
GAM Run 16-009: KENEDY COUNTY GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

by Rohit Raj Goswami, Ph.D. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Section March 18, 2016

Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and is responsible for oversight of work performed by Rohit R. Goswami under her direct supervision. The seal appearing on this document was authorized by Cynthia K. Ridgeway, P.G. 471 on March 18, 2016.

GAM Run 16-009: KENEDY COUNTY GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

by Rohit Raj Goswami, Ph.D.
Texas Water Development Board
Groundwater Resources Division
Groundwater Availability Modeling Section
March 18, 2016

EXECUTIVE SUMMARY:

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code), requires that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the Executive Administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the Executive Administrator. Information derived from groundwater availability models that shall be included in the groundwater management plan includes:

- the annual amount of recharge from precipitation to the groundwater resources within the district, if any;
- the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and
- the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

This report—Part 2 of a two-part package of information from the TWDB to the Kenedy County Groundwater Conservation District (District)—fulfills the requirements noted above. Part 1 of the two-part package is the Estimated Historical Water Use/State Water Plan data report. The District will receive this data report from the TWDB Groundwater Technical Assistance Section. Questions about the data report can be directed to Mr. Stephen Allen, stephen.allen@twdb.texas.gov, (512) 463-7317.

The groundwater management plan for Kenedy County Groundwater Conservation District should be adopted by the district on or before June 6, 2017 and submitted to the Executive Administrator of the TWDB on or before July 6, 2017. The management plan for the Kenedy Groundwater Conservation District expires on September 4, 2017.

This report discusses the methods, assumptions, and results from model runs using the model developed for Groundwater Management Area 16 (Hutchison and others, 2011). Table 1 summarizes the groundwater model data required by statute and Figure 1 shows the area of the model from which the values in the table were extracted. If, after review of Figure 1, Kenedy County Groundwater Conservation District determines that the district boundary used in the assessment does not reflect the current boundary, please notify the Texas Water Development Board immediately. This model run replaces the results of GAM Run 11-016 (Shi, 2012). GAM Run 16-009 meets current standards set after the release of GAM Run 11-016.

METHODS:

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater model for the Groundwater Management Area 16 for the Gulf Coast Aquifer System (Hutchison and others, 2011) was used for this analysis. Kenedy County Groundwater Conservation District water budgets were extracted for selected years of the historical model calibration period using ZONEBUDGET Version 3.01 (Harbaugh, 2009). The average annual water budget values for recharge, surface water outflow, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net inter-aquifer flow (lower) for the portion of the aquifer system located within the district are summarized in this report.

PARAMETERS AND ASSUMPTIONS:

Gulf Coast Aquifer System

• The alternative model developed by Hutchison and others (2011) contains the entire Groundwater Management Area 16 with Kenedy County Groundwater Conservation District, located approximately at the center of the model domain, while the model for the Central Gulf Coast Aquifer System (Chowdhury and others, 2004) and the model for the Gulf Coast Aquifer System in the Lower Rio Grande Valley (Chowdhury and Mace, 2007) only cover the northern and southern halves of the Kenedy County Groundwater Conservation District, respectively. As a result, the alternative model developed by Hutchison and others (2011) was used for this management plan data analysis. The model was calibrated based on groundwater elevation data from 1963 to 1999; however, data was extracted only for the period from 1980 to 1999 to be consistent with the analysis completed for previous management plans.

- The model has six layers generally representing the following hydrogeologic units (from top to bottom): Chicot Aquifer (layer 1), Evangeline Aquifer (layer 2), Burkeville Confining Unit (layer 3), Jasper Aquifer (layer 4), Yegua-Jackson Aquifer and parts of the Catahoula Formation (layer 5), and Queen-City/Sparta/Carrizo-Wilcox aquifers (layer 6). However, the bottom two layers were not simulated in the Kenedy County Groundwater Conservation District.
- The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifer located within the district and averaged over the duration of 1980 through 1999 for the aquifers located within the district, as shown in Table 1:

- Precipitation recharge—The areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features, such as springs, rivers, reservoirs, and the Gulf, inside or adjacent to the district.
- Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties.
- Flow between aquifers—The net vertical flow between aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

GAM Run 16-009: Kenedy County Groundwater Conservation District Management Plan

March 18, 2016 Page 6 of 10

The information needed for the District's management plan is summarized in Table 1. It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as district or county boundaries, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located. Figure 1 shows the active model cells used for this analysis.

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objective. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes

GAM Run 16-009: Kenedy County Groundwater Conservation District Management Plan

March 18, 2016 Page 7 of 10

no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

GAM Run 16-009: Kenedy County Groundwater Conservation District Management Plan March 18, 2016 Page 8 of 10

TABLE 1: SUMMARIZED INFORMATION FOR THE GROUNDWATER MANAGEMENT AREA 16 MODEL OF THE GULF COAST AQUIFER SYSTEM THAT IS NEEDED FOR KENEDY COUNTY GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Gulf Coast Aquifer System	5,998
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Gulf Coast Aquifer System	20,643
Estimated annual volume of flow into the district within each aquifer in the district	Gulf Coast Aquifer System	41,396
Estimated annual volume of flow out of the district within each aquifer in the district	Gulf Coast Aquifer System	32,644
Estimated net annual volume of flow between each aquifer in the district *	From Gulf Coast Aquifer System to brackish water containing formations	1,216

^{*}The Groundwater availability model does not simulate the interaction between the Gulf Coast Aquifer System and the underlying units.

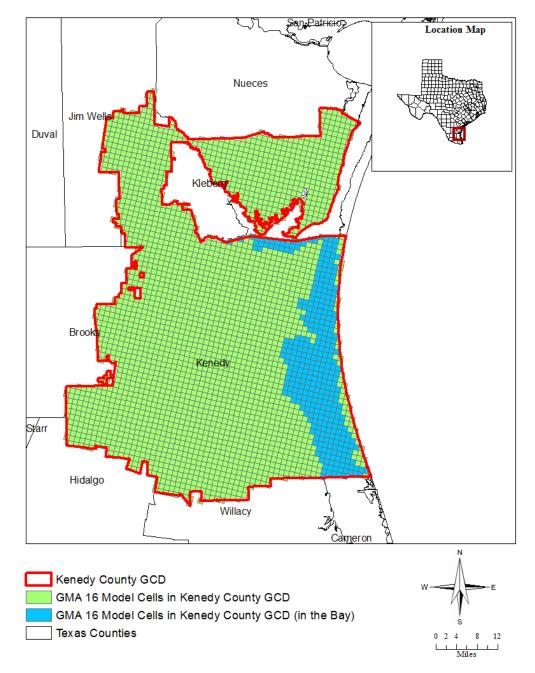


FIGURE 1: AREA OF ACTIVE MODEL CELLS FOR THE GULF COAST AQUIFER SYSTEM IN KENEDY COUNTY GROUNDWATER CONSERVATION DISTRICT (GCD) INCLUDING THE ACTIVE CELLS IN THE BAY FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY). GROUNDWATER FLOW THROUGH CELLS IN THE BAY WAS INCLUDED IN CALCULATIONS OF FLOW TO SURFACE WATER BODIES.

REFERENCES:

- Chowdhury, A. H. and Mace, R. E., 2007, Groundwater Resource Evaluation and Availability Model of the Gulf Coast Aquifer in the Lower Rio Grande Valley of Texas.
- Chowdhury, A. H., Wade, S., Mace, R. E., and Ridgeway, C., 2004, Groundwater Availability Model of the Central Gulf Coast Aquifer System: Numerical Simulations through 1999.
- Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.
- Hutchison, W. R., Hill, M. E., Anaya, R., Hassan, M. M., Oliver, W., Jigmond, M., Wade, S., and Aschenbach, E., 2011, Groundwater Management Area 16 Groundwater Flow Model.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making. Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., http://www.nap.edu/catalog.php?record_id=11972.
- Shi, J., 2012, Kenedy County Groundwater Conservation District Management Plan, http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR11-016.pdf
- Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf