GAM RUN 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12

Jerry Shi, Ph.D., P.G. and Jevon Harding, P.G. Texas Water Development Board Groundwater Division Groundwater Modeling Department 512-463-5076 November 1, 2022 This page is intentionally left blank.

Geoscientist Seals

The following professional geoscientists contributed to this conceptual model report and associated data compilation and analyses:

Jianyou (Jerry) Shi, Ph.D., P.G.

Dr. Shi was responsible for the calculations to verify the attainability of desired future conditions and the calculations of modeled available groundwater values. He was the primary author of the report.

Jevon Harding, P.G.

Ms. Harding was responsible for editing the report and adding additional documentation as necessary to meet TWDB standards after Dr. Shi had left the <u>agency</u>.

<u>Jevon Han</u> Signature

11/3/2022	STINTE OF TEXAP
Date	JEVON HARDING
	GEOLOGY 5 12050
	SSIDNALT GEOSCIE

GAM RUN 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12

Jerry Shi, Ph.D., P.G. and Jevon Harding, P.G. Texas Water Development Board Groundwater Division Groundwater Modeling Department 512-463-5076 November 1, 2022

EXECUTIVE SUMMARY:

Groundwater Management Area 12 submitted a desired future conditions explanatory report and associated predictive groundwater availability model files to the Texas Water Development Board (TWDB) on February 2, 2022. The TWDB Executive Administrator determined that the explanatory report and other materials submitted to the TWDB were administratively complete on July 1, 2022.

The TWDB calculated modeled available groundwater in Groundwater Management Area 12 for the Sparta, Queen City, Yegua-Jackson, and Brazos River Alluvium aquifers, as well as for the following formations of the Carrizo-Wilcox Aquifer: Carrizo, Calvert Bluff (upper Wilcox), Simsboro (middle Wilcox), and Hooper (lower Wilcox) formations.

Modeled available groundwater is summarized by decade, county, and groundwater conservation district (Tables 4 through 11) and by county, regional water planning area, and river basin for use in the regional water planning process (Tables 12 through 19). Modeled available groundwater for each aquifer in Groundwater Management Area 12 is summarized below.

Carrizo-Wilcox, Queen City, and Sparta aquifers

Sparta Aquifer: Modeled available groundwater ranges from approximately 11,530 to 26,210 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 4) and by county, regional water planning area, and river basin (Table 12).

Queen City Aquifer: Modeled available groundwater ranges from approximately 5,650 to 15,310 acre-feet per year during the period from 2020 to 2070. Values are summarized by

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 5 of 36*

groundwater conservation district and county (Table 5) and by county, regional water planning area, and river basin (Table 13).

Carrizo-Wilcox Aquifer (Carrizo Formation): Modeled available groundwater ranges from approximately 27,460 to 52,370 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 6) and by county, regional water planning area, and river basin (Table 14).

Carrizo-Wilcox Aquifer (Calvert Bluff Formation): Modeled available groundwater ranges from approximately 7,160 to 16,450 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 7) and by county, regional water planning area, and river basin (Table 15).

Carrizo-Wilcox Aquifer (Simsboro Formation): Modeled available groundwater ranges from approximately 129,990 to 314,460 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 8) and by county, regional water planning area, and river basin (Table 16).

Carrizo-Wilcox Aquifer (Hooper Formation): Modeled available groundwater ranges from approximately 7,420 to 14,440 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 9) and by county, regional water planning area, and river basin (Table 17).

Yegua-Jackson Aquifer

Modeled available groundwater for the Yegua-Jackson Aquifer ranges from approximately 17,070 to 25,860 acre-feet per year during the period from 2020 to 2070. Values are summarized by groundwater conservation district and county (Table 10) and by county, regional water planning area, and river basin (Table 18).

Brazos River Alluvium Aquifer

Modeled available groundwater for the Brazos River Alluvium Aquifer ranges from approximately 194,220 to 197,360 acre-feet per year during the period from 2020 to 2070. Values are summarized by county and groundwater conservation districts (Table 11) and by county, regional water planning area, and river basin (Table 19).

REQUESTOR:

Mr. Gary Westbrook, Groundwater Management Area 12 Coordinator.

DESCRIPTION OF REQUEST:

The groundwater conservation districts (Figure 1) in Groundwater Management Area 12 adopted desired future conditions for the Carrizo-Wilcox, Queen City, Sparta, Yegua-Jackson, and Brazos River Alluvium aquifers on November 30, 2021.

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 6 of 36*

Carrizo-Wilcox, Queen City, and Sparta Aquifers

The desired future conditions for the Carrizo-Wilcox, Queen City, and Sparta aquifers, described in the resolution adopted by Groundwater Management Area 12 on November 30, 2021, are listed in Table 1. The desired future conditions are the average water level drawdowns in feet measured from January 2011 through December 2070.

TABLE 1.ADOPTED DESIRED FUTURE CONDITIONS FOR THE CARRIZO-WILCOX, QUEEN
CITY, AND SPARTA AQUIFERS IN GROUNDWATER MANAGEMENT AREA 12.

Carrizo-Wilcox Aquifer							
Groundwater Conservation District (GCD) or County	Sparta Aquifer	Queen City Aquifer	Carrizo Formation	Wilcox (Calvert Bluff Formation)	Wilcox (Simsboro Formation)	Wilcox (Hooper Formation)	
Brazos Valley GCD*	53	44	84	111	262	167	
Fayette County GCD**	43	73	140	NR	NR	NR	
Lost Pines GCD	22	28	134	132	240	138	
Mid-East Texas GCD	25	20	48	57	76	69	
Post Oak Savannah GCD	32	30	146	156	278	178	
Falls County	NP	NP	NP	NP	7	3	
Limestone County	NP	NP	NP	2	3	3	
Navarro County	NP	NP	NP	0	1	0	
Williamson County	NP	NP	NP	NR	31	24	

* Brazos Valley GCD desired future conditions are for 2000 through 2070 **Fayette County GCD desired future conditions are for all of Fayette County NR: non-relevant for the purposes of joint planning; NP: not present

Yegua-Jackson Aquifer

The desired future conditions for the Yegua-Jackson Aquifer, described in the resolution adopted by Groundwater Management Area 12 on November 30, 2021, are listed in Table 2. The desired future conditions are the average water level drawdowns in feet measured from January 2010 through December 2069.

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 7 of 36*

Figure 1. GROUNDWATER CONSERVATION DISTRITS IN GROUNDWATER MANAGEMENT AREA 12.

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 8 of 36*

TABLE 2. ADOPTED DESIRED FUTURE CONDITIONS FOR THE YEGUA-JACKSON AQUIFER IN GROUNDWATER MANAGEMENT AREA 12.

Groundwater Conservation District (GCD)	Desired Future Condition
Brazos Valley GCD	67
Fayette County GCD*	81
Lost Pines GCD	NR
Mid-East Texas GCD	8
Post Oak Savannah GCD	61

* Fayette County GCD desired future conditions are for all of Fayette County NR: non-relevant.

Brazos River Alluvium Aquifer

The desired future conditions for the Brazos River Alluvium Aquifer, described in the resolution adopted by Groundwater Management Area 12 on November 30, 2021, are presented in Table 3. The desired future conditions for Brazos Valley Groundwater Conservation District are defined in terms of an average percent saturation and the desired future conditions for Post Oak Savannah Groundwater Conservation District are defined in terms of a decrease in the average saturated thickness.

TABLE 3 ADOPTED DESIRED FUTURE CONDITIONS FOR THE BRAZOS RIVER ALLUVIUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 12.

Groundwater Conservation District (GCD)	County	Desired Future Condition
		North of State Highway 21: Percent saturation shall average at least
Brazos Valley GCD	Brazos and Robertson	30% of total well depth from January 2013 to December 2069.
y = = =		South of State Highway 21: Percent saturation shall average at least
		40% of total well depth from January 2013 to December 2069.
	Burleson	A decrease in 6 feet in the average saturated thickness over the
Post Oak Savannah CCD	Durieson	period from January 2010 to December 2069.
I USt Oak Savaillall UCD	Milam	A decrease of 5 feet in average saturated thickness over the period
	Iviiiaiii	from January 2010 to December 2069.

All desired future conditions in Groundwater Management Area 12 are based on modeled extent, which may contain portions of an aquifer that do not fall within the official TWDB aquifer boundary. In addition, the desired future conditions for Fayette County Groundwater Conservation District are based on the entire county, although only part of the district is within Groundwater Management Area 12.

Groundwater Management Area 12 provided the TWDB with the desired future conditions, associated predictive groundwater availability model files, and supporting documents on February 2, 2022 (Daniel B. Stephens & Associates and others, 2022).

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 9 of 36*

TWDB staff reviewed the materials submitted by Groundwater Management Area 12 and requested clarifications on several items on April 21, 2022. On May 6, 2022, Groundwater Management Area 12 met to discuss the TWDB clarifications request and reviewed and approved two response documents titled "Calvert Bluff Aquifer Memo-Draft-20220503" and "Memo on TWDB Items-Draft-2022050". The response is summarized in Appendix A.

METHODS:

Carrizo-Wilcox, Queen City, and Sparta aquifers

The desired future conditions for the Carrizo-Wilcox, Queen City, and Sparta aquifers in Groundwater Management Area 12 are based on the predictive model files for "Scenario 19" submitted with the desired future conditions explanatory report (Daniel B. Stephens & Associates and others, 2022). This predictive simulation was constructed as an extension of the calibrated groundwater availability model (Version 3.02) for the Central Portion of the Sparta, Queen City, and Carrizo-Wilcox aquifers (INTERA Incorporated and others, 2020).

The desired future conditions for each aquifer by groundwater conservation district or county are expressed as average drawdown between 2010 and 2070. The modeled available groundwater values were determined by extracting pumping rates by decade from the MODFLOW cell-by-cell budget files using custom Fortran scripts developed by the TWDB.

Yegua-Jackson Aquifer

The desired future conditions for the Yegua-Jackson Aquifer in Groundwater Management Area 12 are based on the predictive model files for "Scenario 2 (PS2)" submitted with the desired future conditions explanatory report (Daniel B. Stephens & Associates and others, 2022). Stress periods 1 through 27 in this predictive model represent the original calibrated groundwater availability model (Version 1.01; Deeds and others, 2010) and stress periods 28 through 100 represent the predictive simulation for the desired future conditions.

The desired future conditions for the Yegua-Jackson Aquifer are expressed as average drawdown between 2009 and 2069. The modeled available groundwater values were determined by extracting pumping rates by decade from the MODFLOW cell-by-cell budget files using custom Fortran scripts developed by the TWDB.

Brazos River Alluvium Aquifer

The desired future conditions for the Brazos River Alluvium Aquifer in Groundwater Management Area 12 are based on the predictive model files for "Scenario 2 (PS2)" submitted with the explanatory report (Daniel B. Stephens & Associates and others, 2022). GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 10 of 36*

Stress periods 1 through 427 in this predictive model represent the original calibrated groundwater availability model (Version 1.01; Ewing and Jigmond, 2016) and stress periods 428 through 485 represent the predictive simulation for the desired future conditions.

BRAZOS VALLEY GROUNDWATER CONSERVATION DISTRICT

The desired future conditions for the Brazos Valley Groundwater Conservation District are expressed as percent saturation of total well depth at the end of 2069. The modeled available groundwater values were determined by extracting pumping rates by decade from the MODFLOW cell-by-cell budget files using custom Fortran scripts developed by the TWDB.

Post Oak Savannah Groundwater Conservation District

The desired future conditions for the Post Oak Savannah Groundwater Conservation District are expressed as a decrease in saturated thickness between 2009 and 2069. The modeled available groundwater values were determined by extracting pumping rates by decade from the MODFLOW cell-by-cell budget files using custom Fortran scripts developed by the TWDB.

MODELED AVAILABLE GROUNDWATER AND PERMITTING

As defined in Chapter 36 of the Texas Water Code (2011), "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts are required to consider modeled available groundwater, along with several other factors, when issuing permits in order to manage groundwater production to achieve the desired future condition(s). The other factors districts must consider include annual precipitation and production patterns, the estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the groundwater availability simulations are described below:

Carrizo-Wilcox, Queen City, and Sparta aquifers

• Version 3.02 of the updated groundwater availability model for Central Portion of the Sparta, Queen City, and Carrizo-Wilcox aquifers was the base model for this analysis. See INTERA Incorporated and others (2020) for the assumptions and

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 11 of 36*

limitations of the historical calibrated model. Groundwater Management Area 12 constructed a predictive model simulation to extend the base model to 2070 for planning purposes. See Groundwater Management Area 12 explanatory report (Daniel B. Stephens & Associates and others, 2022) for the assumptions of this predictive model simulation.

- The predictive model was run with MODFLOW-USG (Panday and others, 2015).
- The model has ten layers that represent alluvium (Layer 1), the surficial layer of all aquifers (Layer 2), the Sparta Aquifer (Layer 3), the Weches confining unit (Layer 4), the Queen City Aquifer (Layer 5), the Reklaw confining unit (Layer 6), and the subunits that comprise the Carrizo-Wilcox Aquifer (Layers 7 to 10).
- The most recent TWDB model grid file, dated October 9, 2020 (*czwx_v3_01_MFUSG_ModelGrid100920.csv*), was used to assign model cells to counties, groundwater management areas, groundwater conservation districts, river basins, and regional water planning areas. This grid was also used to assign model grid cells to aquifer layers.
- Drawdown was calculated as the difference in modeled water levels between the baseline date of January 1, 2011 (initial water levels) and the final date of December 31, 2070 (stress period 60) using an area-weighted averaging methodology.
- During the predictive simulation model run, some model cells went dry, meaning the modeled water level fell below the bottom of the cell. Pumping in dry cells was excluded from the modeled available groundwater calculations.
- The drawdown averages and modeled available groundwater values were calculated using the modeled extent of aquifers, rather than the official TWDB boundaries for the Carrizo-Wilcox, Queen City, and Sparta Aquifers. Note that the TWDB does not maintain official boundaries for the Carrizo-Wilcox subunits.
- The drawdown calculations and modeled available drawdown values for Fayette County Groundwater Conservation District was based on all of Fayette County, including areas in both Groundwater Management Areas 12 and 15.
- Estimates of modeled available groundwater from the model simulation were rounded to whole numbers.

Yegua-Jackson Aquifer

• Version 1.01 of the updated groundwater availability model for the Yegua-Jackson Aquifer was the base model for this analysis. See Deeds and others (2010) for the assumptions and limitations of the historical calibrated model. Groundwater Management Area 12 constructed a predictive model simulation to extend the base

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 12 of 36*

model to 2070 for planning purposes. See Groundwater Management Area 12 explanatory report (Daniel B. Stephens & Associates and others, 2022) for the assumptions of this predictive model simulation.

- The predictive model was run with MODFLOW 2000 (Harbaugh and others, 2000).
- The model has five layers that represent the Yegua-Jackson Aquifer and younger overlying units—the Catahoula Formation (Layer 1), the upper portion of the Jackson Group (Layer 2), the lower portion of the Jackson Group (Layer 3), the upper portion of the Yegua Group (Layer 4), and the lower portion of the Yegua Group (Layer 5).
- The most recent TWDB model grid file, dated July 9, 2020 (*ygjk_07092020.csv*), was used to assign model cells to counties, groundwater management areas, groundwater conservation districts, river basins, and regional water planning areas. This grid was also used to assign model grid cells to aquifer layers.
- Although the original groundwater availability model was only calibrated to 1997, a TWDB analysis (Oliver, 2010) verified that the model satisfactorily matched measured water levels for the period from 1997 to 2009. For this reason, the TWDB considers it acceptable to use the January 2010 as the reference date for drawdown calculations.
- Drawdown was calculated as the difference in modeled water levels between the baseline date of January 1, 2010 (stress period 39) and the final date of December 31, 2069 (stress period 99).
- During the predictive simulation model run, some model cells went dry, meaning the modeled water level fell below the bottom of the cell. Pumping in dry cells was excluded from the modeled available groundwater calculations.
- The drawdown averages and modeled available groundwater values were calculated using the modeled extent of aquifers, rather than the official TWDB boundaries for the Yegua-Jackson Aquifer.
- The drawdown calculations and modeled available drawdown values for Fayette County Groundwater Conservation District was based on all of Fayette County including areas in both Groundwater Management Areas 12 and 15.
- Estimates of modeled available groundwater from the model simulation were rounded to whole numbers.

Brazos River Alluvium Aquifer

• Version 1.01 of the updated groundwater availability model for the Brazos River Alluvium Aquifer was the base model for this analysis. See Ewing and Jigmond

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 13 of 36*

(2016) for the assumptions and limitations of the historical calibrated model. Groundwater Management Area 12 constructed a predictive model simulation to extend the base model to 2070 for planning purposes. See Groundwater Management Area 12 explanatory report (Daniel B. Stephens & Associates and others, 2022) for the assumptions of this predictive model simulation.

- The predictive model was run with MODFLOW-USG beta (development) version (Panday and others, 2013).
- The model has three layers that represent the Brazos River Alluvium Aquifer (Layers 1 and 2) and the surficial portions of the underlying Carrizo-Wilcox, Queen City, Sparta, Yegua-Jackson, and Gulf Coast aquifers as well as various geologic units of the Cretaceous System (Layer 3).
- The most recent TWDB model grid file, dated July 10, 2020 (*bra_grid_poly071020.csv*), was used to assign model cells to counties, groundwater management areas, groundwater conservation districts, river basins, and regional water planning areas.
- In Brazos Valley Groundwater Conservation District, the calculation was for the average percent saturation on December 31, 2069 (stress period 484). In Post Oak Savannah Groundwater Conservation District, the calculation was for the decrease in average saturated thickness from January 1, 2013 (stress period 391) to December 31, 2069 (stress period 484).
- The drawdown averages and modeled available groundwater values were calculated using the modeled extent of the aquifer, which is coincident with the official TWDB boundary for the Brazos River Alluvium Aquifer.
- Estimates of modeled available groundwater from the model simulation were rounded to whole numbers.

RESULTS:

The modeled available groundwater values that achieve the desired future conditions adopted by Groundwater Management Area 12 are described below:

Carrizo-Wilcox, Queen City, and Sparta Aquifers

Sparta Aquifer: The modeled available groundwater ranges from approximately 11,530 to 26,210 acre-feet per year during the period from 2020 to 2070 (Tables 4 and 12). *Queen City Aquifer*: The modeled available groundwater ranges from approximately 5,650 to 15,310 acre-feet per year during the period from 2020 to 2070 (Tables 5 and 13).

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 14 of 36*

Carrizo-Wilcox Aquifer (Carrizo Formation): The modeled available groundwater ranges from approximately 27,460 to 52,370 acre-feet per year during the period from 2020 to 2070 (Tables 6 and 14).

Carrizo-Wilcox Aquifer (Calvert Bluff Formation): The modeled available groundwater ranges from approximately 7,160 to 16,450 acre-feet per year during the period from 2020 to 2070 (Tables 7 and 15).

Carrizo-Wilcox Aquifer (Simsboro Formation): The modeled available groundwater ranges from approximately 129,990 to 314,460 acre-feet per year during the period from 2020 to 2070 (Tables 8 and 16).

Carrizo-Wilcox Aquifer (Hooper Formation): The modeled available groundwater ranges from approximately 7,420 to 14,440 acre-feet per year during the period from 2020 to 2070 (Tables 9 and 17).

Yegua-Jackson Aquifer

The modeled available groundwater for the Yegua-Jackson Aquifer ranges from approximately 17,070 to 25,860 acre-feet per year during the period from 2020 to 2070 (Tables 10 and 18).

Brazos River Alluvium Aquifer

The modeled available groundwater for the Brazos River Alluvium Aquifer ranges from approximately 194,220 to 197,360 acre-feet per year during the period from 2020 to 2070 (Tables 11 and 19).

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 15 of 36*

TABLE 4

4 MODELED AVAILABLE GROUNDWATER FOR THE SPARTA AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation County District (GCD)		Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley CCD	Brazos	Sparta	4,483	6,014	7,545	9,076	10,607	12,138
	Robertson	Sparta	167	338	509	680	851	1,022
Brazos Valley GCD	Total	Sparta	4,650	6,352	8,054	9,756	11,458	13,160
Fayette County GCD	Fayette	Sparta	2,765	2,779	2,783	2,796	2,828	2,853
Fayette County GCD Total*		Sparta	2,765	2,779	2,783	2,796	2,828	2,853
Lost Dines CCD	Bastrop	Sparta	368	437	529	644	788	972
LOST PHIES GCD	Lee	Sparta	674	809	975	1,181	1,434	1,751
Lost Pines GCD To	Lost Pines GCD Total		1,042	1,246	1,504	1,825	2,222	2,723
Mid-East Texas	Leon	Sparta	249	248	249	251	253	254
GCD	Madison	Sparta	1,589	1,900	2,211	2,523	2,834	3,115
Mid-East Texas GCD Total		Sparta	1,838	2,148	2,460	2,774	3,087	3,369
Post Oak Savannah GCD	Burleson	Sparta	1,237	2,840	3,131	3,437	3,760	4,105
Post Oak Savannah GCD Total		Sparta	1,237	2,840	3,131	3,437	3,760	4,105
GMA 12 Total		Sparta	11,532	15,365	17,932	20,588	23,355	26,210

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 16 of 36*

TABLE 5

MODELED AVAILABLE GROUNDWATER FOR THE QUEEN CITY AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley	Brazos	Queen City	133	245	357	469	582	694
GCD	Robertson	Queen City	36	144	252	359	467	575
Brazos Valley G	CD Total	Queen City	169	389	609	828	1,049	1,269
Fayette County GCD	Fayette	Queen City	2,694	2,715	2,737	2,761	2,786	2,813
Fayette County GCD Total*		Queen City	2,694	2,715	2,737	2,761	2,786	2,813
Lost Dinos CCD	Bastrop	Queen City	469	519	573	632	698	771
LOST FILES GCD	Lee	Queen City	640	700	767	839	917	1,000
Lost Pines GCD Total		Queen City	1,109	1,219	1,340	1,471	1,615	1,771
	Freestone	Queen City	77	77	77	77	77	77
Mid-East Texas GCD	Leon	Queen City	871	919	967	1,014	1,063	1,106
	Madison	Queen City	221	264	308	351	394	433
Mid-East Texas (GCD Total	Queen City	1,169	1,260	1,352	1,442	1,534	1,616
Post Oak Savannah GCD	Burleson	Queen City	366	3,090	3,467	3,883	4,344	4,863
Post Oak Savannah GCD	Milam	Queen City	147	1,348	1,643	2,003	2,441	2,976
Post Oak Savanr Total	ah GCD	Queen City	513	4,438	5,110	5,886	6,785	7,839
GMA 12 Total		Queen City	5,654	10,021	11,148	12,388	13,769	15,308

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 17 of 36*

TABLE 6

MODELED AVAILABLE GROUNDWATER FOR THE CARRIZO FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley	Brazos	Carrizo	864	1,444	2,023	2,603	3,183	3,763
GCD	Robertson	Carrizo	81	412	743	1,074	1,405	1,736
Brazos Valley GC	D Total	Carrizo	945	1,856	2,766	3,677	4,588	5,499
Fayette County GCD	Fayette	Carrizo	5,155	5,155	5,155	5,155	5,155	5,155
Fayette County GCD Total*		Carrizo	5,155	5,155	5,155	5,155	5,155	5,155
Lost Dinos CCD	Bastrop	Carrizo	2,591	3,451	4,416	5,533	6,873	8,534
LOST PINES GCD	Lee	Carrizo	2,125	2,452	2,821	3,255	3,783	4,446
Lost Pines GCD Total		Carrizo	4,716	5,903	7,237	8,788	10,656	12,980
	Freestone	Carrizo	79	79	79	79	79	79
Mid-East Texas	Leon	Carrizo	5,356	6,396	7,435	8,474	9,514	10,450
deb	Madison	Carrizo	0	0	0	0	0	0
Mid-East Texas G	CD Total	Carrizo	5,435	6,475	7,514	8,553	9,593	10,529
Post Oak Savannah GCD	Burleson	Carrizo	10,669	16,656	16,806	16,956	17,108	17,261
Post Oak Savannah GCD	Milam	Carrizo	540	607	680	759	847	945
Post Oak Savanna	ah GCD Total	Carrizo	11,209	17,263	17,486	17,715	17,955	18,206
GMA 12 Total		Carrizo	27,460	36,652	40,158	43,888	47,947	52,369

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 18 of 36*

TABLE 7

MODELED AVAILABLE GROUNDWATER FOR THE CALVERT BLUFF FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley	Brazos	Calvert Bluff	0	0	0	0	0	0
GCD	Robertson	Calvert Bluff	252	546	841	1,136	1,430	1,725
Brazos Valley (GCD Total	Calvert Bluff	252	546	841	1,136	1,430	1,725
Lost Pines	Bastrop	Calvert Bluff	1,837	2,419	3,010	3,609	4,217	4,834
GCD	Lee	Calvert Bluff	318	395	475	557	642	729
Lost Pines GCD	Total	Calvert Bluff	2,155	2,814	3,485	4,166	4,859	5,563
Mid Frank	Freestone	Calvert Bluff	590	613	637	661	685	706
MIG-East Texas GCD	Leon	Calvert Bluff	1,832	2,176	2,519	2,863	3,206	3,515
	Madison	Calvert Bluff	0	0	0	0	0	0
Mid-East Texas GCD Total		Calvert Bluff	2,422	2,789	3,156	3,524	3,891	4,221
Post Oak	Burleson	Calvert Bluff	117	129	140	152	163	174
Savannah GCD	Milam	Calvert Bluff	2,062	2,811	3,162	3,558	4,012	4,532
Post Oak Savar Total	nnah GCD	Calvert Bluff	2,179	2,940	3,302	3,710	4,175	4,706
ND	Limestone	Calvert Bluff	140	153	168	184	202	222
No District	Navarro	Calvert Bluff	7	7	7	8	8	9
No District Tot	al	Calvert Bluff	147	160	175	192	210	231
GMA 12 Total		Calvert Bluff	7,155	9,249	10,959	12,728	14,565	16,446

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 19 of 36*

TABLE 8

MODELED AVAILABLE GROUNDWATER FOR THE SIMSBORO FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley	Brazos	Simsboro	37,282	42,709	48,137	53,565	58,993	64,421
GCD	Robertson	Simsboro	38,219	47,140	56,061	64,982	73,903	82,824
Brazos Valley (GCD Total	Simsboro	75,501	89,849	104,198	118,547	132,896	147,245
Lost Pines	Bastrop	Simsboro	16,424	38,836	41,484	43,946	46,429	48,977
GCD	Lee	Simsboro	3,940	26,406	27,620	28,836	30,052	30,968
Lost Pines GCD	Total	Simsboro	20,364	65,242	69,104	72,782	76,481	79,945
	Freestone	Simsboro	2,843	3,371	3,900	4,429	4,958	5,434
Mid-East Texas GCD	Leon	Simsboro	733	876	1,020	1,163	1,307	1,436
	Madison	Simsboro	0	0	0	0	0	0
Mid-East Texas GCD Total		Simsboro	3,576	4,247	4,920	5,592	6,265	6,870
Post Oak	Burleson	Simsboro	27,267	39,656	48,662	52,267	52,273	52,278
Savannah GCD	Milam	Simsboro	2,686	25,883	26,170	26,475	26,798	27,144
Post Oak Savar Total	ınah GCD	Simsboro	29,953	65,539	74,832	78,742	79,071	79,422
	Falls	Simsboro	10	11	12	14	15	17
No District	Limestone	Simsboro	555	612	676	746	824	910
INO DISTITU	Navarro	Simsboro	11	12	13	14	15	16
	Williamson	Simsboro	19	21	23	25	28	31
No District Tot	al	Simsboro	595	656	724	799	882	974
GMA 12 Total		Simsboro	129,989	225,533	253,778	276,462	295,595	314,456

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 20 of 36*

TABLE 9

MODELED AVAILABLE GROUNDWATER FOR THE HOOPER FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley	Brazos	Hooper	0	0	0	0	0	0
GCD	Robertson	Hooper	798	1,066	1,334	1,603	1,871	2,139
Brazos Valley	GCD Total	Hooper	798	1,066	1,334	1,603	1,871	2,139
Lost Pines	Bastrop	Hooper	1,664	1,957	2,259	2,572	2,897	3,234
GCD	Lee	Hooper	27	30	32	35	40	44
Lost Pines GCD Total		Hooper	1,691	1,987	2,291	2,607	2,937	3,278
	Freestone	Hooper	2,642	3,140	3,639	4,138	4,637	5,085
Mid-East Texas GCD	Leon	Hooper	85	102	118	135	152	167
	Madison	Hooper	0	0	0	0	0	0
Mid-East Texas GCD Total		Hooper	2,727	3,242	3,757	4,273	4,789	5,252
Post Oak	Burleson	Hooper	25	27	30	32	35	37
Savannah GCD	Milam	Hooper	1,781	1,999	2,234	2,491	2,774	3,089
Post Oak Savar Total	nnah GCD	Hooper	1,806	2,026	2,264	2,523	2,809	3,126
	Falls	Hooper	31	35	38	42	47	52
No District	Limestone	Hooper	176	195	215	238	262	290
NO DISTINC	Navarro	Hooper	79	86	94	103	113	124
	Williamson	Hooper	108	119	132	146	161	177
No District Tot	al	Hooper	394	435	479	529	583	643
GMA 12 Total		Hooper	7,416	8,756	10,125	11,535	12,989	14,438

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 21 of 36*

Puge 21 0J 30

TABLE 10MODELED AVAILABLE GROUNDWATER FOR THE YEGUA-JACKSON AQUIFER IN
GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY GROUNDWATER
CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020
AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District (GCD)	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley GCD	Brazos	Yegua-Jackson 4,207 6,270 7,092		7,091	7,091	7,091		
Brazos Valley (GCD Total	Yegua-Jackson	4,207	6,270	7,092	7,091	7,091	7,091
Fayette County GCD	Fayette	Yegua-Jackson	9,984	9,984	9,984	9,983	9,983	9,983
Fayette County GCD Total*		Yegua-Jackson	9,984	9,984	9,984	9,983	9,983	9,983
Mid-East	Leon	Yegua-Jackson	0	0	0	0	0	0
Texas GCD	Madison	Yegua-Jackson	1,122	1,122	1,122	1,122	1,122	1,122
Mid-East Texas Total	s GCD	Yegua-Jackson	1,122	1,122	1,122	1,122	1,122	1,122
Post Oak Savannah GCD	Burleson	Yegua-Jackson	1,094	5,315	7,004	7,004	7,000	6,058
Post Oak Savar Total	nnah GCD	Yegua-Jackson	1,094	5,315	7,004	7,004	7,000	6,058
GMA 12 Total		Yegua-Jackson	16,407	22,691	25,202	25,200	25,196	24,254

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 November 1, 2022 Page 22 of 36

ruge 22 0j 30

TABLE 11MODELED AVAILABLE GROUNDWATER FOR BRAZOS RIVER ALLUVIUM AQUIFER
IN GROUNDWATER MANAGEMENT AREA 12 SUMMARIZED BY COUNTY FOR
EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.
GCD = GROUNDWATER CONSERVATION DISTRICT.

GCD	County	Aquifer	2020	2030	2040	2050	2060	2070
Brazos Valley GCD	Brazos	Brazos River Alluvium	77,816	76,978	76,393	76,195	76,100	76,039
	Robertson	Brazos River Alluvium	55,907	55,424	55,157	54,839	54,723	54,618
Post Oak Savannah GCD	Burleson	Brazos River Alluvium	32,222	32,207	32,207	32,206	32,206	32,206
	Milam	Brazos River Alluvium	31,412	31,375	31,366	31,362	31,359	31,358
Total		197,357	195,984	195,123	194,602	194,388	194,221	

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 November 1, 2022 -23 of 36 л

ć

TABLE 12	M	ODELED AVAIL	ABLE GRO	UNDWATE	R BY DECAD	DE FOR THE	SPARTA A	QUIFER
	IN	GROUNDWATI	ER MANAG	EMENT AR	EA 12. VALU	JES ARE IN	ACRE-FEET	' PER
	YE	AR AND ARE SU	UMMARIZ	ED BY COUN	NTY, REGIO	NAL WAER	PLANNING	AREA
	(R	WPA), RIVER B	SASIN, AND	AQUIFER.				

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
		Brazos	Sparta	60	71	86	103	125
Bastrop	К	Colorado	Sparta	370	450	547	672	830
		Guadalupe	Sparta	7	8	11	13	17
Brazos	G	Brazos	Sparta	6,014	7,545	9,076	10,607	12,138
Burleson	G	Brazos	Sparta	2,840	3,131	3,437	3,760	4,105
		Colorado	Sparta	1,618	1,617	1,617	1,640	1,657
Fayette*	К	Guadalupe	Sparta	1,161	1,166	1,179	1,188	1,196
		Lavaca	Sparta	0	0	0	0	0
Loo	G	Brazos	Sparta	694	833	1,003	1,212	1,472
Lee		Colorado	Sparta	115	142	178	222	279
Loon	Ш	Brazos	Sparta	97	97	97	97	97
Leon	п	Trinity	Sparta	151	152	154	156	157
Madican	U	Brazos	Sparta	238	277	316	355	390
Mauison	п	Trinity	Sparta	1,662	1,934	2,207	2,479	2,725
Robertson	G	Brazos	Sparta	338	509	680	851	1,022
GMA 12 Total		Sparta	15,365	17,932	20,588	23,355	26,210	

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 November 1, 2022 Page 24 of 36

Puye 24 0J 5	(
TABLE 13	

TABLE 13	LE 13 MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE QUEEN CITY AQUIFER IN GROUNDWATER MANAGEMENT AREA 12. VALUES ARE IN ACRE- FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER BASIN, AND AQUIFER.									
County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070		
		Brazos	Queen City	45	49	54	60	66		
Bastrop	К	Colorado	Queen City	410	453	500	552	610		
		Guadalupe	Queen City	64	71	78	86	95		
Brazos	G	Brazos	Queen City	245	357	469	582	694		
Burleson	G	Brazos	Queen City	3,090	3,467	3,883	4,344	4,863		
Fayette* K	К	Colorado	Queen City	1,879	1,891	1,905	1,919	1,935		
		Guadalupe	Queen City	836	846	856	867	878		
		Lavaca	Queen City	0	0	0	0	0		
Freestone	С	Trinity	Queen City	77	77	77	77	77		
Lee	C	Brazos	Queen City	601	656	717	783	854		
Lee	G	Colorado	Queen City	99	111	122	134	146		
Leen		Brazos	Queen City	408	451	493	536	575		
Leon	н	Trinity	Queen City	511	516	521	527	531		
		Brazos	Queen City	132	154	175	197	216		
Madison	Н	Trinity	Queen City	132	154	176	197	217		
Milam	G	Brazos	Queen City	1,348	1,643	2,003	2,441	2,976		
Robertson	G	Brazos	Queen	144	252	359	467	575		

10,021

11,148

12,388

13,769

15,308

City Queen

City

* Fayette County GCD values are for all of Fayette County.

GMA 12 Total

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 25 of 36*

Page 25 0J 36

TABLE 14MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE CARRIZO
FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER
MANAGEMENT AREA 12. VALUES ARE IN ACRE-FEET PER YEAR AND ARE
SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER
BASIN, AND AQUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
		Brazos	Carrizo	189	241	314	417	565
Bastrop	К	Colorado	Carrizo	3,000	3,853	4,815	5,937	7,289
		Guadalupe	Carrizo	262	322	404	519	680
Brazos	G	Brazos	Carrizo	1,444	2,023	2,603	3,183	3,763
Burleson	G	Brazos	Carrizo	16,656	16,806	16,956	17,108	17,261
Fayette*		Colorado	Carrizo	4,875	4,875	4,875	4,875	4,875
	К	Guadalupe	Carrizo	280	280	280	280	280
		Lavaca	Carrizo	0	0	0	0	0
Freestone	С	Trinity	Carrizo	79	79	79	79	79
Las	C	Brazos	Carrizo	1,680	1,942	2,269	2,690	3,246
Lee	G	Colorado	Carrizo	772	879	986	1,093	1,200
Leen	П	Brazos	Carrizo	1,258	1,457	1,656	1,855	2,035
Leon	п	Trinity	Carrizo	5,138	5,978	6,818	7,659	8,415
Madiaan	11	Brazos	Carrizo	0	0	0	0	0
Mauison	п	Trinity	Carrizo	0	0	0	0	0
Milam	G	Brazos	Carrizo	607	680	759	847	945
Robertson	G	Brazos	Carrizo	412	743	1,074	1,405	1,736
GMA 12 Total		Carrizo	36,652	40,158	43,888	47,947	52,369	

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 26 of 36*

1 uge 20 0j 50

TABLE 15MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE CALVERT BLUFF
FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER
MANAGEMENT AREA 12. VALUES ARE IN ACRE-FEET PER YEAR AND ARE
SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER
BASIN, AND AQUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
		Brazos	Calvert Bluff	29	32	36	40	44
Bastrop	К	Colorado	Calvert Bluff	2,390	2,978	3,573	4,177	4,790
		Guadalupe	Calvert Bluff	0	0	0	0	0
Brazos	G	Brazos	Calvert Bluff	0	0	0	0	0
Burleson	G	Brazos	Calvert Bluff	129	140	152	163	174
Freestone C	C	Brazos	Calvert Bluff	100	101	103	104	105
		Trinity	Calvert Bluff	513	536	558	581	601
Lee	G	Brazos	Calvert Bluff	395	475	557	642	729
		Colorado	Calvert Bluff	0	0	0	0	0
Leen	Н	Brazos	Calvert Bluff	806	925	1,044	1,163	1,270
Leon		Trinity	Calvert Bluff	1,370	1,594	1,819	2,043	2,245
Limestone	G	Brazos	Calvert Bluff	153	168	184	202	222
Madiaan	II	Brazos	Calvert Bluff	0	0	0	0	0
Madison	п	Trinity	Calvert Bluff	0	0	0	0	0
Milam	G	Brazos	Calvert Bluff	2,811	3,162	3,558	4,012	4,532
Navarro	С	Trinity	Calvert Bluff	7	7	8	8	9
Robertson	G	Brazos	Calvert Bluff	546	841	1,136	1,430	1,725
GMA 12 Total		Calvert Bluff	9,249	10,959	12,728	14,565	16,446	

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 27 of 36*

Puge 27 0j 30

TABLE 16MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE SIMSBORO
FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER
MANAGEMENT AREA 12. VALUES ARE IN ACRE-FEET PER YEAR AND ARE
SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER
BASIN, AND AQUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
		Brazos	Simsboro	9,215	9,327	9,439	9,552	9,664
Bastrop	К	Colorado	Simsboro	29,621	32,157	34,507	36,877	39,313
		Guadalupe	Simsboro	0	0	0	0	0
Brazos	G	Brazos	Simsboro	42,709	48,137	53,565	58,993	64,421
Burleson	G	Brazos	Simsboro	39,656	48,662	52,267	52,273	52,278
Falls	G	Brazos	Simsboro	11	12	14	15	17
Erectore	C	Brazos	Simsboro	461	525	589	653	710
Fleestone	L	Trinity	Simsboro	2,910	3,375	3,840	4,305	4,724
T	C	Brazos	Simsboro	26,405	27,619	28,835	30,051	30,967
Lee	G	Colorado	Simsboro	1	1	1	1	1
Loon	П	Brazos	Simsboro	519	604	689	774	850
Leon	н	Trinity	Simsboro	357	416	474	533	586
Limestone	G	Brazos	Simsboro	612	676	746	824	910
Madican	п	Brazos	Simsboro	0	0	0	0	0
Mauison	п	Trinity	Simsboro	0	0	0	0	0
Milam	G	Brazos	Simsboro	25,883	26,170	26,475	26,798	27,144
Navarro	С	Trinity	Simsboro	12	13	14	15	16
Robertson	G	Brazos	Simsboro	47,140	56,061	64,982	73,903	82,824
Williamson	G	Brazos	Simsboro	21	23	25	28	31
GMA 12 Total		Simsboro	225,533	253,778	276,462	295,595	314,456	

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 28 of 36*

Fuge 20 0J 50

TABLE 17MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE HOOPER
FORMATION OF THE CARRIZO-WILCOX AQUIFER IN GROUNDWATER
MANAGEMENT AREA 12. VALUES ARE IN ACRE-FEET PER YEAR AND ARE
SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER
BASIN, AND AQUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
		Brazos	Hooper	0	0	0	0	0
Bastrop	К	Colorado	Hooper	1,957	2,259	2,572	2,897	3,234
		Guadalupe	Hooper	0	0	0	0	0
Brazos	G	Brazos	Hooper	0	0	0	0	0
Burleson	G	Brazos	Hooper	27	30	32	35	37
Falls	G	Brazos	Hooper	35	38	42	47	52
Freestone	C	Brazos	Hooper	696	806	917	1,027	1,126
Freestone	L	Trinity	Hooper	2,444	2,833	3,221	3,610	3,959
Lee	C	Brazos	Hooper	18	19	21	24	26
гее	G	Colorado	Hooper	12	13	14	16	18
Leon	II	Brazos	Hooper	0	0	0	0	0
Leon	п	Trinity	Hooper	102	118	135	152	167
Limestone	C	Brazos	Hooper	190	210	232	256	283
Limestone	G	Trinity	Hooper	5	5	6	6	7
Madican	II	Brazos	Hooper	0	0	0	0	0
Madison	п	Trinity	Hooper	0	0	0	0	0
Milam	G	Brazos	Hooper	1,999	2,234	2,491	2,774	3,089
Navarro	С	Trinity	Hooper	86	94	103	113	124
Robertson	G	Brazos	Hooper	1,066	1,334	1,603	1,871	2,139
Millione com	6	Brazos	Hooper	118	130	144	159	175
vviinamson	G	Colorado	Hooper	1	2	2	2	2
GMA 12 Total			Hooper	8,756	10,125	11,535	12,989	14,438

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 29 of 36*

1 uge 2 > 0j 50

TABLE 18MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE YEGUA-JACKSON
AQUIFER IN GROUNDWATER MANAGEMENT AREA 12. RESULTS ARE IN ACRE-
FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER
PLANNING AREA (RWPA), RIVER BASIN, AND AOUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
Brazos	G	Brazos	Yegua- Jackson	6,270	7,092	7,091	7,091	7,091
Burleson	G	Brazos	Yegua- Jackson	5,315	7,004	7,004	7,000	6,058
Fayette* K	Colorado	Yegua- Jackson	7,644	7,644	7,643	7,643	7,643	
	К	Guadalupe	Yegua- Jackson	727	727	727	727	727
		Lavaca	Yegua- Jackson	1,613	1,613	1,613	1,613	1,613
Leon	Н	Trinity	Yegua- Jackson	0	0	0	0	0
Madiaan	Madison H	Brazos	Yegua- Jackson	11	11	11	11	11
Madison		Trinity	Yegua- Jackson	1,111	1,111	1,111	1,111	1,111
GMA 12 Total			Yegua- Jackson	22,691	25,202	25,200	25,196	24,254

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 30 of 36*

ruge 50 0j 50

TABLE 19MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE BRAZOS RIVER
ALLUVIUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 12. RESULTS ARE
IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER
PLANNING AREA (RWPA), RIVER BASIN, AND AQUIFER.

County	RWPA	River Basin	Aquifer	2030	2040	2050	2060	2070
Brazos	G	Brazos	Brazos River Alluvium	76,978	76,393	76,195	76,100	76,039
Burleson	G	Brazos	Brazos River Alluvium	32,207	32,207	32,206	32,206	32,206
Milam	G	Brazos	Brazos River Alluvium	31,375	31,366	31,362	31,359	31,358
Robertson	G	Brazos	Brazos River Alluvium	55,424	55,157	54,839	54,723	54,618
GMA 12 Total			Brazos River Alluvium	195,984	195,123	194,602	194,388	194,221

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 31 of 36*

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions. GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 32 of 36*

REFERENCES:

- Daniel B. Stephens & Associates, INTERA Incorporated, and Ground Water Consultants, LLC, 2022, Desired Future Condition Explanatory Report for Groundwater Management Area 12, 859 p.
- Deeds, N. E., Yan, T., Singh, A., Jones, T. L., Kelley, V. A., Knox, P. R., and Young, S. C., 2010, Groundwater availability model for the Yegua-Jackson Aquifer: Final report prepared for the Texas Water Development Board by INTERA, Inc., 582 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/ygjk/YGJK Model Report.p</u> <u>df</u>.
- Ewing, J.E., and Jigmond, M., 2016, Final Numerical Model Report for the Brazos River Alluvium Aquifer Groundwater Availability Model: Contract report to the Texas Water Development Board, 357 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/bzrv/BRAA_NM_REPORT_FINAL.pdf?d=1502891797831</u>.
- Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.
- INTERA Incorporated, D.B. Stephens & Associates, and Ground Water Consultants, LLC, 2020, GMA 12 Update to the Groundwater Availability Model for the Central Portion of the Sparta, Queen City, Carrizo-Wilcox Aquifers: Update to Improve Representation of the Transmissive Properties of the Simsboro Aquifer in the Vicinity of the Vista Ridge Well Field, 30 p.
- Oliver, W., 2010, GAM Task 10-012 Model Run Report: Texas Water Development Board, GAM Task 10-012 Report, 48 p., http://www.twdb.texas.gov/groundwater/docs/GAMruns/Task10-012.pdf
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record_id=11972</u>.
- Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., and Hughes, J.D., 2013, MODFLOW-USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finitedifference formulation: U.S. Geological Survey Techniques and Methods, book 6 chap. A45, 66 p.
- Panday, S., C.D. Langevin, R.G. Niswonger, M. Ibaraki, and J.D. Hughes. 2015. MODFLOW-USG version 1.3.00: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 *November 1, 2022 Page 33 of 36*

difference formulation: U.S. Geological Survey Software Release, 01 December 2015, http://dx.doi.org/10.5066/F7R20ZFJ

Texas Water Code, 2011, <u>http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf.</u>

APPENDIX A

Summary of Groundwater Management Area 12 Response to the TWDB's Review of the Desired Future Condition Deliverable

After reviewing the initial Groundwater Management Area 12 submittal, the TWDB sent an email on April 21, 2022, requesting clarifications on the desired future condition definitions. In response, Groundwater Management Area 12 consultants produced two memorandums dated May 5, 2022, that were presented and approved at the May 6, 2022, Groundwater Management Area 12 meeting. One memo provides the responses to the TWDB clarifications and is reproduced in Figure A1. Numbered entries represent the TWDB clarification questions and the entries beginning in "RESPONSE:" represent Groundwater Management Area 12's responses. This document is also available on the Post Oak Savannah Groundwater Conservation district website. The second memo provides a non-relevant statement for the Calvert Bluff Aquifer that was missing in the original submittal package (see Clarification #1 under Carrizo-Wilcox, Queen City, and Sparta aquifers). This document is not reproduced here.

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 Appendix A *November 1, 2022 Page 35 of 36*

Memorandum

To:	Texas Water Development Board
From:	GMA 12
Date:	May 5, 2022
Subject:	Items to address prior to calculating DFCs

GMA 12 has reviewed the email from the TWDB dated April, 21, 2022 regarding items that need to be addressed before calculating modeled available groundwater. The following is a summary of these items and GMA 12's response to them.

Carrizo-Wilcox, Queen City, and Sparta aquifers

1) Our analysis does not achieve the DFC for the Calvert Bluff Aquifer in Williamson County. There is only one active model cell for this aquifer in Williamson County and the cell goes dry around 2065 in the DFC predictive model. We suggest declaring the Calvert Bluff Aquifer as non-relevant in Williamson County. Please consider declaring the Calvert Bluff Aquifer nonrelevant in Williamson County or provide additional information for our DFC analysis.

RESPONSE: GMA 12 will declare the Calvert Bluff Aquifer non-relevant in Williamson County at a GMA meeting on May 6, 2022. A memorandum providing the required documentation for this declaration will be submitted to the TWDB.

- Please confirm that the DFCs for the Carrizo-Wilcox are calculated using a cell count averaging method, rather than an area-weighted averaging method.
 - a. If a cell count averaging method is used, the current DFC error tolerance of 10% is good enough to make all DFCs compliant with our calculation, except the Calvert Bluff Aquifer in Williamson County (See Note #1 above).
 - b. If an area-weighted averaging method is used, we recommend clarifying a tolerance of 11% for the GMA-wide Simsboro Aquifer DFC in order to be compliant with our calculation.

RESPONSE: GMA 12 uses an area-weighted averaging method. However, GMA 12 did not adopt a GMA-wide DFC for any of these aquifers. GMA-wide averages were erroneously included in the DFC summary tables in the Explanatory Report. The GMA 12 DFC resolution, dated November 30, 2022 and for which the Explanatory Report was submitted in support of, does not contain any GMA-wide DFCs. Therefore, no tolerance changes are needed to be compliant with TWDB calculations other than the declaration of the Calvert Bluff in Williamson County as a non-relevant aquifer

Yegua-Jackson Aquifer

 Please confirm that the reference time period for the Yegua-Jackson Aquifer DFCs only goes to the end of December 2069 (stress period 99), even though the predictive model goes to December 2070 (stress period 100).

RESPONSE: The Yegua-Jackson DFCs are specified as from January 2010 (the end of Stress Period 39) through December 2069 (the end of Stress Period 99), for a total of 60 years.

 Since there are no monthly stress periods, please confirm that the baseline year of "January 2010" refers to the end of 2009/beginning of January 2010 (stress period 39), rather than the end of 2010 (stress period 40).

RESPONSE: That is correct. The beginning of the GMA 12 predictive model runs is Stress Period 40, so the baseline year is the end of Stress Period 39.

Figure A1. Response Memorandum from Groundwater Management Area 12 to clarifications requested from the Texas Water Development Board.

GAM Run 21-017 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 12 Appendix A *November 1, 2022 Page 36 of 36*

> Our analysis results in a 1-foot difference in the GMA-wide DFC for the Yegua-Jackson Aquifer. We recommend clarifying a tolerance of 1 foot for the GMA-wide Yegua-Jackson DFC in order to be compliant with the TWDB-calculated value.

RESPONSE: As with the Carrizo-Wilcox Aquifer, GMA 12 did not adopt a GMA-wide DFC for the Yegua-Jackson Aquifer. GMA averages were erroneously included in the DFC summary tables in the Explanatory Report. The actual GMA 12 DFC resolution, dated November 30, 2022 and for which the Explanatory Report was submitted in support of, does not contain any GMA-wide DFCs. Therefore, no tolerance changes are needed to be compliant with TWDB for the Yegua-Jackson Aquifer.

Brazos River Alluvium Aquifer

 Please confirm that the reference time period for the Brazos River Alluvium Aquifer DFCs only goes to the end of December 2069 (stress period 484), even though the predictive model goes to the end of 2070 (stress period 485).

RESPONSE: The reference time period for the BRAA DFCs only extents to the end of December 2069 (Stress Period 484).

 Since there are no monthly stress periods in 2013, please confirm that the Brazos Valley GCD baseline of "January 2013" refers to the end of 2012/beginning of January 2013 (stress period 427), rather than the end of 2013 (stress period 428).

RESPONSE: The baseline "January 2013" refers to the end of 2012/beginning of January 2013 (Stress Period 427).

3) Since there are monthly stress periods in 2010, please clarify whether the Post Oak Savannah GCD baseline of "January 2010" refers to the end of 2009/beginning of January 2010 (stress period 391) or the end of January 2010 (stress period 392).

RESPONSE: The baseline "January 2010" refers to the end of 2009/beginning of January 2010 (Stress Period 391).

4) For Brazos Valley GCD, please clarify how average percent saturation was defined by GMA 12. Is the average of only the final stress period (2069) or the average over the entire period from 2013 through 2069?

RESPONSE: The average percent saturation is for the final stress period (2069) and not for the entire period from 2013 through 2069.

- 5) The drawdown values calculated using the official TWDB grid shapefile and TWDB methodology are not compliant with the provided GMA 12 county-specific DFCs in the Brazos River Alluvium Aquifer. We recommend adopting the tolerances listed below in order to be compliant with the TWDB methodology. Alternatively, please provide the detailed methodology and zoned grid shapefile used to define the GMA 12 county-specific DFCs in the Brazos River Alluvium Aquifer, as these are not provided in the explanatory report or accompanying files:
 - a. For Brazos Valley GCD, we suggest replacing the current tolerance of "1 foot or 5 percent (whichever was greater)" with "10% of total well depth" as the error tolerance for the DFC evaluation of the percent saturation. This will make the DFC compliant with our calculation regardless how the percent saturation is calculated (see Note #4 above).
 - b. For Post Oak Savannah GCD, we suggest replacing the current tolerance of "1 foot or 5 percent (whichever was greater)" with "3 feet or 10 percent (whichever is greater)" as the error tolerance for the DFC evaluation of the decrease in average saturated thickness. This modification will make the DFC compliant with our calculation regardless of which baseline year is used (see Note #3 above).

RESPONSE: GMA 12 will adopt tolerances for the DFC evaluation of the percent saturation for the Brazos River Alluvium Aquifer as proposed by the TWDB.

Figure A1 (Cont).Response Memorandum from Groundwater Management Area 12 to
clarifications requested from the Texas Water Development Board.