Groundwater Availability Modeling (GAM) for the Lipan Aquifer

LBG-GUYTON Associates

Presented to

Stakeholder Advisory Forum San Angelo, Texas

July 31, 2003

Groundwater Availability Modeling

Contract Manager Texas Water Development Board

- <u>Purpose</u>: to develop the best possible groundwater availability model with the available time and money.
- <u>Public process</u>: you get to see how the model is put together.
- <u>Freely available:</u> standardized, thoroughly documented, and available over the internet.
- Living tools: periodically updated.

What is groundwater availability?

- ...the amount of groundwater available for use.
- The State does not decide how much groundwater is available for use: GCDs and RWPGs decide.
- A GAM is a <u>tool</u> that can be used to assess groundwater availability once GCDs and RWPGs decide how to define groundwater availability.

Do we have to use GAM?

- Water Code & TWDB rules require that GCDs use GAM information. Other information can be used in conjunction with GAM information.
- TWDB rules require that RWPGs use GAM information unless there is better site specific information available

How do we use GAM?

- The model
 - predict water levels and flows in response to pumping and drought
 - effects of well fields
- Data in the model
 - water in storage
 - recharge estimates
 - hydraulic properties
- GCDs and RWPGs can request runs

Living tools

- GCDs, RWPGs, TWDB, and others collect new information on aquifer.
- This information can enhance the current GAMs.
- TWDB plans to update GAMs every five years with new information.
- Please share information and ideas with TWDB on aquifers and GAMs.

Participating in the GAM process

- SAF meetings
 - hear about progress on the model
 - comment on model assumptions
 - offer information (timing is important!)
- Report review
 - at end of project
- Contact TWDB
 - Robert Mace
 - Richard Smith

Comments:

Richard Smith richard.smith@twdb.state.tx.us (512)936-0877 www.twdb.state.tx.us/gam

Physiographic Provinces

ttp://www.lib.utexas.edu/geo/physography.html

Central Texas (North-Central Plains)

- Shale Bedrock characterized by meandering rivers through local prairie
- Harder Bedrock forms hills and rolling plains dissected by rivers.
- Live oak ashe juniper parks grade westward into mesquite lotebush brush.

Edwards Plateau

- The Edwards Plateau is capped by hard Cretaceous limestones. Local streams entrench the plateau as much as 1,800 feet in 15 miles.
- The upper drainages of streams are waterless draws that open into box canyons where springs provide permanently flowing water.
- Sinkholes commonly dot the limestone terrain and connect with a network of caverns.
- The vegetation grades from mesquite juniper brush westward into creosote bush tarbush shrubs.

General Climate

(San Angelo, TX www.sanangelo.org)

- San Angelo, TX Elevation is 1900 ft Model Area Elevation Range is 1500 ft to 2500 ft
- · Located Near the Northern Boundary of the Chihuahuan Desert
- Average Morning Humidity of 79%, That Drops to an Average of 44% in the Afternoons
- average annual temperature is 64.9 degrees, with average highs of 78.1, and lows of 51.6.
- San Angelo receives 251 days of sunshine each year, and the average rainfall is 20.45 inches.

Geologic Formations in the Model Area

- Leona Formation Quaternary Alluvial Deposits Consisting Mainly of Gravels and Conglomerates Cemented with Sandy Lime
- Permian Formations Primarily Limestone Units in the Model Area Including the Choza, Bullwagon, Vale, Standpipe, and Arroyo Formations
- Cretaceous Formations Edwards Trinity Formations Located to the South and West

Geologic History in Model Area

- Permian Deposits Overlain by Quaternary Alluvium
- Rising and Falling Water Levels Created Karst Features
- Quaternary Alluvium Subsequently Filled These with Gravels and Conglomerates
- No Mapped Faults However there is Evidence of Recent Active Faulting in **Kickapoo Creek**

Age Formation Leona Formation and Albyvium		Thickness	Hydrologic Unit	Description and Water-Bearing Characteristics				
		0 - 125 feet	Leona Aquifer	Gravel and Stream Channel Deposits with conglomerate of Limestone committed with sandy lime. Some layers of caliches and clay. Yields jufficient water for imgation where thickness is suitable.				
Permian	San Angelo Sandstone	250 feet	San Angelo Aquifer	Bright red sandstone with some clay and gypsum. Conglomerate at base. Yields small guantities of water.				
	Choza Formation	625 feet	Choza Aquifer	Gray dolomitic limestone with clay and some sity clay layers. Yields small quarbities of water.				
	Bullwagon Dolomite	75 feet	Bullwagon Aguiter	Massive yellow to gray dolomitic limestone and green and red shale layers. Yields sufficient water for imigation.				
	Vale Formation	140 feet	Vale Aguiter	Shale at top. Rest is red sandy shale with thin streaks of green shale. Yields small quantities of water.				
	Standpipe	15 feet	Standpipe Aguiler	Yelowish to light gray marty limestone Yields small quantities of water				
	Arroyo Formation	60+ teet	Arrovo Aguifer	Alternating layers of shale and limestone. Yields small quantities of water from the limestone horizons.				

da: After Lee (1986) "Shalow Ground-Viater Conditions, Tain Green County, Ter-

n S ProjectorGAM02GAMLparkE0Necrolate/geo/Gbat_sector.old

Hydrostratigraphy

Hydrostratigraphic Properties

- Leona, Cretaceous and Permian Units are Hydraulically Connected.
- In General they Behave as one Hydrostratigraphic Unit with no Observable Hydraulic Head Differences Related to Hydrostratigraphy
- Water Quality and Transmissivity Deteriorate with Depth
- Aquifer Productivity is Partially Influenced by Presence of Paleo-features with Higher Transmissivity

Why a One Layer Model?

- Most of the Leona Formation is Dry
- Generally, Leona Gravels and Underlying Permian Units are Hydraulically Indistinguishable
- There is no Data to Substantiate Vertical Gradients
- Most of the Larger Production Wells are in the Permian which Initially was not Designated as Part of the Lipan Aquifer

Permian Geology

- Permian units predominantly act as a single hydrostratigraphic unit beneath the Lipan aquifer and are in direct communication with the Lipan aquifer
- Different Permian units are not distinguishable based on drilling logs or water levels
- Base of the aquifer will be 400 feet below ground surface

Water Levels and Regional Groundwater Flow

Recharge and Evapotranspiration

Sources of Recharge

- Precipitation
- Irrigation Return Flow
- Stream and River Leakage
- Lake and Pond Leakage
- Injection Wells

Factor Influencing and Controlling Recharge

- Precipitation and Evapotranspiration
- Soil Characteristics including Permeability and Thickness
- Geologic Controls Structure, Rock Type and Sat/Unsat Hydraulic Conductivity
- Land Use / Land Cover
 - Vegetation Density
 - Agricultural Areas
 - Urban Area
 - Crops and Irrigation
- Stream and River Flow characteristics
- Topographic Slope

Nearby Recharge Estimates

			Aquifer								
		Recharge	Edv	vards-	S	eymour	Southern				
	F	Rate (in/yr)	Tr	inity				Ogallala			
		Min		0.30		1.	00	0.05			
		Max		2.00		2.	60	8.62			
		Average		1.18		2.	02	1.92			
		Count		4			17				
Inches per Year	10 - 8 - 6 - 4 - 2 -		2.00 1.18 0.30	¢2	60 02 .00		8.62	• Average			
	0 -	Trinit	v			Ogal	lala				
		Edwar	ds-	Seymou	ır	South	nern				

Recharge in the Model

- For yearly stress periods, initial recharge estimates will be spatially-varied distributed based on a percentage of mean annual precipitation
- For monthly stress periods, recharge will initially be distributed, both spatially and temporally, based on percentage of mean monthly precipitation.
- During calibration, recharge will be adjusted as necessary, within reasonable constraints, both temporally and aerially.

Palmer Drought Index

Palmer Drought Index

Is This Recharge Rate Reasonable?

- 1. Analysis of Long-Term pumping and water-levels indicate that Annual Recharge is on the order of 40,000 AFY
- 2. Assuming Half of the recharge to the system is due to Precipitation
- Area of Lipan Aquifer from TWDB Outline ~ 400,000 Acres
- 4. It is assumed that Lateral and Vertical Recharge are in the range of 10,000 to 30,000 AFY Each

 $Q = 10 \times 0.003 \times 4.5 \times 10^6 = 11,340 \text{ AFY}$

Evapotranspiration (ET)

- Refers to the Loss of Groundwater and Soilmoisture Due to Free-water Evaporation, Plant Transpiration or Soil-moisture Evaporation.
- Potential Evapotranspiration; "The Water Loss That Will Occur If at No Time There Is a Deficiency of Water in the Soil for Use by Vegetation" Thornthwaite,1955
- Actual Evapotranspiration, the Amount of ET That Occurs Under Field Conditions, Is Controlled by the Soil Moisture Content, Precipitation, Vegetation Density and Root Zone Depth

Applying ET in the Model Area

- Crops will be main source of ET in the irrigated areas
- Recharge and ET the irrigated areas will be coupled resulting in an effective recharge rate in those areas
- ET in riparian areas may be substantial
- There is no readily available data for vegetation in the riparian areas of the model
- ET in the rest of the model area will be driven by mesquite because it has a very high ET rate, a deep root zone depth and is prevalent outside the Lipan Flats

Evapotranspiration in Model Area

Evapotranspiration Rates and Maximum Root Zone Depths for Vegetation Found in the Model Area

Plant	Estimat Min (in/yr)	Max (in/yr)	Mean Maximum Root Depth (Feet)	Source
Crops	30.8		6.9	From Data for Edwards Plateau (Borelli, et. al., 1998)
Live Oak	30.2		13 - 41	Doleman, 1990
Juniper	23.3	25	12.8	Dugas, et. al., 1998
Mesquite	8.8	25.4	39 - 46.9	Duell, 1990; Tromble, 1977; Ansley et al, 1998

Data From Shirley Wade's Preliminary Approach for Estimating Evapotranspiration

Rivers, Streams, Springs and Lakes

Modeling the Streams

- Use MODFLOW stream routing package (STR)
- This package routes the streamflow based on stream geometry, roughness coefficient, and groundwater gains or losses
- Streams are divided into segments which, in this model, represent each creek or river
- Each cell of the model with the stream package in it is assigned a reach number.
- Streamflow in a segment is routed from the upstream reach to the next downstream reach
- Groundwater gains and losses are calculated based on the stage in each river reach

Assigning Stream Properties

- Stream properties are assigned using river reach files from the US EPA
- River reach GIS coverages are overlain on the model grid
- Measured versus calculated streamflow will be used as a calibration target at stream gage locations

Franklin T. Heitmuller and Brian D. Reece, 2003. U.S. Geological Survey (USGS) Open-File Report 03-xxxx, "Springs of Texas and springflow measurements".

Estimating Specific-Capacity and Transmissivity using Production Capacity

Specific-Capacity from Production Capacity

- Use Production Capacity (Q) and Saturated thickness in Well (b)
- Assume Specific-Capacity (Sc) = Q/b
- Assume Q is in gallons per minute
- Sc is in Gallons per minute per foot

Transmissivity from Specific-Capacity

- Used "Estimating Transmissivity Using Specific-Capacity Data" (Mace, 2000) Appendix A
- Assumptions: 10 minute Pumping time, 8" Well Diameter, Storativity (S) of 0.0001
- Estimated Transmissivity Values range from 0.3 to 4000 $\rm ft^2/day$

Groundwater Discharge 1974 & 1977

Irrigation Wells Installed Since 1950

Population Changes in Model Area

		F	Population
County	1980	1990	2000
Concho	2,915	3,044	3,966
Runnels	11,872	11,294	11,495
Tom Green	84,784	98,458	104,010
		Numerica	l Change
		1980-1990	1990-2000
Concho		129	922
Runnels		-578	201
Tom Green		13,674	5,552
		Percent	Change
		1980-1990	1990-2000
Concho		4.43	30.29
Runnels		-4.87	1.78
Tom Green		16.13	5.64

Distribution of 1977 Irrigation Pumping Based on 1989 Irrigated Land Coverage

1980 - 1997 Irrigation Pumping for Calibration / Verification

Estimated Irrigation Pumping for Predictive Simulations 2000 - 2050

1980 - 1997 Pumping for Calibration / Verification

1980 - 2000 Pumping for Calibration / Verification

Estimated Pumping for Predictive Simulations 2000 - 2050

1980 - 1997 and Estimated Irrigation Pumping 2000 - 2050 Calibration / Verification and Predictive Simulations

Project Schedule

	Date and Project Month																					
	Sep.02	0-0402	Nev 02	Dec.82	1m.01	Feb.03	Na 01	Apr 03	(Baya)	Jun 83	Jud 63	Aug 83	Sep.01	0043	Nev.03	Dec.01	Jan 04	14.01	Ha 01	Apr 04	May 01	Justifi
Task abalder bourt	1	1	3	4	12		1		3	10	11	W.	11	14	13	16	1/	38	19	20	21	u
Stakenoider input	-			5	-		3	-	-	2				1				2.		1		-
AF Meetings	+	-	-	4	5	-	4	1	-	4	12	-	-	4	-	-	-		1	4		-
owr meenings	+	-	-	-	1	-	-	- T.	-	-	-	-	-	-		-	-	-			-	-
Conceptual Model Development																						
Data Collection				1000	100	-	-	-				-	-	-		-	-	-	-		-	-
a) Frystography b) Geology c) Water Levels d) Recharge e) Surface Water f) Aquifer Characteristics g) Dirscharge			Gert		71	t New		- 13														
Model Development												2.3	÷									
a) Architecture b) Steady-State Calibration c) Transient Calibration d) Verification e) Sensitivity Analysis Predictions																						

Attendees of the 3rd Stakeholder Advisory Forum for the Lipan GAM July 31, 2003

Name	Affiliation
James Beach	LBG-Guyton Associates
Richard Smith	TWDB
Scott McWilliams	UCRA
Bill Lange	Lange Drilling Co.
Allan Lange	Lipan-Kickapoo WCD
Will Wilde	City of San Angelo
Mr. and Mrs. E.R. Talley	Talley Farms

Lipan Aquifer Groundwater Availability Model (GAM) 3rd Stakeholder Advisory Forum (SAF) Meeting July 31, 2003 San Angelo, Texas

Meeting Summary

The third Stakeholder Advisory Forum (SAF) meeting for the Lipan Aquifer Groundwater Availability Model (GAM) was held on July 31st from 7:00 to 8:30 PM at the Texas A&M Research Center in San Angelo, Texas. TWDB project manager Richard Smith gave an introduction to the GAM program and introduced LBG-Guyton Associates.

James Beach of LBG-Guyton made a presentation to an audience consisting of five attendees. The presentation, along with a list of participants who signed up at the meeting, is available at the TWDB GAM website (www.twdb.state.tx.us/gam). The presentation was structured to cover all the components of the conceptual model and the data assimilated for the project.

The questions and answers from the SAF are presented below.

Questions and Answers

- *Q:* Why does the model simulate flow with one layer when we know that there are unique zones in the limestone that are usually one to two feet thick that produce most of the water in the wells?
- A: MODFLOW uses a continuous porous media conceptualization to simulate groundwater flow. This basically means that the aquifer material in each model layer is the same throughout the thickness of that model layer. To appropriately implement a model with many layers, we would need to know where each of the high permeability zones is located in each well, as well as how contiguous that zone is in the surrounding area. That level of information does not exist; therefore the aquifer has been conceptualized to contain one layer and that layer is assumed to represent the overall transmissivity of the aquifer. The transmissivity value in each model grid block represents the overall "productivity" of the aquifer in that area. This conceptualization is consistent with the overall GAM model objectives and the level of data that is available at this time. This approach has been used successfully to simulate overall ground-water availability in aquifers that have similar vertical variation in hydraulic properties.
- *Q:* Some of the spring data is not consistent with current observations. When was the data collected?
- A: The USGS compiled these data. The database does not indicate the date of observation or the hydrologic conditions at the time.

- *Q:* Groundwater pumpage for irrigation has occurred in the areas designated as areas where surface water is used. How will the model account for this?
- A: We will discuss this issue with the TWDB and evaluate existing data regarding irrigation wells in these areas during the calibration and verification periods of the model (1980-2000) as well as predictive periods.
- *Q: Will the conceptual model report be released before the next SAF meeting?* A: The draft report is for internal TWDB use and is intended as a means of in
- A: The draft report is for internal TWDB use and is intended as a means of insuring that the model development remains on schedule. The report is generally not for public release; however, we will ask the TWDB to consider releasing the conceptual model report for review by stakeholders.