36                 | 394        | 11                 | 414      | 54                 |
| 75       | G-34A <sup>2</sup> | Canyon Lake Water to Canyon Lake WSC/Bulverde/North Bexar CoUniform Delivery                           | 5,000    | 96                 | 605        | 39                 | 130      | 17                 |
| 76       | G-34B <sup>2</sup> | Canyon Lake Water to Canyon Lake WSC/Bulverde/North Bexar CoSummer Peak Del.                           | 5,000    | 97                 | 829        | 72                 | 130      | 19                 |
| 77       | G-34C <sup>2</sup> | Canyon Lake Water to Canyon Lake WSC/Bulverde/North Bexar CoUniform Delivery                           | 8,000    | 91                 | 479        | 25                 | 130      | 16                 |
| 78       | G-34D <sup>2</sup> | Canyon Lake Water to Canyon Lake WSC/Bulverde/North Bexar CoSummer Peak Del.                           | 8,000    | 92                 | 683        | 45                 | 130      | 18                 |
| Table    | 3-1 Conti          | nued Next Page                                                                                         |          | r<br>I             |            |                    |          |                    |

| Арг   | oendix             |                                                                                             | Quantity | of Water           | Unit Cost  | of Water           | Acres I | mpacted            |
|-------|--------------------|---------------------------------------------------------------------------------------------|----------|--------------------|------------|--------------------|---------|--------------------|
| Page  | Option             | Water Supply Options                                                                        | ]        |                    | 1st Qt. 19 | 96 Prices          | Long-T  | erm                |
| No.   | No                 |                                                                                             | acft/yr  | Order <sup>4</sup> | \$/acft    | Order <sup>5</sup> | No.     | Order <sup>6</sup> |
|       | G-35 <sup>2</sup>  | Guadalupe River Diversions at New Braunfels to Mid-Cities and Bexar County with             |          |                    |            |                    |         |                    |
|       |                    | expanded New Braunfels Utilities WTP                                                        | · ·      |                    |            |                    |         |                    |
| 79    | G-35A <sup>2</sup> | Uniform Delivery to Mid-Cities & SAWS                                                       | 15,000   | 78                 | 405        | 14                 | 119     | 13                 |
| 80    | G-35B <sup>2</sup> | Summer Peaking Delivery to Mid-Cities & SAWS                                                | 15,000   | 79                 | 617        | 41                 | 119     | 14                 |
|       | G-36 <sup>2</sup>  | Guadalupe River Diversions at Lake Dunlap to Mid-Cities/CRWA/Bexar County with              |          |                    |            |                    |         |                    |
|       |                    | expanded CRWA WTP                                                                           |          |                    |            |                    |         |                    |
| 81    | G-36A <sup>2</sup> | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 5,000    | 98                 | 399        | 12                 | 131     | 20                 |
| 82    | G-36B <sup>2</sup> | Summer Peaking Delivery to Mid-Cities CRWA, & SAWS                                          | 5,000    | 99                 | 599        | 38                 | 131     | 25                 |
| 83    | G-36C <sup>2</sup> | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 15,000   | 80                 | 405        | 15                 | 131     | 21                 |
| 84    | G-36D <sup>2</sup> | Summer Peaking Delivery to Mid-Cities, CRWA, & SAWS                                         | 15,000   | 81                 | 594        | 37                 | 131     | 24                 |
|       | G-37 <sup>2</sup>  | Guadalupe River Diversions at Lake Dunlap to Mid-Cities/CRWA/Bexar County with              |          |                    |            |                    |         |                    |
|       |                    | Regional WTP                                                                                |          |                    |            |                    |         |                    |
| 85    | G-37A <sup>2</sup> | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 15,000   | 82                 | 394        | 10                 | 136     | 27                 |
| 86    | G-37B <sup>2</sup> | Summer Peaking Delivery to Mid-Cities CRWA, & SAWS                                          | 15,000   | 83                 | 576        | 34                 | 136     | 29                 |
| 87    | $G-37C^2$          | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 50,000   | 45                 | 266        | 4                  | 136     | 26                 |
| 88    | $G-37D^2$          | Summer Peaking Delivery to Mid-Cities, CRWA, & SAWS                                         | 50,000   | 46                 | 400        | 13                 | 136     | 28                 |
|       | G-38 <sup>2</sup>  | Guadalupe River Diversions at Gonzales to Mid-Cities/CRWA/Bexar County with                 |          |                    |            |                    |         |                    |
|       |                    | Regional WTP                                                                                |          |                    | -          |                    |         |                    |
| 89    | G-38A <sup>2</sup> | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 40,000   | 54                 | 435        | 17                 | 316     | 38                 |
| 90    | G-38B <sup>2</sup> | Summer Peaking Delivery to Mid-Cities CRWA, & SAWS                                          | 40,000   | 55                 | 581        | 36                 | 316     | 40                 |
| 91    | G-38C <sup>2</sup> | Uniform Delivery to Mid-Cities, CRWA, & SAWS                                                | 75,000   | 30                 | 381        | 9                  | 316     | 37                 |
| 92    | G-38D <sup>2</sup> | Summer Peaking Delivery to Mid-Cities, CRWA, & SAWS                                         | 75,000   | 31                 | 518        | 30                 | 316     | 39                 |
| -     | G-39 <sup>2</sup>  | Guadalupe River Diversions at Lake Dunlap and near Gonzales to Mid-Cities/CRWA/Bexar        |          |                    |            |                    |         |                    |
|       |                    | County with Regional WTP                                                                    |          |                    |            |                    |         |                    |
| 93    | G-39A <sup>2</sup> | Uniform Delivery (5,000 acft/yr Diversion at Lake Dunlap/35,000 acft/yr Div. at Gonzales)   | 40,000   | 56                 | 436        | 18                 | 342     | 43                 |
| 94    | G-39B <sup>2</sup> | Summer Peaking Delivery (5,000 acft/yr Div. at Lake Dunlap/35,000 acft/yr Div. at Gonzales) | 40,000   | 57                 | 578        | 35                 | 342     | 45                 |
| 95    | G-39C <sup>2</sup> | Uniform Delivery (15,000 acft/yr Diversion at Lake Dunlap/60,000 acft/yr Div. at Gonzales)  | 75,000   | 32                 | 371        | 7                  | 342     | 42                 |
| 96    | G-39D <sup>2</sup> | Summer Peaking Delivery(15,000 acft/yr Div. at Lake Dunlap/60,000 acft/yr Div. at Gonzales) | 75,000   | 33                 | 516        | 29                 | 342     | 44                 |
| 97    | G-40               | Cloptin Crossing ReservoirRaw water at reservoir; Firm yield                                | 33,163   | NA                 | 476        | NA                 | 6,060   | NA                 |
|       |                    |                                                                                             |          |                    |            |                    |         |                    |
|       | 1                  |                                                                                             | 1        |                    |            | [                  | -<br>   |                    |
| Table | 3-1 Cont           | inued Next Page                                                                             |          |                    |            |                    |         |                    |

,

| Appendix    |           |                                                                                         |         | Quantity of Water  |                     | Unit Cost of Water |           | Acres Impacted     |  |
|-------------|-----------|-----------------------------------------------------------------------------------------|---------|--------------------|---------------------|--------------------|-----------|--------------------|--|
| Page Option |           | Water Supply Options                                                                    |         |                    | 1st Qt. 1996 Prices |                    | Long-Term |                    |  |
| No.         | No        |                                                                                         | acft/yr | Order <sup>4</sup> | \$/acft             | Order <sup>5</sup> | No.       | Order <sup>6</sup> |  |
|             |           | Colorado River Basin                                                                    |         |                    |                     |                    |           |                    |  |
|             | C-10      | Colorado River at Lake Austin                                                           |         |                    |                     |                    | 1         |                    |  |
|             | C-13      | Lake Travis Delivered to Lake Austin                                                    |         |                    |                     |                    |           |                    |  |
| 98          | C-13A     | Lake TravisBuy stored water & irrig rights; Divert & inject to aquifer; Firm yield      | 68,000  | 38                 | 710                 | 50                 | 484       | 56                 |  |
| 99          | C-13B     | Lake TravisBuy stored water & irrig rights; Divert to aquifer recharge zone; Firm yield | 68,000  | 39                 | 690                 | 46                 | 614       | 59                 |  |
| 100         | C-13C     | Lake TravisBuy stored water & irrig rights; Divert to WTP; Firm yield                   | 68,000  | 40                 | 667                 | 44                 | 383       | 49                 |  |
| 101         | C-13D     | Lake TravisBuy stored water; Divert & inject to aquifer; Firm yield                     | 50,000  | 47                 | 785                 | 65                 | 484       | 57                 |  |
| 102         | C-13E     | Lake TravisBuy stored water; Divert to aquifer recharge zone; Firm yield                | 50,000  | 48                 | 759                 | 60                 | 614       | 60                 |  |
| 103         | C-13F     | Lake TravisBuy stored water; Divert to WTP; Firm yield                                  | 50,000  | 49                 | 725                 | 54                 | 383       | 50                 |  |
| 104         | C-17A     | Colorado River at ColumbusBuy stored water & irrig rights; Divert to WTP; Firm yield    | 125,000 | 16                 | 736                 | 55                 | 403       | 51                 |  |
| 105         | C-17B     | Colorado River at ColumbusBuy stored water; Divert to WTP; Firm yield                   | 50,000  | 50                 | 793                 | 67                 | 403       | 52                 |  |
| 106         | C-18      | Shaws Bend ReservoirDivert to WTP; Firm yield                                           | 100,000 | 21                 | 827                 | 69                 | 13,803    | 89                 |  |
|             |           | Process Divor Davin                                                                     |         |                    |                     |                    |           |                    |  |
| 107         | D 104     | Allers Creek Reservoir. Divert & inject to equifer: Firm vield                          | 57 800  | 12                 | 1 003               | 00                 | 0 107     | 82                 |  |
| 107         | D-10A     | Allens Creek Reservoir - Divert to aquifer recharge zone: Firm vield                    | 57,000  | 42                 | 1,055               | 80                 | 8 612     | 84<br>84           |  |
| 100         | D-10D     | Allens Creek Reservoir - Divert to adulter recharge zone, Finin yield                   | 57,000  | 43                 | 1,001               | 07<br>97           | 0,012     | 04<br>82           |  |
| 109         | B-10D     | Allens Creek ReservoirDivert to WTP: Firm yield                                         | 152.800 | 13                 | 709                 | 48                 | 8,381     | 82<br>81           |  |
|             |           |                                                                                         |         |                    |                     |                    |           | 01                 |  |
|             |           | Sabine River Basin                                                                      | -       |                    |                     |                    |           |                    |  |
| . 111       | SB-10A    | Toledo Bend ReservoirDivert & inject to aquifer; Firm yield                             | 300,000 | 6                  | 990                 | 85                 | 1,651     | 67                 |  |
| 112         | SB-10B    | Toledo Bend ReservoirDivert to aquifer recharge zone; Firm yield                        | 300,000 | 7                  | 1,051               | 88                 | 1,781     | 70                 |  |
| 113         | SB-10C    | Toledo Bend ReservoirDivert to WTP; Firm yield                                          | 300,000 | 8                  | 957                 | 79                 | 1,550     | 64                 |  |
| 114         | SB-10D    | Toledo Bend ReservoirDivert to WTP; Firm yield                                          | 600,000 | 1                  | 872                 | 74                 | 1,550     | 63                 |  |
|             |           | Brazos and Sabine River Basins                                                          | _       |                    |                     |                    |           |                    |  |
| 115         | SBB10A    | Allens Creek and Toledo Bend Reservoirs Divert & inject to aquifer; Firm yield          | 357,800 | 3                  | 990                 | 84                 | 9,374     | 87                 |  |
| 116         | SBB10B    | Allens Creek and Toledo Bend Reservoirs Divert to aquifer recharge zone; Firm yield     | 357,800 | 4                  | 963                 | 81                 | 9,504     | 88                 |  |
| 117         | SBB10C    | Allens Creek and Toledo Bend Reservoirs Divert to WTP; Firm yield                       | 357,800 | 5                  | 957                 | 78                 | 9,273     | 86                 |  |
| 118         | SBB10D    | Allens Creek and Toledo Bend Reservoirs Divert to WTP; Firm yield                       | 452,800 | 2                  | 872                 | 75                 | 9,273     | 85                 |  |
| Table       | 3-1 Conti | inued Next Page                                                                         |         |                    |                     |                    |           |                    |  |

| Appendix                                                                                                                                        |                       |                                                                                                                       | Quantity of Water                     |                    | Unit Cost of Water |                    | Acres Impacted |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|--------------------|--------------------|----------------|--------------------|
| Page Option                                                                                                                                     |                       | Water Supply Options                                                                                                  | · · · · · · · · · · · · · · · · · · · | ·                  | 1st Qt. 19         | 96 Prices          | Long-T         | erm                |
| No.                                                                                                                                             | No                    |                                                                                                                       | acft/yr                               | Order <sup>4</sup> | \$/acft            | Order <sup>5</sup> | No.            | Order <sup>6</sup> |
|                                                                                                                                                 | · ·                   | Carrizo Aquifer                                                                                                       |                                       | ·                  |                    |                    |                |                    |
| 119                                                                                                                                             | CZ-10A                | Carrizo AquiferWithdraw & inject to Edwards Aquifer; Firm yield                                                       | 90,000                                | 24                 | 545                | 33                 | 1,567          | 65                 |
| 120                                                                                                                                             | CZ-10B                | Carrizo Aquifer Withdraw & divert to Edwards Aquifer recharge zone; Firm yield                                        | 90,000                                | 25                 | 466                | 21                 | 1,697          | 68                 |
| 121                                                                                                                                             | CZ-10C                | Carrizo AquiferWithdraw & divert to WTP; Firm yield                                                                   | 90,000                                | 26                 | 419                | 16                 | 1,466          | 62                 |
| 122                                                                                                                                             | CZ-10D                | Carrizo AquiferWithdraw & divert to WTP; Firm yield                                                                   | 220,000                               | 9                  | 480                | • 26               | 3,075          | 77                 |
|                                                                                                                                                 | * Include             | es treatment costs.                                                                                                   |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 | <sup>1</sup> Applew   | hite excluded.                                                                                                        |                                       |                    |                    |                    |                |                    |
| }                                                                                                                                               | <sup>2</sup> Mid Cit  | ies include Marion, Cibolo, Schertz, and Garden Ridge; CRWA entities include Green Valley SUD, Springs Hi             | ll WSC, and                           | Crystal Clo        | ar WSC; an         | d SAWs             |                |                    |
|                                                                                                                                                 | Stahl se              | condary pump station facility.                                                                                        |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 | <sup>3</sup> Without  | t application of Trans-Texas In-Stream Environmental Criteria.                                                        |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 | <sup>4</sup> Ordered  | from largest quantity to smallest quantity of the 106 options listed which have data for quantity of water, cost      | of water, and                         | l acreage af       | fected.            |                    |                |                    |
|                                                                                                                                                 | <sup>5</sup> Ordered  | I from lowest cost per acre-foot to highest cost per acre-foot of the 106 options listed which have data for quant    | ity of water,                         | cost of wat        | er, and acrea      | ge affected.       |                |                    |
|                                                                                                                                                 | <sup>6</sup> Ordered  | I from lowest quantity of acreage affected to highest quantity of acreage affected for the 106 which have data for    | r quantity of                         | water, cost        | of water, an       | nd acreage af      | Tected.        |                    |
|                                                                                                                                                 | <sup>7</sup> For esti | mates of quantities and unit costs for 1934-89 average conditions, see text of option in Appendix. For Append         | ix page num                           | ber see extr       | eme left coh       | umn of this ta     | ible.          |                    |
|                                                                                                                                                 | <sup>8</sup> Yields a | ind costs for 72" pipeline are shown on Appendix A Page A-72. For a 96" pipeline, drought average is 12,150           | acft/yr at \$7                        | 92 per acft,       | with long-te       | erm                |                |                    |
| ]                                                                                                                                               | average               | of 50,050 acft/yr at \$245 per acft; for a 120" pipeline, drought average is 12,370 acft/yr at \$1,107 per acft, with | h long-term                           | average of 5       | 8,500 acft/y       | r at \$279 per     | acft.          |                    |
|                                                                                                                                                 | Note: A               | quifer modeling is needed to evaluate benefits of different recharge rates upon water supply.                         |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 | <sup>9</sup> Yields a | and costs for 72" pipeline are shown on Appendix A Page A-74. For a 96" pipeline, drought average is 74,600           | acft/yr at \$4                        | 37 per acft,       | with long-te       | erm                |                |                    |
| average of 152,800 acft/yr at \$263 per acft; for a 120" pipeline, drought average is \$1,800 acft/yr at \$544 per acft, with long-term average |                       | verage of 2                                                                                                           | 08,900 acft/                          | yr at \$270 pe     | r acft.            |                    |                |                    |
|                                                                                                                                                 | Note: A               | quifer modeling is needed to evaluate benefits of different recharge rates upon water supply.                         |                                       | _                  |                    |                    |                |                    |
|                                                                                                                                                 | NA mea                | ans not applicable.                                                                                                   |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       |                                       | -                  |                    |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 | ·                     |                                                                                                                       |                                       |                    |                    |                    | :              |                    |
|                                                                                                                                                 | ·····                 |                                                                                                                       |                                       | ţ                  |                    |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       | **                                    |                    | 1                  |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       |                                       |                    |                    |                    |                |                    |
|                                                                                                                                                 |                       |                                                                                                                       |                                       | - ·                |                    |                    |                | <><><>             |

## 3.1 Classification of Alternatives

Alternatives have been classified into five basic groups, each of which considers alternative methods of supplying water to the study area. These groupings include:

| Conservation              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and Leases:               | Includes options that reduce demand by conservation within municipal, commercial and/or agricultural uses as well as options which consider transfer of Edwards water through purchase or lease arrangements.                                                                                                                                                                                                                                                                                                                                    |
| <u>Reuse</u> :            | Includes options which consider ways to reuse reclaimed water from study area's wastewater treatment facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>Natural Recharge</u> : | For purposes of this study, natural recharge is considered to be recharge to<br>the aquifer with water originating from the Edwards Plateau catchment,<br>recharge zone, or from springs originating from the Edwards Aquifer.<br>Natural recharge to the aquifer can be accomplished through either<br>injection wells or through the delivery of water to a stream or reservoir<br>located in the recharge zone.                                                                                                                               |
| Imported Recharge:        | Imported recharge is recharge to the aquifer with all or a portion of the water originating from sources other than those listed under Natural Recharge, regardless of the delivery system into the aquifer.                                                                                                                                                                                                                                                                                                                                     |
| Treatment                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and Distribution:         | This group considers alternatives which include conventional water<br>treatment (or just disinfection in the case of Carrizo water) and delivery to<br>a municipal water distribution system. (Note: Distribution costs are, for<br>many options, based on costs as estimated in previous studies for delivery<br>to the SAWS system. This is a simplifying assumption for this study and<br>does not preclude other entities receiving treated water from a regional<br>water treatment plant, from an interconnection with the SAWS system, or |

# 3.2 Water Delivery Locations

The water supply from many of the alternatives could be delivered into the study area in one or more of the following three ways: (1) to the recharge zone by discharge into a stream or a recharge structure; (2) to an injection well placed into the Edwards formation; or, (3) to a water treatment plant.

through trades of Edwards Aquifer water.).

For delivery to the recharge zone, the Edwards formation outcrop in northwestern Bexar County between Salado Creek and Medina Lake was identified as the primary delivery area as shown on Figure 3-1. A secondary recharge area located in Medina County west of Medina Lake was included as a potential delivery location for a few selected options. For recharge into the aquifer through injection wells, a possible recharge area along the BMA canal in Medina County, as identified in a previous study, was used to deliver water to the aquifer.<sup>2</sup>

For the treatment and distribution alternatives, two delivery areas were identified. For alternative sources located north or northeast of San Antonio, water would be delivered to a treatment facility to be located northeast of San Antonio; and, for sources east or southeast, delivery would be to the previously proposed water treatment plant site located in the vicinity of Highway 16 and FM 1604 (refer to Figure 3-1). Each alternative considered in this study is described in a figure in the various report volumes which show potential water sources and the various delivery options considered.

### 3.3 Ordering of Alternatives

Of the total 122 alternatives evaluated, 106 had complete information with respect to unit cost of water; quantity of water provided, and number of acres of land impacted over the long-term. These 106 alternatives were compared by preparing ordered bar graphs of the options. The following four bar graphs were prepared:

- Water Supply Alternatives (106) Ordered by Unit Cost (Figure 3-2);
- Water Supply Alternatives (106) Ordered by Quantity of Water (Figure 3-3);
- Water Supply Alternatives including: Conservation and Lease, Reuse, Natural Recharge, and Imported Recharge Ordered by Unit Cost (Figure 3-4); and
- Water Supply Alternatives including: Treatment and Distribution Ordered by Unit Cost of Water (Figure 3-5).

<sup>&</sup>lt;sup>2</sup> W.E. Simpson Co. and William F. Guyton Assoc. Inc., "Medina Lake Study, Recharge Evaluation," Edwards Underground Water District, no date.



### 3.4 Comparison of Unit Costs

A comparison of the unit cost for alternatives which cost less than \$1,600 per acft shows that the composite average unit cost for the 101 alternatives that met this criteria was \$724 per acft (Table 3-2 and Figures 3-6 and 3-7). Average unit costs for each of the five categories were also computed and compared to the composite average and are shown in Table 3-2 and Figures 3-6 and 3-7. Comparison of the average unit cost of each group of alternatives with the composite average shows the following: Conservation and Lease option unit costs averaged only 30 percent of the composite; Reuse options averaged 61 percent of the composite; Natural Recharge options averaged 75 percent of the composite; Imported Recharge options averaged 128 percent of the composite; and Treatment and Distribution options averaged 98 percent of the composite (Table 3-2 and Figures 3-6 and 3-7).

| Table 3-2   Comparison of Average Unit Costs for Water Supply Options |                           |                              |                                 |  |  |  |
|-----------------------------------------------------------------------|---------------------------|------------------------------|---------------------------------|--|--|--|
| Alternative<br>Classification*                                        | Number of<br>Alternatives | Average Unit Cost<br>\$/acft | Percent of<br>Composite Average |  |  |  |
| All Alternatives*<br>(Composite)                                      | 101                       | 724                          | N/A                             |  |  |  |
| Conservation and<br>Lease                                             | 2                         | 214                          | 30%                             |  |  |  |
| Reuse                                                                 | 4                         | 441                          | 61%                             |  |  |  |
| Natural Recharge                                                      | 13                        | 543                          | 75%                             |  |  |  |
| Imported Recharge                                                     | 25                        | 927                          | 128%                            |  |  |  |
| Treatment and<br>Distribution                                         | 57                        | 713                          | 98%                             |  |  |  |
| *Only includes options costing less than \$1600 per acft.             |                           |                              |                                 |  |  |  |

# 3.5 Summary of Water Quantity Provided by All Options

A Summary of the quantity of water provided by the 101 alternatives costing less than \$1,600 per acft is shown in the Table 3-3. This summary shows that about 32 percent of the options provide less than 30,000 acft per year; 27 percent provide between 30,000 and 60,000 acft/yr; and 19 percent provide between 60,000 and 90,000 acft per year; with the remaining 22 percent providing more than 90,000 acft per year.





| Table 3-3   Summary of Quantity of Water Provided by Alternatives |                   |            |  |  |  |
|-------------------------------------------------------------------|-------------------|------------|--|--|--|
| Range of Quantity<br>of Water*                                    | Number of Options | % of Total |  |  |  |
| 0 to 30,000                                                       | 33                | 32%        |  |  |  |
| 30,001 to 60,000                                                  | 27                | 27%        |  |  |  |
| 60,001 to 90,000                                                  | 19                | 19%        |  |  |  |
| 90,001 to 120,000                                                 | 6                 | 6%         |  |  |  |
| 120,001 to 150,000                                                | 3                 | 3%         |  |  |  |
| 150,001 to 180,000                                                | 4                 | 4%         |  |  |  |
| 180,001 to 600,000                                                | 9                 | 9%         |  |  |  |
| Total                                                             | 101*              | 100%       |  |  |  |
| * Only includes options costing less than \$1,600 per acft.       |                   |            |  |  |  |

### 3.6 Pro Rata Sharing of Delivered Water

Most of the water supply options evaluated include bringing supplemental water to the West Central study area to either recharge the Edwards Aquifer, or for use directly by area water purveyors. In the case of Edwards Aquifer recharge, the aquifer would be the method of distributing the supplemental water to area water users. In the case of treatment and distribution, it is anticipated that each water purveyor and industry of the area would be offered a pro rata share of the quantity available, based on their individual pro rata share of total water use from the aquifer within the area. However, those who do not receive supplemental water directly would receive an equivalent quantity of additional Edwards Aquifer pumping rights from entities who take direct delivery of any supplemental water. This procedure is based on the assumption that the Edwards Aquifer Authority will issue transferable pumping rights, such that surface water can be delivered to the water users of the area in the most economical way; i.e.; pumping rights for equivalent quantities of Edwards water can be transferred from those who actually receive supplemental water to those who pay their pro rata share of the cost of the supplemental water, with the latter being able to obtain the equivalent quantities of Edwards water. This procedure alleviates the necessity to deliver treated water to each of the dozens of water purveyors of the area.
#### 4.0 FURTHER EVALUATION OF WATER SUPPLY ALTERNATIVES

During the course of this study, it has become apparent that several of the alternatives evaluated on a stand-alone basis should next be evaluated in combination with one another. Combining alternatives can, in some instances, result in significant cost savings, reduce environmental impacts, and provide incrementally greater water supply benefits. Some alternatives, however, are mutually exclusive as they compete for the same water. Following are recommendations for further evaluation of water supply alternatives:

- Improve the current version of the TWDB GWSIM4 Edwards Aquifer model to more accurately evaluate recharge enhancement projects and springflow recirculation projects on the bases of "sustained yield" and unit cost.
- Using GWSIM4 Edwards Model, evaluate recharge projects in combination with springflow recirculation projects to determine optimum combination of projects to enhance the "sustained yield" of the aquifer.
- Perform multi-watershed system analyses to determine the optimum use of existing and proposed reservoirs in the Guadalupe San Antonio River Basin in combination with run-of-the-river diversions to maximize firm yield and minimize cost and environmental impact.
- Using the new Carrizo-Wilcox Aquifer model sponsored by the TWDB, consider the feasibility of multi-year and/or seasonal aquifer storage and recovery systems utilizing the San Antonio and/or Guadalupe Rivers as potential sources.
- In cooperation with regional planning authorities, synthesize and evaluate more comprehensive long-term water supply plans potentially involving several sources of supply and methods of distribution to consumers.

(This page intentionally left blanck.)

-

.

## 5.0 SUMMARY OF PUBLIC PARTICIPATION AND STAKEHOLDER INVOLVEMENT

On October 17, 1995, the Policy Management Committee (PMC) engaged Robert Aguirre Consultants, L.C. to conduct a public participation/stakeholder involvement process for the West Central Trans-Texas Region. Major components of the process included: (1) surveys of the West Central Region's Advisory Committee for Public and Technical Input, (2) a 2-day public participation workshop for members of the PMC and senior staff of the participating entities, and (3) issues identification. Two important results of this process were: (1) the adoption of Principals of Participation, and (2) the development of components thought to be critical to a successful public participation program. The Principals of Participation are quoted below:

## Principals of Participation

"This declaration formally expresses our commitment to a comprehensive public participation/stakeholder involvement process. By adopting and implementing the principals embodied in this declaration, the public's input will play a critical role in evaluating the water planning strategies to be considered for this region.

"While each participating agency is responsible to its respective constituents, our collective regional responsibility is "to identify the most cost-effective and environmentally sensitive strategies for meeting the current and future water needs of the West Central Region." In addition, we must ensure that the public and stakeholders significantly participate in deciding which strategies will be implemented.

"By unanimous adoption of this statement, the West Central Policy Management Committee of the Trans-Texas Water Program commits itself to the following principles of public and stakeholder participation:

- The public/stakeholder's participation must be broadly based and inclusive of all constituencies.
- It is the responsibility of the Trans-Texas Water Program and its sponsors to be proactive in its commitment to seek public/ stakeholder participation and input.

- Public/stakeholder communication must be timely, truthful, consistent, and two-way.
- The Policy Management Committee, as the responsible decision-making body, must be accountable for the integrity of the public/stakeholder participation process and the manner in which the public's input shapes the final outcomes of the project.

"In this effort we recognize that the overall quality and depth of public/stakeholder participation can only be as good as our ability to effectively communicate the complex issues associated with water planning strategies.

"These Principals of Participation recognize that no present or long-term water strategy can be implemented without the general support and consent of the public and stakeholders."

The components of a successful public participation program were determined to be:

- "Credibility (of the sponsoring agencies and of the public process)
- "Commitment to the public process (by the sponsor agencies)
- "Communication (with and between the public and stakeholders)
- "Equal treatment (of public and stakeholders)."

A strategy for the formulation of a public process was developed based upon the premise that it was necessary to obtain input from the public and stakeholders involved. This involved gathering data from all sectors of the impacted public regarding their respective thoughts and opinions as to how a public process should be designed. This effort included a survey of the members of the Advisory Committee for Public and Technical Input and the following activities:

- PMC member interviews
- A random public issues survey of the study region<sup>1</sup>
- An analysis of under-represented groups
- Focus groups
- Public workshops
- Development of a mailing list/database
- Development of public process models
- Identification of the public's top criterion on water issues (decision analysis criteria).

<sup>&</sup>lt;sup>1</sup> "Trans-Texas Water Issues Survey," Robert Aguirre Consultants, L.C., September, 1996.

<u>A Public Issues Survey</u>: A survey of 500 randomly selected households of the study area indicated that:

- The needs, experiences, and views of citizens about water issues within the West Central Study Area vary greatly;
- Conservation was by far and away the most well known and supported management strategy for ensuring future water supplies;
- Except for conservation, many citizens are not familiar with various water supply options, much less knowledgeable about them;
- Study area residents are concerned about water issues and want more information;
- Respondents named the study sponsors, more than they named any other groups or individuals, as the entities they would trust for guidance and for making decisions about their water futures.

<u>Focus Groups — Round #1</u>: A first round of focus groups was conducted in 32 counties from June 11 to August 15, 1996. These groups were designed to test and expound upon the data collected in the public issues surveys.

<u>Workshop</u>: The process was begun with a 2-day public participation workshop for the Policy Management Committee and their senior staff members (November 1995). The purpose of these meetings was to ensure a common understanding of the desired outcomes of the Trans-Texas Water Program planning effort for this region, and to focus on the public participation component specifically.

<u>Committee Survey</u>: The first data gathering step undertaken was to survey the members of the Advisory Committee for Technical and Public Input in December 1995. The purpose of the survey was to acquire a basic understanding of the issues facing the Trans-Texas Water Program effort from each committee member's perspective.

<u>PMC Member Interviews</u>: Each PMC member was privately interviewed in order to gain a better understanding of their respective issues, to identify historically active citizens/groups in their area, to assist in identifying under represented groups, and to identify organized areas of support and adversity. The data gathering identified six "mind sets," as follows:

- Agricultural,
- Urban flighters,
- Metropolitan areas,
- Highland Lakes and Springs,
- Downstream interests, and
- Bays and estuaries.

In addition, the public's decision analysis criteria, as applied to water resources planning, was identified as follows:

- Water quantity,
- Water quality, and
- Water cost.

The 10 core issues identified from the public surveys were:

- Trust in decision makers,
- Equity/economic impact,
- Conservation,
- Local elected officials (importance of),
- Environmental implications,
- Political will (of the decision makers *and* the public),
- Property rights,
- Communication/information,
- Complexity of water issues, and
- Population growth.

A public participation plan, designed as an integrated resource planning process (IRP),

was developed. The IRP method is as follows:

- Investigates,
- Educates,
- Involves,
- Evaluates (input),
- Incorporates (input), and
- Decides.

The IRP balances trade-offs of water resource options such as water conservation, water supply development, and water supply facilities, and incorporates public input and environmental impacts into the decision-making process. The IRP is capable of considering a set of options rather than single projects. The IRP includes:

- A strong focus on water conservation as a resource,
- Careful consideration and public discussion of planning uncertainties and risks,
- Explicit treatment of conflicting objectives and resulting trade-offs,
- The treatment of the public/stakeholders as participants rather than disputants.

It was found that in the West Central Region, there must be a strong commitment to conservation, communication, and confidence. From the information gathered in the public

participation effort, the key findings used in the design of the public participation/stakeholder involvement plan were as follows:

- "Residents chose having a reliable supply as the highest priority, followed closely by water quality and more distantly by keeping the cost of water low.
- "One-third of the region's residents are not concerned about future water shortages.
- "Conservation is most often mentioned as the single most important thing to do to ensure water for the future, and is the most well known and supported water management strategy.
- "Except for conservation, citizens are generally not familiar with other water supply options.
- "One-third of the residents do not feel they are informed on water issues.
- "Residents want to be kept informed on water issues.
- "When seeking reliable information on water issues, three-fourths of the residents turn to either their local water/utility department, city or county government, water districts or authority.
- "Residents most frequently state they trust elected local/state officials and local water officials to make decisions about meeting future water needs, however, one-third either trust nobody or do not know who to trust.
- "Three-quarters of residents in the study region strongly agree that elected and water utility officials should involve the public in water planning issues."

The public participation/stakeholder plan was centered around the issues listed above.

Since 1993, over 120 regional water supply and water management options were identified and evaluated as to quantity of water each could produce, cost of water, and potential environmental effects of each option. The options include a wide range of strategies including conservation and leasing, reuse, recharge enhancement, conjunctive management of surface and groundwater, coordinated operation of existing reservoirs with run-of-river rights, and sharing of water among river basins.

The next step of the Trans-Texas process was to have evaluated the alternatives for their public acceptability and recommend the alternatives that were both publicly acceptable and technically feasible. However, in its regular session in 1997, the Texas Legislature passed Senate Bill 1 (SB1) which redirected Texas water planning into a regional process with regions of the state to be identified by the Texas Water Development Board, with the requirement that each designated region develop its own plan. Thus, during the summer of 1997, the decision was made that the criteria for evaluating the alternatives would be developed, but not applied, since the SB1 process was to be started in February 1998. In order to accomplish this objective, the

PMC appointed an Integrated Resource Planning Committee (IRPC) in September 1997. The committee's membership was representative of the geographic and demographic breadth of the region and included representatives of municipalities, counties, industries, agricultural interests, environmental interests, small businesses, water districts, water utilities, and the general public. Their mission was to develop an informed public criteria by which regional water resource alternatives should be evaluated.

The PMC specified that the IRPC should use a modified Integrated Resource Planning process in order to accomplish their mission The committee's objectives were to:

- Develop a regional understanding of water resource issues, history, and options;
- Examine interdependent relationships among water resources and facilities;
- Review and validate regional growth and water demand assumptions and projections;
- Consider the need for, and role of, conservation in reducing future water demand;
- Ensure that community values and concerns are reflected in an expressed regional planning criteria; and
- Develop the public's regional criteria by which future water resource options should be considered.

The process the IRPC members followed in the development of their criteria consisted of the following seven steps:

- Agree to a common definition of their mission and the ground rules by which they will abide.
- Develop a regional understanding of water resource issues, history, options, and recent legislative impacts.
- Discuss present and potential interdependent relationships among water resources and facilities in the region.
- Develop a common definition of the problem(s) that need addressing.
- Develop an understanding of conservation's role in reducing water demand.
- Develop an understanding of when and where shortfalls in water supply may occur.
- Begin a process of identifying the criteria by which water resource options should be evaluated.

Between October 4, 1997 and January 10, 1998, the IRPC held five meetings in which a facilitator experienced in the development of an Integrated Resource Plan, assisted the committee through its process of developing water planning criteria. The criteria listed below were the result of the deliberations of the Integrated Resource Planning Committee over the 6-month period of its existence. These criteria will be submitted to the Texas Water Development Board as part of the record of work accomplished by the Trans-Texas Water

Program for the West Central study area. These criteria are intended for use by water planners as they evaluate the various alternatives to meet the water needs of the region.<sup>2</sup> The criteria the IRPC recommended to be considered in the development of the Integrated Resource Plan are quoted below:

## "Economic

- Facilitates economic development
- Minimizes long range negative socio-economic impacts (including loss of tax base)
- Promotes opportunities for cost sharing and economic partnership
- Provides cost effective solutions

## "Water Quality

• Provides and maintains appropriate water quality for the intended use

## "Fairness

- Maximizes efficient use of water in areas that import water
- Promotes equitable distribution of costs in meeting region's water needs

## "Feasibility

• Demonstrates feasibility in terms of timing, technical/scientific, economic, political, regulatory, legal, and public acceptance factors

## "Efficiency

- Minimizes evaporative and distribution losses
- Promotes conservation
- Promotes conjunctive use

## "Flexibility

- Adaptable to new and innovative technology
- Adaptable to changes in demand projections
- Adaptable to changes in law
- Adaptable to future supply options

## "Compatibility

- Maximizes regional compatibility with local water plans
- Minimizes negative impacts on property rights

<sup>&</sup>lt;sup>2</sup> "Trans-Texas Water Program, West Central Study Region Integrated Resource Planning Committee Final Criteria Report," Robert Aguirre Consultant, L.C. March 1998.

- Maximizes consistency with local growth management plans
- Maximizes compatibility with plans from surrounding regions

## "Reliability

- Maximizes a sustainable (referring to yield) supply of water for short-term and long-term needs
- Minimizes interruptions to water supplies

## "Environment

- Minimizes short-term and long-term negative impacts on natural resources
  - ♦ Wildlife/habitat
  - ♦ Rivers
  - ♦ Bays
  - ◊ Estuaries
  - ♦ Lakes
  - ♦ Aquifers
  - ♦ Karsts
  - ♦ Air quality
  - ♦ Water quality
  - $\diamond$  Wet lands
  - ♦ Lakes
- Minimizes short-term and long-term negative impact to the human environment
  - ♦ Recreational
  - ♦ Cultural/historical
  - ♦ Archeological
  - ♦ Aesthetics

## "Recommendations

"The IRPC agreed on the following recommendations with the intention of providing more guidance to water planners to assure better regional water planning. The IRPC wanted to emphasize the need for water planners to take into account the indirect impact of their actions and decisions as well as their direct impact. The recommendations were:

- Public participation and education should continue to be an integral part of a regional water planning process.
- When evaluating alternatives, ensure that indirect impacts such as growth inducing or inhibiting effects are considered."

# Appendix A

West Central Trans-Texas Water Supply Options Options Data Sheets





Trans-Texas Water Program West Central Study Area



Trans-Texas Water Program West Central Study Area













Trans-Texas Water Program West Central Study Area



#### Trans-Texas Water Program West Central Study Area















West Central Study Area





Trans-Texas Water Program West Central Study Area
















Trans-Texas Water Program West Central Study Area Summary Report of Water Supply Alternatives





Trans-Texas Water Program West Central Study Area



quality issues need to be undertaken for this option.

































Trans-Texas Water Program West Central Study Area



















environmental mitigation, and local reservoir area, economic and social impacts.

**ADDITIONAL FACTORS:** Ability to obtain permits to use surface water from the Cuero Reservoir.

Trans-Texas Water Program West Central Study Area





**ADDITIONAL FACTORS:** Ability to obtain permits to use surface water from Sandies Reservoir to recharge the Edwards Aquifer.

Trans-Texas Water Program West Central Study Area










Trans-Texas Water Program West Central Study Area












































































### Trans-Texas Water Program West Central Study Area



Trans-Texas Water Program West Central Study Area Summary Report of Water Supply Alternatives









Trans-Texas Water Program West Central Study Area Summary Report of Water Supply Alternatives







Trans-Texas Water Program West Central Study Area



SIGNIFICANT ISSUES AFFECTING FEASIBILITY: Cost of water, mitigation requirements, and ability of the entities to develop a regional plan which realizes economies of size that benefits all of the participants.

ADDITIONAL FACTORS: Ability to obtain permits to transfer Brazos Basin water to the San Antonio area.

10

Allens Creek Reservoir site would be required.









West Central Study Area



Trans-Texas Water Program West Central Study Area





Trans-Texas Water Program West Central Study Area



ADDITIONAL FACTORS: Ability to obtain permits to transfer Brazos and Sabine water to San Antonio area.











Trans-Texas Water Program West Central Study Area





Trans-Texas Water Program West Central Study Area



WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND ALONE BASIS AND CANNOT, IN MOST CASES, BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

SUMMARY REPORT OF WATER SUPPLY ALTERNATIVES

FOR A DESCRIPTION OF EACH ALTERNATIVE AND FOOTNOTES, SEE TABLE 3-1 AND APPENDIX A;

NOTES:





FIGURE ယ ယ

# WATER SUPPLY ALTERNATIVES ORDERED BY QUANTITY

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

| G-36C2<br>G-15C<br>G-15E |  |
|--------------------------|--|
| G-15C<br>G-15E           |  |
| G-15E                    |  |
|                          |  |
| G-37B2                   |  |
| G-36D2                   |  |
| G-35B2                   |  |
| S-14D                    |  |
| G-15D                    |  |
| G-158                    |  |
| G-15A                    |  |
| G-30                     |  |
| S-17                     |  |
| L-20                     |  |
| G-34C2                   |  |
| G-34D2                   |  |
| S-14C                    |  |
| G-138                    |  |
| G-13A                    |  |
| G-36A2                   |  |
| G-36B2                   |  |
| G-34A2                   |  |
| G-34B2                   |  |
| G-14E                    |  |
| G-14A                    |  |
| G-23A                    |  |
| G-25                     |  |
| G-24                     |  |
| G-23B                    |  |
| L-24                     |  |



FIGURE 3-2



Reuse, Natural Recharge, and Imported Recharge Options; Ordered by Unit Cost





WATER SUPPLY ALTERNATIVES **Treatment and Distribution Options; Ordered by Unit Cost** 

TRANS TEXAS WATER PROGRAM /

WEST CENTRAL STUDY AREA

FIGURE 3-5