Groundwater Availability Modeling (GAM) Northern-Trinity and Woodbine Aquifer

Texas Water Development Board

- <u>Purpose</u>: to develop the best possible groundwater availability model with the available time and money.
- <u>Public process:</u> you get to see how the model is put together.
- <u>Freely available:</u> standardized, thoroughly documented, and available over the internet.
- Living tools: periodically updated.

What is groundwater availability?

- ...the amount of groundwater available for use.
- The State does not decide how much groundwater is available for use: GCDs and RWPGs decide.
- A GAM is a tool that can be used to assess groundwater availability once GCDs and RWPGs decide how to define groundwater availability.

Do we have to use GAM?

- Water Code & TWDB rules require that GCDs use GAM information. Other information can be used in conjunction with GAM information.
- TWDB rules require that RWPGs use GAM information unless there is better site specific information available

How do we use GAM?

- The model
 - predict water levels and flows in response to pumping and drought
 - effects of well fields
- Data in the model
 - water in storage
 - recharge estimates
 - hydraulic properties
- GCDs and RWPGs can request runs

Living tools

- GCDs, RWPGs, TWDB, and others collect new information on aquifer.
- This information can enhance the current GAMs.
- TWDB plans to update GAMs every five years with new information.
- Please share information and ideas with TWDB on aquifers and GAMs.

Participating in the GAM process

- SAF meetings
 - hear about progress on the model
 - comment on model assumptions
 - offer information (timing is important!)
- Report review
 - at end of project
- Contact TWDB
 - Dr. Robert Mace
 - contract manager

Comments: Contract Manager Ali.Chowdhury@twdb.state.tx.us (512)936-0834 www.twdb.state.tx.us/gam

Northern Trinity / Woodbine Groundwater Availability Model

Stakeholder Advisory Forum (SAF) March 19, 2003

Ł

SAF Meeting Outline

- GAM Program Overview
- General Geology/Hydrology
- Historical Use Perspective
- Groundwater Flow Model
- Open Discussion

Northern Trinity / Woodbine Groundwater Availability Model

Ż

GAM Program Overview

Goals of the GAM Program

- Include substantial stakeholder input
- Provide reliable groundwater availability information
- Predict groundwater conditions over a 50year planning period
- Produce publicly available groundwater models and supporting data

GAM Project Team

R.W. Harden & Associates, Inc.

Project lead, geology, hydrology, modeling, and reporting

LBG-Guyton Associates

Aquifer characteristics and water levels

HDR, Inc.

Groundwater – surface water interaction

Freese & Nichols, Inc.

Climatic data and stakeholder/RWPG interfacing

Project Team – (continued)

- United States Geological Survey
 - Aquifer data and modeling expertise
- Dr. Joe Yelderman, Jr.
 - Conceptualization of aquifer
- TWDB Staff
 - Technical oversight and assistance
- Stakeholders
 - Real world experience and Project needs/Interests

Why is a Groundwater Flow Model Needed?

- Numerical model allows for more complex analysis than is possible with analytical methods
- Can be used to assess and interpret certain types of groundwater availability issues and/or concepts
- Allows for comparative analysis and testing and understanding of 'what-if' scenarios

Stakeholder Advisory Forum

- Stakeholder participation is important
- SAF Meetings
 - Held about once every four months
- Contact with Project Team encouraged

SAF presentation materials and GAM information to be posted on TWDB website: http://www.twdb.state.tx.us/gam/trnt_n/trnt_n.htm

SAF Input

Your Experiences

- Historical use
- Pumping tests
- Water levels

Your Interests

- Identify needs of the model
- Recognize uses of the model

Project Work Steps

Aquifer characterization

- Data components of hydrologic cycle
- Aquifer geometry and hydraulic characteristics
- Historical pumpage and water levels
- Computer model development, calibration, and prediction
- Report and data presentation

Northern Trinity / Woodbine Groundwater Availability Model

Ł

General Aquifer Geology / Hydrology

Location Map

Surface Geology

Hydrostratigraphic Column

System	Series	Group	Formation				Approximate			
		Croup	North		South		North	South		
Tertiary		Undifferentiated								
Cretaceous	Gulfian	Navarro						800	550	
		Taylor	Undifferentiated					1,500	1,100	
		Austin			Undifferentiated		700	600		
		Eagle Ford					650	300		
		Woodbine						700	200	
	Comanchian	Washita	Grayson Marl		Buda, Del Rio		1,000	150		
			Mainstreet, Pawpaw, Weno, Denton, Fort Worth, Duck Creek		Georgetown			150		
			Kiamichi		Kiamichi			50		
		Fredericksburg	Goodland		Edwards		250	175		
					Comanche Peak			150		
			Walnut Clay		Walnut Clay			200		
		Trinity	Antlers	Paluxy	Paluxy		400	200		
				Glen Rose		Glen Ro	ose	1,500	1,500	
				Twin Mountains	Travis Peak	Hensell	Hensell	1,000	1,800	
						Pearsall	Cow Creek all Hammett			
						Hosston	Sligo Hosston			
Paleozoic	Undifferentiated									

Generalized Cross Section

Source: TWDB 1975

Generalized Cross Section

Hydrologic Cycle

Northern Trinity / Woodbine Groundwater Availability Model

Ż

Historical Aquifer Perspective

Early Water Use

"The water supply in Dallas was in large part not considered clean enough to do laundry, and many of the well-to-do families sent their laundry to Shreveport for washing."

Circa 1890 when the water supply was spring water (from Bowder Springs) and river water from the Trinity River watershed.

Bolding and Bolding, 1981, Origin and Growth of the Dallas Water Utilities

Seagoville Like Dallas

"Seagoville is like Dallas in one respect and that is we need artesian wells"

Dallas Daily Times Herald, June 26, 1891

Eureka!

"Ring the bells and sound the tom-tom. Waco leads the rest of the state in artesian wells--a well that will supply the city with pure freestone water."

"At two o'clock, in the afternoon, while the auger, which has been drilling for two months on Bell's Hill, in J. D. Bell's artesian well struck a white sand strata and a great subterranean ocean of water at the same time."

"From a 5 and 5/8 in. pipe this morning **a river** is running over Bell's Hill, with an estimated flow of four hundred thousand gallons daily. The contractors estimated that the force of water is sufficient to raise the water in a stand pipe to a height [sic] of one hundred, and perhaps, one hundred and twenty-five feet."

Waco Evening News, March 12, 1889

Pure and Infinite Water!

"boundless flow"

"a value inestimable"

"immense body of water"

"incalculable"

"inexhaustible quantities"

Waco Evening News, March 12, 1889

"What shall we do with it?"

"Make it as free as the air we breathe."

"Flush our streets daily and make Waco the healthiest city in the world."

"Make Waco the great sanitarium of the Southwest."

"Erect stand-pipes and give water power to every manufacturing concern that wants it."

Waco Evening News, March 16, 1889

Mineral Water

103 degrees F 1,000 ppm [mg/l]

"Mr. Bill Harris says that the artesian water from Captain Bell's well has valuable curative powers. He has bathed his lame foot,and says he has experienced great relief...."

"It is thought by eminent judges that the new artesian water is a sovereign anti-fat remedy."

Waco Evening News, March 19, 1889

Artesian Wells

Men drinking from hot artesian spring in Marlin

circa 1920 Old postcard

Example Public Water Supplies

City of Morgan

- First well drilled in 1902 flowed when drilled
- Static water level was reported to be 70 feet deep in 1943

City of Rogers

- Well drilled in 1940
- Flowed 835 gallons per minute in 1940
- Static water level of 166 feet above land surface

Geyser City

...Waco advertised itself as a "Geyser City" and built several natatoriums urging visitors to drink and bathe in its 104 degree [F] water in order to cure "dyspepsia, rheumatism, syphilis, eczema, many other chronic problems."

[Walker, 1983]

Scenes in and near Waco - 1890

"The people of Waco thought the supply of artesian water was certainly inexhaustible, but in 1894 the wells began to produce less water and even go dry*."

Walker [1983]

*(cease to flow at the surface)

Era of Development

From 1910 – 1950:

- Rural Supply and Fire Protection
- 90 % of Communities on ground water
- 2/3 of total water used was groundwater

City of Penelope

"The City of Penelope tried several times to drill a deep artesian well and while a well was being drilled in 1916 the local hotel burned to the ground. Two other large fires destroyed much of the town, discouraging the people.

Penelope did not complete a successful well until 1959."

Bruegger, 1990, 5D, in Sharpless and Yelderman, 1993

Historical Water Levels

Outcrop Well in Parker County

Confined Aquifer Well in Dallas County

Previous TWDB Aquifer Studies

Central Texas - TWDB Report 195 Klempt, Perkins & Alvarez (1975)

North Texas - TWDB Report 269 Nordstrom (1982)

North Central Texas – TWDB Report 349 Langley (1999)

Central Texas - TWDB Report 350 Ridgeway & Petrini (1999)

Modern Time

- Aquifer data
- Aquifer analysis including modeling

Northern Trinity / Woodbine Groundwater Availability Model

Ł

Groundwater Flow Model

Model Domain

Model Input Data

Aquifer Geohydrology

- Structure
- Hydraulic properties
- Water levels

Surface Water Interaction

- Recharge
- Discharge

Historical Aquifer Use

Location and amount through time

Modeling Process

*includes sensitivity analysis

Model Strengths & Limitations

Regional Model

- Should allow for reasonable regional evaluations
- May be inapplicable at a local scale
- Calibration/Prediction
 - Calibration/Verification periods 10 years
 - Prediction period up to 50 years
 - Available calibration data and detail

What a Regional GAM Can and Can't Do

CAN DO

- Provide estimates of regional water level changes under different use scenarios (amounts and distributions)
- Provide estimates of the relative importance of different aquifer flow components (recharge, leakage, etc.) under different aquifer stages
- Provide estimates of the aquifer's response to different groundwater management scenarios

CAN'T DO

- Determine the amount of water that should be produced
- Determine policy or an appropriate management strategy

Project Schedule Milestones

- Project Initiation January 2003
- Draft Conceptual Model Complete August 2003
- Model Development Begins Sept. 2003
- Study Completion Date March 2004
- Final Report August 2004

Northern Trinity / Woodbine Groundwater Availability Model

Ż

SAF Open Discussion

Trinity and Woodbine aquifers GAM Stakeholder Attendance List March 19, 2003

Name	Representing
Steven McKay	City of Howe
David Woreham	City of Howe
Eric Strom	USGS
Ali Chowdhury	TWDB
Lou Fleischhauer	Trinity Engineering
Dean Conner	City of Woodway
Warren Williams	Luella USC
Paul Phillips	City of Weatherford
Tim Jahn	Brazos River Authority
Sue Thompson	City of Highland Village
Alice James	BW2 Engineers
H.C. Clark	Enviornmental
V. Ratliff	Historical
Kevin Spencer	R.W. Harden & Associates, Inc.
Stephanie Griffin	Freese & Nichols, Inc.
Bob Harden	R.W. Harden & Associates, Inc.
Joe Yelderman	Dept of Geology, Baylor University
Tracy Relinski	R.W. Harden & Associates, Inc.

Summary of Questions/Answers SAF No. 1 Trinity (north) and Woodbine aquifers GAM Harris Education Center Hillsboro, Texas March 19th, 2003

- Q: Will the model show water quality on a regional basis?
 A: The final report will address water quality conditions that exist in the Northern Trinity/Woodbine aquifer. The model will not have water quality input. If desired, in the future the flow model developed for this program could be used in conjunction with a water quality transport model to simulate water quality.
- Q: Will the model indicate deep circulation on fault zones?
 A: Yes, the model will include appropriate input to simulate the regional effects of faulting.
- 3. Q: Are you going to include water temperature as one of the constraints on the model?A: The model will not include water temperature as a specific input. The effects of temperature are relatively small compare to other model input parameters.