
GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan

by Shirley C. Wade, Ph.D., P.G. Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section (512) 936-0883 November 15, 2013

The seal appearing on this document was authorized by Shirley C. Wade, P.G. 525 on November 15, 2013.

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan

by Shirley C. Wade, Ph.D., P.G. Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section (512) 936-0883 November 15, 2013

EXECUTIVE SUMMARY:

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code, 2011), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the executive administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information previously provided by the district to the executive administrator for review and comment. Information derived from groundwater availability models that shall be included in the groundwater management plan includes:

- the annual amount of recharge from precipitation to the groundwater resources within the district, if any;
- for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and
- the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

This report—Part 2 of a two-part package of information from the TWDB to Cow Creek Groundwater Conservation District—fulfills the requirements noted above. Part 1 of the two-part package is the Historical Water Use/State Water Plan data report. The District will receive this data report from the TWDB Groundwater Technical Assistance Section. Questions about the data report can be directed to Mr. Stephen Allen, stephen.allen@twdb.texas.gov, (512) 463-7317.

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013 Page 4 of 12

The groundwater management plan for Cow Creek Groundwater Conservation District should be adopted by the district on or before October 13, 2014 and submitted to the executive administrator of the TWDB on or before November 12, 2014. The current management plan for Cow Creek Groundwater Conservation District expires on January 11, 2015.

This report discusses the methods, assumptions, and results from a model run using the groundwater availability model for the Hill Country portion of the Trinity Aquifer System. Cow Creek Groundwater Conservation District is also included in the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers and the alternative 1-layer model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers which the TWDB has approved for planning purposes. Please contact the author of this report if a comparison report using these models is desired.

This model run replaces the results of GAM Run 09-030 (Oliver, 2009). GAM Run 13-029 meets current standards set after the release of GAM Run 09-030. Tables 1 and 2 summarize the groundwater availability model data required by statute, and Figures 1 and 2 show the area of the model from which the values in the table were extracted. If after review of the figures, Cow Creek Groundwater Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the Texas Water Development Board immediately.

The Hickory and Ellenburger-San Saba aquifers also underlie the Cow Creek Groundwater Conservation District. If the district would like information for the Hickory and Ellenburger-San Saba aquifers, they may request it from the Groundwater Technical Assistance Section of the TWDB.

METHODS:

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater availability model for the Hill Country portion of the Trinity Aquifer System was run for this analysis. Cow Creek Groundwater Conservation District water budgets were extracted for the historical model period (1981 through 1997) using ZONEBUDGET Version 3.01 (Harbaugh, 2009). The average annual water budget values for recharge, surface water outflow, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net inter-aquifer flow (lower) for the portion of the aquifer located within the district is summarized in this report.

PARAMETERS AND ASSUMPTIONS:

Hill Country portion of the Trinity Aquifer System

- Version 2.01 of the groundwater availability model for the Hill Country portion of the Trinity Aquifer System was used for this analysis. See Jones and others (2009) for assumptions and limitations of the groundwater availability model.
- This groundwater availability model includes four layers, which represent the Edwards Group of the Edwards-Trinity (Plateau) Aquifer (Layer 1), the Upper Trinity Aquifer (Layer 2), the Middle Trinity Aquifer (Layer 3), and the Lower Trinity Aquifer (Layer 4).
- The groundwater availability model includes some portions of the Edwards Group outside the official boundary of the Edwards-Trinity (Plateau) Aquifer. Though flow for these areas is not explicitly reported, the interaction between the Edwards Group (outside the Edwards-Trinity Plateau Aquifer) and the underlying Trinity Aquifer is shown in the "flow between aquifers" segment of Table 1.
- An overall water budget for the Cow Creek Groundwater Conservation
 District was determined for the Edwards-Trinity (Plateau) Aquifer (Layers 1
 through 4 collectively for the portions of the model that represent the
 Edwards-Trinity (Plateau) Aquifer).
- An overall water budget for the District was also determined for the Hill Country portion of the Trinity Aquifer System (Layers 2 through 4 collectively for the portions of the model that represent the Trinity Aquifer System).
- The model was run with MODFLOW-96 (Harbaugh and McDonald, 1996).

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifers located within the district and averaged over the duration of the calibration and verification portion of the model run in the district, as shown in Tables 1 and 2.

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013 Page 6 of 12

- Precipitation recharge—The areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features such as streams, reservoirs, and springs.
- Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties.
- Flow between aquifers—The net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs. "Inflow" to an aquifer from an overlying or underlying aquifer will always equal the "Outflow" from the other aquifer.

It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013 Page 7 of 12

TABLE 1: SUMMARIZED INFORMATION FOR THE HILL COUNTRY PORTION OF THE TRINITY AQUIFER SYSTEM THAT IS NEEDED FOR COW CREEK GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Trinity Aquifer System	48,037
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Trinity Aquifer System	29,249
Estimated annual volume of flow into the district within each aquifer in the district	Trinity Aquifer System	7,908
Estimated annual volume of flow out of the district within each aquifer in the district	Trinity Aquifer System	30,880
Estimated net annual volume of flow between each aquifer in the district	From Edwards-Trinity (Plateau) Aquifer into Trinity Aquifer	6,414
	From Edwards Group into Trinity Aquifer	58

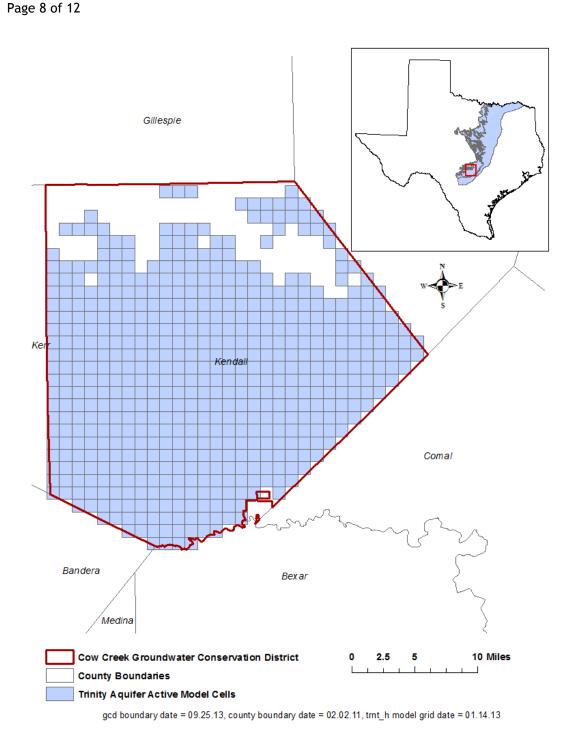


FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE HILL COUNTRY PORTION OF THE TRINITY AQUIFER SYSTEM FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE TRINITY AQUIFER SYSTEM EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013 Page 9 of 12

TABLE 2: SUMMARIZED INFORMATION FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER THAT IS NEEDED FOR COW CREEK GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Edwards-Trinity (Plateau)	6,046
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Edwards-Trinity (Plateau)	3,061
Estimated annual volume of flow into the district within each aquifer in the district	Edwards-Trinity (Plateau)	4,099
Estimated annual volume of flow out of the district within each aquifer in the district	Edwards-Trinity (Plateau)	384
Estimated net annual volume of flow between each aquifer in the district	From Edwards-Trinity (Plateau) Aquifer into Trinity Aquifer	6,414

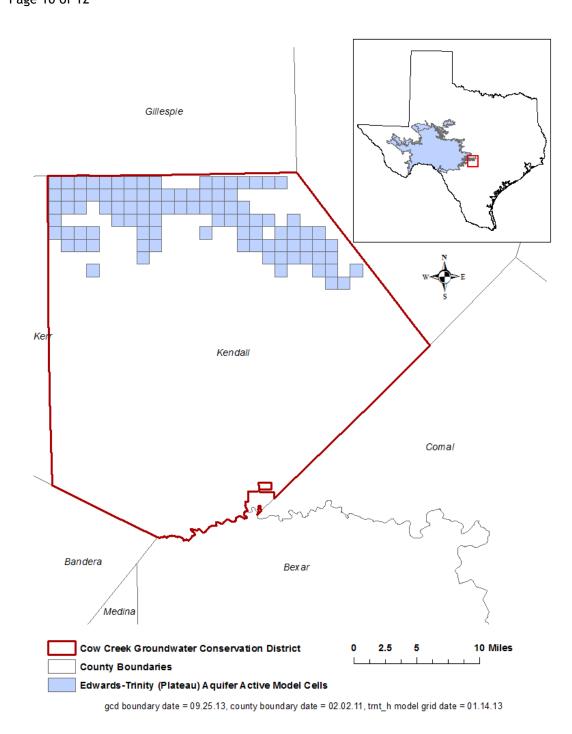


FIGURE 2: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE HILL COUNTRY PORTION OF THE TRINITY AQUIFER SYSTEM FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE EDWARDS-TRINITY (PLATEAU) AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013

Page 11 of 12

LIMITATIONS:

The groundwater model(s) used in completing this analysis is the best available scientific tool that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

GAM Run 13-029: Cow Creek Groundwater Conservation District Management Plan November 15, 2013 Page 12 of 12

REFERENCES:

- Jones, Ian. C., Anaya, R. and Wade, S., 2009, Groundwater Availability Model for the Hill County Portion of the Aquifer System, Texas: Numerical Simulations through 1999- Model Report, 196 p., http://www.twdb.texas.gov/groundwater/models/gam/trnt_h/TRNT_H_2009_Update_Model_Report.pdf.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software.
- Harbaugh, A. W., and McDonald, M. G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-485, 56 p.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., http://www.nap.edu/catalog.php?record_id=11972.
- Oliver, W., 2009, GAM Run 09-030: Texas Water Development Board, GAM Run 09-030 Report, 9 p., http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR09-30.pdf.
- Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf