

OUTLINE

- Review of hydrogeology of aquifer and modeling process
- Steady-state model calibration results
- GAM schedule

LOCATION MAP

SURFACE GEOLOGY

Ν

GEOLOGIC AND HYDROGEOLOGIC UNITS

CONCEPTUAL MODEL

MODELING PROCESS

- Define model objectives
- Develop conceptual model
- Design model
- Calibration and verification modeling
 - Comparison with observed data
- Predictive modeling
 - Predict impacts of projected growth
 - 2000 2050

MODELING PROCESS

- Three models
 - Steady-state
 - Transient (historic)
 - Transient (predictive)

STEADY-STATE CALIBRATION

- Parameters
 - Water levels
 - Stream discharge
- Root Mean Square Error
 - Measure of difference between measured and simulated water levels
 - Target = less than 10 % (34 feet)

MODEL INPUT DATA

AQUIFER TOP ELEVATION

AQUIFER BASE ELEVATION

STREAMS/SPRINGS

RECHARGE

Total pumpage (cu. ft/day) Ó 1.5 5.10 10 - 100 100 - 1,000 1,000 - 10,000 10,000+ 20 Miles

TOTAL PUMPAGE

GENERAL-HEAD BOUNDARY

MODEL RESULTS

SIMULATED WATER-LEVEL ELEVATIONS

Simulation 69 Calculated Heads RMSE = 29 ft **Observed Heads**

MEASURED v. SIMULATED WATER LEVELS

CROSS-FORMATIONAL FLOW

STREAM/SPRING DISCHARGE

MEASURED v. SIMULATED STREAM DISCHARGE

8105200 - Berry Cr. at SH 971 near Georgetown, TX

8156700/8156800 - Shoal Cr. Austin. TX

WATER BUDGET

FLOW TERM	IN		OUT		IN - OUT
WELLS	0	0.0%	12,700	16%	-12,700
DRAINS	0	0.0%	49,600	61%	-49,600
RECHARGE	81,700	99.7%	0	0%	+81,700
CROSS-FM. FLOW	200	0.3%	19,600	24%	-19,400

GAM SCHEDULE

SCHEDULE

Northern Segment of the Edwards Aquifer Stakeholder Advisory Forum 1 March 18, 2002

Name			Affiliation
1	Sergio	Garza	Private citizen
2	Horace	Grace	Clearwater UWCD
3	John	Lich	TCEQ
4	Brian	McCaig	TC&B
5	Jim	Michael	Private citizen
6	Judy	Parker	Clearwater UWCD
7	Steve	Paulson	Aci
8	Philip	Price	Brazos River Authority
9	James W.	Sansom	Consulting geologist
10	Philip	Savoy	Murfee Eng. Co. Inc.
11	James	Sloan	TCEQ
12	Besta	Stanukinos	Saratoga UWCD/Friends of Sulphur Creek
13	Tony	Stanukinos	Monitoring Group/Friends of Sulphur Creek

NORTHERN SEGMENT OF THE EDWARDS AQUIFER GROUNDWATER AVAILABILITY MODEL Stakeholder Advisory Forum #4, January 16, 2003

Thirteen people attended the fourth Stakeholder Advisory Forum for the northern segment of the Edwards aquifer groundwater availability model. This meeting was held at the Salado Civic Center, Salado, TX. The stakeholders present represented the Texas Commission on Environmental Quality, Clearwater UWCD, Brazos River Authority, and various consulting firms, as well as private citizens.

At the meeting, Dr. Ian Jones outlined the work conducted to calibrate the steadystate model. This included discussion of the final input data and calibration results for the model, including the Root Mean Square Error and comparison of simulated and observed streamflow data. The presentation also included a brief review of the geology, hydrogeology, and the conceptual model.

Questions asked during the presentation pertained to how recharge and hydraulic conductivity was distributed, use of pump test data, and the source of structural and pumpage data. It was suggested that transient model cover relatively short time period that included major drought.