GAM Run 05-03

by Ian C. Jones, Ph.D., P.G.

Texas Water Development Board Groundwater Availability Modeling Section (512) 936-0848 October 07, 2004

REQUESTOR:

Mr. Neil Hudgins on behalf of the Coastal Bend Groundwater Conservation District and the Coastal Plains Groundwater Conservation District.

DESCRIPTION OF REQUEST:

What is the water budget of Matagorda and Wharton counties under wet, dry, and predicted pumping conditions?

METHODS:

We used the historic and predictive models for the Groundwater Availability Model (GAM) for the central Gulf Coast aquifer (Waterstone and Parsons, 2003; Chowdhury and others, 2004) to determine the water budgets for Matagorda and Wharton counties. The historic model simulates groundwater flow through the central Gulf Coast aquifer during the period 1980 through 2000. We extracted water budget data from the GAM for zones representing Matagorda and Wharton counties for the wettest year (1992), the driest year (1988), and the predictive period (2005 through 2012). The water budget reported for 1988 is the average of the monthly water budgets for that year. Similarly, the water budget for the predictive period is the average for the years 2005 through 2012.

PARAMETERS AND ASSUMPTIONS:

- See Chowdhury and others (2004) for assumptions and limitations of the GAM. The root mean squared error for this model is 21 ft.
- Chowdhury and others (2004) calibrated the steady-state model to 1980 hydrologic conditions.
- The GAM has pumping based on water demand estimates from the 2001 regional water plans and the 2002 State Water Plan.
- Assumed average recharge conditions.
- The GAM assumes that pumping in the Evangeline aquifer only occurs in the upper part of the Evangeline aquifer.

RESULTS

Tables 1, 2, and 3 contain water-budget data for wet and dry conditions and for the 2005 to 2012 predictive period for each layer that constitutes the GAM in Matagorda and

Wharton Counties. These layers, the Chicot aquifer, Evangeline aquifer, Burkeville confining unit, and Jasper aquifer, constitute Layers 1 through 4 in the model.

- Table 1.Average water budgets for Matagorda and Wharton counties for 1988, the
driest year during the 1980 through 2000 transient run (values expressed in
acre-feet/year).
- (a) Matagorda County

Chicot Aquifer				
Flow Term	In	Out	In - Out	
Storage	30,025	7,745	22,280	
Constant Head	0	0	0	
Horizontal Exchange	12,956	21,678	-8,722	
Exchange (Upper)	0	0	0	
Exchange (Lower)	1	9,062	-9,061	
Wells	0	38,673	-38,673	
Drains	0	461	-461	
Recharge	12,681	0	12,681	
Evapotranspiration	0	3,620	-3,620	
Reservoirs	797	0	797	
Head-Dependent Boundaries	108	6,274	-6,166	
Stream Leakage	64,938	33,993	30,946	
Sum	121,506	121,506	1	
Evangelin Storage Constant Head Horizontal Exchange Exchange (Upper) Exchange (Lower) Wells Drains Recharge Evapotranspiration Reservoirs Head-Dependent Boundaries Stream Leakage Sum	e Aquifer 3,409 0 1,916 9,062 372 0 0 0 0 0 0 0 0 14,760	2,327 0 6,580 1 0 5,852 0 0 0 0 0 0 0 0 0 14,760	1,082 0 -4,664 9,061 372 -5,852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Table 1. (continued)

Burkeville Confining System			
Flow Term	In	Out	In - Out
Storage	371	0	371
Constant Head	0	0	0
Horizontal Exchange	9	8	1
Exchange (Upper)	0	372	-372
Exchange (Lower)	0	0	0
Wells	0	0	0
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	381	381	0

(b) Wharton County

Chicot Aquifer				
Flow Term	In	Out	In - Out	
Storage	80,362	36,114	44,248	
Constant Head	0	0	0	
Horizontal Exchange	29,770	18,245	11,525	
Exchange (Upper)	0	0	0	
Exchange (Lower)	9	38,816	-38,806	
Wells	0	129,920	-129,920	
Drains	0	134	-134	
Recharge	13,329	0	13,329	
Evapotranspiration	0	381	-381	
Reservoirs	536	0	536	
Head-Dependent Boundaries	0	0	0	
Stream Leakage	119,779	20,174	99,605	
Sum	243,785	243,783	2	

.

Table 1. (continued)

Evangelir	ne Aquifer		
Flow Term	In	Out	In - Out
Storage	33,139	24,240	8,899
Constant Head	0	0	0
Horizontal Exchange	27,884	3,805	24,079
Exchange (Upper)	38,816	9	38,806
Exchange (Lower)	3,681	9	3,672
Wells	0	75,456	-75,456
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	103,519	103,519	0
Burkeville Cor	nfining Syst	em	
Storage	2,513	55	2,458
Constant Head	0	0	0
Horizontal Exchange	42	23	19
Exchange (Upper)	9	3,681	-3,672
Exchange (Lower)	1,194	0	1,194
Wells	0	0	0
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	3,759	3,759	0
Jasper	Aquifer	0	1 1 9 6
	1,186	U	1,186
Constant Head	0	0	0
	212	203	9
Exchange (Upper)	0	1,194	-1,194
	0	0	0
vvells	0	0	0
Drains	0	0	0
Recharge	0	0	0
	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	1,398	1,398	0

Table 1. (continued)

(c) Net water budget

Flow Term	Matagorda County	Wharton County
Storage	23,733	56,790
Constant Head	0	0
Horizontal Exchange	-13,384	35,633
Exchange (Upper)	8,689	33,940
Exchange (Lower)	-8,689	-33,940
Wells	-44,524	-205,377
Drains	-461	-134
Recharge	12,681	13,329
Evapotranspiration	-3,620	-381
Reservoirs	797	536
Head-Dependent Boundaries	-6,166	0
Stream Leakage	30,946	99,605

- Table 2.Water budgets for Matagorda and Wharton counties for 1992, the wettest year
during the 1980 through 2000 transient run (values expressed in acre-
feet/year).
- (a) Matagorda County

F

Chicot Aquifer				
Flow Term	In	Out	In - Out	
Storage	0	25,777	-25,777	
Constant Head	0	0	0	
Horizontal Exchange	12,655	26,152	-13,497	
Exchange (Upper)	0	0	0	
Exchange (Lower)	0	8,525	-8,525	
Wells	0	25,864	-25,864	
Drains	0	805	-805	
Recharge	25,798	0	25,798	
Evapotranspiration	0	3,887	-3,887	
Reservoirs	644	0	644	
Head-Dependent Boundaries	40	10,775	-10,735	
Stream Leakage	87,789	25,141	62,648	
Sum	126,926	126,926	0	
Evangelir Storage Constant Head	ne Aquifer 17 0	569 0	-552 0	
Horizontal Exchange	1,472	5,915	-4,443	
Exchange (Upper)	8,525	0	8,525	
Exchange (Lower)	319	0	319	
Wells	0	3,849	-3,849	
Drains	0	0	0	
Recharge	0	0	0	
Evapotranspiration	0	0	0	
Reservoirs	0	0	0	
Head-Dependent Boundaries	0	0	0	
Stream Leakage	0	0	0	
Sum	10,333	10,333	0	

Table 2. (continued)

Burkeville Confining System			
Flow Term	In	Out	In - Out
Storage	319	0	319
Constant Head	0	0	0
Horizontal Exchange	9	9	0
Exchange (Upper)	0	319	-319
Exchange (Lower)	0	0	0
Wells	0	0	0
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	328	328	0

(b) Wharton County

Chico	ot Aquifer		
Flow Term	In	Out	In - Out
Storage	2	80,217	-80,215
Constant Head	0	0	0
Horizontal Exchange	30,268	20,793	9,474
Exchange (Upper)	0	0	0
Exchange (Lower)	0	37,465	-37,465
Wells	0	112,037	-112,037
Drains	0	223	-223
Recharge	27,864	0	27,864
Evapotranspiration	0	410	-410
Reservoirs	536	0	536
Head-Dependent Boundaries	0	0	0
Stream Leakage	207,636	15,159	192,477
Sum	266,305	266,304	0

Table 2. (continued)

Evangelin	e Aquifer		
Flow Term	In	Out	In - Out
Storage	957	122	835
Constant Head	0	0	0
Horizontal Exchange	26,863	3,329	23,534
Exchange (Upper)	37,465	0	37,465
Exchange (Lower)	3,158	0	3,158
Wells	, 0	64.993	-64.993
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0 0	0 0
Sum	68 443	68 443	0 0
oum	00,440	00,440	0
Rurkeville Con	fining Syste	-m	
Storage	1 967	6	1 961
Constant Head	1,307	0	1,301
Horizontal Exchange	11	22	22
	-++	24	24
Exchange (Opper)	1 176	3,100	-3,100
	1,170	0	1,170
Vielis	0	0	0
Dialits	0	0	0
Recharge	0	0	0
Evapolianspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	3,186	3,186	0
Jasper /	Aquifer 1 150	0	1 150
Constant Head	1,139	0	1,139
Horizontal Exchange	0 216	100	17
Evenance (Upper)	210	1 1 7 6	1 1 7 C
Exchange (Lower)	0	1,170	-1,170
	0	0	0
	0	0	U
Diallis	0	U	U
	U	0	0
	0	0	0
	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	1,374	1,374	0

Table 2. (continued)

(c) Net water budget

	Matagorda	Wharton
Flow Term	County	County
Storage	-26,010	-76,261
Constant Head	0	0
Horizontal Exchange	-17,940	33,047
Exchange (Upper)	8,206	33,131
Exchange (Lower)	-8,206	-33,131
Wells	-29,713	-177,030
Drains	-805	-223
Recharge	25,798	27,864
Evapotranspiration	-3,887	-410
Reservoirs	644	536
Head-Dependent Boundaries	-10,735	0
Stream Leakage	62,648	192,477

- Table 3.Water budgets for Matagorda and Wharton counties averaged over the period
2005 through 2012 (values expressed in acre-feet/year).
- (a) Matagorda County

Chicot A	auifer		
Flow Term	In	Out	In - Out
Storage	3,666	6	3,660
Constant Head	0	0	, 0
Horizontal Exchange	11,079	18,990	-7,911
Exchange (Upper)	0	0	0
Exchange (Lower)	2	8,217	-8,215
Wells	0	29,635	-29,635
Drains	0	180	-180
Recharge	17,316	0	17,316
Evapotranspiration	0	3,393	-3,393
Reservoirs	795	0	795
Head-Dependent Boundaries	238	5,549	-5,311
Stream Leakage	61,623	28,749	32,874
Sum	94,718	94,718	0
	,		
Evangeline	Aquiter	0	470
Storage	1/0	U	170
Constant Head	U 4 750	U 4 070	0
Horizontal Exchange	1,753	4,973	-3,220
Exchange (Upper)	71∠,ŏ 200	2	ŏ,∠15 209
	300	U 5 500	300 5 500
Droine	0	ວ,ວບອ ດ	-5,509
Dialits	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	10,448	10 484	-36
Call	10,110	10,101	00

Table 3. (continued)

Burkeville Confining System			
Flow Term	In	Out	In - Out
Storage	310	0	310
Constant Head	0	0	0
Horizontal Exchange	8	10	-1
Exchange (Upper)	0	308	-308
Exchange (Lower)	0	0	0
Wells	0	0	0
Drains	0	0	0
Recharge	0	0	0
Evapotranspiration	0	0	0
Reservoirs	0	0	0
Head-Dependent Boundaries	0	0	0
Stream Leakage	0	0	0
Sum	318	318	0

(b) Wharton County

Chicot Aquifer					
Flow Term	In	Out	In - Out		
Storage	17,932	674	17,258		
Constant Head	0	0	0		
Horizontal Exchange	31,497	19,235	12,262		
Exchange (Upper)	0	0	0		
Exchange (Lower)	0	37,620	-37,620		
Wells	0	107,878	-107,878		
Drains	0	9	-9		
Recharge	18,759	0	18,759		
Evapotranspiration	0	260	-260		
Reservoirs	536	0	536		
Head-Dependent Boundaries	0	0	0		
Stream Leakage	113,221	16,272	96,949		
Sum	181,946	181,948	-1		

Table 3. (continued)

Evangelin	e Aquifer				
Flow Term	In	Out	In - Out		
Storage	243	12	230		
Constant Head	0	0	0		
Horizontal Exchange	28 719	3 766	24 953		
Exchange (Lipper)	37 620	0,100	37 620		
Exchange (Lower)	3 1020	0	3 102		
	5,192	66 020	5,192		
	0	00,030	-00,038		
Drains	0	0	0		
Recharge	0	0	0		
Evapotranspiration	0	0	0		
Reservoirs	0	0	0		
Head-Dependent Boundaries	0	0	0		
Stream Leakage	0	0	0		
Sum	69,773	69,816	-42		
Burkeville Con	fining Syste	em			
Storage	1,372	55	1,317		
Constant Head	0	0	0		
Horizontal Exchange	50	19	31		
Exchange (Upper)	0	3,192	-3,192		
Exchange (Lower)	1,844	0	1,844		
Wells	0	0	0		
Drains	0	0	0		
Recharge	0	0	0		
Evapotranspiration	0	0	0		
Reservoirs	0	0 0	0		
Head-Dependent Boundaries	0	0	0		
Stroom Lookago	0	0	0		
Stream Leakage	0		0		
Sum	3,266	3,266	0		
Jasper Aquifer					
Storage	1,870	0	1,870		
Constant Head	0	0	0		
Horizontal Exchange	203	228	-26		
Exchange (Upper)	0	1,844	-1,844		
Exchange (Lower)	0	0	. 0		
Wells	0	0	0		
Drains	0	0	0		
Recharge	0 0	0 0	n N		
Evapotranspiration	0	0	0		
Reservoirs	0	0	0		
Hood Dopondont Poundarias	0	0			
	0	0	0		
Stream Leakage	0	0	0		
Sum	2,072	2,073	0		

Table 3. (continued)

(c) Net water budget

	Matagorda	Wharton
Flow Term	County	County
Storage	4,139	20,675
Constant Head	0	0
Horizontal Exchange	-11,132	37,221
Exchange (Upper)	7,907	32,583
Exchange (Lower)	-7,907	-32,583
Wells	-35,144	-173,916
Drains	-180	-9
Recharge	17,316	18,759
Evapotranspiration	-3,393	-260
Reservoirs	795	536
Head-Dependent Boundaries	-5,311	0
Stream Leakage	32,874	96,949

Total recharge in Matagorda County, based on the GAM, is approximately 12,700, 25,800, and 17,300 acre-feet per year for the driest year, wettest year, and the predictive period, respectively (Tables 1, 2, and 3). Total recharge in Wharton County, based on the GAM, is approximately 13,300, 27,900, and 18,800 acre-feet per year for the driest year, wettest year, and the predictive period, respectively (Tables 1, 2, and 3). These recharge values lie within the range of previous recharge estimates of 6,200 to 25,000 acre-feet per year for Matagorda County and 5,800 to 23,000 acre-feet per year for Wharton County (Dutton and Richter, 1990).

REFERENCES:

- Chowdhury, A. H., Wade, S., Mace, R. E., and Ridgeway, C., 2004, Groundwater availability model of the Central Gulf Coast aquifer system: Numerical simulations through 1999: Texas Water Development Board, draft report, 108 p.
- Dutton, A. R. and Richter, B. C., 1990, Regional hydrogeology of the gulf coast aquifer in Matagorda and Wharton counties, Texas – Development of a numerical flow model to estimate the impact of water management strategies: Report prepared for the Lower Colorado River Authority under contract (88-89) 0910, Bureau of Economic Geology, University of Texas at Austin, 118 p.
- Waterstone Environmental Hydrology and Engineering, Inc., and Parsons Engineering Science, Inc., 2003, Groundwater availability of the central Gulf Coast aquifer: Numerical simulations to 2050 central Gulf Coast, Texas: prepared for the Texas Water Development Board, unpublished report, 156 p.