
# Utilizing resistivity logs and the R<sub>wa</sub> Method to map salinity zones in the Eocene Queen City Aquifer, central Texas

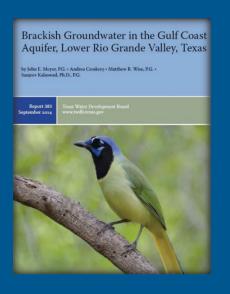
Presentation 4-1 T18. Unconventional Aquifers and Aquifer Management Monday March 25, 2019 2019 GSA South-Central/North-Central/Rocky Mountain Section Meeting

**Authors:** 

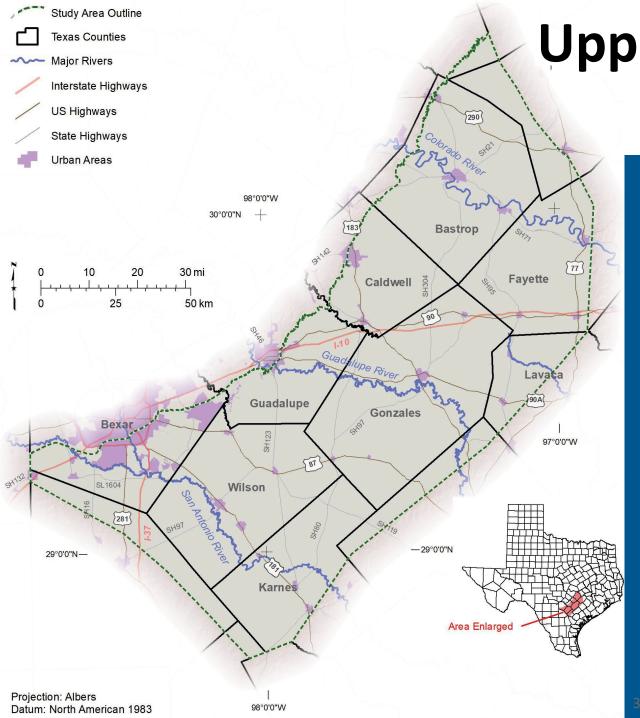
Andrea Croskrey\*, John Meyer, Alysa Suydam

# Texas Water Development Board (TWDB)




Create a 50-year State Water Plan every 5 years!

# Brackish Resource Aquifer Characterization System (BRACS)

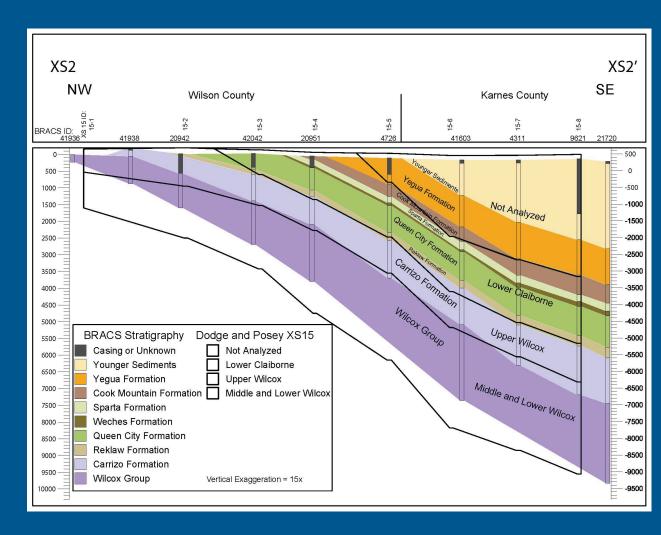

http://www.twdb.texas.gov/innovativewater/bracs/studies.asp

#### Map brackish groundwater!

- 1. Stratigraphy
- 2. Lithology
- 3. Water Quality



All this data is managed in an MS Access Database (available for download!!!)




Upper Coastal Plains – Central Study Overview

- Parts of 14 counties in central Texas
- 5 aquifers
  - (Yegua, Sparta, <u>Queen City</u>, Carrizo, Wilcox)
- 8 Eocene stratigraphic units mapped
  - (Yegua, Cook Mountain, Sparta,
     Weches, <u>Queen City</u>, Reklaw, Carrizo,
     Wilcox)
- Thousands of lithologic picks
  - (sand, sand with clay, clay with sand, clay)

| Epoch     | Group     | Formation                                                  | USGS nomenclature                                                                | Texas Hydrogeologic unit                                           |
|-----------|-----------|------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|
|           | Jackson   | Caddell<br>Moodys Branch<br>Hiatus                         | Vicksburg-Jackson<br>confining unit                                              | Yegua-Jackson Aquifer                                              |
|           | Claiborne | Yegua Cook Mountain Hiatus Sparta Weches Hiatus Queen City | Upper Claiborne Aquifer Middle Claiborne Confining unit Middle Claiborne Aquifer | Confining unit  Sparta Aquifer  Confining unit  Queen City Aquifer |
| Eocene    |           | Reklaw<br>Hiatus                                           | Lower Claiborne confining unit                                                   | Confining unit                                                     |
|           |           | Carrizo  Hiatus  Sabinetown                                | Lower Claiborne – upper Wilcox<br>Aquifer                                        | Carrizo-Wilcox Aquifer                                             |
| Paleocene | Wilcox    | Rockdale  Seguin                                           | Middle Wilcox Aquifer                                                            |                                                                    |
|           | Midway    | Wills Point                                                | Midway confining unit                                                            | Confining unit                                                     |

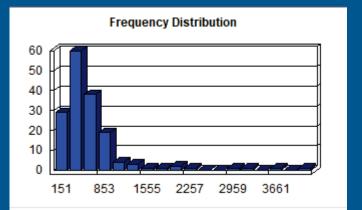
Stratigraphic column showing relationship between the epochs, formations, and hydrogeologic units. The United States Geological Survey (USGS) nomenclature is based on Ryder (1996). Texas hydrogeologic units are based on TWDB (2007a) and George and others (2011). This table does not reflect the entire Jackson or Midway group stratigraphy. This table is not scaled vertically in uniform units of time.



Cross-section comparing the stratigraphic nomenclature and picks between this study and Dodge and Posey (1981)

### **Salinity Mapping**




PWS: Public Water System threshold for fresh water, TX Commission on Environmental Quality BUQ: Base Useable Quality water, TX Railroad Commission

USDW: Underground Source Drinking Water, US Environmental Protection Agency

#### **Measured TDS** Fresh Slightly saline Moderately saline Queen City Formation outcrop Bastrop Queen City Formation extent Study area boundary Texas counties **Fayette** Caldwell Lavaca Guadalupe Bexar Karnes Area Enlarged

# Measured Water Quality (TDS<sub>meas</sub>)

- 61 water wells, 146 measurements identified using aquifer determination
- Limited to where people drill wells (shallow & fresh)
- Min: 151, Max: 4,345, Mean: 729
- Sources: TWDB Groundwater Database, San Antonio Water System, Gonzales
  Underground Water Conservation District, U.S. Geological Survey Produced
  Water Database, published reports, raw-water sample reports from the
  Texas Commission on Environmental Quality public drinking water system
  program



## **Calculating Water Quality (TDS**<sub>calc</sub>)

- 348 oil & gas wells with 538 TDS<sub>calc</sub> values
- The R<sub>wa</sub> Minimum Method (<u>Resistivity Water Apparent</u>) is based on the relationship between water salinity and resistivity.
- A simplified version of Archie's equation (1942) assumes 100% water saturation and Winsauer factor = 1:

$$R_w = R_o \cdot \phi^m$$

where:  $R_0$  = resistivity of the formation (units: ohm-meter)

R<sub>w</sub> = resistivity of water (units: ohm-meter)

φ = porosity (units: percent)

m = cementation exponent (units: dimensionless)

- Resistivity → specific conductance → total dissolved solids.
- Let's look at the details...

### Parameters (1/3)

# **Depth and Temperatures** $(D_{t_i} D_{f_i} T_{s_i} T_{bh})$

- Temperature effects resistivity
- We assume a constant temperature gradient from the surface to bottom of the well hole to calculate the formation temperature

D<sub>t</sub>: total depth of the well

D<sub>f</sub>: depth of the formation

T<sub>s</sub>: surface temperature

T<sub>bh</sub>: bottom hole temperature

# **Deep Resistivity** (R<sub>o</sub>)

- Avoid the mud infiltrate "invaded zone"
- Take value from a clean, shalefree sand >10ft thick
- Units are in ohm-m

#### Parameters (2/3)

#### "ct" factors

| TDS<br>low | TDS<br>high | Number records | TDS   | ct   | R <sub>wcRw</sub> | Ca  | Mg | Na    | HCO <sub>3</sub> | SO <sub>4</sub> | Cl    |
|------------|-------------|----------------|-------|------|-------------------|-----|----|-------|------------------|-----------------|-------|
| 0          | 499         | 35             | 335   | 0.54 | 1.23              | 39  | 9  | 72    | 183              | 55              | 63    |
| 500        | 999         | 61             | 686   | 0.56 | 1.22              | 69  | 21 | 146   | 282              | 181             | 122   |
| 1,000      | 1,999       | 6              | 1,224 | 0.62 | 1.25              | 110 | 41 | 245   | 279              | 504             | 179   |
| 2,000      | 2,999       | 2              | 2,272 | 0.52 | 1.25              | 190 | 75 | 497   | 395              | 876             | 438   |
| 3,000      | 3,999       | 3              | 3,420 | 0.57 | 1.11              | 140 | 48 | 1,050 | 205              | 623             | 1,450 |
| 4,000      | 4,999       | 1              | 4,345 | 0.5  | 1.14              | 15  | 12 | 1,607 | 682              | 704             | 1,654 |
| >5,000     |             | 0              |       |      |                   |     |    |       |                  |                 |       |

• 108 TDS<sub>meas</sub> correlated with specific conductance

$$ct = \frac{TDS}{C_w}$$

#### Porosity (φ)

| Geological formation | Total porosity        |  |  |
|----------------------|-----------------------|--|--|
| Yegua Formation      | 39                    |  |  |
| Sparta Formation     | 34                    |  |  |
| Queen City Formation | y = -0.0023x + 41.657 |  |  |
| Carrizo Formation    | y = -0.0015x + 38.465 |  |  |
| Wilcox Group         | y = -0.0019x + 39.839 |  |  |

- 15 wells with 20 measurements
- If a nearby measurement was not available, we used a depth regression to estimate φ

ct = ct conversion factor

TDS = interpreted total dissolved solids (milligrams per liter)

Cw = conductivity water at 77°F (microsiemens centimeter)

## Parameters (3/3)

# Cementation exponent (m)

- Function of grain size, grain size distribution, grain sorting, pore tortuosity, and grain lithology
- No core analysis
- Therefore assumed m = 1.75
- 1.75 is within the range of slightly to moderately cemented sandstones

# Water quality correction factor (RwcRw)

- Logs were developed for oil & gas exploration and assume NaCl dominated H<sub>2</sub>O
- Ions have different resistivities
- Factor calibrates solution to an equivalent NaCl concentration for analysis
- We used weighting multipliers from Chart Gen-8, Resistivities of Solutions (Schlumberger, 1979; 1985)

- 1. <u>Determine the temperature of the formation being investigated.</u>
- 2. Determine resistivity of water equivalent.
- 3. Correct resistivity water based on groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. Calculate interpreted total dissolved solids.

$$G_{g} = \frac{(T_{bh} - T_{s})}{D_{t}}$$

$$T_f = (Gg \cdot Df) + Ts$$

where:

 $G_g$  = geothermal gradient (°F/foot)

 $\Gamma_{\rm bh}$  = temperature bottom hole (°F)

 $T_s$  = temperature surface (°F)

 $D_t$  = depth total (feet)

 $T_f$  = temperature formation (°F)

 $D_f$  = depth formation (feet)

- 1. Determine the temperature of the formation being investigated.
- 2. <u>Determine resistivity of water</u> <u>equivalent.</u>
- 3. Correct resistivity water based on groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. Calculate interpreted total dissolved solids.

$$R_w = \Phi^m \cdot Ro$$

#### where:

R<sub>w</sub> = resistivity of water equivalent (ohm-meter)

φ = porosity of the formation evaluated (dimensionless)

m = cementation exponent (dimensionless)

R<sub>o</sub> = resistivity of water from geophysical log (ohm-meter)

- 1. Determine the temperature of the formation being investigated.
- 2. Determine resistivity of water equivalent.
- 3. <u>Correct resistivity water based on</u> groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. Calculate interpreted total dissolved solids.

$$R_{wc} = \frac{R_w}{R_{wcRw}}$$

where:

Rwc = resistivity water, corrected (ohm-meter)

Rw = resistivity water equivalent (ohm-meter)

RwcRw = sodium chloride equivalent correction factor

(dimensionless)

- 1. Determine the temperature of the formation being investigated.
- 2. Determine resistivity of water equivalent.
- 3. Correct resistivity water based on groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. Calculate interpreted total dissolved solids.

$$R_{w77} = R_{wc} \cdot \frac{(T_f + 6.77)}{(77 + 6.77)}$$

where:

 $T_f$  = temperature formation (°F)

R<sub>wc</sub> = resistivity water, corrected (ohm-meter)

 $R_{w77}$  = resistivity water at 77°F (ohm-meter)

- 1. Determine the temperature of the formation being investigated.
- 2. Determine resistivity of water equivalent.
- 3. Correct resistivity water based on groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. Calculate interpreted total dissolved solids.

$$C_{w} = \frac{10,000}{R_{w77}}$$

where:

C<sub>w</sub> = conductivity water at 77°F (microsiemens-centimeter)

 $R_{w77}$  = resistivity water at 77°F (ohm-meter)

- 1. Determine the temperature of the formation being investigated.
- 2. Determine resistivity of water equivalent.
- 3. Correct resistivity water based on groundwater type correction factor.
- 4. Convert resistivity water at formation temperature to 77°F using Arp's Equation.
- 5. Convert resistivity water at 77°F to conductivity water at 77°F.
- 6. <u>Calculate interpreted total dissolved</u> <u>solids.</u>

```
TDS = ct \cdot Cw
```

#### where:

TDS = interpreted total dissolved solids (milligrams per liter)

ct = ct conversion factor

 $C_w$  = conductivity water at 77°F (microsiemens centimeter)

#### **Measured TDS**

- Fresh
- Slightly saline
- Moderately saline

#### Salinity zone



Fresh



Fresh and slightly saline mixed zone



Slightly saline



Slightly saline and moderately saline mixed



Slightly saline, moderately saline, and very saline mixed zone



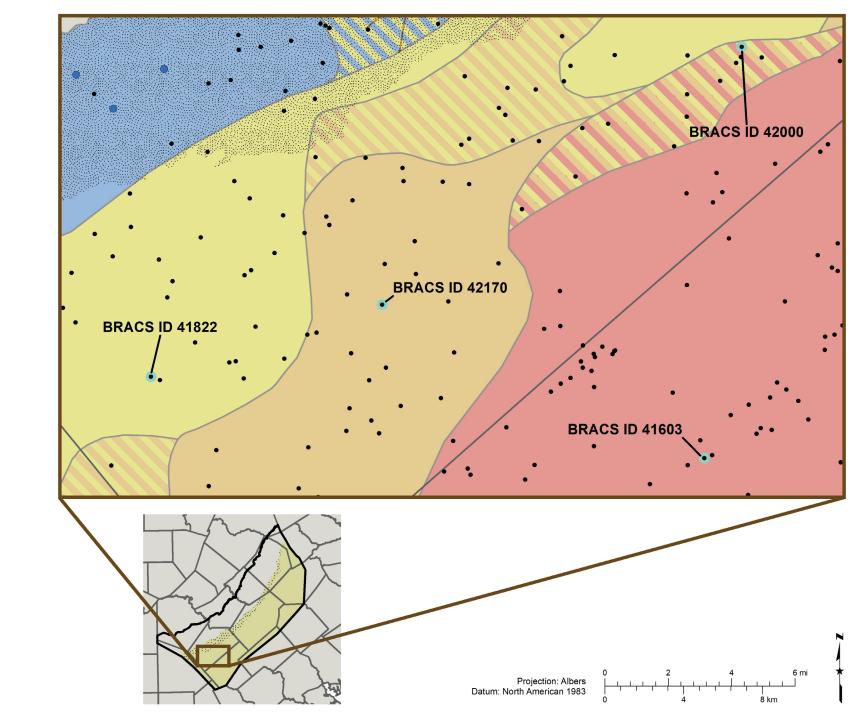
Moderately saline

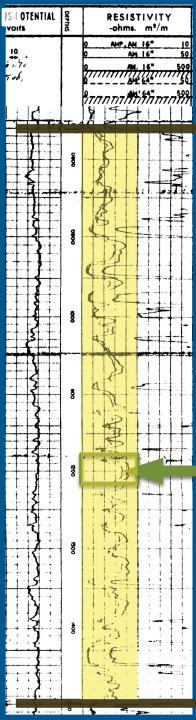


Very saline

• Well used in the study with a geophysical well log




Queen City Formation outcrop




Queen City Formation extent



Texas counties





Top of the Queen City Formation at 740 feet below Kelly Bushing

Bottom of the Queen City Formation at 1,500 feet below Kelly Bushing

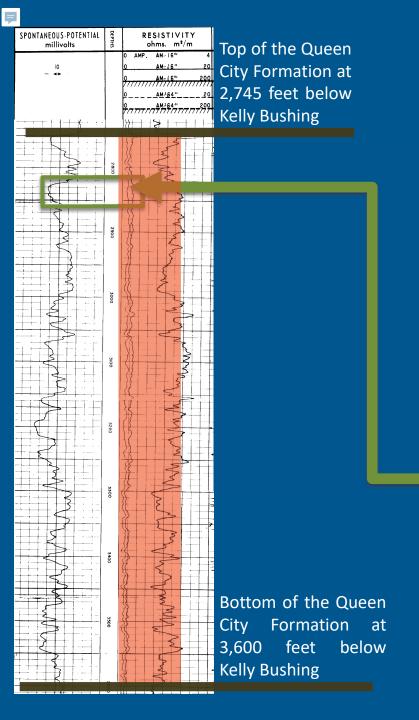
## Slightly saline well 41822

$$1,824 = 0.62 * \frac{10,000}{0.39^{1.75} * 18} * \frac{\left(\frac{103 - 70}{1,505} * 1,200 + 70\right) + 6.77}{77 + 6.77}$$

$$TDS = ct * \frac{10,000}{\cancel{Q}_{m_*Ro}} * \frac{(\frac{Tbh - Ts}{Dt} * Df + Ts) + 6.77}{77 + 6.77}$$

| Value | Parameter                                          | Units                    |  |  |
|-------|----------------------------------------------------|--------------------------|--|--|
| 1,505 | Depth total, Dt                                    | Feet below Kelly Bushing |  |  |
| 1,200 | Depth formation, Df                                | Feet below Kelly Bushing |  |  |
| 70    | Temperature surface, Ts                            | Degrees Fahrenheit       |  |  |
| 103   | Temperature bottom hole, Tbh                       | Degrees Fahrenheit       |  |  |
| 18    | Deep resistivity, Ro                               | Ohm-meter                |  |  |
| 0.39  | Porosity, Ø                                        | Percent                  |  |  |
| 0.62  | ct conversion factor, ct                           | Dimensionless            |  |  |
| 1.75  | Cementation exponent, m                            | Dimensionless            |  |  |
| 1.25  | Water quality correction factor, $R_{\text{wcRw}}$ | Dimensionless            |  |  |

## RESISTIVITY OHMS Mª/M DEEP INDUCTION AVERAGED LATEROLOG-8 Top of the Queen City Formation at AMP. AVE. LATEROLOG -- 8 903 feet below **Kelly Bushing** Bottom of the Queen 1,702 feet below **Kelly Bushing**


Formation at

### Moderately saline well 42170

10,000  $\underbrace{\frac{0.39^{1.75} * 7.5}{1} * \frac{(201 - 69}{7903} * 1090 + 69) + 6.77}_{1} * \underbrace{\frac{201 - 69}{7903} * 1090 + 69}_{1} + 6.77}_{1}$ **3,478** = 0.56 \* —

$$TDS = ct * \frac{10,000}{\cancel{Q}_{m_{*Ro}} * \frac{(\frac{Tbh - Ts}{Dt} * Df + Ts) + 6.77}{77 + 6.77}}$$

| Value | Parameter                                          | Units                    |  |  |
|-------|----------------------------------------------------|--------------------------|--|--|
| 7903  | Depth total, Dt                                    | Feet below Kelly Bushing |  |  |
| 1090  | Depth formation, Df                                | Feet below Kelly Bushing |  |  |
| 69    | Temperature surface, Ts                            | Degrees Fahrenheit       |  |  |
| 201   | Temperature bottom hole, Tbh                       | Degrees Fahrenheit       |  |  |
| 7.5   | Deep resistivity, Ro                               | Ohm-meter                |  |  |
| 0.39  | Porosity, Ø                                        | Percent                  |  |  |
| 0.56  | ct conversion factor, ct                           | Dimensionless            |  |  |
| 1.75  | Cementation exponent, m                            | Dimensionless            |  |  |
| 1     | Water quality correction factor, R <sub>wcRw</sub> | Dimensionless            |  |  |



### Very saline well 41603

**23,333** = 0.56 \* 
$$\frac{10,000}{0.35^{1.75} * 1} * \frac{\left(\frac{269.6 - 70}{11,450} * 2,830 + 70\right) + 6.77}{77 + 6.77}$$

$$TDS = ct * \frac{10,000}{\cancel{Q}_{m_*Ro}} * \frac{(\frac{Tbh - Ts}{Dt} * Df + Ts) + 6.77}{77 + 6.77}$$

| Value  | Parameter                                          | Units                    |  |
|--------|----------------------------------------------------|--------------------------|--|
| 11,450 | Depth total, Dt                                    | Feet below Kelly Bushing |  |
| 2,830  | Depth formation, Df                                | Feet below Kelly Bushing |  |
| 70     | Temperature surface, Ts                            | Degrees Fahrenheit       |  |
| 269.6  | Temperature bottom hole, Tbh                       | Degrees Fahrenheit       |  |
| 1      | Deep resistivity, Ro                               | Ohm-meter                |  |
| 0.35   | Porosity, Ø                                        | Percent                  |  |
| 0.56   | ct conversion factor, ct                           | Dimensionless            |  |
| 1.75   | Cementation exponent, m                            | Dimensionless            |  |
| 1      | Water quality correction factor, R <sub>wcRw</sub> | Dimensionless            |  |

# Top of the Queen City Formation at 740 feet below **Kelly Bushing** Bottom of the Queen City Formation at 1,435 feet below **Kelly Bushing**

### Mixed salinity well 42000

| #1    | #2    | #3    | Parameter                                          | Units                    |
|-------|-------|-------|----------------------------------------------------|--------------------------|
| 4003  | 4003  | 4003  | Depth total, Dt                                    | Feet below Kelly Bushing |
| 820   | 1070  | 1360  | Depth formation, Df                                | Feet below Kelly Bushing |
| 69    | 69    | 69    | Temperature surface, Ts                            | Degrees Fahrenheit       |
| 127.1 | 127.1 | 127.1 | Temperature bottom hole, Tbh                       | Degrees Fahrenheit       |
| 2.6   | 3.2   | 10    | Deep resistivity, Ro                               | Ohm-meter                |
| 0.4   | 0.39  | 0.39  | Porosity, Ø                                        | Percent                  |
| 0.56  | 0.56  | 0.57  | ct conversion factor, ct                           | Dimensionless            |
| 1.75  | 1.75  | 1.75  | Cementation exponent, m                            | Dimensionless            |
| 1     | 1     | 1.11  | Water quality correction factor, $R_{\text{wcRw}}$ | Dimensionless            |

Calculation 1, TDS = 10,370

Calculation #2, TDS = **8,235** 

Calculation #3, TDS = **2,879** 

#### **Measured TDS** Salinity zone Fresh Fresh Fresh and slightly saline mixed zone Slightly saline Moderately saline Slightly saline **Calculated TDS** Slightly saline and moderately saline mixed zone Fresh Slightly saline, moderately saline, and very saline mixed zone Slightly saline Moderately saline Moderately saline Moderately saline and very saline mixed zone Very saline Very saline Brine Multiple salinity zones present Queen City Formation outcrop Geologic Atlas of Texas faults intersecting outcrop Study area boundary Texas counties Area Enlarged

#### Conclusions

- Resistivity logs can be used to estimate water quality
- The calculations work best when:
  - Correlations with measured water quality can be established
  - Parameters such as the porosity and cementation exponent are well defined
  - The water quality is dominated by NaCl and not SO<sub>4</sub><sup>2-</sup> or HCO<sub>3</sub><sup>-</sup>
  - Log headers are complete (bottom hole temperature, etc.)
  - Logs start shallow enough and are run before casing is placed

#### **JOB VACANCY NOTICE:**

Professional Geoscientist / Geoscientist-In-Training (Geoscientist II/Hydrologist II)

#### http://www.twdb.texas.gov/jobs/index.asp

Work Location: Austin

Monthly Salary: \$4,375.00 - 4,635.50\*

Travel %: 15

Number of Positions: 2

#### **Minimum Qualifications**

- Graduation from an accredited four-year college or university with a Bachelor of Science in Geology, Geophysics, Hydrogeology or related field.
- Three to five years of progressive work experience in the Geology, Geophysics, and Hydrogeology field.
- Licensed as a Geoscientist-In-Training or Professional Geoscientist by the Texas Board of Professional Geoscientists.
- Previous experience with GIS applications and database applications.
- Previous experience with preparing and writing technical reports.
- Relevant education and experience can be substituted on a year-for-year basis.

#### Andrea Croskrey, M.S., P.G.

Geologist

Innovative Water Technologies

Texas Water Development Board

andrea.croskrey@twdb.texas.gov

(512) 463-2865

http://www.twdb.texas.gov/innovativewater/index.asp

2017 Water Plan:

http://www.twdb.texas.gov/waterplanning/swp/2017/index.asp

<sup>\*</sup>Salary commensurate with experience and qualifications