
Jerry Shi, Ph.D., P.G. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Section (512) 463-5076 May 12, 2017



This page is intentionally left blank.

### MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA, EDWARDS-TRINITY (HIGH PLAINS), AND DOCKUM AQUIFERS IN GROUNDWATER MANAGEMENT AREA 2

Jerry Shi, Ph.D., P.G. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Section (512) 463-5076 May 12, 2017

#### **EXECUTIVE SUMMARY:**

Modeled available groundwater for the Ogallala and Edwards-Trinity (High Plains) aquifers in Groundwater Management Area 2 ranges from 3,115,812 acre-feet per year in 2020 to 1,002,728 acre-feet per year in 2070. Modeled available groundwater for the Dockum Aquifer ranges from 30,566 acre-feet per year in 2020 to 29,705 acre-feet per year in 2070. The modeled available groundwater for the Ogallala and Edwards-Trinity (High Plains) aquifers is summarized by groundwater conservation districts and counties in Table 1, and by river basins, regional planning areas, and counties in Table 3. The modeled available groundwater for the Dockum Aquifer is summarized by groundwater conservation districts and counties in Table 2, and by river basins, regional planning areas, and counties in Table 4. The modeled available groundwater for Groundwater Management Area 2 calculated from counties is slightly different from that calculated from groundwater conservation districts because of the process for rounding the values.

The estimates are based on the desired future conditions for the High Plains Aquifer System (the Ogallala, Edwards-Trinity (High Plains), and Dockum aquifers) adopted by groundwater conservation district representatives in Groundwater Management Area 2 on October 19, 2016. The Pecos Valley Alluvium and Edwards-Trinity (Plateau) aquifers were declared not relevant for the purpose of joint planning. The Texas Water Development Board (TWDB) determined that the explanatory report and other materials submitted by the district representatives were administratively complete on December 19, 2016.

Please note that, for the High Plains Underground Water Conservation District No. 1, only the portion of relevant aquifers within Groundwater Management Area 2 is covered in this report.

May 12, 2017 Page 4 of 19

#### **REQUESTOR:**

Mr. Jason Coleman, General Manager of High Plains Underground Water Conservation District No. 1 and Coordinator of Groundwater Management Area 2.

#### **DESCRIPTION OF REQUEST:**

In a letter dated November 1, 2016, Dr. William Hutchison, on behalf of Groundwater Management Area 2, provided the TWDB with the desired future conditions of the High Plains Aquifer System. The desired future conditions (defined by drawdown) were determined using a number of predictive groundwater flow simulations (Hutchison, 2016a, 2016b, 2016c, and 2016d). The predictive simulations were developed from the groundwater availability model for the High Plains Aquifer System (Version 1.01; Deeds and Jigmond, 2015). The predictive simulations modeled future pumping scenarios from 2013 through 2070 under different climatic conditions, with an initial water level equal to the last stress period (i.e. 2012) of the model by Deeds and Jigmond (2015). The drawdown was calculated as the water level difference between 2012 and 2070.

The desired future conditions for the High Plains Aquifer System, as described in Resolution No. 16-01, were adopted on October 19, 2016 by the groundwater conservation district representatives in Groundwater Management Area 2. The desired future conditions are described below:

#### Ogallala and Edwards-Trinity (High Plains) Aquifers

• [the] average drawdown of between 23 and 27 feet for all of [Groundwater Management Area] 2 as documented in [Groundwater Management Area] 2 Technical Memorandum 15-01 and [Groundwater Management Area] 2 Technical Memorandum 16-01. The drawdown is calculated from the end of 2012 conditions to the year 2070. The drawdown is expressed as a range due to link between future pumping and future rainfall. Since most of the water use in the Ogallala Aquifer is for irrigation, producers pump more groundwater in dry years than in normal or wet years.

#### **Dockum Aquifer**

• [the] average drawdown of 27 feet for all of [Groundwater Management Area] 2. The drawdown is calculated from the end of 2012 conditions to the year 2070 based on Scenario 16 as documented in [Groundwater Management Area] 2 Technical Memorandum 16-01.

After review of the submittal, TWDB sent an email on February 27, 2017 to Mr. Jason Coleman, Coordinator of Groundwater Management Area 2, to clarify pumping location and aquifer boundary. On April 20, 2017 TWDB received the final clarification email from Mr. Jason Coleman. TWDB then preceded the calculation of the modeled available groundwater which is summarized in the following sections.

May 12, 2017 Page 5 of 19

#### **METHODS:**

To estimate the modeled available groundwater, TWDB used the predictive simulation for Scenario 16 (Hutchison, 2016d). TWDB reviewed the model files submitted by Hutchison (2016d) and slightly modified the groundwater pumping to achieve the adopted desired future conditions for the Ogallala and Edwards-Trinity (High Plains) aquifers. TWDB used the official aquifer boundaries to adjust the pumping in these two aquifers to achieve an average drawdown of 27 feet for all of Groundwater Management Area 2. This scenario represented drought conditions that are similar to the projected conditions used in the regional water planning process. For groundwater management purposes, pumping from this scenario may be adjusted to represent possible responses to various climatic conditions.

For the Dockum Aquifer, TWDB used the modeled extent submitted by Deeds and Jigmond (2015) to adjust the pumping to achieve an average drawdown of 27 feet for all of Groundwater Management Area 2, excluding the pass-through model cells. In addition to the Dockum Aquifer defined by TWDB, the modeled extent also includes the brackish/saline portion of the Dockum Group. According to Technical Memorandum 16-01 (Hutchison, 2016d), the groundwater conservation districts in Groundwater Management Area 2 wanted to include parts of the Dockum Group with poorer water quality for possible future development.

The modeled available groundwater values were extracted from the cell-by-cell budget file of the revised predictive model. Annual pumping rates were then divided by county, river basin, regional water planning area, and groundwater conservation district within Groundwater Management Area 2 (Figures 1 through 4 and Tables 1 through 4).

#### Modeled Available Groundwater and Permitting

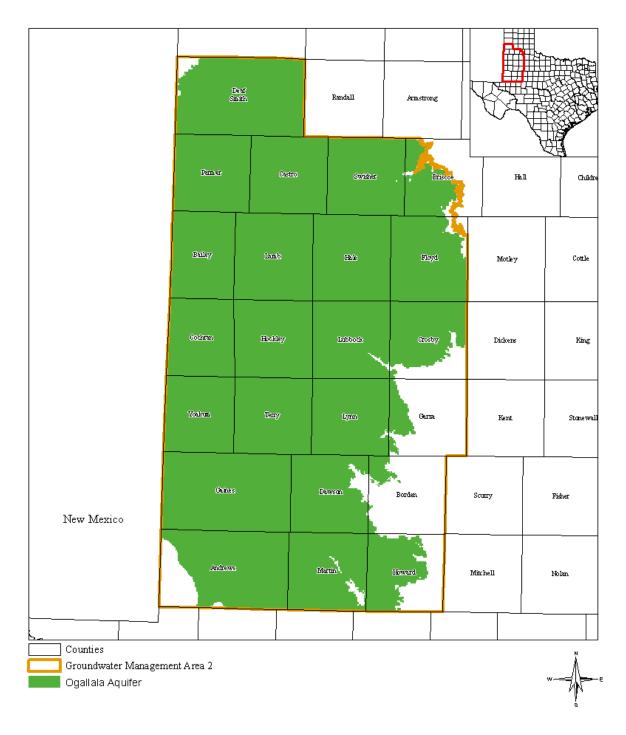
As defined in Chapter 36 of the Texas Water Code, "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts are required to consider modeled available groundwater, along with several other factors, when issuing permits in order to manage groundwater production to achieve the desired future condition(s). The other factors districts must consider include annual precipitation and production patterns, the estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

#### PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the groundwater availability are described below:

• Version 1.01 of the groundwater availability model for the High Plains Aquifer System by Deeds and Jigmond (2015) was revised to construct the predictive model simulation for this analysis. See Hutchison (2016d) for details of the initial assumptions.

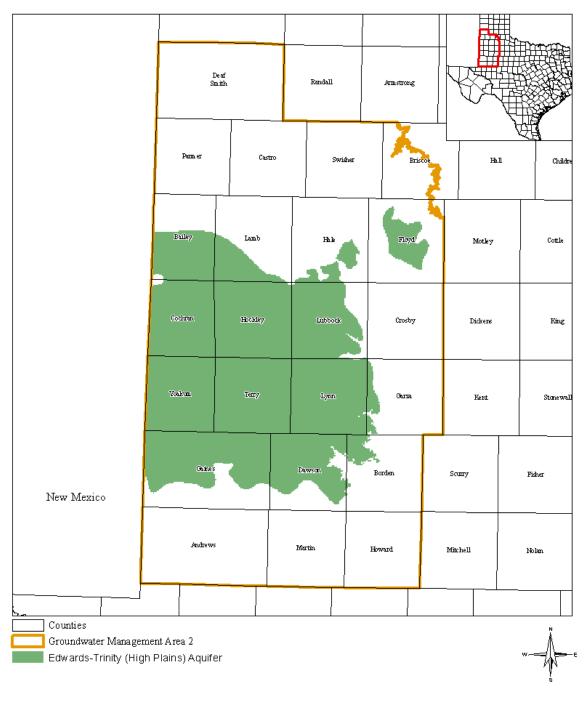
May 12, 2017 Page 6 of 19


- The model has four layers which represent the Ogallala and Pecos Valley Alluvium aquifers (Layer 1), the Edwards-Trinity (High Plains) and Edwards-Trinity (Plateau) aquifers (Layer 2), the Upper Dockum Aquifer (Layer 3), and the Lower Dockum Aquifer (Layer 4). Pass-through cells exist in layers 2 and 3 where the Dockum Aquifer was absent but provided pathway for flow between the Lower Dockum and the Ogallala or Edwards-Trinity (High Plains) aquifers vertically. These pass-through cells were excluded from the modeled available groundwater calculation.
- The model was run with MODFLOW-NWT (Niswonger and others, 2011). The model uses the Newton Formulation and the upstream weighting package which automatically reduces pumping as heads drop in a particular cell as defined by the user. This feature may simulate the declining production of a well as saturated thickness decreases. Deeds and Jigmond (2015) modified the MODFLOW-NWT code to use a saturated thickness of 30 feet as the threshold (instead of percent of the saturated thickness) when pumping reductions occur during a simulation.
- During the predictive model run, no model cells within Groundwater Management Area 2 went dry.
- For the High Plains Underground Water Conservation District No. 1, only the portion within Groundwater Management Area 2 is covered in this report.
- Estimates of modeled drawdown and available groundwater from the model simulation were rounded to whole numbers.

#### **RESULTS:**

The modeled available groundwater for the Ogallala and Edwards-Trinity (High Plains) aquifers combined that achieves the desired future condition adopted by Groundwater Management Area 2 decreases from 3,115,812 to 1,002,728 acre-feet per year between 2020 and 2070. The modeled available groundwater is summarized by groundwater conservation district and county in Table 1. Table 3 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Dockum Group and Aquifer that achieves the desired future condition adopted by Groundwater Management Area 2 decreases slightly from 30,566 to 29,705 acre-feet per year between 2020 and 2070. The modeled available groundwater is summarized by groundwater conservation district and county in Table 2. Table 4 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.


May 12, 2017 Page 7 of 19



0 5 10 20 |++++|++++| Miles

#### FIGURE 1. MAP SHOWING THE AREA COVERED BY THE GROUNDWATER AVAILABILITY MODEL FOR THE OGALLALA AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 2.


May 12, 2017 Page 8 of 19



0 5 10 20 HHHHHH Miles

FIGURE 2. MAP SHOWING THE AREA COVERED BY THE GROUNDWATER AVAILABILITY MODEL FOR THE EDWARDS-TRINITY (HIGH PLAINS) AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 2.

May 12, 2017 Page 9 of 19



0 5 10 20 |++++++++ Miles

FIGURE 3. MAP SHOWING THE AREA COVERED BY THE GROUNDWATER AVAILABILITY MODEL FOR THE DOCKUM AQUIFER AND DOCKUM GROUP WITHIN GROUNDWATER MANAGEMENT AREA 2.

May 12, 2017 Page 10 of 19

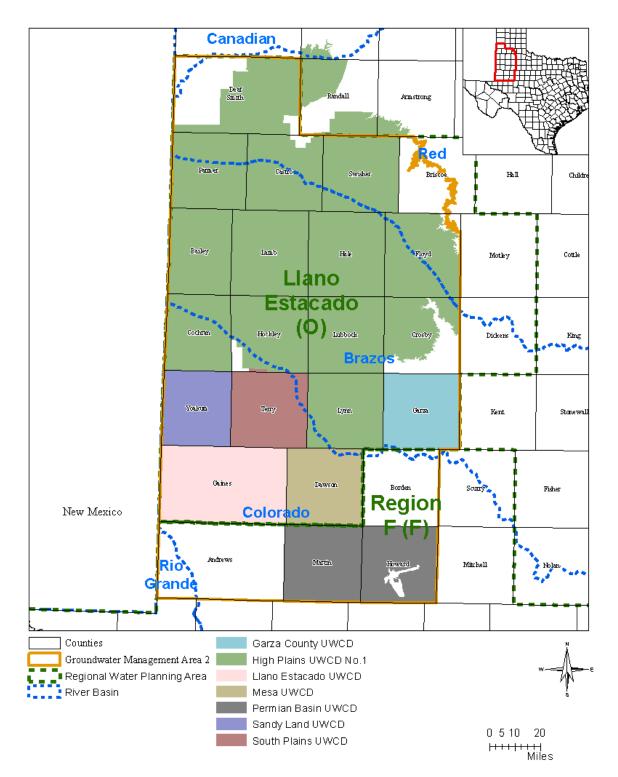



FIGURE 4. MAP SHOWING REGIONAL WATER PLANNING AREAS, GROUNDWATER CONSERVATION DISTRICTS (ALSO KNOWN AS UNDERGROUND WATER CONSERVATION DISTRICT OR UWCD), COUNTIES, AND RIVER BASINS IN GROUNDWATER MANAGEMENT AREA 2.

May 12, 2017 Page 11 of 19

# TABLE 1.MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA AND EDWARDS-TRINITY (HIGH PLAINS) AQUIFERS IN<br/>GROUNDWATER MANAGEMENT AREA 2 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH<br/>DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR. (UWCD = UNDERGROUND WATER CONSERVATION<br/>DISTRICT)

| Groundwater Conservation District | County     | 2012      | 2020      | 2030      | 2040    | 2050    | 2060    | 2070    |
|-----------------------------------|------------|-----------|-----------|-----------|---------|---------|---------|---------|
| Garza County UWCD Total           | Garza      | 14,932    | 16,297    | 13,648    | 12,395  | 11,657  | 11,180  | 10,855  |
| High Plains UWCD No.1             | Bailey     | 79,604    | 97,679    | 67,307    | 51,199  | 42,704  | 37,858  | 34,815  |
| High Plains UWCD No.1             | Castro     | 200,692   | 261,434   | 181,190   | 102,732 | 55,811  | 35,734  | 26,291  |
| High Plains UWCD No.1             | Cochran    | 67,032    | 101,762   | 79,152    | 64,503  | 55,408  | 47,858  | 42,674  |
| High Plains UWCD No.1             | Crosby     | 124,336   | 163,188   | 108,662   | 68,885  | 46,778  | 35,651  | 29,619  |
| High Plains UWCD No.1             | Deaf Smith | 148,161   | 182,988   | 118,471   | 74,107  | 51,551  | 40,042  | 33,785  |
| High Plains UWCD No.1             | Floyd      | 124,867   | 170,451   | 94,139    | 67,802  | 54,090  | 46,197  | 41,537  |
| High Plains UWCD No.1             | Hale       | 283,391   | 220,111   | 114,928   | 70,663  | 48,719  | 37,740  | 31,954  |
| High Plains UWCD No.1             | Hockley    | 132,145   | 154,091   | 96,609    | 71,741  | 60,822  | 55,285  | 52,185  |
| High Plains UWCD No.1             | Lamb       | 244,726   | 223,477   | 112,082   | 71,220  | 56,582  | 50,140  | 46,816  |
| High Plains UWCD No.1             | Lubbock    | 131,793   | 151,056   | 121,404   | 109,134 | 100,850 | 94,935  | 90,798  |
| High Plains UWCD No.1             | Lynn       | 81,678    | 112,607   | 96,151    | 85,494  | 78,603  | 74,349  | 71,640  |
| High Plains UWCD No.1             | Parmer     | 150,001   | 152,014   | 91,098    | 59,259  | 43,737  | 35,469  | 30,537  |
| High Plains UWCD No.1             | Swisher    | 119,658   | 129,283   | 71,638    | 46,284  | 33,912  | 27,019  | 22,783  |
| High Plains UWCD No.1 Total       |            | 1,888,087 | 2,120,141 | 1,352,831 | 943,023 | 729,567 | 618,277 | 555,434 |
| Llano Estacado UWCD Total         | Gaines     | 266,072   | 277,954   | 218,338   | 184,298 | 162,643 | 147,743 | 138,294 |
| Mesa UWCD Total                   | Dawson     | 122,802   | 172,851   | 123,476   | 96,796  | 82,283  | 74,610  | 69,928  |
| Permian Basin UWCD                | Howard     | 12,428    | 19,285    | 16,865    | 15,737  | 15,105  | 14,738  | 14,513  |
| Permian Basin UWCD                | Martin     | 41,993    | 63,463    | 51,126    | 43,861  | 39,793  | 37,210  | 35,425  |
| Permian Basin UWCD Total          |            | 54,421    | 82,748    | 67,991    | 59,598  | 54,898  | 51,948  | 49,938  |
| Sandy Land UWCD Total             | Yoakum     | 131,815   | 138,940   | 92,952    | 69,400  | 58,308  | 52,469  | 48,940  |
| South Plains UWCD                 | Hockley    | 3,527     | 4,895     | 2,213     | 726     | 389     | 283     | 240     |
| South Plains UWCD                 | Terry      | 205,507   | 190,768   | 132,777   | 105,892 | 94,696  | 88,883  | 85,518  |
| South Plains UWCD Total           |            | 209,034   | 195,663   | 134,990   | 106,618 | 95,085  | 89,166  | 85,758  |

#### May 12, 2017 Page 12 of 19

| Groundwater Conservation District | County     | 2012      | 2020      | 2030      | 2040      | 2050      | 2060      | 2070      |
|-----------------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| No District-County                | Andrews    | 19,037    | 24,937    | 21,375    | 19,795    | 18,774    | 18,040    | 17,474    |
| No District-County                | Borden     | 5,025     | 5,922     | 4,639     | 4,069     | 3,737     | 3,421     | 3,212     |
| No District-County                | Briscoe    | 27,107    | 29,022    | 17,637    | 11,907    | 9,053     | 7,445     | 6,451     |
| No District-County                | Castro     | 3,159     | 5,859     | 3,280     | 2,367     | 1,814     | 1,452     | 1,214     |
| No District-County                | Crosby     | 1,691     | 3,135     | 2,918     | 2,292     | 1,959     | 1,783     | 1,671     |
| No District-County                | Deaf Smith | 16,585    | 23,348    | 18,932    | 15,981    | 14,110    | 12,791    | 11,821    |
| No District-County                | Hockley    | 10,604    | 18,445    | 13,065    | 5,303     | 2,577     | 1,618     | 1,185     |
| No District-County                | Howard     | 352       | 550       | 527       | 526       | 534       | 543       | 553       |
| Groundwater Management Area 2     |            | 2,770,723 | 3,115,812 | 2,086,599 | 1,534,368 | 1,246,999 | 1,092,486 | 1,002,728 |

May 12, 2017 Page 13 of 19

## TABLE 2.MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 2 SUMMARIZED<br/>BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN<br/>ACRE-FEET PER YEAR. (UWCD = UNDERGROUND WATER CONSERVATION DISTRICT)

| Groundwater Conservation District | County     | 2012   | 2020   | 2030   | 2040   | 2050   | 2060   | 2070   |
|-----------------------------------|------------|--------|--------|--------|--------|--------|--------|--------|
| Garza County UWCD Total           | Garza      | 191    | 911    | 911    | 911    | 911    | 911    | 911    |
| High Plains UWCD No.1             | Bailey     | 7      | 833    | 833    | 833    | 833    | 833    | 833    |
| High Plains UWCD No.1             | Castro     | 323    | 425    | 425    | 425    | 425    | 425    | 425    |
| High Plains UWCD No.1             | Cochran    | 0      | 972    | 972    | 972    | 972    | 972    | 972    |
| High Plains UWCD No.1             | Crosby     | 2,883  | 3,787  | 3,787  | 3,787  | 3,787  | 3,787  | 3,787  |
| High Plains UWCD No.1             | Deaf Smith | 2,134  | 4,395  | 4,395  | 4,395  | 4,395  | 4,395  | 4,395  |
| High Plains UWCD No.1             | Floyd      | 2,456  | 3,226  | 3,226  | 3,226  | 3,226  | 3,226  | 3,226  |
| High Plains UWCD No.1             | Hale       | 135    | 1,121  | 1,121  | 1,121  | 1,121  | 1,121  | 1,121  |
| High Plains UWCD No.1             | Hockley    | 28     | 973    | 973    | 973    | 973    | 973    | 973    |
| High Plains UWCD No.1             | Lamb       | 4      | 923    | 923    | 923    | 923    | 923    | 923    |
| High Plains UWCD No.1             | Lubbock    | 3      | 1,086  | 1,086  | 1,086  | 1,086  | 1,086  | 1,086  |
| High Plains UWCD No.1             | Lynn       | 81     | 912    | 912    | 912    | 912    | 912    | 912    |
| High Plains UWCD No.1             | Parmer     | 0      | 5,450  | 5,450  | 5,450  | 5,450  | 4,689  | 4,589  |
| High Plains UWCD No.1             | Swisher    | 1,200  | 1,576  | 1,576  | 1,576  | 1,576  | 1,576  | 1,576  |
| High Plains UWCD No.1 Total       |            | 9,255  | 25,679 | 25,679 | 25,679 | 25,679 | 24,918 | 24,818 |
| Permian Basin UWCD                | Howard     | 737    | 1,471  | 1,471  | 1,471  | 1,471  | 1,471  | 1,471  |
| Permian Basin UWCD                | Martin     | 6      | 8      | 8      | 8      | 8      | 8      | 8      |
| Permian Basin UWCD Total          |            | 743    | 1,479  | 1,479  | 1,479  | 1,479  | 1,479  | 1,479  |
| No District-County                | Andrews    | 4      | 1,319  | 1,319  | 1,319  | 1,319  | 1,319  | 1,319  |
| No District-County                | Borden     | 114    | 900    | 900    | 900    | 900    | 900    | 900    |
| No District-County                | Crosby     | 54     | 71     | 71     | 71     | 71     | 71     | 71     |
| No District-County                | Deaf Smith | 27     | 6      | 6      | 6      | 6      | 6      | 6      |
| No District-County                | Hockley    | 0      | 83     | 83     | 83     | 83     | 83     | 83     |
| No District-County                | Howard     | 1      | 118    | 118    | 118    | 118    | 118    | 118    |
| Groundwater Management Area 2     |            | 10,465 | 30,566 | 30,566 | 30,566 | 30,566 | 29,805 | 29,705 |

May 12, 2017 Page 14 of 19

TABLE 3.MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE OGALLALA AND EDWARDS-TRINITY (HIGH PLAINS) AQUIFERS IN<br/>GROUNDWATER MANAGEMENT AREA 2. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY,<br/>REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

| County     | RWPA           | River Basin | 2020    | 2030    | 2040    | 2050    | 2060    | 2070    |
|------------|----------------|-------------|---------|---------|---------|---------|---------|---------|
| Andrews    | Region F       | Colorado    | 24,937  | 21,375  | 19,795  | 18,774  | 18,040  | 17,474  |
| Bailey     | Llano Estacado | Brazos      | 97,679  | 67,307  | 51,199  | 42,704  | 37,858  | 34,815  |
| Borden     | Region F       | Brazos      | 842     | 699     | 635     | 597     | 572     | 555     |
| Borden     | Region F       | Colorado    | 5,080   | 3,940   | 3,433   | 3,140   | 2,849   | 2,657   |
| Briscoe    | Llano Estacado | Red         | 29,022  | 17,637  | 11,907  | 9,053   | 7,445   | 6,451   |
| Castro     | Llano Estacado | Red         | 107,563 | 72,432  | 43,208  | 25,577  | 17,236  | 12,970  |
| Castro     | Llano Estacado | Brazos      | 159,730 | 112,038 | 61,892  | 32,048  | 19,950  | 14,535  |
| Cochran    | Llano Estacado | Brazos      | 26,117  | 21,555  | 18,919  | 17,399  | 16,483  | 15,900  |
| Cochran    | Llano Estacado | Colorado    | 75,645  | 57,597  | 45,584  | 38,008  | 31,376  | 26,775  |
| Crosby     | Llano Estacado | Red         | 3,693   | 3,503   | 3,068   | 2,373   | 1,888   | 1,567   |
| Crosby     | Llano Estacado | Brazos      | 162,630 | 108,077 | 68,110  | 46,363  | 35,547  | 29,723  |
| Dawson     | Llano Estacado | Brazos      | 1,699   | 1,456   | 1,329   | 1,256   | 1,210   | 1,178   |
| Dawson     | Llano Estacado | Colorado    | 171,153 | 122,020 | 95,467  | 81,027  | 73,400  | 68,749  |
| Deaf Smith | Llano Estacado | Red         | 206,336 | 137,403 | 90,088  | 65,661  | 52,833  | 45,606  |
| Floyd      | Llano Estacado | Red         | 25,808  | 25,101  | 24,583  | 23,926  | 22,995  | 22,109  |
| Floyd      | Llano Estacado | Brazos      | 144,643 | 69,038  | 43,219  | 30,165  | 23,203  | 19,428  |
| Gaines     | Llano Estacado | Colorado    | 277,954 | 218,338 | 184,298 | 162,643 | 147,743 | 138,294 |
| Garza      | Llano Estacado | Brazos      | 16,297  | 13,648  | 12,395  | 11,657  | 11,180  | 10,855  |
| Hale       | Llano Estacado | Red         | 472     | 455     | 358     | 266     | 197     | 150     |
| Hale       | Llano Estacado | Brazos      | 219,639 | 114,473 | 70,305  | 48,453  | 37,543  | 31,804  |

May 12, 2017 Page 15 of 19

| County      | RWPA                          | <b>River Basin</b> | 2020    | 2030      | 2040      | 2050      | 2060      | 2070      |
|-------------|-------------------------------|--------------------|---------|-----------|-----------|-----------|-----------|-----------|
| Hockley     | Llano Estacado                | Brazos             | 130,832 | 85,716    | 66,206    | 56,994    | 52,150    | 49,382    |
| Hockley     | Llano Estacado                | Colorado           | 46,599  | 26,171    | 11,564    | 6,793     | 5,037     | 4,228     |
| Howard      | Region F                      | Colorado           | 19,835  | 17,391    | 16,264    | 15,638    | 15,281    | 15,066    |
| Lamb        | Llano Estacado                | Brazos             | 223,477 | 112,082   | 71,220    | 56,582    | 50,140    | 46,816    |
| Lubbock     | Llano Estacado                | Brazos             | 151,056 | 121,404   | 109,134   | 100,850   | 94,935    | 90,798    |
| Lynn        | Llano Estacado                | Brazos             | 104,528 | 88,796    | 79,406    | 73,546    | 69,934    | 67,598    |
| Lynn        | Llano Estacado                | Colorado           | 8,079   | 7,355     | 6,088     | 5,057     | 4,414     | 4,042     |
| Martin      | Region F                      | Colorado           | 63,463  | 51,126    | 43,861    | 39,793    | 37,210    | 35,425    |
| Parmer      | Llano Estacado                | Red                | 73,758  | 40,228    | 24,334    | 17,703    | 14,499    | 12,655    |
| Parmer      | Llano Estacado                | Brazos             | 78,257  | 50,870    | 34,925    | 26,034    | 20,971    | 17,881    |
| Swisher     | Llano Estacado                | Red                | 103,982 | 60,806    | 40,124    | 29,802    | 23,926    | 20,249    |
| Swisher     | Llano Estacado                | Brazos             | 25,301  | 10,833    | 6,160     | 4,109     | 3,092     | 2,534     |
| Terry       | Llano Estacado                | Brazos             | 8,367   | 7,167     | 6,548     | 6,142     | 5,864     | 5,670     |
| Terry       | Llano Estacado                | Colorado           | 182,401 | 125,610   | 99,345    | 88,554    | 83,019    | 79,849    |
| Yoakum      | Llano Estacado                | Colorado           | 138,940 | 92,952    | 69,400    | 58,308    | 52,469    | 48,940    |
| Groundwater | Groundwater Management Area 2 |                    |         | 2,086,599 | 1,534,371 | 1,246,995 | 1,092,489 | 1,002,728 |

May 12, 2017 Page 16 of 19

| TABLE 4. | MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 2.         |
|----------|----------------------------------------------------------------------------------------------------------|
|          | RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND |
|          | RIVER BASIN.                                                                                             |

| County     | RWPA           | River Basin | 2020  | 2030  | 2040  | 2050  | 2060  | 2070  |
|------------|----------------|-------------|-------|-------|-------|-------|-------|-------|
| Andrews    | Region F       | Colorado    | 1,319 | 1,319 | 1,319 | 1,319 | 1,319 | 1,319 |
| Bailey     | Llano Estacado | Brazos      | 833   | 833   | 833   | 833   | 833   | 833   |
| Borden     | Region F       | Brazos      | 284   | 284   | 284   | 284   | 284   | 284   |
| Borden     | Region F       | Colorado    | 617   | 617   | 617   | 617   | 617   | 617   |
| Castro     | Llano Estacado | Red         | 425   | 425   | 425   | 425   | 425   | 425   |
| Cochran    | Llano Estacado | Brazos      | 104   | 104   | 104   | 104   | 104   | 104   |
| Cochran    | Llano Estacado | Colorado    | 868   | 868   | 868   | 868   | 868   | 868   |
| Crosby     | Llano Estacado | Brazos      | 3,858 | 3,858 | 3,858 | 3,858 | 3,858 | 3,858 |
| Deaf Smith | Llano Estacado | Red         | 4,401 | 4,401 | 4,401 | 4,401 | 4,401 | 4,401 |
| Floyd      | Llano Estacado | Red         | 250   | 250   | 250   | 250   | 250   | 250   |
| Floyd      | Llano Estacado | Brazos      | 2,976 | 2,976 | 2,976 | 2,976 | 2,976 | 2,976 |
| Garza      | Llano Estacado | Brazos      | 911   | 911   | 911   | 911   | 911   | 911   |
| Hale       | Llano Estacado | Red         | 29    | 29    | 29    | 29    | 29    | 29    |
| Hale       | Llano Estacado | Brazos      | 1,092 | 1,092 | 1,092 | 1,092 | 1,092 | 1,092 |
| Hockley    | Llano Estacado | Brazos      | 890   | 890   | 890   | 890   | 890   | 890   |
| Hockley    | Llano Estacado | Colorado    | 167   | 167   | 167   | 167   | 167   | 167   |
| Howard     | Region F       | Colorado    | 1,589 | 1,589 | 1,589 | 1,589 | 1,589 | 1,589 |
| Lamb       | Llano Estacado | Brazos      | 923   | 923   | 923   | 923   | 923   | 923   |
| Lubbock    | Llano Estacado | Brazos      | 1,086 | 1,086 | 1,086 | 1,086 | 1,086 | 1,086 |
| Lynn       | Llano Estacado | Brazos      | 791   | 791   | 791   | 791   | 791   | 791   |

May 12, 2017 Page 17 of 19

| County                        | RWPA           | River Basin | 2020   | 2030   | 2040   | 2050   | 2060   | 2070  |
|-------------------------------|----------------|-------------|--------|--------|--------|--------|--------|-------|
| Lynn                          | Llano Estacado | Colorado    | 121    | 121    | 121    | 121    | 121    | 121   |
| Martin                        | Region F       | Colorado    | 8      | 8      | 8      | 8      | 8      | 8     |
| Parmer                        | Llano Estacado | Red         | 2,298  | 2,298  | 2,298  | 2,298  | 2,298  | 2,298 |
| Parmer                        | Llano Estacado | Brazos      | 3,152  | 3,152  | 3,152  | 3,152  | 2,392  | 2,291 |
| Swisher                       | Llano Estacado | Red         | 1,551  | 1,551  | 1,551  | 1,551  | 1,551  | 1,551 |
| Swisher                       | Llano Estacado | Brazos      | 25     | 25     | 25     | 25     | 25     | 25    |
| Groundwater Management Area 2 |                | 30,568      | 30,568 | 30,568 | 30,568 | 29,808 | 29,707 |       |

May 12, 2017 Page 18 of 19

#### LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

May 12, 2017 Page 19 of 19

#### **REFERENCES:**

Deeds, Neil E. and Jigmond, Marius, 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model: Prepared for Texas Water Development Board, 640 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS\_GAM\_Numeric</u> <u>al\_Report.pdf</u>.

Hutchison, William, 2016a, GMA 2 Technical Memorandum 15-01 (Final): Ogallala Aquifer.

- Hutchison, William, 2016b, GMA 2 Technical Memorandum 15-02 (Final): Edwards-Trinity (High Plains) Aquifer.
- Hutchison, William, 2016c, GMA 2 Technical Memorandum 15-03 (Final): Dockum Aquifer.
- Hutchison, William, 2016d, GMA 2 Technical Memorandum 16-01 (Final): Predictive Simulation of the Ogallala, Edwards-Trinity (High Plains), and Dockum Aquifers (Scenario 16).
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record\_id=11972</u>.
- Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: United States Geological Survey, Techniques and Methods 6-A37, 44 p.

Texas Water Code, 2011, <u>http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf.</u>